Zulip Chat Archive
Stream: general
Topic: nat.pos_iff_ne_zero'
Reid Barton (Oct 24 2019 at 14:58):
From data.nat.basic
:
theorem pos_iff_ne_zero : 0 < n ↔ n ≠ 0 := ⟨ne_of_gt, nat.pos_of_ne_zero⟩ theorem pos_iff_ne_zero' : 0 < n ↔ n ≠ 0 := pos_iff_ne_zero
Anyone understand the purpose of this?
Johan Commelin (Oct 24 2019 at 15:01):
rotflol
Bryan Gin-ge Chen (Oct 24 2019 at 15:01):
Looks like pos_iff_ne_zero
originally had n > 0
until #1436.
Johan Commelin (Oct 24 2019 at 15:03):
Aha, that makes sense
Johan Commelin (Oct 24 2019 at 15:04):
src/analysis/complex/exponential.lean:have hn0 : (n : ℝ) ≠ 0, by simpa [nat.pos_iff_ne_zero'] using hn, src/data/nat/basic.lean:theorem pos_iff_ne_zero' : 0 < n ↔ n ≠ 0 := pos_iff_ne_zero src/data/nat/basic.lean:by have := @size_pos n; simp [pos_iff_ne_zero'] at this; src/ring_theory/multiplicity.lean: rw [finite_int_iff_nat_abs_finite, finite_nat_iff, nat.pos_iff_ne_zero'],
Reid Barton (Oct 24 2019 at 18:57):
Johan Commelin (Oct 24 2019 at 19:00):
It's in the hands of Travis now... :thinking:
Last updated: Dec 20 2023 at 11:08 UTC