Zulip Chat Archive
Stream: new members
Topic: 'eliminator' elaboration was not used
mth (Oct 12 2019 at 08:44):
I'm trying to define composition of partial functions as suggested in chapter 7 of Theorem Proving in Lean and I'm curious as to why this works:
def comp (f : β → option γ) (g : α → option β) : α → option γ := (λ b, option.rec option.none f b) ∘ g
but this doesn't:
def comp (f : β → option γ) (g : α → option β) : α → option γ := (option.rec option.none f) ∘ g -- error: type mismatch at application 'option.rec none'
I'm also getting
term none has type option ?m_1 : Type ? but is expected to have type ?m_1 none : Sort ? Additional information: context: 'eliminator' elaboration was not used for 'option.rec' because it is not fully applied, #3 explicit arguments expected
What is Lean trying to tell me? Why can't I use the partial application here?
Patrick Massot (Oct 12 2019 at 08:46):
Do you understand what "fully applied" means here?
mth (Oct 12 2019 at 08:48):
that I didn't pass all the arguments the function expected?
Patrick Massot (Oct 12 2019 at 08:50):
Yes, in the first version, option.rec
gets as many arguments as it could hope for, but not in the second version.
Mario Carneiro (Oct 12 2019 at 08:51):
Right. From a pure type theory point of view this should be alright, but lean's type inference isn't smart enough for this unless you explicitly give it all the arguments
Patrick Massot (Oct 12 2019 at 08:51):
Now, the elaboration process (which is the crucial step where Lean tries to fill in everything the user let implicit) is pretty subtle, and the recursor case is special, it needs more hand-holding.
Patrick Massot (Oct 12 2019 at 08:52):
But this is clearly not the intended solution to the exercise. Using recursors directly is not something I would recommend doing.
Patrick Massot (Oct 12 2019 at 08:52):
def comp (f : β → option γ) (g : α → option β) : α → option γ := λ a, match g a with | (some b) := f b | none := none end
Patrick Massot (Oct 12 2019 at 08:52):
This is the user-friendly solution.
mth (Oct 12 2019 at 08:54):
ah, thank you!
Patrick Massot (Oct 12 2019 at 08:55):
I hope the exercise comes after introducing match
Patrick Massot (Oct 12 2019 at 08:55):
@Jeremy Avigad?
Patrick Massot (Oct 12 2019 at 08:56):
Otherwise I don't know what was the intended solution.
mth (Oct 12 2019 at 08:58):
match is introduced later in 8.8
mth (Oct 12 2019 at 08:58):
maybe the intended solution was to use cases_on
? is that any friendlier?
Patrick Massot (Oct 12 2019 at 09:03):
Yes it is a bit friendlier
Patrick Massot (Oct 12 2019 at 09:04):
def comp' (f : β → option γ) (g : α → option β) : α → option γ := λ a, option.cases_on (g a) none f def comp'' (f : β → option γ) (g : α → option β) : α → option γ := λ a, do b ← g a, c ← f b, return c
I'll let your decide which solution you prefer. I think the match
one is by far the easiest to read.
Patrick Massot (Oct 12 2019 at 09:06):
Quickly reading back that chapter, the cases_on
solution is clearly the one Jeremy intended.
Patrick Massot (Oct 12 2019 at 09:06):
Now I need to go.
mth (Oct 12 2019 at 09:07):
ok, thanks a lot
mth (Oct 16 2019 at 10:38):
Why does the elaborator complain here?
example (f: γ → option δ) (g : β → option γ) (h : α → option β) : comp f (comp g h) = λ a, option.cases_on (option.cases_on (h a) none g) none f := rfl
error: invalid
option.cases_on
application, elaborator has special support for this kind of application (it is handled as an "eliminator"), but expected type must not contain metavariables:option ?m_1
(Sorry to annoy you again.)
Patrick Massot (Oct 16 2019 at 10:54):
The elaborator complains it doesn't know the type expected in the big parenthesis. It is not being smart enough.
Patrick Massot (Oct 16 2019 at 10:54):
You can help it using a type ascription
Patrick Massot (Oct 16 2019 at 10:54):
example (f: γ → option δ) (g : β → option γ) (h : α → option β) : comp f (comp g h) = λ a, option.cases_on (option.cases_on (h a) none g : option γ) none f := rfl
Patrick Massot (Oct 16 2019 at 10:55):
But I'm not sure I understand the point of this statement.
mth (Oct 16 2019 at 10:58):
Yes, its pretty pointless on its own
Last updated: Dec 20 2023 at 11:08 UTC