Zulip Chat Archive
Stream: new members
Topic: formalize krull's height theorem
Kyle Trinh (Jan 13 2025 at 02:13):
Hello, I am looking to try and formalize the height of ideals in Lean, but I am running into some trouble. Here is my height definiton and below is a lemma I am trying to prove to verify that it works:
noncomputable def height [h : I.IsPrime] : WithBot ℕ∞ :=
Order.height {J : PrimeSpectrum R | J.asIdeal ≤ I}
lemma height_zero_of_minimal_prime' [h : I.IsPrime] :
I ∈ minimalPrimes R → height I = 0 := by
intros Imin
rcases Imin with ⟨bot_le_I, y_minimal⟩
simp_all
by_contra height_neq_0
simp [height] at *
have nonempty_m : Nonempty {J : PrimeSpectrum R | J.asIdeal ≤ I} := by
exact Set.nonempty_iff_ne_empty'.mpr height_neq_0
let J := Classical.choice nonempty_m
apply Nonempty.elim nonempty_m
simp; intro a
specialize y_minimal ?_
. apply a.asIdeal
. apply a.isPrime
. contrapose! y_minimal; constructor
. apply y_minimal
. intro h
sorry
Thank you!
Last updated: May 02 2025 at 03:31 UTC