Zulip Chat Archive

Stream: new members

Topic: formalize krull's height theorem


Kyle Trinh (Jan 13 2025 at 02:13):

Hello, I am looking to try and formalize the height of ideals in Lean, but I am running into some trouble. Here is my height definiton and below is a lemma I am trying to prove to verify that it works:

noncomputable def height [h : I.IsPrime] : WithBot  :=
  Order.height {J : PrimeSpectrum R | J.asIdeal  I}

lemma height_zero_of_minimal_prime' [h : I.IsPrime] :
    I  minimalPrimes R  height I = 0 := by

  intros Imin
  rcases Imin with bot_le_I, y_minimal
  simp_all
  by_contra height_neq_0
  simp [height] at *
  have nonempty_m : Nonempty {J : PrimeSpectrum R | J.asIdeal  I} := by
    exact Set.nonempty_iff_ne_empty'.mpr height_neq_0
  let J := Classical.choice nonempty_m
  apply Nonempty.elim nonempty_m
  simp; intro a
  specialize y_minimal ?_
  . apply a.asIdeal
  . apply a.isPrime
  . contrapose! y_minimal; constructor
    . apply y_minimal
    . intro h
      sorry

Thank you!


Last updated: May 02 2025 at 03:31 UTC