Zulip Chat Archive

Stream: maths

Topic: Partial converse to König's theorem


Sky Wilshaw (Dec 14 2023 at 10:45):

Does the following partial converse to König's lemma/theorem on cardinals have a name (or exist in mathlib)?

theorem pow_le_of_isStrongLimit {κ μ : Cardinal.{u}} (h₁ : IsStrongLimit μ) (h₂ : κ < μ.ord.cof) :
    μ ^ κ  μ

Sky Wilshaw (Dec 14 2023 at 10:47):

A proof:

import Mathlib.SetTheory.Cardinal.Cofinality

open Cardinal

def funMap (α β : Type _) [LT β] (f : α  β) :
    { S : Set β // #S  #α } × (α  α  Prop) :=
  ⟨⟨Set.range f, mk_range_le⟩, InvImage (· < ·) f

theorem funMap_injective {α β : Type _} [LinearOrder β] [IsWellOrder β (· < ·)] :
    Function.Injective (funMap α β) := by
  intro f g h
  simp only [funMap, Prod.mk.injEq, Subtype.mk.injEq] at h
  suffices :  y : β,  x : α, f x = y  g x = y
  · ext x : 1
    rw [this]
    rfl
  intro y
  refine IsWellFounded.induction (· < ·) (C := fun y =>  x : α, f x = y  g x = y) y ?_
  clear y
  rintro y ih x rfl
  obtain y, h₁ : f x  Set.range g
  · rw [ h.1]
    exact x, rfl
  rw [ h₁]
  obtain (h₂ | h₂ | h₂) := lt_trichotomy (g x) (g y)
  · obtain z, h₃ : g x  Set.range f
    · rw [h.1]
      exact x, rfl
    rw [h₁,  h₃] at h₂
    have h₄ := ih (f z) h₂ z rfl
    have := congr_fun₂ h.2 z x
    simp only [InvImage, h₂, eq_iff_iff, true_iff] at this
    rw [h₄, h₃] at this
    cases lt_irrefl _ this
  · exact h₂
  · have := congr_fun₂ h.2 y x
    simp only [InvImage, eq_iff_iff] at this
    rw [ this] at h₂
    have := ih (f y) h₂ y rfl
    have := h₂.trans_eq (h₁.symm.trans this)
    cases lt_irrefl _ this

theorem mk_fun_le {α β : Type u} :
    #(α  β)  #({ S : Set β // #S  #α } × (α  α  Prop)) := by
  classical
  obtain r, hr := IsWellOrder.subtype_nonempty (σ := β)
  let _ := linearOrderOfSTO r
  exact ⟨⟨funMap α β, funMap_injective⟩⟩

theorem pow_le_of_isStrongLimit' {α β : Type u} [Infinite α] [Infinite β]
    (h₁ : IsStrongLimit #β) (h₂ : #α < (#β).ord.cof) : #β ^ #α  #β := by
  refine le_trans mk_fun_le ?_
  simp only [mk_prod, lift_id, mk_pi, mk_fintype, Fintype.card_prop, Nat.cast_ofNat, prod_const,
    lift_id', lift_two]
  have h₃ : #{ S : Set β // #S  #α }  #β
  · rw [ mk_subset_mk_lt_cof h₁.2]
    refine ⟨⟨fun S => S, S.prop.trans_lt h₂⟩, ?_⟩⟩
    intro S T h
    simp only [Subtype.mk.injEq] at h
    exact Subtype.coe_injective h
  have h₄ : (2 ^ #α) ^ #α  #β
  · rw [ power_mul, mul_eq_self (Cardinal.infinite_iff.mp inferInstance)]
    refine (h₁.2 _ ?_).le
    exact h₂.trans_le (Ordinal.cof_ord_le #β)
  refine le_trans (mul_le_max _ _) ?_
  simp only [ge_iff_le, le_max_iff, max_le_iff, le_aleph0_iff_subtype_countable, h₃, h₄, and_self,
    aleph0_le_mk]

theorem pow_le_of_isStrongLimit {κ μ : Cardinal.{u}} (h₁ : IsStrongLimit μ) (h₂ : κ < μ.ord.cof) :
    μ ^ κ  μ := by
  by_cases h : κ < ℵ₀
  · exact pow_le h₁.isLimit.aleph0_le h
  · revert h₁ h₂ h
    refine inductionOn₂ κ μ ?_
    intro α β h₁ h₂ h
    have := Cardinal.infinite_iff.mpr (le_of_not_lt h)
    have := Cardinal.infinite_iff.mpr h₁.isLimit.aleph0_le
    exact pow_le_of_isStrongLimit' h₁ h₂

David Michael Roberts (Dec 14 2023 at 10:58):

For the sake of readability, could include a mathematical English statement of the result?

Sky Wilshaw (Dec 14 2023 at 11:02):

König's lemma says that for infinite cardinals κ, we have κ<κcf(κ)\kappa < \kappa^{\mathrm{cf}(\kappa)} where cf(κ)\mathrm{cf}(\kappa) is the cofinality of κ. This result says that if κ\kappa is a strong limit cardinal, for any exponent α\alpha strictly smaller than the cofinality of κ, we don't have κ<κα\kappa < \kappa^\alpha (that is, we have κακ\kappa^\alpha \leq \kappa).

Sky Wilshaw (Dec 14 2023 at 11:05):

This establishes a critical point in the exponentiation function where the base is a strong limit cardinal. For all exponents strictly smaller than cf(κ)\mathrm{cf}(\kappa), we have κακ\kappa^\alpha \leq \kappa (and of course this is an equality for α0\alpha \neq 0), and for all exponents at least cf(κ)\mathrm{cf}(\kappa), we have κα>κ\kappa^\alpha > \kappa.

Pedro Sánchez Terraf (Dec 14 2023 at 11:31):

Note: Usually, "König's Lemma" refers to the fact about trees.


Last updated: Dec 20 2023 at 11:08 UTC