Zulip Chat Archive
Stream: Is there code for X?
Topic: List.Chain' that fixes both ends
Paige Thomas (Sep 20 2024 at 15:56):
Does this already exist in Mathlib somewhere?
inductive Walk {α : Type} (R : α -> α -> Prop) : α -> List α -> α -> Prop
| one (a : α) : Walk R a [] a
| cons (a b c : α) (l : List α) : R a b -> Walk R b l c -> Walk R a (b :: l) c
Floris van Doorn (Sep 20 2024 at 15:58):
docs#SimpleGraph.Walk if your R
is symmetric and irreflexive.
Floris van Doorn (Sep 20 2024 at 15:59):
docs#SimpleGraph.Walk.support gives the list.
Paige Thomas (Sep 20 2024 at 16:01):
Hmm. I see. Thank you.
Paige Thomas (Sep 20 2024 at 16:02):
Floris van Doorn said:
docs#SimpleGraph.Walk if your
R
is symmetric and irreflexive.
I'm not sure it is.
Yury G. Kudryashov (Sep 20 2024 at 17:09):
You can use List.Chain' R (a :: l ++ [b])
Paige Thomas (Sep 20 2024 at 18:41):
That makes sense. Thank you.
Last updated: May 02 2025 at 03:31 UTC