Zulip Chat Archive

Stream: mathlib4

Topic: A new formulation of Nakayama's lemma [stacks 00DV (8)]


Xingyu Zhong (Aug 19 2025 at 02:02):

Hello everyone, I've just formalized a version of Nakayama's Lemma (stacks 00DV (8), note that several other forms are already in Mathlib/RingTheory/Nakayama.lean). Wondering if it deserves my first contribution to Mathlib.

Mathematically it says that for a commutative ring RR, an ideal II of RR contained in the Jacobson radical of RR, and a finitely generated RR-module NN, if x1,,xnNx_1, \dots, x_n \in N generate N/INN / I \cdot N, then they also generate NN. Below is the (slightly modified) formalized statement:

import Mathlib.RingTheory.Finiteness.Basic
import Mathlib.RingTheory.Finiteness.Nakayama
import Mathlib.RingTheory.Jacobson.Ideal

variable {R M : Type*} [CommRing R] [AddCommGroup M] [Module R M]
open Ideal
namespace Submodule
/-- **Nakayama's Lemma** - Statement (8) in
[Stacks 00DV](https://stacks.math.columbia.edu/tag/00DV). -/
@[stacks 00DV "(8)"]
theorem le_span_of_map_mkQ_le_map_mkQ_span_of_le_jacobson_bot
    {I : Ideal R} {N : Submodule R M} {t : Set M}
    (hN : N.FG) (hIjac : I  jacobson ) (htspan : map (I  N).mkQ N  map (I  N).mkQ (span R t)) :
    N  span R t := by
  sorry

Would this formulation be a good candidate for a PR?

Kenny Lau (Aug 19 2025 at 08:15):

what is the role of M?

Xingyu Zhong (Aug 19 2025 at 08:23):

I just follow the current practice in Mathlib/RingTheory/Nakayama.lean. In my view it serve as a common ambient space, for example MM can be a local ring AA and II & NN be its maximal ideal m\mathfrak m.

Xingyu Zhong (Aug 19 2025 at 14:47):

opened PR #28641

Antoine Chambert-Loir (Aug 20 2025 at 06:23):

(deleted)


Last updated: Dec 20 2025 at 21:32 UTC