
New Foundations is consistent

Sky Wilshaw

19th November 2024

Abstract
We give a self-contained account of a version of the proof of Holmes and Wilshaw [4] that Quine’s
set theoryNew Foundations [5] is consistent relative to themetatheory ZFC. This version of the proof
is written in a style that is particularly amenable to the formalisation in Lean [8]; to that end, type-
theoretic concerns and dependencies between parts of the proof are explicitly spelled out.

Contents

1 Introduction 3
1.1 Overview . 3
1.2 The simple theory of types . 4
1.3 New Foundations . 4
1.4 Tangled type theory . 5
1.5 Finitely axiomatising tangled type theory . 5

2 Setting up the environment 7
2.1 Conventions . 7
2.2 Model parameters . 7
2.3 The structural hierarchy . 9
2.4 Position functions . 12
2.5 Hypotheses of the recursion . 13

3 Constructing the types 16
3.1 Codes and clouds . 16
3.2 Model data defined . 18
3.3 Typed near-litters, singletons, and positions . 19

4 Freedom of action 21
4.1 Base approximations . 21
4.2 Extensions of approximations . 23
4.3 Structural approximations . 23
4.4 Proving freedom of action . 25
4.5 Base actions . 27
4.6 Structural actions . 29

5 The counting argument 32
5.1 Strong supports . 32
5.2 Coding functions . 33
5.3 Specifications . 33
5.4 Recoding . 37
5.5 Coding the base type . 39
5.6 Counting . 41

6 Wrapping up the main induction 45
6.1 Induction, in abstract . 45

Chapter 0: CONTENTS 2

6.2 Building the tower . 47

7 Verifying Con(TTT) 49
7.1 Raising strong supports . 49
7.2 Tangled type theory . 50

8 Model theory and verifying Con(NF) 53
8.1 Many-sorted model theory . 53
8.2 Term models . 55
8.3 Ambiguity . 55

A Auxiliary results 56
A.1 Relations . 56
A.2 Cardinal arithmetic . 58

Chapter 1

Introduction

1.1 Overview
We will begin by discussing the mathematical background for the question of the consistency of
NF. We will establish the mathematical context for the proof we will present. In particular, our
proof will not directly show the consistency of NF; instead, we will construct a model of a related
theory known as tangled type theory, or TTT. We will show that there is a structure that satisfies a
particular axiomatisation of TTT which we will discuss in section 1.4. The expected conclusion that
NF is consistent then follows from the fact that NF and TTT are equiconsistent [3].

We will now outline our general strategy for the construction of a model of tangled type theory. As
we will outline in section 1.4, TTT is a many-sorted theory with types indexed by a limit ordinal 𝜆.
In order to impose symmetry conditions on our structure, we will add an additional level of objects
below type zero. These will not be a part of the final model we construct. This base type will be com-
prised of objects called atoms (although they are not atoms in the traditional model-theoretic sense).
Alongside the construction of the types of our model, we will also construct a group of permutations
of each type, called the allowable permutations. Such permutations will preserve the structure of the
model in a strong sense; for instance, they preserve membership.

The construction of a given type can only be done under certain hypotheses on the construction of
lower types. The most restrictive condition that we will need to satisfy is a bound on the size of each
type. In order to do this, we will need to show that there are a lot of allowable permutations. The
main technical lemma establishing this, called the freedom of action theorem, roughly states that a
partial function that locally behaves like an allowable permutation can be extended to an allowable
permutation. It, and its various corollaries, will be outlined in more detail when we are in a position
to prove it.

We can then finish the main induction to build the entire model out of the types we have construc-
ted. This step, while invisible to a human reader in set theory, takes substantial effort to formally
establish in a dependent type theory. It then remains to show that this is a model of TTT as desired,
or alternatively, a model of a particular finite axiomatisation.

Finally, we will set out to formally prove the consistency of NF. This will involve breaking down the
model-theoretic arguments from [7, 3] into concrete formalisable lemmas.

Implementation details will be discussed in footnotes.

Chapter 1: Introduction 4

1.2 The simple theory of types
In 1937, Quine introduced New Foundations (NF) [5], a set theory with a very small collection of
axioms. To give a proper exposition of the theory that we intend to prove consistent, we will first
make a digression to introduce the related theory TST, as explained in [4].

The simple theory of types (known as théorie simple des types or TST) is a first order set theory with
several sorts, indexed by the nonnegative integers. Each sort, called a type, is comprised of sets of that
type; each variable ‘𝑥’ has a nonnegative integer type(‘𝑥’) which denotes the type it belongs to. For
convenience, we may write 𝑥𝑛 to denote a variable 𝑥 with type 𝑛.
The primitive predicates of this theory are equality and membership. An equality ‘𝑥 = 𝑦’ is a well-
formed formula precisely when type(‘𝑥’) = type(‘𝑦’), and similarly a membership formula ‘𝑥 ∈ 𝑦’ is
well-formed precisely when type(‘𝑥’) + 1 = type(‘𝑦’).
The axioms of this theory are extensionality

∀𝑥𝑛+1, ∀𝑦𝑛+1, (∀𝑧𝑛, 𝑧𝑛 ∈ 𝑥𝑛+1 ↔ 𝑧𝑛 ∈ 𝑦𝑛+1) → 𝑥𝑛+1 = 𝑦𝑛+1

and comprehension
∃𝑥𝑛+1, ∀𝑦𝑛, (𝑦𝑛 ∈ 𝑥𝑛+1 ↔ 𝜑(𝑦𝑛))

where 𝜑 is any well-formed formula, possibly with parameters.
Note that these are both axiom schemes, with instances for all type levels 𝑛, and (in the latter case)
for all well-formed formulae 𝜑. Because extensionality at level 𝑛 + 1 requires us to talk about sets at
level 𝑛, the inhabitants of type 0, called individuals, cannot be examined using these axioms.
By comprehension, there is a set at each nonzero type that contains all sets of the previous type.
However, Russell-style paradoxes are avoided as formulae of the form 𝑥𝑛 ∈ 𝑥𝑛 are ill-formed.

1.3 New Foundations
NewFoundations is a one-sorted first-order theory based on TST. Its primitive propositions are equal-
ity and membership. There are no well-formedness constraints on these primitive propositions.

Its axioms are precisely the axioms of TST with all type annotations erased. That is, it has an axiom
of extensionality

∀𝑥, ∀𝑦, (∀𝑧, 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦
and an axiom scheme of comprehension

∃𝑥, ∀𝑦, (𝑦 ∈ 𝑥 ↔ 𝜑(𝑦))

the latter ofwhich is defined for those formulae𝜑 that can be obtained by erasing the type annotations
of awell-formed formula of TST. Such formulae are called stratified. To avoid the explicit dependence
on TST, we can equivalently characterise the stratified formulae as follows. A formula 𝜑 is said to be
stratified when there is a function 𝜎 from the set of variables to the nonnegative integers, in such a
way that for each subformula ‘𝑥 = 𝑦’ of 𝜑 we have 𝜎(‘𝑥’) = 𝜎(‘𝑦’), and for each subformula ‘𝑥 ∈ 𝑦’
we have 𝜎(‘𝑥’) + 1 = 𝜎(‘𝑦’).
It is important to emphasise that while the axioms come from a many-sorted theory, NF is not one; it
is well-formed to ask if any set is a member of, or equal to, any other.

Chapter 1: Introduction 5

Russell’s paradox is avoided because the set {𝑥 ∣ 𝑥 ∉ 𝑥} cannot be formed; indeed, 𝑥 ∉ 𝑥 is an
unstratified formula. Note, however, that the set {𝑥 ∣ 𝑥 = 𝑥} is well-formed, and so we have a
universal set 𝑉 . Specker showed in [6] that NF disproves the Axiom of Choice, and Hailperin showed
in [2] that NF is finitely axiomatisable.

While our main result is that New Foundations is consistent, we attack the problem by means of an
indirection through a third theory.

1.4 Tangled type theory
Introduced by Holmes in [3], tangled type theory (TTT) is a multi-sorted first order theory based on
TST. This theory is parametrised by a limit ordinal 𝜆, the elements of which will index the sorts; 𝜔
works, but we prefer generality. As in TST, each variable ‘𝑥’ has a type that it belongs to, denoted
type(‘𝑥’). However, in TTT, this is not a positive integer, but an element of 𝜆.
The primitive predicates of this theory are equality and membership. An equality ‘𝑥 = 𝑦’ is a well-
formed formula when type(‘𝑥’) = type(‘𝑦’). A membership formula ‘𝑥 ∈ 𝑦’ is well-formed when
type(‘𝑥’) < type(‘𝑦’).
The axioms of TTT are obtained by taking the axioms of TST and replacing all type indices in a con-
sistent way with elements of 𝜆. More precisely, for any order-embedding 𝑠 ∶ 𝜔 → 𝜆, we can convert
a well-formed formula 𝜑 of TST into a well-formed formula 𝜑𝑠 of TTT by replacing each type variable
𝛼 with 𝑠(𝛼).
It is important to note that membership across types in TTT behaves in some quite bizarre ways. Let
𝛼 ∈ 𝜆, and let 𝑥 be a set of type 𝛼. For any 𝛽 < 𝛼, the extensionality axiom implies that 𝑥 is uniquely
determined by its type-𝛽 elements. However, it is simultaneously determined by its type-𝛾 elements
for any 𝛾 < 𝛼. In this way, one extension of a set controls all of the other extensions.
The comprehension axiom allows a set to be built which has a specified extension in a single type.
The elements not of this type may be considered ‘controlled junk’.

Wenowpresent the following striking theorem,whichwewill prove a version of in detail in chapter 8.

Theorem (Holmes). NF is consistent if and only if TTT is consistent. [3]

Thus, our task of proving NF consistent is reduced to the task of proving TTT consistent. We will do
this by exhibiting an explicit model (albeit one that requires a great deal of Choice to construct). As
TTThas types indexed by a limit ordinal, and sets can only contain sets of lower type, we can construct
a model by recursion over 𝜆. In particular, a model of TTT is a well-founded structure. This was not
an option with NF directly, as the universal set 𝑉 = {𝑥 ∣ 𝑥 = 𝑥} would necessarily be constructed
before many of its elements.

1.5 Finitely axiomatising tangled type theory
As mentioned above, Hailperin showed in [2] that the comprehension scheme of NF is equivalent to
a finite conjunction of its instances. In fact, the same proof shows that the comprehension scheme
of TST (and hence that of TTT) is equivalent to a finite conjunction of its instances, but instantiated
at all possible type sequences.

We will exhibit one such collection of instances here, totalling eleven axioms. Our choice is inspired
by those used in theMetamath implementation ofHailperin’s algorithm in [1]. In the following table,

Chapter 1: Introduction 6

the notation ⟨𝑎, 𝑏⟩ denotes the Kuratowski pair {{𝑎}, {𝑎, 𝑏}}. The first column is Hailperin’s name for
the axiom, and the second is (usually) the name from [1].

P1(a) intersection ∀𝑥1𝑦1, ∃𝑧1, ∀𝑤0, 𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦)
P1(b) complement ∀𝑥1, ∃𝑧1, ∀𝑤0, 𝑤 ∈ 𝑧 ↔ 𝑤 ∉ 𝑥
− singleton ∀𝑥0, ∃𝑦1, ∀𝑧0, 𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥
P2 singleton image ∀𝑥3, ∃𝑦4, ∀𝑧0𝑤0, ⟨{𝑧}, {𝑤}⟩ ∈ 𝑦 ↔ ⟨𝑧,𝑤⟩ ∈ 𝑥
P3 insertion two ∀𝑥3, ∃𝑦5, ∀𝑧0𝑤0𝑡0, ⟨{{𝑧}}, ⟨𝑤, 𝑡⟩⟩ ∈ 𝑦 ↔ ⟨𝑧, 𝑡⟩ ∈ 𝑥
P4 insertion three ∀𝑥3, ∃𝑦5, ∀𝑧0𝑤0𝑡0, ⟨{{𝑧}}, ⟨𝑤, 𝑡⟩⟩ ∈ 𝑦 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝑥
P5 cross product ∀𝑥1, ∃𝑦3, ∀𝑧2, 𝑧 ∈ 𝑦 ↔ ∃𝑤0𝑡0, 𝑧 = ⟨𝑤, 𝑡⟩ ∧ 𝑡 ∈ 𝑥
P6 type lowering ∀𝑥4, ∃𝑦1, ∀𝑧0, 𝑧 ∈ 𝑦 ↔ ∀𝑤1, ⟨𝑤, {𝑧}⟩ ∈ 𝑥
P7 converse ∀𝑥3, ∃𝑦3, ∀𝑧0𝑤0, ⟨𝑧, 𝑤⟩ ∈ 𝑦 ↔ ⟨𝑤, 𝑧⟩ ∈ 𝑥
P8 cardinal one ∃𝑥2, ∀𝑦1, 𝑦 ∈ 𝑥 ↔ ∃𝑧0, ∀𝑤, 𝑤 ∈ 𝑦 ↔ 𝑤 = 𝑧
P9 subset ∃𝑥4, ∀𝑦1𝑧1, ⟨𝑦, 𝑧⟩ ∈ 𝑥 ↔ ∀𝑤0, 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧

Axioms P1–P9 except for P6 are predicative: they stipulate the existence of a set with type at least that
of all of the parameters. It is relatively straightforward to prove the consistency of predicative TTT,
and we will see later that the proof of P6 in our model takes a different form to the proofs of the other
axioms.

Chapter 2

Setting up the environment

In this chapter, we construct the ambient environment inside which our model will reside. To do
this, we will set up various pieces of abstract machinery that will help us later. Some mathematical
background not already in mathlib will be included in appendix A.

2.1 Conventions
• We are working in Lean’s type theory, so cardinals and ordinals are quotients of a large type.
In particular, cardinals are not just specific ordinals, and types cannot be ordinals.

• We write #𝜏 for the cardinality of a type 𝜏.
• If 𝜏 is a type endowed with a well-order <, we write ot(𝜏) for the order type of 𝜏 with this
well-ordering.

• The initial ordinal corresponding to a cardinal 𝑐 is denoted ord(𝑐). The cofinality of an ordinal
𝑜 is cof(𝑜), and this is a cardinal.

• The symmetric difference of two sets is denoted 𝑠 △ 𝑡 ≔ (𝑠 ∖ 𝑡) ∪ (𝑡 ∖ 𝑠). Note that (𝑠 △
𝑡) ∪ (𝑠 ∩ 𝑡) = 𝑠 ∪ 𝑡, and the union on the left-hand side is disjoint.

• We use 𝑓[𝑠] for the direct image {𝑓(𝑥) ∣ 𝑥 ∈ 𝑠}. We write 𝑓−1[𝑠] for the inverse image {𝑥 ∣
𝑓(𝑥) ∈ 𝑠}, and 𝑓−1(𝑥) for the fibre {𝑦 ∣ 𝑓(𝑦) = 𝑥}.

• For any type 𝛼, we write Part𝛼 for the type∑𝑝∶Prop(𝑝 → 𝛼).

2.2 Model parameters
Definition 2.1 (model parameters). A collection ofmodel parameters is a tuple (𝜆, <𝜆, 𝜅, 𝜇) such that

• < = <𝜆 is a well-order on 𝜆, and under this ordering, 𝜆 has no maximal element (so ot(𝜆) is a
limit ordinal);

• #𝜅 is uncountable and regular;

Chapter 2: Setting up the environment 8

• #𝜇 is a strong limit, and satisfies

#𝜅 < #𝜇; #𝜅 ≤ cof(ord(#𝜇)); ot(𝜆) ≤ ord(cof(ord(#𝜇)))

so in particular, ot(𝜆) ≤ ord(#𝜇). Note that the inequalities in 𝜅 are inequalities of cardinals;
the inequality in 𝜆 is an inequality of ordinals.

Given a collection of model parameters, we define

• canonical well-orders on 𝜅 and 𝜇 such that ot(𝜅) = ord(#𝜅) and ot(𝜇) = ord(#𝜇); and
• a canonical left-cancellative additivemonoid on 𝜅, obtained by passing through the equivalence
𝜅 ≃ {𝑜 ∶ Ord ∣ 𝑜 < ord(#𝜅)}.

Proposition 2.2. The tuple (ℕ, <ℕ, ℵ1, ℶ𝜔1) is a collection of model parameters, where the symbols
ℵ1 and ℶ𝜔1 represent particular types of that cardinality.

Proof. Direct.

Definition 2.3 (type index). The type of type indices is 𝜆⊥ ≔ WithBot(𝜆): the collection of proper
type indices 𝜆 together with a designated symbol⊥which is smaller than all proper type indices. Note
that ot(𝜆⊥) = ot(𝜆), and hence that for each 𝛼 ∶ 𝜆⊥,

#{𝛽 ∶ 𝜆⊥ ∣ 𝛽 < 𝛼} ≤ #{𝛽 ∶ 𝜆⊥ ∣ 𝛽 ≤ 𝛼} < cof(ord(#𝜇))

Definition 2.4 (small). A set 𝑠 ∶ Set(𝜏) is called small if #𝑠 < #𝜅. Smallness is stable under sub-
set, intersection, small-indexed unions, symmetric difference, direct image, injective preimage, and
many other operations (each of which should be its own lemma when formalised). Sets 𝑠, 𝑡 ∶ Set(𝜏)
are called near if 𝑠 △ 𝑡 is small; in this case, we write 𝑠 𝑁∼ 𝑡. Nearness is an equivalence relation. If
𝑠 𝑁∼ 𝑡 and 𝑢 is small, then 𝑠 𝑁∼ (𝑡 ⋄ 𝑢), where ⋄ is one of ∪, ∩, ∖,△.
Definition 2.5 (litter). A litter is a triple 𝐿 = (𝜈, 𝛽, 𝛾) ∶ 𝜇×𝜆⊥×𝜆where 𝛽 ≠ 𝛾. The type of all litters
is denoted ℒ, and #ℒ = #𝜇.
Definition 2.6 (atom). An atom is a pair 𝑎 = (𝐿, 𝑖) ∶ ℒ×𝜅.1 The type of all atoms is denoted𝒜, and
#𝒜 = #𝜇. We write (−)∘ ∶ 𝒜 → ℒ for the operation (𝐿, 𝑖) ↦ 𝐿.2 We write LS(𝐿) ≔ {𝑎 ∣ 𝑎∘ = 𝐿} for
the litter set of 𝐿.3

Definition 2.7 (near-litter). A near-litter is a pair 𝑁 = (𝐿, 𝑠) ∶ ℒ × Set𝒜 such that 𝑠 𝑁∼ LS(𝐿).4 We
write (−)∘ ∶ 𝒩 → ℒ for the operation (𝐿, 𝑠) ↦ 𝐿. We write 𝑎 ∈ 𝑁 for 𝑎 ∈ 𝑠, where 𝑁 = (𝐿, 𝑠).
Near-litters satisfy extensionality: there is at most one choice of 𝐿 for each 𝑠. Each near-litter has size
#𝜅 when treated as a set of atoms. The type of all near-litters is denoted𝒩, and #𝒩 = #𝜇 (there are
#𝜇 litters, and#𝜇 small sets of atoms by lemmaA.6; the latter observation should be its own lemma).

We have𝑀 𝑁∼ 𝑁 if and only if𝑀∘ = 𝑁∘. If𝑀∘ = 𝑁∘, then𝑀 △ 𝑁 is small and𝑀 ∩ 𝑁 has size #𝜅. If
𝑀∘ ≠ 𝑁∘, then𝑀 ∩ 𝑁 has size #𝜅 and𝑀 ∩ 𝑁 is small.

1This should be formalised as a structure, not as a definition. We should not use the projections of atoms unless absolutely
necessary.

2This must be a notation typeclass.
3Maybe revise this name?
4Like with atoms, this should be a structure. We should create an actual constructor, rather than using the ⟨−⟩ syntax.

Chapter 2: Setting up the environment 9

Definition 2.8 (base permutation). A base permutation is a pair 𝜋 = (𝜋𝒜, 𝜋ℒ), where 𝜋𝒜 is a per-
mutation 𝒜 ≃ 𝒜 and 𝜋ℒ is a permutation ℒ ≃ ℒ, such that

𝜋𝒜[LS(𝐿)] 𝑁∼ LS(𝜋ℒ(𝐿))

Base permutations have a natural group structure, they act on atoms by 𝜋𝒜, they act on litters by 𝜋ℒ,
and they act on near-litters by5

𝜋(𝑁)∘ = 𝜋(𝑁∘); 𝑎 ∈ 𝜋(𝑁) ↔ 𝑎 ∈ 𝜋[𝑁]

Base permutations are determined by their action on atoms. We should avoid directly referencing
𝜋𝒜 and 𝜋ℒ whenever possible.

2.3 The structural hierarchy
We will now establish the hierarchy of types that our model will be built inside.

Definition 2.9 (path). If 𝛼, 𝛽 are type indices, then a path 𝛼 ⇝ 𝛽 is given by the constructors
• nil ∶ 𝛼 ⇝ 𝛼;
• cons ∶ (𝛼 ⇝ 𝛽) → (𝛾 < 𝛽) → (𝛼 ⇝ 𝛾).

We define by recursion a snoc operation on the top of paths. We also prove the induction principle
for nil and snoc.

A path 𝛼 ⇝ ⊥ is called an 𝛼-extended index. We write nil(𝛼) for the path {𝛼} ∶ 𝛼 ⇝ 𝛼. If ℎ is a proof
of 𝛽 < 𝛼, we write single(ℎ) for the path {𝛼, 𝛽} ∶ 𝛼 ⇝ 𝛽.
We have the inequality

#(𝛼 ⇝ 𝛽) ≤ (#{𝛾 ∶ 𝜆⊥ ∣ 𝛾 ≤ 𝛼})<𝜔

= max(ℵ0, #{𝛾 ∶ 𝜆⊥ ∣ 𝛾 ≤ 𝛼})
< cof(ord(#𝜇))

Many of the objects in this construction have an associated type level 𝛼 ∶ 𝜆⊥, and by application of a
path of the form 𝛼 ⇝ 𝛽 or 𝛽 ⇝ 𝛼, we can often define a new object of type level 𝛽. For this common
task, we register the following notation typeclasses.

• 𝑥 ⇓ 𝐴 is the derivative of an object of type 𝛽 along a path 𝐴 ∶ 𝛽 ⇝ 𝛾, giving an object of type 𝛾;
• 𝑥 ↓ ℎ abbreviates 𝑥 ⇓ single(ℎ);6

• 𝑥 ⇓
⊥
𝐴 is the base derivative of an object of type 𝛽 along a path 𝐴 ∶ 𝛽 ⇝ ⊥;

• 𝑥 ↓
⊥
abbreviates 𝑥 ⇓

⊥
single(ℎ) where ℎ is the canonical proof of ⊥ < 𝛽 whenever 𝛽 ∶ 𝜆;

• 𝑥 ⇑ 𝐴 is the coderivative of an object of type 𝛽 along a path 𝐴 ∶ 𝛼 ⇝ 𝛽, giving an object of type
𝛼;

5We need to emphasise these properties, rather than emphasising the real definition 𝜋(𝑁) = (𝜋(𝑁∘), 𝜋[𝑁]).
6In practice the typeclasses will probably not formally depend on each other, and this ‘abbreviation’ may not be a defini-

tional equality.

Chapter 2: Setting up the environment 10

• 𝑥 ↑ ℎ abbreviates 𝑥 ⇑ single(ℎ).
When we say that an object has an associated type level in this context, we mean that the notation
typeclass is registered in the following form.

class Derivative (X : Type _) (Y : outParam (Type _))
(β : outParam TypeIndex) (γ : TypeIndex) where

deriv : X → Path β γ → Y
This means that when inferring the type of the expression 𝑥 ⇓ 𝐴, we first compute the type of 𝑥,
which gives rise to a unique type index 𝛽, then the type of𝐴 is inferred to give 𝛾, then the output type
𝑌 is uniquely determined.

The reason that we distinguish ⇓
⊥
from ⇓ is that the associated type 𝑌 is allowed to differ between

the two forms. We will give a brief example motivated by a definition we are about to make. For each
type index 𝛽, there is a type of 𝛽-structural permutation, comprised ofmany base permutations. If we
have a path 𝛽 ⇝ 𝛾, we can convert a 𝛽-structural permutation into a 𝛾-structural permutation; this
will be the derivative map. We will see that a given ⊥-structural permutation contains exactly one
base permutation, and so the types are in canonical isomorphism. If 𝑥 is a 𝛽-structural permutation
and 𝐴 ∶ 𝛽 ⇝ ⊥, then 𝑥 ⇓ 𝐴 is a ⊥-structural permutation, and 𝑥 ⇓

⊥
𝐴 is the corresponding base

permutation.

Because ↑, ↓ and others are already used by Lean, we use slightly different notation in practice (e.g.
↗,↘). In this writeup, however, we will use subscripts for derivatives and superscripts for coderiv-
atives. We will not distinguish typographically here between the single- and double-struck variants,
or between ⇓ and ⇓

⊥
; in the latter case, the syntax 𝑥𝐴 always means 𝑥 ⇓

⊥
𝐴 whenever 𝐴 has minimal

element ⊥. We will also use 𝑥𝛾 to denote the derivative 𝑥ℎ where ℎ is some proof of 𝛾 < 𝛽, and use
𝑥𝛼 to denote 𝑥ℎ where ℎ ∶ 𝛽 < 𝛼.
Definition 2.10 (derivatives of paths). If 𝐴 ∶ 𝛼 ⇝ 𝛽 and 𝐵 ∶ 𝛽 ⇝ 𝛾, the derivative 𝐴𝐵 is defined to
be the union 𝐴 ∪ 𝐵 ∶ 𝛼 ⇝ 𝛾, and the coderivative 𝐵𝐴 is defined to be 𝐴𝐵.

Definition 2.11 (tree). Let 𝜏 be any type, and let 𝛼 be a type index. An 𝛼-tree of 𝜏 is a function 𝑡 that
maps each 𝛼-extended index𝐴 to an object 𝑡𝐴 ∶ 𝜏; this defines its base derivatives. The type of⊥-trees
of 𝜏 is canonically isomorphic to 𝜏. If 𝑡 is an 𝛼-tree and 𝐴 ∶ 𝛼 ⇝ 𝛽, we define the derivative 𝑡𝐴 to be
the 𝛽-tree defined by (𝑡𝐴)𝐵 = 𝑡(𝐴𝐵). This derivative map is functorial: for any paths 𝐴 ∶ 𝛼 ⇝ 𝛽 and
𝐵 ∶ 𝛽 ⇝ 𝛾, we have 𝑡(𝐴𝐵) = (𝑡𝐴)𝐵. If 𝜏 has a group structure, then so does its type of trees: (𝑡 ⋅ 𝑢)𝐴 =
𝑡𝐴 ⋅ 𝑢𝐴 and (𝑡−1)𝐴 = (𝑡𝐴)−1. If 𝜏 acts on 𝜐, then 𝛼-trees of 𝜏 act on 𝛼-trees of 𝜐: (𝑡(𝑢))𝐴 = 𝑡𝐴(𝑢𝐴).
If #𝜏 ≤ #𝜇, there are at most #𝜇-many 𝛼-trees of 𝜏, since there are less than cof(ord(#𝜇))-many 𝛼-
extended indices, allowing us to conclude by lemma A.6 as each such tree is a subset of (𝛼 ⇝ ⊥) × 𝜏
of size less than cof(ord(#𝜇)). If #𝜏 < #𝜇, there are less than #𝜇-many 𝛼-trees of 𝜏, since there are
less than cof(ord(#𝜇))-many 𝛼-extended indices and strong limits are closed under exponentials.
Definition 2.12 (structural permutation). Let 𝛼 be a type index. Then an 𝛼-structural permutation
(or just 𝛼-permutation) is an 𝛼-tree of base permutations. The type of 𝛼-permutations is written
StrPerm𝛼.

As an implementation detail, we create a typeclass StrPermClass𝛼 for permutations that ‘act like’
𝛼-permutations: they have a group structure and a canonical group embedding into StrPerm𝛼. When
we quantify over structural permutations in this paper, it should be formalised using an additional
quantification over StrPermClass𝛼.

Chapter 2: Setting up the environment 11

Definition 2.13 (enumeration). Let 𝜏 be a type. An enumeration of 𝜏 is a pair 𝐸 = (𝑖, 𝑓) where 𝑖 ∶ 𝜅
and 𝑓 is a partial function 𝜅 → 𝜏, such that all domain elements of 𝑓 are strictly less than 𝑖.7 If 𝑥 ∶ 𝜏,
we write 𝑥 ∈ 𝐸 for 𝑥 ∈ ran𝑓. The set {𝑦 ∣ 𝑦 ∈ 𝐸}, which we may also loosely call 𝐸, is small. We will
write ∅ for the empty enumeration (0,∅).
If 𝑔 ∶ 𝜏 → 𝜎, then 𝑔 lifts to a direct image function mapping enumerations of 𝜏 to enumerations of 𝜎:

𝑔(𝑖, 𝑓) = (𝑖, 𝑓′); 𝑓′ = {(𝑗, 𝑔(𝑥)) ∣ (𝑗, 𝑥) ∈ 𝑓}

Thus, 𝑥 ∈ 𝑔(𝐸) ↔ 𝑥 ∈ 𝑔[𝐸]. In the same way, groups that act on 𝜏 also act on enumerations of
𝜏.8 If 𝑔 ∶ 𝜎 → 𝜏 is injective, then 𝑔 lifts to an inverse image function mapping enumerations of 𝜏 to
enumerations of 𝜎:

𝑔−1(𝑖, 𝑓) = (𝑖, 𝑓′); 𝑓′ = {(𝑗, 𝑥) ∣ (𝑗, 𝑔(𝑥)) ∈ 𝑓}
This operation may cause the domain of 𝑓 to shrink, but we will keep 𝑖 the same.
If 𝐸 = (𝑖, 𝑒) and 𝐹 = (𝑗, 𝑓) are enumerations of 𝜏, we define their concatenation by

𝐸 + 𝐹 = (𝑖 + 𝑗, 𝑒 ∪ 𝑓′); 𝑓′ = {(𝑖 + 𝑘, 𝑥) ∣ (𝑘, 𝑥) ∈ 𝑓}

This operation commutes with the others: 𝑥 ∈ 𝐸 +𝐹 ↔ 𝑥 ∈ 𝐸 ∨ 𝑥 ∈ 𝐹, 𝑔[𝐸 + 𝐹] = 𝑔[𝐸] + 𝑔[𝐹], and
𝑔−1[𝐸 + 𝐹] = 𝑔−1[𝐸] + 𝑔−1[𝐹].
We define a partial order on enumerations by setting (𝑖, 𝑒) ≤ (𝑗, 𝑓) if and only if 𝑓 extends 𝑒 as a
partial function. We obtain various corollaries, such as 𝐸 ≤ 𝐹 → 𝑔(𝐸) ≤ 𝑔(𝐹) and 𝐸 ≤ 𝐸 + 𝐹.
Every small subset of 𝜏 is the range of some enumeration of 𝜏.
If #𝜏 ≤ #𝜇, then there are at most #𝜇-many enumerations of 𝜏: enumerations are determined by
an element of 𝜅 and a small subset of 𝜅 × 𝜏. If #𝜏 < #𝜇, then there are strictly less than #𝜇-many
enumerations of 𝜏: use the same reasoning and apply lemma A.6.
Definition 2.14 (base support). A base support is a pair 𝑆 = (𝑆𝒜, 𝑆𝒩) where 𝑆𝒜 is an enumeration
of atoms and 𝑆𝒩 is an enumeration of near-litters. There are precisely #𝜇 base supports.
Definition 2.15 (structural support). A 𝛽-structural support (or just 𝛽-support) is a pair 𝑆 = (𝑆𝒜, 𝑆𝒩)
where 𝑆𝒜 is an enumeration of (𝛽 ⇝ ⊥) × 𝒜 and 𝑆𝒩 is an enumeration of (𝛽 ⇝ ⊥) × 𝒩. The type
of 𝛽-supports is written StrSupp𝛽. There are precisely #𝜇 structural supports for any type index 𝛽.
For a path 𝐴 ∶ 𝛽 ⇝ ⊥, we write 𝑆𝐴 for the base support 𝑇 given by

𝑇𝒜 = {(𝑖, 𝑎) ∣ (𝑖, (𝐴, 𝑎)) ∈ 𝑆𝒜}; 𝑇𝒩 = {(𝑖, 𝑁) ∣ (𝑖, (𝐴, 𝑁)) ∈ 𝑆𝒩 }

More generally, for a path 𝐴 ∶ 𝛽 ⇝ 𝛾, we write 𝑆𝐴 for the 𝛾-support 𝑇 given by

𝑇𝒜 = {(𝑖, (𝐵, 𝑎)) ∣ (𝑖, (𝐴𝐵, 𝑎)) ∈ 𝑆𝒜}; 𝑇𝒩 = {(𝑖, (𝐵, 𝑁)) ∣ (𝑖, (𝐴𝐵, 𝑁)) ∈ 𝑆𝒩 }

For a path 𝐴 ∶ 𝛼 ⇝ 𝛽, we write 𝑆𝐴 for the 𝛼-support 𝑇 given by

𝑇𝒜 = {(𝑖, (𝐴𝐵, 𝑎)) ∣ (𝑖, (𝐵, 𝑎)) ∈ 𝑆𝒜}; 𝑇𝒩 = {(𝑖, (𝐴𝐵, 𝑁)) ∣ (𝑖, (𝐵, 𝑁)) ∈ 𝑆𝒩 }

Clearly, (𝑆𝐴)𝐴 = 𝑆.
𝛽-structural permutations act on pairs (𝐴, 𝑥) by 𝜋(𝐴, 𝑥) = (𝐴, 𝜋𝐴(𝑥)), where 𝑥 is either an atom or a
near-litter. Hence, structural permutations act on structural supports.

7This should be encoded as a coinjective relation 𝜅 → 𝜏 → Prop; see definition A.1.
8Actually, we should probably implement this using the inverse image not the direct image for better definitional equalities.

Chapter 2: Setting up the environment 12

Let 𝜏 be a type, and let 𝐺 be a StrPermClass𝛽-group that acts on 𝜏. We say that 𝑆 supports 𝑥 ∶ 𝜏
under the action of 𝐺 if whenever 𝜋 ∶ 𝐺 fixes 𝑆, it also fixes 𝑥, and moreover, if 𝛽 = ⊥ then 𝑆𝒩𝐴 is
empty for any 𝐴 ∶ ⊥ ⇝ ⊥ (and of course there is exactly one such path).

Definition 2.16 (structural set). The type of 𝛼-structural sets, denoted StrSet𝛼, is defined by well-
founded recursion on 𝜆⊥.

• StrSet⊥ ≔ 𝒜;
• StrSet𝛼 ≔∏𝛽∶𝜆⊥ 𝛽 < 𝛼 → Set StrSet𝛽 where 𝛼 ∶ 𝜆.

These equalities will in fact only be equivalences in the formalisation. We define the action of
𝛼-permutations (more precisely, inhabitants of some type with a StrPermClass𝛼 instance) on 𝛼-
structural sets by well-founded recursion.

• 𝜋(𝑥) = 𝜋nil(⊥)(𝑥) if 𝛼 ≡ ⊥;
• 𝜋(𝑥) = (𝛽, ℎ ↦ 𝜋ℎ[𝑥(𝛽, ℎ)]) if 𝛼 ∶ 𝜆.

2.4 Position functions
Definition 2.17 (position function). Let 𝜏 be a type. A position function for 𝜏 is an injection 𝜄 ∶ 𝜏 → 𝜇.
This is a typeclass.

Proposition 2.18 (injective functions from denied sets). Let 𝜏 be a type such that #𝜏 ≤ #𝜇. Let
𝐷 ∶ 𝜏 → Set(𝜇) be a function such that for each 𝑥 ∶ 𝜏, the set 𝐷(𝑥), called the denied set of 𝑥, has
size less than cof(ord(#𝜇)). Then there is an injective function 𝑓 ∶ 𝜏 → 𝜇 such that if 𝜈 ∈ 𝐷(𝑥), then
𝜈 < 𝑓(𝑥).

Proof. Pick a well-ordering ≺ of 𝜏 of length at most ord(#𝜇). Define 𝑓 by well-founded recursion on
≺. Suppose that we have already defined 𝑓 for all 𝑦 ≺ 𝑥. Then let

𝑋 = {𝑓(𝑦) ∣ 𝑦 ≺ 𝑥} ∪ {𝜈 ∣ ∃𝜈′ ∈ 𝐷(𝑥), 𝜈 ≤ 𝜈′}

This set has size strictly less than 𝜇, so there is some 𝜈 ∶ 𝜇 not contained in it. Set 𝑓(𝑥) = 𝜈.

Proposition 2.19 (base positions). There are position functions on 𝒜,𝒩 that are jointly injective
and satisfy

• 𝜄(NL(𝑎∘)) < 𝜄(𝑎) for every atom 𝑎;
• 𝜄(NL(𝑁∘)) ≤ 𝜄(𝑁) for every near-litter 𝑁;
• 𝜄(𝑎) < 𝜄(𝑁) for every near-litter 𝑁 and atom 𝑎 ∈ 𝑁 △ LS(𝑁∘).9

We register these position functions as instances for use in typeclass inference. We also define 𝜄(𝐿) =
𝜄(NL(𝐿)) for litters.

Proof. First, establish an equivalence 𝑓ℒ ∶ ℒ ≃ 𝜇. Use proposition 2.18 to obtain an injective map
𝑓𝒜 ∶ 𝒩 → 𝜇 such that 𝑓ℒ(𝑎∘) < 𝑓𝒜(𝑎) for each atom 𝑎. Now use proposition 2.18 again to obtain
an injective map 𝑓𝒩 ∶ 𝒩 → 𝜇 such that

𝑓ℒ(𝑁∘) < 𝑓𝒩(𝑁); 𝑓𝒜(𝑎) < 𝑓𝒩(𝑁) for 𝑎 ∈ 𝑁 △ LS(𝑁∘)
9TODO: Make syntax for𝑁 △ LS(𝑁∘).

Chapter 2: Setting up the environment 13

Endow 3 × 𝜇 with its lexicographic order, of order type ord(#𝜇), giving an order isomorphism 𝑒 ∶
3 × 𝜇 ≃ 𝜇. Finally, we define

𝜄(𝑎) = 𝑒(1, 𝑓𝒜(𝑎)); 𝜄(𝑁) = {𝑒(0, 𝑓ℒ(𝑁
∘)) if 𝑁 = NL(𝑁∘)

𝑒(2, 𝑓𝒩(𝑁)) otherwise

2.5 Hypotheses of the recursion
Definition 2.20 (model data). Let 𝛼 be a type index. Model data at type 𝛼 consists of:10

• a TSet𝛼 called the type of tangled sets or t-sets, which will be our type of model elements at level
𝛼, with an embedding 𝑈𝛼 ∶ TSet𝛼 → StrSet𝛼;

• a group AllPerm𝛼 called the type of allowable permutations, with a StrPermClass𝛼 instance
and a specified action on TSet𝛼,

such that

• if 𝜌 ∶ AllPerm𝛼 and 𝑥 ∶ TSet𝛼, then 𝜌(𝑈𝛼(𝑥)) = 𝑈𝛼(𝜌(𝑥));
• every t-set of type 𝛼 has an 𝛼-support (definition 2.15) for its action under the 𝛼-allowable
permutations.

Definition 2.21 (tangle). Let𝛼 be a type indexwithmodel data. An𝛼-tangle is a pair 𝑡 = (𝑥, 𝑆)where
𝑥 is a tangled set of type 𝛼 and 𝑆 is an 𝛼-support for 𝑥. We define set(𝑡) = 𝑥 and supp(𝑡) = 𝑆. The type
of 𝛼-tangles is denoted Tang𝛼. Allowable permutations 𝜌 act on tangles by 𝜌((𝑥, 𝑆)) = (𝜌(𝑥), 𝜌(𝑆)),
and so supp(𝑡) supports 𝑡 for its action under the allowable permutations. Therefore, each tangled
set 𝑥 is of the form set(𝑡) for some tangle 𝑡.
Proposition 2.22 (fuzz maps). Let 𝛽 be a type index with model data, and suppose that Tang𝛽 has
a position function. Let 𝛾 be any proper type index not equal to 𝛽. Then there is an injective fuzz
map 𝑓𝛽,𝛾 ∶ Tang𝛽 → ℒ such that 𝜄(𝑡) < 𝜄(𝑓𝛽,𝛾(𝑡)), and the different 𝑓𝛽,𝛾 all have disjoint ranges. In
particular, for any near-litter𝑁 with𝑁∘ = 𝑓𝛽,𝛾(𝑡), we have 𝜄(𝑡) < 𝜄(𝑁), and additionally, for any atom
𝑎 with 𝑎∘ = 𝑓𝛽,𝛾(𝑡), we have 𝜄(𝑡) < 𝜄(𝑎).11

Proof. We define 𝑔 ∶ Tang𝛽 → 𝜇 by proposition 2.18, where the denied sets are given by𝐷(𝑡) = {𝜄(𝑡)}.
Then we set 𝑓𝛽,𝛾(𝑡) = (𝑔(𝑡), 𝛽, 𝛾).

Definition 2.23 (inflexible path). Let 𝛼 be a proper type index. Suppose that we have model data
for all type indices 𝛽 ≤ 𝛼 and position functions for Tang𝛽 for all 𝛽 < 𝛼. For any type index 𝛽 ≤ 𝛼,
a inflexible 𝛽-path is a tuple 𝐼 = (𝛾, 𝛿, 𝜀, 𝐴) where 𝛿, 𝜀 < 𝛾 are distinct, the index 𝜀 is proper, and
𝐴 ∶ 𝛽 ⇝ 𝛾. We will write 𝛾𝐼 , 𝛿𝐼 , 𝜀𝐼 , 𝐴𝐼 for its fields. Inflexible paths have a coderivative operation,
given by (𝛾, 𝛿, 𝜀, 𝐴)𝐵 = (𝛾, 𝛿, 𝜀, 𝐴𝐵).

10A type theory problemwithexporting this data is that under different assumptions, things like different spellings ofTSet𝛼
might require case splitting on 𝛼 before they become defeq (e.g. see the old version of Model/FOA.lean). There doesn’t seem
to be an easy way around this.

11We might want to encapsulate atoms and near-litters somehow. We could make a typeclass, or write theorems in terms
of the coproduct𝒜⊕𝒩 .

Chapter 2: Setting up the environment 14

Definition 2.24 (typed near-litter). Let 𝛼 be a proper type index with model data, and suppose that
Tang𝛼 has a position function. We say that 𝛼 has typed near-litters if there is an embedding typed𝛼 ∶
𝒩 → TSet𝛼 such that

• if 𝜌 ∶ AllPerm𝛼 and 𝑁 ∶ 𝒩, then 𝜌(typed𝛼(𝑁)) = typed𝛼(𝜌⊥(𝑁)); and
• if 𝑁 is a near-litter and 𝑡 is an 𝛼-tangle such that set(𝑡) = typed𝛼(𝑁), we have 𝜄(𝑁) ≤ 𝜄(𝑡).

Objects of the form typed𝛼 are called typed near-litters.

Definition 2.25 (coherent data). Let 𝛼 be a proper type index. Suppose that we have model data for
all type indices 𝛽 ≤ 𝛼, position functions for Tang𝛽 for all 𝛽 < 𝛼, and typed near-litters for all 𝛽 < 𝛼.
We say that the model data is coherent below level 𝛼 if the following hold.

• For 𝛾 < 𝛽 ≤ 𝛼, there is a map AllPerm𝛽 → AllPerm𝛾 that commutes with the coercions from
AllPerm(−) to StrPerm(−). We can use this map to define arbitrary derivatives of allowable
permutations by recursion on paths.

• If (𝑥, 𝑆) is a 𝛽-tangle for 𝛽 < 𝛼, and 𝑦 is an atom or near-litter that occurs in the range of 𝑆𝐴,
then 𝜄(𝑦) < 𝜄(𝑥, 𝑆).

• Let 𝛽 ≤ 𝛼, and let 𝛾, 𝛿 < 𝛽 be distinct with 𝛿 proper. Let 𝑡 ∶ Tang𝛾 and 𝜌 ∶ AllPerm𝛽. Then

(𝜌𝛿)⊥(𝑓𝛾,𝛿(𝑡)) = 𝑓𝛾,𝛿(𝜌𝛾(𝑡))

In particular, for every 𝛽 ≤ 𝛼, 𝛽-allowable permutation 𝜌, and 𝛽-inflexible path 𝐼, we obtain

((𝜌𝐴)𝜀)⊥(𝑓𝛿,𝜀(𝑡)) = 𝑓𝛿,𝜀((𝜌𝐴)𝛿(𝑡))

where subscripts of 𝐼 are suppressed.
• Suppose that 𝛽 ≤ 𝛼 and (𝜌(𝛾))𝛾<𝛽 is a collection of allowable permutations such that whenever
𝛾, 𝛿 < 𝛽 are distinct, 𝛿 is proper, and 𝑡 ∶ Tang𝛿, we have

(𝜌(𝛿))⊥(𝑓𝛾,𝛿(𝑡)) = 𝑓𝛾,𝛿(𝜌(𝛾)(𝑡))

Then there is a 𝛽-allowable permutation 𝜌 with 𝜌𝛾 = 𝜌(𝛾) for each 𝛾 < 𝛽.
• If 𝛽 ≤ 𝛼 is a proper type index and 𝑥 ∶ TSet𝛽, then for any 𝛾 < 𝛽,

𝑈𝛽(𝑥)(𝛾) ⊆ ran𝑈𝛾

• (extensionality) If 𝛽, 𝛾 ≤ 𝛼 are proper type indices where 𝛾 < 𝛽, the map 𝑈𝛽(−)(𝛾) ∶ TSet𝛽 →
Set StrSet𝛾 is injective.

• If 𝛽, 𝛾 ∶ 𝜆 where 𝛾 < 𝛽, for every 𝑥 ∶ TSet𝛾 there is some 𝑦 ∶ TSet𝛽 such that 𝑈𝛽(𝑦)(𝛾) = {𝑥}.
We write singleton𝛽(𝑥) for this object 𝑦, which is uniquely defined by extensionality.

Note that this structure contains data (the derivativemaps for allowable permutations and the singleton
operations), but the type is a subsingleton: any two inhabitants are propositionally equal. We will
not use this fact directly, but the idea will have relevance in chapter 6.

The strategy of our construction is as follows.

• In chapter 3, we assume model data, position functions, and typed near-litters for all types
𝛽 < 𝛼, and construct model data at level 𝛼.

Chapter 2: Setting up the environment 15

• In chapters 4 and 5, we assume coherent data below level 𝛼 (along with the assumptions re-
quired for this definition to make sense) and prove that #TSet𝛼 = #𝜇.

• In chapter 6, we use the results of chapters 3 to 5 to show that we can provide position functions
and typed near-litters at level 𝛼. We then show that these constructions may be iterated so that
we may define all of the above structures at every proper type level.

Chapter 3

Constructing the types

In this section, we are trying to construct the type of tangled sets at level 𝛼. We assume model data,
position functions for Tang𝛽, and typed near-litters for all types 𝛽 < 𝛼.

3.1 Codes and clouds
Definition 3.1 (code). A code is a pair 𝑐 = (𝛽, 𝑠)where 𝛽 < 𝛼 is a type index and 𝑠 is a nonempty set
of TSet𝛽.

Definition 3.2 (cloud). The cloud relation ≺ on codes is given by the constructor

(𝛽, 𝑠) ≺ (𝛾, {typed𝛾(𝑁) ∣ ∃𝑡 ∶ Tang𝛽, set(𝑡) ∈ 𝑠 ∧ 𝑁∘ = 𝑓𝛽,𝛾(𝑡)})

where 𝛽, 𝛾 < 𝛼 are distinct and 𝛾 is proper.
Proposition 3.3. If 𝑐 ≺ (𝛾, 𝑠1) and 𝑐 ≺ (𝛾, 𝑠2), then 𝑠1 = 𝑠2.

Proof. Let 𝑐 = (𝛽, 𝑠). We obtain

𝑠1 = {typed𝛾(𝑁) ∣ ∃𝑡 ∶ Tang𝛽, set(𝑡) ∈ 𝑠 ∧ 𝑁∘ = 𝑓𝛽,𝛾(𝑡)} = 𝑠2

as required.

Proposition 3.4. The cloud relation is injective (definition A.1). That is, if 𝑐1, 𝑐2 ≺ 𝑑, then 𝑐1 = 𝑐2.

Proof. Let 𝑐𝑖 = (𝛽𝑖, 𝑠𝑖) for 𝑖 = 1, 2, and let 𝑑 = (𝛾, 𝑠′).
We first show that 𝛽1 = 𝛽2. Choose some 𝑡1 ∶ Tang𝛽1 such that set(𝑡1) ∈ 𝑠1. We can show directly
that typed𝛾(NL(𝑓𝛽1,𝛾(𝑡1))) ∈ 𝑠′. So there is some 𝑡2 ∶ Tang𝛽2 such that

typed𝛾(NL(𝑓𝛽1,𝛾(𝑡1))) = typed𝛾(𝑁); 𝑁∘ = 𝑓𝛽2,𝛾(𝑡2)

Then since the typed near-litter map is injective (definition 2.24), the fact that the equations𝑁∘ = 𝐿1
and 𝑁 = NL(𝐿2) imply 𝐿1 = 𝐿2, and that the 𝑓-maps have disjoint ranges (proposition 2.22), we
obtain 𝛽1 = 𝛽2.

Chapter 3: Constructing the types 17

We now show that if (𝛽, 𝑠1), (𝛽, 𝑠2) ≺ 𝑑, then 𝑠1 ⊆ 𝑠2. Let 𝑑 = (𝛾, 𝑠′) as above. Let 𝑥 ∈ 𝑠1, and choose
𝑡1 ∶ Tang𝛽 such that 𝑥 = set(𝑡1). Then as (𝛽, 𝑠1) ≺ 𝑑, we have typed𝛾(NL(𝑓𝛽,𝛾(𝑡1))) ∈ 𝑠′. So there is
some 𝑡2 ∶ Tang𝛽 with set(𝑡2) ∈ 𝑠2 such that

typed𝛾(NL(𝑓𝛽,𝛾(𝑡1))) = typed𝛾(𝑁); 𝑁∘ = 𝑓𝛽,𝛾(𝑡2)

For the same reasons as above, together with injectivity of 𝑓𝛽,𝛾, we have 𝑡1 = 𝑡2. In particular, 𝑥 ∈ 𝑠2
as required.

This gives the required result by antisymmetry.

Proposition 3.5. The cloud relation is well-founded.

Proof. Define a function 𝐹 that maps a code 𝑐 = (𝛽, 𝑠) to the set

{𝜄(𝑡) ∣ set(𝑡) ∈ 𝑠} ∶ Set𝜇

We first show that 𝑐1 ≺ 𝑐2 implies that

∀𝜈2 ∈ 𝐹(𝑐2), ∃𝜈1 ∈ 𝐹(𝑐1), 𝜈1 < 𝜈2

Let 𝑐𝑖 = (𝛽𝑖, 𝑠𝑖) for 𝑖 = 1, 2, and suppose 𝜈2 ∈ 𝐹(𝑐2). Then 𝜈2 = 𝜄(𝑡2) with set(𝑡2) ∈ 𝑠2. By definition,
set(𝑡2) = typed𝛽2(𝑁) where 𝑁

∘ = 𝑓𝛽1,𝛽2(𝑡1) and set(𝑡1) ∈ 𝑠1. Then 𝜄(𝑡1) ∈ 𝐹(𝑐1), and 𝜄(𝑡1) < 𝜄(𝑁) ≤
𝜄(𝑡2) by proposition 2.22 and definition 2.24, as required.
Now, we define a function 𝑓 that maps a code 𝑐 to min𝐹(𝑐), which is always well-defined as 𝐹(𝑐) is
nonempty. The above result shows that 𝑐1 ≺ 𝑐2 implies 𝑓(𝑐1) < 𝑓(𝑐2). Thus ≺ is a subrelation of the
well-founded relation given by the inverse image of 𝑓, so is well-founded.

Proposition 3.6. Let ≺ be a relation on a type 𝜏. We say that an object 𝑥 ∶ 𝜏 is ≺-even if all of its
≺-predecessors are odd; we say that 𝑥 is ≺-odd if it has a ≺-predecessor that is even. Then:

1. Minimal objects are even.

2. If ≺ is well-founded, then every object 𝑥 ∶ 𝜏 is either even or odd, but not both.

Proof. Part 1. Direct from the definition.

Part 2. We show this by induction along ≺. Suppose that all ≺-predecessors of 𝑥 are either even
or odd but not both. If all of these ≺-predecessors are odd, then 𝑥 is even, and it is clearly not odd,
because no 𝑦 ≺ 𝑥 is even. Otherwise, there is 𝑦 ≺ 𝑥 that is even, so 𝑥 is odd, and it is not even because
this 𝑦 is not odd.

Definition 3.7. We define the relation↬ between codes by the following two constructors.

• If 𝑐 is a ≺-even code, then 𝑐 ↬ 𝑐.
• If 𝑐 is a ≺-even code and 𝑐 ≺ 𝑑, then 𝑐 ↬ 𝑑.

This relation is cofunctional (definition A.1): if 𝑑 is a code, there is exactly one 𝑐 such that 𝑐 ↬ 𝑑.
Moreover, if 𝑐 ↬ (𝛽, 𝑠1), (𝛽, 𝑠2), then 𝑠1 = 𝑠2.

Chapter 3: Constructing the types 18

Proof of claim. If 𝑑 is even, then 𝑑 ↬ 𝑑. If 𝑐 is any other even code, 𝑐 ⊀ 𝑑.
If 𝑑 is odd, then there is an even code 𝑐with 𝑐 ≺ 𝑑, so 𝑐 ↬ 𝑑. If 𝑐′ is any other even code with 𝑐′ ↬ 𝑑,
we must have 𝑐′ ≺ 𝑑 as 𝑐′ and 𝑑 have different parities so cannot be equal, so 𝑐, 𝑐′ ≺ 𝑑, so 𝑐 = 𝑐′ by
proposition 3.4.

Finally, suppose 𝑐 ↬ (𝛽, 𝑠1), (𝛽, 𝑠2). Suppose that 𝑐 = (𝛽, 𝑠1). Then (𝛽, 𝑠1) ↬ (𝛽, 𝑠2) implies 𝑠1 =
𝑠2 because in the other constructor we may conclude 𝛽 ≠ 𝛽. The same holds for 𝑐 = (𝛽, 𝑠2) by
symmetry. Now suppose that 𝑐 ≺ (𝛽, 𝑠1), (𝛽, 𝑠2). In this case, we immediately obtain 𝑠1 = 𝑠2 by
proposition 3.3.

Proposition 3.8 (extensionality). Let 𝑥 ∶ TSet𝛽 for some type index 𝛽 < 𝛼, and let 𝑐 be a code. We
say that 𝑥 is a type-𝛽 member of 𝑐 if there is a set 𝑠 ∶ Set TSet𝛽 such that 𝑥 ∈ 𝑠 and 𝑐 ↬ (𝛽, 𝑠), and
hence for all sets 𝑠 ∶ Set TSet𝛽 such that 𝑐 ↬ (𝛽, 𝑠), we have 𝑥 ∈ 𝑠 by definition 3.7. We write 𝑥 ∈𝛽 𝑐.
Note that this definition is only useful when 𝑐 is even.
Let 𝑐1, 𝑐2 be even codes. If 𝛽 < 𝛼 is a proper type index such that

∀𝑥 ∶ TSet𝛽, 𝑥 ∈𝛽 𝑐1 ↔ 𝑥 ∈𝛽 𝑐2

then 𝑐1 = 𝑐2.

Proof. Suppose that there is no 𝑥 ∶ TSet𝛽 such that 𝑥 ∈𝛽 𝑐1. Then it is easy to check that 𝑐1 = (𝛾,∅)
for some 𝛾, which is a contradiction as all codes are assumed to have nonempty second projections.
So there is some 𝑥 ∶ TSet𝛽 such that 𝑥 ∈𝛽 𝑐1. Then there are sets 𝑠1, 𝑠2 where 𝑐𝑖 ↬ (𝛽, 𝑠𝑖) for 𝑖 = 1, 2.
Then, as 𝑥 ∈𝛽 𝑐𝑖 holds if and only if 𝑥 ∈ 𝑠𝑖, we conclude 𝑠1 = 𝑠2. Hence 𝑐1, 𝑐2 ↬ (𝛽, 𝑠1), so as↬ is
injective, we conclude 𝑐1 = 𝑐2.

3.2 Model data defined
Definition 3.9 (new allowable permutation). A new allowable permutation is a dependent function
𝜌 of type∏𝛽<𝛼 AllPerm𝛽, subject to the condition

(𝜌𝛾)⊥(𝑓𝛽,𝛾(𝑡)) = 𝑓𝛽,𝛾(𝜌(𝛽)(𝑡))

for every 𝑡 ∶ Tang𝛽. These form a group and have a StrPermClass𝛼 instance.

Proposition 3.10. Define an action of allowable permutations on codes by

𝜌(𝛽, 𝑠) = (𝛽, 𝜌(𝛽)[𝑠])

Then

1. 𝑐 ≺ 𝑑 implies 𝜌(𝑐) ≺ 𝜌(𝑑);
2. 𝑐 ↬ 𝑑 implies 𝜌(𝑐) ↬ 𝜌(𝑑);
3. 𝑐 is even if and only if 𝜌(𝑐) is even;
4. 𝑥 ∈𝛽 𝑐 if and only if 𝜌(𝛽)(𝑥) ∈𝛽 𝜌(𝑐).

Chapter 3: Constructing the types 19

Proof. Part 1. Suppose that 𝑐 ≺ 𝑑. Then, writing 𝑐 = (𝛽, 𝑠) and 𝑑 = (𝛾, 𝑠′), we obtain

𝑠′ = {typed𝛾(𝑁) ∣ ∃𝑡 ∶ Tang𝛽, set(𝑡) ∈ 𝑠 ∧ 𝑁∘ = 𝑓𝛽,𝛾(𝑡)}

Now, note that

𝜌(𝛾)[𝑠′] = 𝜌(𝛾)[{typed𝛾(𝑁) ∣ ∃𝑡 ∶ Tang𝛽, set(𝑡) ∈ 𝑠 ∧ 𝑁∘ = 𝑓𝛽,𝛾(𝑡)}]
= {𝜌(𝛾)(typed𝛾(𝑁)) ∣ ∃𝑡 ∶ Tang𝛽, set(𝑡) ∈ 𝑠 ∧ 𝑁∘ = 𝑓𝛽,𝛾(𝑡)}
= {typed𝛾(𝜌(𝛾)⊥(𝑁)) ∣ ∃𝑡 ∶ Tang𝛽, set(𝑡) ∈ 𝑠 ∧ 𝑁∘ = 𝑓𝛽,𝛾(𝑡)}
= {typed𝛾(𝑁) ∣ ∃𝑡 ∶ Tang𝛽, set(𝑡) ∈ 𝑠 ∧ 𝜌(𝛾)−1⊥ (𝑁)∘ = 𝑓𝛽,𝛾(𝑡)}
= {typed𝛾(𝑁) ∣ ∃𝑡 ∶ Tang𝛽, set(𝑡) ∈ 𝑠 ∧ 𝑁∘ = 𝜌(𝛾)⊥(𝑓𝛽,𝛾(𝑡))}
= {typed𝛾(𝑁) ∣ ∃𝑡 ∶ Tang𝛽, set(𝑡) ∈ 𝑠 ∧ 𝑁∘ = 𝑓𝛽,𝛾(𝜌(𝛽)(𝑡))}

So 𝜌(𝑐) ≺ 𝜌(𝑑) as required.
Part 2. Direct.

Part 3. Follows from the general fact that if 𝑓 ∶ 𝜏 → 𝜎 is a bijection and we have 𝑥 ≺𝜏 𝑦 if and only
if 𝑓(𝑥) ≺𝜎 𝑓(𝑦), then the ≺𝜏-parity of 𝑥 is the same as the ≺𝜎-parity of 𝑓(𝑥).
Part 4. We only need to show one direction, because we can apply the one-directional result to 𝜌−1
to obtain the converse. Suppose that 𝑥 ∈𝛽 𝑐, so 𝑐 ↬ (𝛽, 𝑠) and 𝑥 ∈ 𝑠. Then 𝜌(𝑐) ↬ (𝛽, 𝜌(𝛽)[𝑠]), so
𝜌(𝛽)(𝑥) ∈𝛽 𝜌(𝑐) as required,

Definition 3.11 (new t-set). Anew t-set is an even code 𝑐 such that there is an𝛼-support that supports
𝑐 under the action of new allowable permutations, or a designated object called the empty set. New
allowable permutations act on new t-sets in the same way that they act on codes, and map the empty
set to itself. We define the map 𝑈𝛼 from new t-sets to StrSet𝛼 by cases from the top of the path in the
obvious way (using recursion on paths and the membership relation from proposition 3.8). It is easy
to check that 𝜌(𝑈𝛼(𝑥)) = 𝑈𝛼(𝜌(𝑥)) by proposition 3.10.
Definition 3.12 (new model data). Given model data, position functions, and typed near-litters
for all types 𝛽 < 𝛼, new model data is the model data at level 𝛼 consisting of new t-sets (defin-
ition 3.11) and new allowable permutations (definition 3.9). The embedding from new t-sets to
StrSet𝛼 is defined by

𝑈𝛼(𝑐)(𝛽) = {𝑥 ∣ 𝑥 ∈𝛽 𝑐}

3.3 Typed near-litters, singletons, and positions
Definition 3.13 (typed near-litters). We define a function typed𝛼 from the type of near-litters to the
type of new t-sets by mapping a near-litter 𝑁 to the code (⊥, 𝑁). This code is even as all codes of the
form (⊥, 𝑠) are even. This function is clearly injective, and satisfies

𝜌(typed𝛼(𝑁)) = typed𝛼(𝜌(⊥)(𝑁))

by definition.

Definition 3.14 (singletons). Wedefine a function singleton𝛼 for each lower type index 𝛽 from TSet𝛽
to the type of new t-sets by 𝑥 ↦ (𝛽, {𝑥}). The given code is even as all singleton codes are even. This
satisfies 𝑈𝛼(singleton𝛼(𝑥))(𝛽) = {𝑥}.

Chapter 3: Constructing the types 20

Proposition 3.15 (position function). Using the model data from definition 3.12, if #Tang𝛼 ≤ #𝜇,
then there is a position function on the type of 𝛼-tangles,1 such that

• if 𝑁 is a near-litter and 𝑡 is an 𝛼-tangle such that set(𝑡) = typed𝛼(𝑁), we have 𝜄(𝑁) ≤ 𝜄(𝑡); and
• if 𝑡 is an 𝛼-tangle and 𝑥 is an atom or near-litter that occurs in the range of supp(𝑡)𝐴, then
𝜄(𝑥) < 𝜄(𝑡).

Proof. We use proposition 2.18 to construct the position function, using denied set

𝐷(𝑡) = {𝜄(𝑁) ∣ set(𝑡) = typed𝛼(𝑁)} ∪ {𝜄(𝑎) ∣ 𝑎 ∈ im supp(𝑡)𝒜𝐴 } ∪ {𝜄(𝑁) ∣ 𝑁 ∈ im supp(𝑡)𝒩𝐴 }

The first set is a subsingleton and the second two sets are small, so the denied set has size less than
cof(ord(#𝜇)) as required.

1It may be easier in practice to construct a position function on the product of the type of new t-sets and the type of 𝛼-
supports, and then get the required position function on tangles from this.

Chapter 4

Freedom of action

4.1 Base approximations
Definition 4.1 (base approximation). A base approximation is a pair 𝜓 = (𝜓𝐸𝒜, 𝜓ℒ) such that 𝜓𝐸𝒜
and 𝜓ℒ are permutative relations of atoms and litters respectively (definition A.1), and for each litter
𝐿, the set

LS(𝐿) ∩ coim𝜓𝐸𝒜

is small. The relation 𝜓𝐸𝒜 is called the exceptional atom graph, and 𝜓ℒ is called the litter graph. We
make the following definitions.

• The inverse of a base approximation is 𝜓−1 = ((𝜓𝐸𝒜)−1, (𝜓ℒ)−1).
• If 𝜓 and 𝜒 are base approximations where coim𝜓𝐸𝒜 = coim𝜒𝐸𝒜 and coim𝜓ℒ = coim𝜒ℒ,
then their composition 𝜓 ∘ 𝜒 is the base approximation (𝜓𝐸𝒜 ∘ 𝜒𝐸𝒜, 𝜓ℒ ∘ 𝜒ℒ).

• The 𝜓-sublitter of a litter 𝐿, written 𝐿𝜓, is the near-litter (𝐿, LS(𝐿) ∖ coim𝜓𝐸𝒜).

Definition 4.2 (atom graph of an approximation). The typical atom graph of 𝜓 is the relation 𝜓𝑇𝒜
given by the following constructor. If (𝐿1, 𝐿2) ∈ 𝜓ℒ, then

(ℎ(𝐿1)𝜓(𝑖), ℎ(𝐿2)𝜓(𝑖)) ∈ 𝜓𝑇𝒜

for some 𝑖 ∶ 𝜅, where for any near-litter 𝑁, ℎ𝑁 is an equivalence 𝜅 ≃ 𝑁 chosen in advance.

The atom graph of 𝜓 is the relation 𝜓𝒜 = 𝜓𝐸𝒜 ⊔ 𝜓𝑇𝒜: the join of the exceptional and typical atom
graphs.

Proposition 4.3. (𝜓𝑇𝒜)−1 = (𝜓−1)𝑇𝒜 and hence (𝜓𝒜)−1 = (𝜓−1)𝒜.

Proof. This follows directly from the fact that 𝐿𝜓 = 𝐿𝜓−1 for any litter 𝐿.

Proposition 4.4. The graphs 𝜓𝑇𝒜 and 𝜓𝒜 are permutative.

Proof. The typical atom graph is injective, because the equation ℎ𝐿𝜓(𝑖)∘ = 𝐿 can be used to establish
the the parameters of the relevant ℎ maps coincide. Furthermore, we can use the fact that 𝜓ℒ has

Chapter 4: Freedom of action 22

equal image and coimage to produce images of any image element of this relation. We then appeal
to symmetry using proposition 4.3 to conclude that 𝜓𝑇𝒜 is permutative.

The (co)image of 𝜓𝑇𝒜 is

⋃
𝐿∈coim𝜓ℒ

𝐿𝜓 = ⋃
𝐿∈coim𝜓ℒ

(LS(𝐿) ∖ coim𝜓𝐸𝒜)

which is clearly disjoint from the coimage of 𝜓𝐸𝒜.1 So 𝜓𝒜 is permutative by one of the results of
proposition A.2.

Proposition 4.5. If𝜓, 𝜒have equal exceptional atomand litter coimages, then (𝜓∘𝜒)𝑇𝒜 = 𝜓𝑇𝒜∘𝜒𝑇𝒜.

Proof. Suppose that (𝑎1, 𝑎3) ∈ (𝜓 ∘ 𝜒)𝑇𝒜, so
𝑎1 = ℎ(𝐿1)𝜓∘𝜒(𝑖); 𝑎3 = ℎ(𝐿3)𝜓∘𝜒(𝑖); (𝐿1, 𝐿3) ∈ (𝜓 ∘ 𝜒)ℒ

Since (𝜓 ∘ 𝜒)ℒ = 𝜓ℒ ∘ 𝜒ℒ, there is 𝐿2 such that (𝐿1, 𝐿2) ∈ 𝜒ℒ and (𝐿2, 𝐿3) ∈ 𝜓ℒ. Hence
(ℎ(𝐿1)𝜒(𝑖), ℎ(𝐿2)𝜒(𝑖)) ∈ 𝜒𝑇𝒜; (ℎ(𝐿2)𝜓(𝑖), ℎ(𝐿3)𝜓(𝑖)) ∈ 𝜓𝑇𝒜

But 𝐿𝜓∘𝜒 = 𝐿𝜓 = 𝐿𝜒, so we obtain

(𝑎1, ℎ(𝐿2)𝜒(𝑖)) ∈ 𝜒𝑇𝒜; (ℎ(𝐿2)𝜒(𝑖), 𝑎3) ∈ 𝜓𝑇𝒜

For the converse, suppose that (𝑎1, 𝑎2) ∈ 𝜒𝑇𝒜 and (𝑎2, 𝑎3) ∈ 𝜓𝑇𝒜. Then
𝑎1 = ℎ(𝐿1)𝜒(𝑖); 𝑎2 = ℎ(𝐿2)𝜒(𝑖); 𝑎2 = ℎ(𝐿′2)𝜓(𝑗); 𝑎3 = ℎ(𝐿3)𝜓(𝑗)

We obtain 𝐿2 = 𝐿′2, and (𝐿2)𝜒 = (𝐿2)𝜓 so we also conclude 𝑖 = 𝑗. Since (𝐿1, 𝐿2) ∈ 𝜒ℒ and (𝐿2, 𝐿3) ∈
𝜓ℒ, we conclude (𝐿1, 𝐿3) ∈ (𝜓 ∘ 𝜒)ℒ, as required.

Definition 4.6 (near-litter graph of an approximation). The near-litter graph of 𝜓 is the relation 𝜓𝒩
given by setting (𝑁1, 𝑁2) ∈ 𝜓𝒩 if and only if (𝑁∘

1 , 𝑁∘
2) ∈ 𝜓ℒ, 𝑁1 and 𝑁2 are subsets of coim𝜓𝒜, and

the image of 𝜓𝒜 on 𝑁1 is 𝑁2 (or equivalently, by proposition A.2, the coimage of 𝜓𝒜 on 𝑁2 is 𝑁1).
Proposition 4.7. Let 𝑠 be a set of atoms near LS(𝐿) for some litter 𝐿. If (𝐿, 𝐿′) ∈ 𝜓ℒ, then the image
of 𝜓𝒜 on 𝑠 is near LS(𝐿′).

Proof. We calculate

im𝜓𝒜|𝑠 = im𝜓𝒜|LS(𝐿) △ im𝜓𝒜|𝑠△LS(𝐿)
𝑁∼ im𝜓𝒜|LS(𝐿)
= im𝜓𝒜|LS(𝐿)∖coim𝜓𝐸𝒜 ∪ im𝜓𝒜|LS(𝐿)∩coim𝜓𝐸𝒜

𝑁∼ im𝜓𝒜|LS(𝐿)∖coim𝜓𝐸𝒜

= im𝜓𝑇𝒜|𝐿𝜓
= 𝐿′𝜓
𝑁∼ LS(𝐿′)

1This result should of course be its own lemma.

Chapter 4: Freedom of action 23

Proposition 4.8. (𝜓−1)𝒩 = (𝜓𝒩)−1, and 𝜓𝒩 is permutative.

Proof. The first part follows from proposition 4.3. To show 𝜓𝒩 is permutative, it suffices to show that
it is injective and that its image is contained in its coimage; then, by taking inverses, the converses
will also hold. Suppose that (𝑁1, 𝑁3), (𝑁2, 𝑁3) ∈ 𝜓𝒩 . Then the coimage of 𝜓𝒜 on 𝑁3 is equal to both
𝑁1 and 𝑁2, so 𝑁1 = 𝑁2, giving injectivity.
Now suppose that (𝑁1, 𝑁2) ∈ 𝜓𝒩 . As (𝑁∘

1 , 𝑁∘
2) ∈ 𝜓ℒ, we must have (𝑁∘

2 , 𝐿) ∈ 𝜓ℒ for some 𝐿. By
proposition 4.7, the image 𝑠 of 𝜓𝒜 on 𝑁2 is near LS(𝐿), so (𝐿, 𝑠) is a near-litter, and (𝑁2, (𝐿, 𝑠)) ∈ 𝜓𝒩
as required.

Definition 4.9. Base approximations act on base supports in the following way. If 𝑆𝒜 = (𝑖, 𝑓), then
𝜓(𝑆)𝒜 = (𝑖, 𝑓′) where

𝑓′ = {(𝑗, 𝑎2) ∣ (𝑗, 𝑎1) ∈ 𝑓 ∧ (𝑎1, 𝑎2) ∈ 𝜓𝒜}
The same definition is used for near-litters.

4.2 Extensions of approximations
Definition 4.10. We define a partial order on base approximations by setting 𝜓 ≤ 𝜒 when 𝜓𝐸𝒜 =
𝜒𝐸𝒜 and 𝜓ℒ ≤ 𝜒ℒ.
Proposition 4.11 (adding orbits). Let 𝜓 be a base approximation, and let 𝐿 ∶ ℕ → ℒ be a function
such that

𝐿(𝑚) = 𝐿(𝑛) → 𝐿(𝑚 + 𝑘) = 𝐿(𝑛 + 𝑘)
for all integers𝑚, 𝑛, 𝑘 ∶ ℤ. Suppose that for all 𝑛, 𝐿(𝑛) ∉ coim𝜓ℒ. Then there is an extension 𝜒 ≥ 𝜓
such that 𝜒ℒ(𝐿(𝑛)) = 𝐿(𝑛 + 1) and coim𝜒ℒ = coim𝜓ℒ ∪ ran𝐿.

Proof. Define the relation
𝑅 = {(𝐿(𝑛), 𝐿(𝑛 + 1)) ∣ 𝑛 ∶ ℤ}

This clearly has equal image and coimage. It is injective: if (𝐿1, 𝐿3), (𝐿2, 𝐿3) ∈ 𝑅, then there are
𝑚, 𝑛 ∶ ℤ such that

𝐿1 = 𝐿(𝑚); 𝐿3 = 𝐿(𝑚 + 1); 𝐿2 = 𝐿(𝑛); 𝐿3 = 𝐿(𝑛 + 1)

So 𝐿(𝑚 + 1) = 𝐿(𝑛 + 1), giving 𝐿1 = 𝐿(𝑚) = 𝐿(𝑛) = 𝐿2 by substituting 𝑘 = −1 in the hypothesis. It
is also coinjective by substituting 𝑘 = 1 in the hypothesis. So 𝑅 is permutative. Therefore, 𝜓ℒ ⊔ 𝑅 is
a permutative relation, so (𝜓𝐸𝒜, 𝜓ℒ ⊔ 𝑅) is an extension of 𝜓, and it clearly satisfies the result.

4.3 Structural approximations
Definition 4.12. For a type index 𝛽, a 𝛽-approximation is a 𝛽-tree of base approximations. We define
the partial order on 𝛽-approximations branchwise. We define an action of 𝛽-approximations 𝜓 on 𝛽-
supports 𝑆 by (𝜓(𝑆))𝐴 = 𝜓𝐴(𝑆𝐴).
Definition 4.13. Let 𝐴 be a 𝛽-extended type index. A litter 𝐿 is 𝐴-inflexible if there is an inflexible
𝛽-path 𝐼 such that 𝐴 = ((𝐴𝐼)𝜀𝐼)⊥ and 𝐿 = 𝑓𝛿𝐼 ,𝜀𝐼 (𝑡) for some 𝑡 ∶ Tang𝛿𝐼 . The coderivative operation
works in the obvious way. A litter can be 𝐴-inflexible in at most one way.2

2We should make𝐴-inflexibility into a subsingleton structure.

Chapter 4: Freedom of action 24

We say that a 𝐿 is 𝐴-flexible if it is not 𝐴-inflexible.3 If 𝐿 is 𝐵𝐴-flexible, then 𝐿 is 𝐴-flexible.
Definition 4.14. A 𝛽-approximation 𝜓 is coherent at (𝐴, 𝐿1, 𝐿2) if:

• If 𝐿1 is 𝐴-inflexible with inflexible 𝛽-path 𝐼 = (𝛾, 𝛿, 𝜀, 𝐵) and tangle 𝑡 ∶ Tang𝛿, then there is
some 𝛿-allowable permutation 𝜌 such that

(𝜓𝐵)𝛿(supp(𝑡)) = 𝜌(supp(𝑡))

and
𝐿2 = 𝑓𝛿,𝜀(𝜌(𝑡))

(and hence all 𝛿-allowable permutations 𝜌 such that (𝜓𝐵)𝛿(supp(𝑡)) = 𝜌(supp(𝑡)) satisfy 𝐿2 =
𝑓𝛿,𝜀(𝜌(𝑡))).

• If 𝐿1 is 𝐴-flexible, then 𝐿2 is 𝐴-flexible.
We say that 𝜓 is coherent if whenever (𝐿1, 𝐿2) ∈ 𝜓ℒ𝐴, 𝜓 is coherent at (𝐴, 𝐿1, 𝐿2).
Proposition 4.15 (adding orbits coherently). Suppose that 𝜓 is an approximation and 𝐿 ∶ ℤ → ℒ
is a function satisfying the hypotheses of proposition 4.11. Let 𝜒 be the extension produced by the
structural version of this result.4 If 𝜓 is coherent, and is additionally coherent at (𝐿(𝑛), 𝐿(𝑛 + 1)) for
each integer 𝑛, then 𝜒 is coherent.

Proof. This proof just relies on the fact that if (𝜓𝐵)𝛿(supp(𝑡)) = 𝜌(supp(𝑡)), then the same holds for
every extension 𝜒 of 𝜓.5

Proposition 4.16. If 𝜓 is coherent, then 𝜓−1 is coherent.

Proof. Suppose that (𝐿1, 𝐿2) ∈ (𝜓−1𝐴)ℒ, so (𝐿2, 𝐿1) ∈ 𝜓ℒ𝐴. Suppose first that 𝐿1 is 𝐴-inflexible with
inflexible 𝛽-path 𝐼 = (𝛾, 𝛿, 𝜀, 𝐵) and tangle 𝑡 ∶ Tang𝛿. If 𝐿2 were 𝐴-flexible, then 𝐿1 would also be
𝐴-flexible by coherence, which is a contradiction. So 𝐿2 is 𝐴-inflexible with path (𝛾′, 𝛿′, 𝜀′, 𝐵′) and
tangle 𝑡′ ∶ Tang𝛿′ , and there is 𝜌 ∶ AllPerm𝛿′ such that

(𝜓𝐵′)𝛿′(supp(𝑡′)) = 𝜌(supp(𝑡′))

and
𝐴 = (𝐵𝜀′)⊥; 𝐿2 = 𝑓𝛿′,𝜀′(𝑡′); 𝐿1 = 𝑓𝛿′,𝜀′(𝜌(𝑡′))

We thus deduce 𝜀 = 𝜀′ and 𝛾 = 𝛾′ by the equations for 𝐴. By the equation 𝐿1 = 𝑓𝛿,𝜀(𝑡), we also obtain
𝛿 = 𝛿′ and 𝑡 = 𝜌(𝑡′). Then we find

(𝜓𝐵)𝛿(supp(𝜌−1(𝑡))) = 𝜌(supp(𝜌−1(𝑡)))
(𝜓𝐵)𝛿(𝜌−1(supp(𝑡))) = 𝜌(𝜌−1(supp(𝑡)))
(𝜓𝐵)𝛿(𝜌−1(supp(𝑡))) = supp(𝑡)

𝜌−1(supp(𝑡)) = (𝜓−1𝐵)𝛿(supp(𝑡))

where the last equation uses the fact that (𝜓𝐵)𝛿 is defined on all of supp(𝑡′). Finally, the equation
𝐿2 = 𝑓𝛿,𝜀(𝜌−1(𝑡)) gives coherence at (𝐴, 𝐿1, 𝐿2) as required.
Now suppose that 𝐿1 is 𝐴-flexible. If 𝐿2 were 𝐴-inflexible, then so would be 𝐿1 by coherence. So 𝐿2
is 𝐴-flexible, as required.

3This is not data, but a proposition.
4Weneed the extension exactly as produced (as data), not an arbitrary extension satisfying the conclusion of the proposition.
5Maybe there’s a better lemma to abstract out this idea for this and proposition 4.23?

Chapter 4: Freedom of action 25

Proposition 4.17. If 𝜓 and 𝜒 are coherent and have equal coimages along all paths, then 𝜓 ∘ 𝜒 is
coherent.

Proof. Suppose that (𝐿1, 𝐿3) ∈ ((𝜓 ∘ 𝜒)𝐴)ℒ, so (𝐿1, 𝐿2) ∈ 𝜓ℒ𝐴 and (𝐿2, 𝐿3) ∈ 𝜒ℒ𝐴 . Suppose that 𝐿1 is
𝐴-inflexible with inflexible 𝛽-path 𝐼 = (𝛾, 𝛿, 𝜀, 𝐵) and tangle 𝑡 ∶ Tang𝛿. Then by coherence of 𝜓, we
have 𝜌 such that

(𝜓𝐵)𝛿(supp(𝑡)) = 𝜌(supp(𝑡))
and

𝐿2 = 𝑓𝛿,𝜀(𝜌(𝑡))
Then 𝐿2 is 𝐴-inflexible with path 𝐼 and tangle 𝜌(𝑡). So by coherence of 𝜒, we have 𝜌′ such that

(𝜓𝐵)𝛿(supp(𝜌(𝑡))) = 𝜌′(supp(𝜌(𝑡)))

and
𝐿3 = 𝑓𝛿,𝜀(𝜌′(𝜌(𝑡)))

As 𝜌′(supp(𝜌(𝑡))) = 𝜌′(𝜌(supp(𝑡))), we obtain the desired coherence result.
Instead, if 𝐿1 is 𝐴-flexible, then so is 𝐿2 by coherence of 𝜓, and so is 𝐿3 by coherence of 𝜒.

Proposition 4.18. If 𝜓 is a coherent 𝛽-approximation and 𝐴 is a path 𝛽 ⇝ 𝛽′, then 𝜓𝐴 is a coherent
𝛽′-approximation.

Proof. Let (𝐿1, 𝐿2) ∈ (𝜓𝐴)ℒ𝐵 . Suppose that 𝐿1 is 𝐵-inflexible with path (𝛾, 𝛿, 𝜀, 𝐶) and 𝑡 ∶ Tang𝛿. Then
𝐿1 is 𝐴𝐵-inflexible with path (𝛾, 𝛿, 𝜀, 𝐴𝐶) and the same tangle 𝑡. So by coherence of 𝜓, we obtain a
𝛿-allowable 𝜌 such that

(𝜓(𝐴𝐶))𝛿(supp(𝑡)) = 𝜌(supp(𝑡))
and

𝐿2 = 𝑓𝛿,𝜀(𝜌(𝑡))
This same 𝜌 can thus be used to establish coherence of 𝜓𝐴 at (𝐵, 𝐿1, 𝐿2).
Thus, by proposition 4.16, whenever 𝐿2 is 𝐵-inflexible with path 𝐼 and tangle 𝑡, 𝐿1 is also 𝐵-inflexible
with path 𝐼. So if 𝐿1 is 𝐵-flexible, so is 𝐿2, as required.

4.4 Proving freedom of action
Definition 4.19 (approximates). We say that a 𝛽-approximation 𝜓 approximates a 𝛽-allowable per-
mutation 𝜌 if 𝜓ℒ𝐴 ≤ 𝜌ℒ𝐴 and 𝜓𝒜𝐴 ≤ 𝜌𝒜𝐴 for each path 𝐴 ∶ 𝛽 ⇝ ⊥. If 𝜓 approximates 𝜌 then 𝜓𝑛
approximates 𝜌𝑛 for each 𝑛 ∶ ℤ.6 A 𝛽-approximation 𝜓 exactly approximates a 𝛽-allowable permuta-
tion 𝜌 if 𝜓 approximates 𝜌, and in addition, if 𝑎 is an atom and 𝐴 ∶ 𝛽 ⇝ ⊥, then 𝑎 ∉ coim𝜓𝒜𝐴 implies
𝜌(𝑎)∘ = 𝜌(𝑎∘) and 𝜌−1(𝑎)∘ = 𝜌−1(𝑎∘).
Definition 4.20 (freedom of action). We say that freedom of action holds at a type index 𝛿 if every
coherent 𝛿-approximation exactly approximates some 𝛿-allowable permutation.
Proposition 4.21 (adding flexible litters). Let 𝜓 be a coherent 𝛽-approximation, and let 𝐿 be 𝐴-
flexible. Then there is a coherent extension 𝜒 ≥ 𝜓 with 𝐿 ∈ coim𝜒ℒ𝐴 .

6We should define what it means for a base approximation to approximate a near-litter permutation, and define this in
terms of that.

Chapter 4: Freedom of action 26

Proof. Define 𝐿′ ∶ ℤ → ℒ by 𝐿′(𝑛) = 𝐿, then appeal to proposition 4.15 to obtain 𝜒 ≥ 𝜓. All we must
do is check that 𝜓 is coherent at (𝐿, 𝐿), which is trivial.

Proposition 4.22 (adding inflexible litters). Let 𝜓 be a coherent 𝛽-approximation, and let 𝐿 be 𝐴-
inflexible with path (𝛾, 𝛿, 𝜀, 𝐵) and tangle 𝑡 ∶ Tang𝛿. Suppose that (𝜓𝐵)𝛿 is defined on all of supp(𝑡).7
Suppose that freedom of action holds at level 𝛿. Then there is a coherent extension 𝜒 ≥ 𝜓 with
𝐿 ∈ coim𝜒ℒ𝐴 .

Proof. Let 𝜌 be a 𝛿-allowable permutation that (𝜓𝐵)𝛿 approximates. Then for each 𝑛 ∶ ℤ, as (𝜓𝑛𝐵)𝛿
approximates 𝜌𝑛, we obtain (𝜓𝑛𝐵)𝛿(supp(𝑡)) = 𝜌𝑛(supp(𝑡)) as (𝜓𝑛𝐵)𝛿 is defined on all of supp(𝑡).8
Define 𝐿 ∶ ℤ → ℒ by 𝐿(𝑛) = 𝑓𝛿,𝜀(𝜌𝑛(𝑡)).
Suppose that there is some 𝑛 such that 𝐿(𝑛) ∈ coim𝜓ℒ. Note that

(𝜓𝑛𝐵)𝛿(supp(𝑡)) = 𝜌𝑛(supp(𝑡))
supp(𝑡) = (𝜓−𝑛𝐵)𝛿(𝜌𝑛(supp(𝑡)))

𝜌−𝑛(𝜌𝑛(supp(𝑡))) = (𝜓−𝑛𝐵)𝛿(supp(𝜌𝑛(𝑡)))

So as 𝜓−𝑛 is coherent, we obtain (𝐿(𝑛), 𝑓𝛿,𝜀(𝑡)) ∈ (𝜓−𝑛𝐴)ℒ. In particular, 𝑓𝛿,𝜀(𝑡) ∈ coim𝜓ℒ𝐴 already,
and no work needs to be done.

We first check the hypothesis of proposition 4.11 for adding orbits. If 𝑓𝛿,𝜀(𝜌𝑚(𝑡)) = 𝑓𝛿,𝜀(𝜌𝑛(𝑡)), then
𝜌𝑚(𝑡) = 𝜌𝑛(𝑡), so 𝜌𝑚+𝑘(𝑡) = 𝜌𝑛+𝑘(𝑡), giving 𝑓𝛿,𝜀(𝜌𝑚+𝑘(𝑡)) = 𝑓𝛿,𝜀(𝜌𝑛+𝑘(𝑡)) as required.
We now check the criterion of proposition 4.15 for adding orbits coherently. It suffices to show that
𝜓 is coherent at (𝐿(𝑛), 𝐿(𝑛 + 1)) for each 𝑛 ∶ ℤ. This is witnessed by 𝜌, which satisfies

(𝜓𝐵)𝛿(supp(𝜌𝑛(𝑡))) = 𝜌(supp(𝜌𝑛(𝑡)))

and
𝐿(𝑛) = 𝑓𝛿,𝜀(𝜌𝑛(𝑡)); 𝐿(𝑛 + 1) = 𝑓𝛿,𝜀(𝜌(𝜌𝑛(𝑡)))

as required.9

Proposition 4.23. If (𝜓𝑖)𝑖∶𝐼 is a chain of coherent approximations where 𝐼 is a linear order, then the
supremum 𝜓 is coherent.

Proof. Direct, using the same idea as the proof of proposition 4.15.

Theorem 4.24 (freedom of action). Freedom of action holds at all type indices 𝛽 ≤ 𝛼.

Proof. By induction, we may assume freedom of action holds at all 𝛿 < 𝛽. Let 𝜓 be a coherent
𝛽-approximation, and let 𝜒 be a maximal coherent extension, which exists by Zorn’s lemma and
proposition 4.23.

Suppose that there is a litter 𝐿 such that there exists a path𝐴where 𝐿 ∉ coim𝜒ℒ𝐴 . Let 𝐿 haveminimal
position with this property, and let 𝐴 be such a path.

7This is a nontrivial definition to make.
8This should of course be its own lemma.
9It might be helpful to abstract away the lemma (𝜓𝑚

𝐵)𝛿(supp(𝜌𝑛(𝑡))) = supp(𝜌𝑛+𝑚(𝑡)) for the two places in the proof
where this idea is used.

Chapter 4: Freedom of action 27

Suppose that 𝐿 is 𝐴-flexible. Then by proposition 4.21, there is an extension 𝜑 of 𝜒 such that 𝐿 ∈
coim𝜑ℒ𝐴, contradicting maximality of 𝜒.
Suppose that 𝐿 is 𝐴-inflexible, with path (𝛾, 𝛿, 𝜀, 𝐵) and tangle 𝑡. Then (𝜓𝐵)𝛿 is defined on all of
supp(𝑡). Indeed, by definition 2.25 (coherent data) and proposition 2.22 (fuzz maps), for each atom
or near-litter 𝑦 that appears in the range of supp(𝑡)𝐶 , we have 𝜄(𝑦) < 𝜄(𝑡) < 𝜄(𝐿), giving the desired
conclusion by minimality of the position of 𝐿 and the criteria of proposition 2.19. Thus, we obtain
the same contradiction by proposition 4.22.

So coim𝜒ℒ𝐴 is the set of all litters for each path 𝐴. We then use the fact that our model data is coher-
ent to recursively compute the allowable permutation 𝜌 with the same action as 𝜒. Then 𝜒 exactly
approximates 𝜌, so 𝜓 also exactly approximates 𝜌.10

4.5 Base actions
Definition 4.25. The interference of near-litters 𝑁1, 𝑁2 is

interf(𝑁1, 𝑁2) = {𝑁1
△ 𝑁2 if 𝑁∘

1 = 𝑁∘
2

𝑁1 ∩ 𝑁2 if 𝑁∘
1 ≠ 𝑁∘

2

which is a small set of atoms.

Definition 4.26. A base action is a pair 𝜉 = (𝜉𝒜, 𝜉𝒩) such that 𝜉𝒜 and 𝜉𝒩 are relations of atoms and
near-litters respectively (definition A.1), such that

• 𝜉𝒜 and 𝜉𝒩 are defined on small sets;

• 𝜉𝒜 is one-to-one;

• if (𝑎1, 𝑎2) ∈ 𝜉𝒜 and (𝑁1, 𝑁2) ∈ 𝜉𝒩 , then 𝑎1 ∈ 𝑁1 if and only if 𝑎2 ∈ 𝑁2;
• if (𝑁1, 𝑁3), (𝑁2, 𝑁4) ∈ 𝜉𝒩 , then 𝑁∘

1 = 𝑁∘
2 if and only if 𝑁∘

3 = 𝑁∘
4 ;

• for each (𝑁1, 𝑁3), (𝑁2, 𝑁4) ∈ 𝜉𝒩 ,

interf(𝑁1, 𝑁2) ⊆ coim 𝜉𝒜; interf(𝑁3, 𝑁4) ⊆ im 𝜉𝒜

Note that these conditions imply that 𝜉𝒩 is one-to-one. We define the one-to-one relation 𝜉ℒ by the
constructor

(𝑁1, 𝑁2) ∈ 𝜉𝒩 → (𝑁∘
1 , 𝑁∘

2) ∈ 𝜉ℒ

The partial order on base actions is defined by 𝜉 ≤ 𝜁 if and only if 𝜉𝒜 ≤ 𝜁𝒜 and 𝜉𝒩 = 𝜁𝒩 .11 The
inverse of 𝜉 is ((𝜉𝒜)−1, (𝜉𝒩)−1). They act on base supports in the natural way.
Definition 4.27. A base action 𝜉 is nice if whenever (𝑁1, 𝑁2) ∈ 𝜉𝒩 ,

𝑁1 △ LS(𝑁∘
1) ⊆ coim 𝜉𝒜; 𝑁2 △ LS(𝑁∘

2) ⊆ im 𝜉𝒜

Proposition 4.28 (extending orbits inside near-litters). Every base action 𝜉 admits an extension 𝜁
satisfying

∀𝑁 ∈ coim 𝜉𝒩 , 𝑁 ∖ LS(𝑁∘) ⊆ coim 𝜉𝒜
10In general, if 𝜓 ≤ 𝜒 and 𝜒 (exactly) approximates 𝜌 then 𝜓 (exactly) approximates 𝜌.
11We should make utilities for constructing extensions of base actions, reducing the proof obligations of showing that these

are base actions (e.g. removing the last two bullet points and not needing to prove results we already know about 𝜉).

Chapter 4: Freedom of action 28

Proof. For each litter 𝐿, there is an injection

𝑖𝐿 ∶ ⋃
𝑁∈coim𝜉𝒩

(𝑁 ∖ LS(𝑁∘)) → {𝑎 ∶ 𝒜 ∣ 𝑎∘ = 𝐿 ∧ ∀𝑁 ∈ im 𝜉𝒩 , 𝑁∘ = 𝐿 → 𝑎 ∈ 𝑁} ∖ im 𝜉𝒜

by a cardinality argument. Define the relation 𝑅 on atoms by the constructor

∀(𝑁1, 𝑁2) ∈ 𝜉𝒩 , ∀𝑎 ∈ 𝑁1 ∖ LS(𝑁∘
1) ∖ coim 𝜉𝒜, (𝑎, 𝑖𝑁∘

2
(𝑎)) ∈ 𝑅

This is one-to-one and has disjoint image and coimage from 𝜉𝒜.
We now show that if (𝑎1, 𝑎2) ∈ 𝑅 and (𝑁1, 𝑁2) ∈ 𝜉𝒩 , then 𝑎1 ∈ 𝑁1 if and only if 𝑎2 ∈ 𝑁2. Let
(𝑁1, 𝑁2), (𝑁′

1, 𝑁′
2) ∈ 𝜉𝒩 , and let 𝑎 ∈ 𝑁1 ∖ LS(𝑁∘

1) ∖ coim 𝜉𝒜. Suppose that 𝑎 ∈ 𝑁′
1; we must show

𝑖𝑁∘
2
(𝑎) ∈ 𝑁′

2. If 𝑁∘
1 ≠ 𝑁′

1
∘, then interf(𝑁1, 𝑁′

1) = 𝑁1 ∩ 𝑁′
1, so 𝑎 ∈ interf(𝑁1, 𝑁′

1) ⊆ coim 𝜉𝒜, a contra-
diction. So 𝑁∘

1 = 𝑁′
1
∘, giving 𝑁∘

2 = 𝑁′
2
∘, so 𝑖𝑁∘

2
(𝑎) = 𝑖𝑁′

2
∘(𝑎) ∈ 𝑁′

2 by definition.

Conversely, suppose that 𝑖𝑁∘
2
(𝑎) ∈ 𝑁′

2; we must show 𝑎 ∈ 𝑁′
1. Note that by definition, 𝑖𝑁∘

2
(𝑎) ∈ 𝑁2.

So if 𝑁∘
2 ≠ 𝑁′

2
∘, we would have 𝑖𝑁∘

2
(𝑎) ∈ 𝑁2 ∩ 𝑁′

2 = interf(𝑁2, 𝑁′
2) ⊆ im 𝜉𝒜, a contradiction. Hence

𝑁∘
2 = 𝑁′

2
∘ and 𝑁∘

1 = 𝑁′
1
∘. Thus, if 𝑎 ∉ 𝑁′

1, we would have 𝑎 ∈ 𝑁1 △ 𝑁′
1 = interf(𝑁1, 𝑁′

1) ⊆ coim 𝜉𝒜,
again a contradiction.

Hence 𝜁 = (𝜉𝒜 ⊔ 𝑅, 𝜉𝒩) is a base action and satisfies the conclusion.

Proposition 4.29 (extending orbits outside near-litters). Every base action 𝜉 admits an extension 𝜁
satisfying

∀𝑁 ∈ coim 𝜉𝒩 , LS(𝑁) ∖ 𝑁 ⊆ coim 𝜉𝒜

Proof. Without loss of generality (as extensions are transitive), let 𝜉 satisfy the conclusion of propos-
ition 4.28.

Let 𝐿 be an arbitrary litter that whose litter set does not contain an atom in im 𝜉𝒜 or⋃ im 𝜉𝒩 . Define
an injection

𝑖 ∶ ⋃
𝑁∈coim𝜉𝒩

(LS(𝑁∘) ∖ 𝑁 ∖ coim 𝜉𝒜) → LS(𝐿)

by a cardinality argument. Note that 𝑖 has domain disjoint from coim 𝜉𝒜 and image disjoint from
im 𝜉𝒜.
We show that (𝜉𝒜 ⊔ graph 𝑖, 𝜉𝒩) is a base action. It suffices to check that if (𝑎1, 𝑎2) ∈ graph 𝑖 and
(𝑁1, 𝑁2) ∈ 𝜉𝒩 , then 𝑎1 ∈ 𝑁1 if and only if 𝑎2 ∈ 𝑁2. As 𝑎2 ∈ LS(𝐿), we have 𝑎2 ∉ 𝑁2. Suppose that
𝑎1 ∈ 𝑁1. We know that there is a near-litter 𝑁 ∈ coim 𝜉𝒩 such that 𝑎1 ∈ LS(𝑁∘) ∖ 𝑁 ∖ coim 𝜉𝒜. If
𝑁∘ = 𝑁∘

1 , then 𝑎1 ∈ 𝑁 △ 𝑁1 = interf(𝑁, 𝑁1) ⊆ coim 𝜉𝒜, a contradiction, hence 𝑎∘ = 𝑁∘ ≠ 𝑁∘
1 . But

then as 𝜉 satisfies the conclusion of proposition 4.28, we have 𝑁1 ∖ LS(𝑁∘
1) ⊆ coim 𝜉𝒜, which again

is a contradiction.

Proposition 4.30. Every base action has a nice extension.

Proof. Apply proposition 4.28 to 𝜉 to obtain 𝜉1; apply proposition 4.28 again to 𝜉−11 to obtain 𝜉2; apply
proposition 4.29 to 𝜉2 to obtain 𝜉3, and finally apply proposition 4.29 again to 𝜉−13 to obtain 𝜉4, our
target.

Chapter 4: Freedom of action 29

4.6 Structural actions
Definition 4.31. For a type index 𝛽, a 𝛽-action is a 𝛽-tree of base actions. We define an action of
𝛽-actions 𝜉 on 𝛽-supports 𝑆 by (𝜉(𝑆))𝐴 = 𝜉𝐴(𝑆𝐴).
Definition 4.32. A 𝛽-action 𝜉 is coherent at (𝐴, 𝐿1, 𝐿2) if:

• If 𝐿1 is 𝐴-inflexible with inflexible 𝛽-path 𝐼 = (𝛾, 𝛿, 𝜀, 𝐵) and tangle 𝑡 ∶ Tang𝛿, then there is
some 𝛿-allowable permutation 𝜌 such that

(𝜉𝐵)𝛿(supp(𝑡)) = 𝜌(supp(𝑡))

and
𝐿2 = 𝑓𝛿,𝜀(𝜌(𝑡))

(and hence again every 𝛿-allowable 𝜌 satisfying the hypothesis also satisfies the conclusion).
• If 𝐿1 is 𝐴-flexible, then 𝐿2 is 𝐴-flexible.

We say that 𝜉 is coherent if whenever (𝐿1, 𝐿2) ∈ 𝜉ℒ𝐴 , 𝜉 is coherent at (𝐴, 𝐿1, 𝐿2).
Definition 4.33. Let 𝐴 ∶ 𝛽 ⇝ ⊥. An 𝐴-flexible approximation of a base action 𝜉 is a base approxim-
ation 𝜓 such that

1. 𝜉𝒜 ≤ 𝜓𝐸𝒜;
2. if 𝐿 ∈ coim𝜓ℒ, then 𝐿 is 𝐴-flexible;
3. if (𝑁1, 𝑁2) ∈ 𝜉𝒩 and 𝑁∘

1 is 𝐴-flexible, then (𝑁∘
1 , 𝑁∘

2) ∈ 𝜓ℒ;
4. if (𝑁1, 𝑁2) ∈ 𝜉𝒩 , then 𝑁1 △ LS(𝑁∘

1) ⊆ coim𝜓𝒜 and 𝑁2 △ LS(𝑁∘
2) ⊆ coim𝜓𝒜;

5. if (𝑁1, 𝑁2) ∈ 𝜉𝒩 , then for each atom 𝑎2,

𝑎2 ∈ 𝑁2 ↔ (∃𝑎1 ∈ 𝑁1, (𝑎1, 𝑎2) ∈ 𝜓𝐸𝒜) ∨ (𝑎2 ∉ coim𝜓𝐸𝒜 ∧ 𝑎∘2 = 𝑁∘
2)

A flexible approximation of a 𝛽-action 𝜉 is a 𝛽-approximation 𝜓 such that for each 𝐴 ∶ 𝛽 ⇝ ⊥, the
base approximation 𝜓𝐴 is an 𝐴-flexible approximation of 𝜉𝐴. Flexible approximations are coherent.
Proposition 4.34. Every base action has an 𝐴-flexible approximation. Hence, every 𝛽-action has a
flexible approximation, which can be computed branchwise.

Proof. If 𝜉 ≤ 𝜁 and 𝜓 is an 𝐴-flexible approximation for 𝜁, then 𝜓 is an 𝐴-flexible approximation for
𝜉. So it suffices to prove the result for nice base actions 𝜉 by proposition 4.30.
Define the permutative relation 𝑅 ∶ ℒ → ℒ → Prop to be a permutative extension of 𝜉ℒ, which exists
by proposition A.5. Let 𝜋 be the permutation of litters defined by 𝑅, or the identity on any litter not
in coim𝑅.
Define an orbit restriction (𝑡, 𝑓, 𝜋) (definition A.3) for field 𝜉𝒜 by

𝑢 = {𝑎 ∶ 𝒜 ∣ ∀𝑁 ∈ field 𝜉𝒩 , 𝑁∘ = 𝑎∘ → 𝑎 ∈ 𝑁}; 𝑡 = 𝑢 ∖ field 𝜉𝒜

with function 𝑓 ∶ 𝒜 → ℒ defined by 𝑓(𝑎) = 𝑎∘, and litter permutation 𝜋. We must check that for
each litter 𝐿, the set 𝑡 ∩ LS(𝐿) has cardinality at leastmax(ℵ0, # field 𝜉𝒜). But we can write

𝑡 ∩ LS(𝐿) = LS(𝐿) ∖ (field 𝜉𝒜 ∪ ⋃
𝑁∈field𝜉𝒩 ,𝑁∘=𝐿

(LS(𝐿) ∖ 𝑁))

Chapter 4: Freedom of action 30

where the set being removed from LS(𝐿) is small, so 𝑡 ∩ LS(𝐿) is a large set, and ℵ0 and # field 𝜉𝒜 are
less than #𝜅, as required. Then by proposition A.4, there is a permutative relation 𝑆 ≥ 𝜉𝒜 defined
on a small set and contained in field 𝜉𝒜 ∪ 𝑡 = field 𝜉𝒜 ∪ 𝑢, such that if

(𝑎1, 𝑎2) ∈ 𝑆 → (𝑎1, 𝑎2) ∈ 𝜉𝒜 ∨ 𝜋(𝑎∘1) = 𝑎∘2

Let 𝑇 be a permutative extension of the restriction of 𝜉ℒ to the 𝐴-flexible litters, with coimage con-
tained entirely in the set of 𝐴-flexible litters, given by proposition A.5. From this, we define a base
approximation 𝜓 = (𝑆, 𝑇).
It remains to check that 𝜓 is an 𝐴-flexible approximation of 𝜉. Conditions 1–3 are trivial, and condi-
tion 4 follows from the fact that we assumed 𝜉 was nice.
We first showan auxiliary result. Let (𝑁1, 𝑁2) ∈ 𝜉𝒩 , and let (𝑎1, 𝑎2) ∈ 𝑆; wewill show that𝑎1 ∈ 𝑁1 ↔
𝑎2 ∈ 𝑁2. Suppose first that (𝑎1, 𝑎2) ∈ 𝜉𝒜, in which case we are done as 𝜉 is a base action. Instead,
we have 𝑎1 ∉ coim 𝜉𝒜, 𝑎2 ∉ im 𝜉𝒜 and 𝜋(𝑎∘1) = 𝑎∘2. As 𝜉 is nice, we must have 𝑎1 ∈ 𝑁1 ↔ 𝑎∘1 = 𝑁∘

1 .
Similarly, 𝑎2 ∈ 𝑁2 ↔ 𝑎∘2 = 𝑁∘

2 . So if 𝑎1 ∈ 𝑁1, we conclude that 𝑎∘2 = 𝜋(𝑎∘1) = 𝜋(𝑁∘
1) = 𝑁∘

2 giving
𝑎2 ∈ 𝑁2, and if 𝑎2 ∈ 𝑁2, we find 𝜋(𝑎∘1) = 𝑎∘2 = 𝑁∘

2 so 𝑎∘1 = 𝑁∘
1 , giving 𝑎1 ∈ 𝑁1.

We now prove condition 5, which is the equation

𝑎2 ∈ 𝑁2 ↔ (∃𝑎1 ∈ 𝑁1, (𝑎1, 𝑎2) ∈ 𝑆) ∨ (𝑎2 ∉ coim 𝑆 ∧ 𝑎∘2 = 𝑁∘
2)

where (𝑁1, 𝑁2) ∈ 𝜉𝒩 . Consider the first the case where (𝑎1, 𝑎2) ∈ 𝑆 and 𝑎1 ∈ 𝑁1. The auxiliary
lemma shows that 𝑎2 ∈ 𝑁2 as required. Now consider the case where 𝑎2 ∉ coim 𝑆 and 𝑎∘2 = 𝑁∘

2 . If
𝑎2 ∉ 𝑁2, then 𝑎2 ∈ 𝑁2 △ LS(𝑁∘

2) ⊆ im 𝜉𝒜, a contradiction. Finally suppose that neither holds, so

(∀𝑎1, (𝑎1, 𝑎2) ∈ 𝑆 → 𝑎1 ∉ 𝑁1) ∧ (𝑎2 ∈ coim 𝑆 ∨ 𝑎∘2 ≠ 𝑁∘
2)

If 𝑎2 ∈ coim 𝑆, then there is 𝑎1 such that (𝑎1, 𝑎2) ∈ 𝑆, and we have 𝑎1 ∉ 𝑁1, giving 𝑎2 ∉ 𝑁2 by the
auxiliary lemma. Finally, if 𝑎2 ∉ coim 𝑆 and 𝑎∘2 ≠ 𝑁∘

2 , then 𝑎2 ∉ 𝑁2, since 𝑎2 ∈ 𝑁2 would imply
𝑎2 ∈ 𝑁2 △ LS(𝑁∘

2), contradicting the fact that 𝜉 is nice.

Definition 4.35 (approximates). We say that a 𝛽-action 𝜉 approximates a 𝛽-allowable permutation
𝜌 if 𝜉𝒩𝐴 ≤ 𝜌𝒩𝐴 and 𝜉𝒜𝐴 ≤ 𝜌𝒜𝐴 for each path 𝐴 ∶ 𝛽 ⇝ ⊥.12

Proposition 4.36. Let 𝜉 be a base action, and let 𝜓 be an 𝐴-flexible approximation of it. Let 𝜋 be a
base permutation that 𝜓 exactly approximates. If (𝑁1, 𝑁2) ∈ 𝜉𝒩 and 𝜋(𝑁∘

1) = 𝑁∘
2 , then 𝜋(𝑁1) = 𝑁2.

Proof. First, note that

𝜋[𝑁1] = 𝜋[LS(𝑁∘
1)] △ 𝜋[𝑁1 △ LS(𝑁∘

1)]
= (𝜋[LS(𝑁∘

1) ∩ coim𝜓𝐸𝒜] ∪ 𝜋[LS(𝑁∘
1) ∖ coim𝜓𝐸𝒜]) △ 𝜋[𝑁1 △ LS(𝑁∘

1)]

As 𝜓 exactly approximates 𝜋 and 𝜋(𝑁∘
1) = 𝑁∘

2 , we have the equation

𝜋[LS(𝑁∘
1) ∖ coim𝜓𝐸𝒜] = LS(𝑁∘

2) ∖ coim𝜓𝐸𝒜
12Again, we should define what it means for a base action to approximate a near-litter permutation, and define this in terms

of that.

Chapter 4: Freedom of action 31

Combining this with the fact that 𝜓𝐸𝒜 ≤ 𝜋𝒜, and that 𝑁1 △ LS(𝑁∘
1) ⊆ coim𝜓𝐸𝒜, we obtain

𝜋[𝑁1] = (im𝜓𝐸𝒜|LS(𝑁∘
1)∩coim𝜓𝐸𝒜 ∪ (LS(𝑁∘

2) ∖ coim𝜓𝐸𝒜)) △ im𝜓𝐸𝒜|𝑁1△LS(𝑁∘
1)

= (im𝜓𝐸𝒜|LS(𝑁∘
1)∩coim𝜓𝐸𝒜 △ im𝜓𝐸𝒜|𝑁1△LS(𝑁∘

1)) ∪ (LS(𝑁
∘
2) ∖ coim𝜓𝐸𝒜)

= im𝜓𝐸𝒜|(LS(𝑁∘
1)∩coim𝜓𝐸𝒜)△(𝑁1△LS(𝑁∘

1)) ∪ (LS(𝑁
∘
2) ∖ coim𝜓𝐸𝒜)

= im𝜓𝐸𝒜|𝑁1∩coim𝜓𝐸𝒜 ∪ (LS(𝑁∘
2) ∖ coim𝜓𝐸𝒜)

which is equal to 𝑁2 by part of definition 4.33.

Proposition 4.37. Let 𝜉 be a coherent 𝛽-action, and let 𝜓 be a flexible approximation for it. If 𝜓
exactly approximates some allowable permutation 𝜌, then 𝜉 approximates 𝜌.

Proof. First, note that 𝜉𝒜𝐴 ≤ 𝜓𝐸𝒜𝐴 and 𝜓𝒜𝐴 ≤ 𝜌𝒜𝐴 give the required result for atoms. Now suppose that
(𝑁1, 𝑁2) ∈ 𝜉𝒩𝐴 ; we must show that 𝜌𝐴(𝑁1) = 𝑁2. We prove this by induction on 𝜄(𝑁1), generalising
over all 𝐴.
By proposition 4.36, it suffices to show that 𝜌𝐴(𝑁∘

1) = 𝑁∘
2 . Suppose that 𝑁∘

1 is 𝐴-flexible. Then by
definition 4.33, (𝑁∘

1 , 𝑁∘
2) ∈ 𝜓ℒ𝐴. Hence 𝜌𝐴(𝑁∘

1) = 𝑁∘
2 as required.

Suppose not, so 𝑁∘
1 is 𝐴-inflexible with path (𝛾, 𝛿, 𝜀, 𝐵) and tangle 𝑡 ∶ Tang𝛿. By coherence of 𝜉, we

know that (𝜉𝐵)𝛿 is defined on supp(𝑡), and it suffices to show that

(𝜉𝐵)𝛿(supp(𝑡)) = (𝜌𝐵)𝛿(supp(𝑡))

Let 𝐶 ∶ 𝛿 ⇝ ⊥ and 𝑎 be an atom such that (𝑖, 𝑎) ∈ supp(𝑡)𝒜𝐶 for some 𝑖. Then (𝑎, ((𝜌𝐵)𝛿)𝐶(𝑎)) ∈
((𝜉𝐵)𝛿)𝒜𝐶 by the result for atoms. Now suppose 𝑁 is a near-litter such that (𝑖, 𝑁) ∈ supp(𝑡)𝒩𝐶 . Then

𝜄(𝑁) < 𝜄(𝑡) < 𝜄(𝑓𝛿,𝜀(𝑡)) = 𝜄(𝑁∘
1)

So we may apply the inductive hypothesis, giving (𝑁, ((𝜌𝐵)𝛿)𝐶(𝑁)) ∈ ((𝜉𝐵)𝛿)𝒩𝐶 as required.

Theorem 4.38 (freedom of action for actions). Every coherent action approximates some allowable
permutation.

Proof. Let 𝜉 be a coherent 𝛽-action, and let 𝜓 be a flexible approximation for it, which exists by pro-
position 4.34. Then apply theorem 4.24 (freedom of action) to 𝜓 to obtain a 𝛽-allowable permutation
𝜌 that 𝜓 exactly approximates. Finally, appeal to proposition 4.37 to conclude that 𝜉 approximates
𝜌.

Chapter 5

The counting argument

5.1 Strong supports
Definition 5.1. We define a preorder⪯ on base supports by 𝑆 ⪯ 𝑇 if and only if im 𝑆𝒜 ⊆ im𝑇𝒜 and
im 𝑆𝒩 ⊆ im𝑇𝒩 . For 𝛽-supports, we define 𝑆 ⪯ 𝑇 if and only if 𝑆𝐴 ⪯ 𝑇𝐴 for each 𝐴.
Definition 5.2. A 𝛽-support 𝑆 is strong if:

• for every pair of near-litters 𝑁1, 𝑁2 ∈ im 𝑆𝒩𝐴 , we have interf(𝑁1, 𝑁2) ⊆ im 𝑆𝒜𝐴 ; and
• for every inflexible path 𝐼 = (𝛾, 𝛿, 𝜀, 𝐴) and 𝑡 ∶ Tang𝛿, if there is a near-litter 𝑁 ∈ im 𝑆𝒩𝐴𝜀⊥

with
𝑁∘ = 𝑓𝛿,𝜀(𝑡), then supp(𝑡) ⪯ 𝑆𝐴𝛿 .

Proposition 5.3. If 𝑆 is a strong 𝛽-support and 𝜌 is 𝛽-allowable, then 𝜌(𝑆) is strong.

Proof. Interference is stable under application of allowable permutations, and the required supports
are also preserved under action of allowable permutations.

Proposition 5.4. For every support 𝑆, there is a strong support 𝑇 ⪰ 𝑆.

Proof. We define a relation 𝑅 on pairs (𝐴, 𝑁)where𝐴 ∶ 𝛽 ⇝ ⊥ and𝑁 is a near-litter by the following
constructor. If 𝐼 = (𝛾, 𝛿, 𝜀, 𝐴) and 𝑡 ∶ Tang𝛿, then for any near-litter 𝑁1 such that 𝑁∘

1 = 𝑓𝛿,𝜀(𝑡) and
any path 𝐵 ∶ 𝛿 ⇝ ⊥ and near-litter 𝑁2 ∈ supp(𝑡)𝒩𝐵 , we define ((𝐴𝛿)𝐵, 𝑁2) 𝑅 ((𝐴𝜀)⊥, 𝑁1). This is
well-founded, because if (𝐵, 𝑁2) 𝑅 (𝐴, 𝑁1) then 𝜄(𝑁2) < 𝜄(𝑁1). For any small set 𝑠 of such pairs, the
transitive closure of 𝑠 under 𝑅 is small.
Let 𝑆 be a support, and let 𝑠 be the transitive closure of the set of pairs (𝐴, 𝑁) such that 𝑁 ∈ im 𝑆𝒩𝐴 .
Generate a support𝑇 from𝑆 and 𝑠using the fact that every small set is the range of some enumeration.
This satisfies the second condition of being a strong support.

Now, for any base support 𝑇, we define its interference support to be a base support 𝑈 consisting of
just the atoms in the interference of all near-litters that appear in 𝑇. We may extend this definition
to structural supports.

Finally, if𝑈 is the interference support of the 𝑇 defined above, the support 𝑇 +𝑈 is strong, and since
𝑆 ⪰ 𝑇, we conclude 𝑆 ⪯ 𝑇 + 𝑈 .

Chapter 5: The counting argument 33

5.2 Coding functions
Definition 5.5. For a type index 𝛽 ≤ 𝛼, a 𝛽-support orbit is the quotient of StrSupp𝛽 under the
relation of being in the same orbit under 𝛽-allowable permutations.1

Definition 5.6. For any type index 𝛽 ≤ 𝛼, a 𝛽-coding function is a relation 𝜒 ∶ StrSupp𝛽 → TSet𝛽 →
Prop such that:

• 𝜒 is coinjective;
• 𝜒 is nonempty;
• if (𝑆, 𝑥) ∈ 𝜒, then 𝑆 is a support for 𝑥;
• if 𝑆, 𝑇 ∈ coim𝜒 then 𝑆 and 𝑇 are in the same support orbit;

• if (𝑆, 𝑥) ∈ 𝜒 and 𝜌 is 𝛽-allowable, then (𝜌(𝑆), 𝜌(𝑥)) ∈ 𝜒.
Proposition 5.7 (extensionality for coding functions). Let 𝜒1, 𝜒2 be 𝛽-coding functions. If (𝑆, 𝑥) ∈
𝜒1, 𝜒2, then 𝜒1 = 𝜒2.

Proof. We show 𝜒1 ⊆ 𝜒2; the result then follows by antisymmetry. Suppose (𝑇, 𝑦) ∈ 𝜒1. Then
𝑇 = 𝜌(𝑆) for some 𝛽-allowable 𝜌. As (𝜌(𝑆), 𝜌(𝑥)) ∈ 𝜒1 and 𝜒1 is coinjective, we obtain 𝑦 = 𝜌(𝑥).
Hence (𝑇, 𝑦) ∈ 𝜒2 as required.

Definition 5.8. Let 𝑡 ∶ Tang𝛽. Then we define the coding function 𝜒𝑡 by the constructor

∀𝜌 ∶ AllPerm𝛽, (𝜌(supp(𝑡)), 𝜌(set(𝑡))) ∈ 𝜒

This is clearly a coding function, and satisfies (supp(𝑡), set(𝑡)) ∈ 𝜒𝑡.
Proposition 5.9. Let 𝑡, 𝑢 ∶ Tang𝛽. Then 𝜒𝑡 = 𝜒𝑢 if and only if there is a 𝛽-allowable 𝜌with 𝜌(𝑡) = 𝑢.

Proof. If 𝜌(𝑡) = 𝑢, then (supp(𝑡), set(𝑡)) ∈ 𝜒𝑡 implies (supp(𝑢), set(𝑢)) ∈ 𝜒𝑡, giving 𝜒𝑡 = 𝜒𝑢 by pro-
position 5.7. Conversely if 𝜒𝑡 = 𝜒𝑢, then (supp(𝑢), set(𝑢)) ∈ 𝜒𝑡, so there is 𝜌 such that 𝜌(supp(𝑡)) =
supp(𝑢), and (𝜌(supp(𝑡)), 𝜌(set(𝑡))) ∈ 𝜒𝑡, so by coinjectivity we obtain 𝜌(𝑠𝑒𝑡(𝑡)) = set(𝑢) as re-
quired.

5.3 Specifications
Definition 5.10. An atom condition is a pair (𝑠, 𝑡) where 𝑠, 𝑡 ∶ Set 𝜅. A 𝛽-near-litter condition is
either

• a flexible condition, consisting of a set 𝑠 ∶ Set 𝜅; or
• an inflexible condition, consisting of an inflexible 𝛽-path 𝐼 = (𝛾, 𝛿, 𝜀, 𝐴), a 𝛿-coding function 𝜒,
and two 𝛿-trees 𝑅𝒜, 𝑅𝒩 of relations on 𝜅.

A 𝛽-specification is a pair (𝜎𝒜, 𝜎𝒩) where
• 𝜎𝒜 is a 𝛽-tree of enumerations of atom conditions; and

• 𝜎𝒩 is a 𝛽-tree of enumerations of 𝛽-near-litter conditions.
1This can be implemented using MulAction.orbitRel.Quotient. Weneed tomake sure there’s plenty ofAPI for support

orbits to avoid code duplication.

Chapter 5: The counting argument 34

Definition 5.11. Let 𝑆 be a 𝛽-support. Then its specification is the 𝛽-specification 𝜎 = spec(𝑆) given
by the following constructors.

• Whenever (𝑖, 𝑎) ∈ 𝑆𝒜𝐴 , we have (𝑖, (𝑠, 𝑡)) ∈ 𝜎𝒜𝐴 where

𝑠 = {𝑗 ∶ 𝜅 ∣ (𝑗, 𝑎) ∈ 𝑆𝒜𝐴 }; 𝑡 = {𝑗 ∶ 𝜅 ∣ ∃𝑁, (𝑗, 𝑁) ∈ 𝑆𝒩𝐴 ∧ 𝑎 ∈ 𝑁}

• Whenever (𝑖, 𝑁) ∈ 𝑆𝒩𝐴 and𝑁∘ is𝐴-flexible, we have (𝑖, 𝑐) ∈ 𝜎𝒩𝐴 where 𝑐 is the flexible condition
given by

𝑠 = {𝑗 ∶ 𝜅 ∣ ∃𝑁′, (𝑗, 𝑁′) ∈ 𝑆𝒩𝐴 ∧ 𝑁∘ = 𝑁′∘}

• Whenever 𝐼 = (𝛾, 𝛿, 𝜀, 𝐴) is an inflexible 𝛽-path, 𝑡 ∶ Tang𝛿, and (𝑖, 𝑁) ∈ 𝑆𝒩𝐴𝜀⊥
is such that

𝑁∘ = 𝑓𝛿,𝜀(𝑡), we have (𝑖, 𝑐) ∈ 𝜎𝒩𝐴𝜀⊥
where 𝑐 is the inflexible condition given by path 𝐼 and

coding function 𝜒𝑡, and 𝑅𝒜 and 𝑅𝒩 are the 𝛿-trees of relations given by the constructors
∀𝑖, ∀𝑗, ∀𝑎, (𝑖, 𝑎) ∈ 𝑆𝒜𝐴𝛿𝐵

→ (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐵 → (𝑖, 𝑗) ∈ 𝑅𝒜𝐵
∀𝑖, ∀𝑗, ∀𝑁, (𝑖, 𝑁) ∈ 𝑆𝒩𝐴𝛿𝐵

→ (𝑗, 𝑁) ∈ supp(𝑡)𝒩𝐵 → (𝑖, 𝑗) ∈ 𝑅𝒩𝐵

Proposition 5.12. Let 𝑆, 𝑇 be 𝛽-supports. Then spec(𝑆) = spec(𝑇) if and only if2

• coim 𝑆𝒜𝐴 = coim𝑇𝒜𝐴 and coim 𝑆𝒩𝐴 = coim𝑇𝒩𝐴 .

• (atom condition) Whenever (𝑖, 𝑎1) ∈ 𝑆𝒜𝐴 and (𝑖, 𝑎2) ∈ 𝑇𝒜𝐴 , we have

∀𝑗, (𝑗, 𝑎1) ∈ 𝑆𝒜𝐴 ↔ (𝑗, 𝑎2) ∈ 𝑇𝒜𝐴
and

∀𝑗, (∃𝑁, (𝑗, 𝑁) ∈ 𝑆𝒩𝐴 ∧ 𝑎1 ∈ 𝑁) ↔ (∃𝑁, (𝑗, 𝑁) ∈ 𝑇𝒩𝐴 ∧ 𝑎2 ∈ 𝑁)

• (flexible condition) Whenever (𝑖, 𝑁1) ∈ 𝑆𝒩𝐴 and (𝑖, 𝑁2) ∈ 𝑇𝒩𝐴 , if 𝑁∘
1 is 𝐴-flexible, then so is 𝑁∘

2 ,
and

∀𝑗, (∃𝑁′, (𝑗, 𝑁′) ∈ 𝑆𝒩𝐴 ∧ 𝑁∘
1 = 𝑁′∘) ↔ (∃𝑁′, (𝑗, 𝑁′) ∈ 𝑇𝒩𝐴 ∧ 𝑁∘

2 = 𝑁′∘)

• (inflexible condition) Let 𝐼 = (𝛾, 𝛿, 𝜀) be an inflexible 𝛽-path and let 𝑡 ∶ Tang𝛿. Then whenever
(𝑖, 𝑁1) ∈ 𝑆𝒩𝐴𝜀⊥

and (𝑖, 𝑁2) ∈ 𝑇𝒩𝐴𝜀⊥
are such that 𝑁∘

1 = 𝑓𝛿,𝜀(𝑡), there is some 𝛿-allowable per-
mutation 𝜌 such that 𝑁∘

2 = 𝑓𝛿,𝜀(𝜌(𝑡)), and

∀𝑗, ∀𝑎, (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐵 → ∀𝑖, (𝑖, 𝑎) ∈ 𝑆𝒜𝐴𝛿𝐵
↔ (𝑖, 𝜌𝐵(𝑎)) ∈ 𝑇𝒜𝐴𝛿𝐵

∀𝑗, ∀𝑁, (𝑗, 𝑁) ∈ supp(𝑡)𝒩𝐵 → ∀𝑖, (𝑖, 𝑁) ∈ 𝑆𝒩𝐴𝛿𝐵
↔ (𝑖, 𝜌𝐵(𝑁)) ∈ 𝑇𝒩𝐴𝛿𝐵

Proof. Wewill only sketch the fourth bullet point of this proof; the remainder is direct (but quite long
to write down on paper). Moreover, wewill show this for atoms; the result for near-litters is identical.
The specifications spec(𝑆) and spec(𝑇) give rise to the same trees 𝑅𝒜 precisely when

∀𝑖, ∀𝑗, (∃𝑎, (𝑖, 𝑎) ∈ 𝑆𝒜𝐴𝛿𝐵
∧ (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐵) ↔ (∃𝑎, (𝑖, 𝑎) ∈ 𝑇𝒜𝐴𝛿𝐵

∧ (𝑗, 𝑎) ∈ supp(𝜌(𝑡))𝒜𝐵)

We must show that this holds if and only if

∀𝑗, ∀𝑎, (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐵 → ∀𝑖, (𝑖, 𝑎) ∈ 𝑆𝒜𝐴𝛿𝐵
↔ (𝑖, 𝜌𝐵(𝑎)) ∈ 𝑇𝒜𝐴𝛿𝐵

This can be concluded by appealing to the basic behaviour of𝜌 andnoting the coinjectivity of supp(𝑡)𝒜𝐵 .

2The following bullet points should comprise a proposition type relating 𝑆 and 𝑇 .

Chapter 5: The counting argument 35

Proposition 5.13. Let 𝜌 be 𝛽-allowable, and let 𝑆 be a 𝛽-support. Then spec(𝜌(𝑆)) = spec(𝑆).

Proof. We appeal to proposition 5.12. Clearly the coimage condition holds.

For the atom condition, we must check that if (𝑖, 𝑎) ∈ 𝑆𝒜𝐴 , we have

∀𝑗, (𝑗, 𝑎) ∈ 𝑆𝒜𝐴 ↔ (𝑗, 𝜌𝐴(𝑎)) ∈ 𝜌(𝑆)𝒜𝐴

and
∀𝑗, (∃𝑁, (𝑗, 𝑁) ∈ 𝑆𝒩𝐴 ∧ 𝑎 ∈ 𝑁) ↔ (∃𝑁, (𝑗, 𝑁) ∈ 𝜌(𝑆)𝒩𝐴 ∧ 𝜌𝐴(𝑎) ∈ 𝑁)

both of which are trivial.

For the flexible condition, we must check that if (𝑖, 𝑁) ∈ 𝑆𝒩𝐴 and𝑁∘ is 𝐴-flexible, then 𝜌𝐴(𝑁)∘ is also
𝐴-flexible (which is direct, and should already be its own lemma), and that

∀𝑗, (∃𝑁′, (𝑗, 𝑁′) ∈ 𝑆𝒩𝐴 ∧ 𝑁∘ = 𝑁′∘) ↔ (∃𝑁′, (𝑗, 𝑁′) ∈ 𝜌(𝑆)𝒩𝐴 ∧ 𝜌(𝑁)∘ = 𝑁′∘)

which is similarly trivial.

Finally, for the inflexible condition, suppose that 𝐼 = (𝛾, 𝛿, 𝜀) is an inflexible 𝛽-path and 𝑡 ∶ Tang𝛿.
Let (𝑖, 𝑁) ∈ 𝑆𝒩𝐴𝜀⊥

be such that 𝑁∘ = 𝑓𝛿,𝜀(𝑡). Then by the coherence condition,

𝜌𝐴𝜀⊥
(𝑁)∘ = 𝜌𝐴𝜀⊥

(𝑁∘) = 𝜌𝐴𝜀⊥
(𝑓𝛿,𝜀(𝑡)) = 𝑓𝛿,𝜀(𝜌𝐴𝛿 (𝑡))

We must check that

∀𝑗, ∀𝑎, (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐵 → ∀𝑖, (𝑖, 𝑎) ∈ 𝑆𝒜𝐴𝛿𝐵
↔ (𝑖, (𝜌𝐴𝛿)𝐵(𝑎)) ∈ 𝜌(𝑆)𝒜𝐴𝛿𝐵

∀𝑗, ∀𝑁, (𝑗, 𝑁) ∈ supp(𝑡)𝒩𝐵 → ∀𝑖, (𝑖, 𝑁) ∈ 𝑆𝒩𝐴𝛿𝐵
↔ (𝑖, (𝜌𝐴𝛿)𝐵(𝑁)) ∈ 𝜌(𝑆)𝒩𝐴𝛿𝐵

which again is trivial.

Definition 5.14. Let 𝑆 and 𝑇 be base supports. We define the relations conv𝒜𝑆,𝑇 , conv
𝒩
𝑆,𝑇 by the

constructors3

(𝑖, 𝑎1) ∈ 𝑆𝒜 → (𝑖, 𝑎2) ∈ 𝑇𝒜 → (𝑎1, 𝑎2) ∈ conv𝒜𝑆,𝑇
(𝑖, 𝑁1) ∈ 𝑆𝒩 → (𝑖, 𝑁2) ∈ 𝑇𝒩 → (𝑁1, 𝑁2) ∈ conv𝒩𝑆,𝑇

Note that conv𝒜𝑆,𝑇
−1 = conv𝒜𝑇,𝑆 and conv𝒩𝑆,𝑇

−1 = conv𝒩𝑇,𝑆.

Proposition 5.15. Let 𝑆, 𝑇 be supports such that spec(𝑆) = spec(𝑇). Then conv𝒜𝑆𝐴,𝑇𝐴 is one-to-one.

Proof. If (𝑎1, 𝑎2), (𝑎1, 𝑎3) ∈ conv𝒜𝑆𝐴,𝑇𝐴 , then there are 𝑖, 𝑗 such that (𝑖, 𝑎1), (𝑗, 𝑎1) ∈ 𝑆𝒜𝐴 and (𝑖, 𝑎2), (𝑗, 𝑎3) ∈
𝑇𝒜𝐴 . By proposition 5.12, we deduce (𝑗, 𝑎1) ∈ 𝑆𝒜𝐴 ↔ (𝑗, 𝑎2) ∈ 𝑇𝒜𝐴 , so by coinjectivity of𝑇𝒜𝐴 , we deduce
𝑎2 = 𝑎3. Hence conv𝒜𝑆𝐴,𝑇𝐴 is coinjective. By symmetry, conv

𝒜
𝑆𝐴,𝑇𝐴

is one-to-one.

Proposition 5.16. Let 𝑆, 𝑇 be supports such that spec(𝑆) = spec(𝑇). If (𝑎1, 𝑎2) ∈ conv𝒜𝑆𝐴,𝑇𝐴 and
(𝑁1, 𝑁2) ∈ conv𝒩𝑆𝐴,𝑇𝐴 , then 𝑎1 ∈ 𝑁1 if and only if 𝑎2 ∈ 𝑁2.

3This should be abstracted out even further; this can be defined for any pair of relations with common domain.

Chapter 5: The counting argument 36

Proof. As (𝑎1, 𝑎2) ∈ conv𝒜𝑆𝐴,𝑇𝐴 , there is 𝑖 such that (𝑖, 𝑎1) ∈ 𝑆𝒜𝐴 and (𝑖, 𝑎2) ∈ 𝑇𝒜𝐴 , and as (𝑁1, 𝑁2) ∈
conv𝒩𝑆𝐴,𝑇𝐴 , there is 𝑗 such that (𝑗, 𝑁1) ∈ 𝑆𝒩𝐴 and (𝑗, 𝑁2) ∈ 𝑇𝒩𝐴 . By proposition 5.12, we deduce that

∀𝑗, (∃𝑁, (𝑗, 𝑁) ∈ 𝑆𝒩𝐴 ∧ 𝑎1 ∈ 𝑁) ↔ (∃𝑁, (𝑗, 𝑁) ∈ 𝑇𝒩𝐴 ∧ 𝑎2 ∈ 𝑁)

If 𝑎1 ∈ 𝑁1, then as (𝑗, 𝑁1) ∈ 𝑆𝒩𝐴 , we deduce that there is a near-litter 𝑁′ such that (𝑗, 𝑁′) ∈ 𝑇𝒩𝐴 and
𝑎 ∈ 𝑁′. But 𝑇𝒩𝐴 is coinjective, so 𝑁′ = 𝑁2, giving 𝑎 ∈ 𝑁2. The converse holds by symmetry.

Proposition5.17. Let𝑆, 𝑇 be supports such that𝑇 is strong and spec(𝑆) = spec(𝑇). If (𝑁1, 𝑁3), (𝑁2, 𝑁4) ∈
conv𝒩𝑆𝐴,𝑇𝐴 , then 𝑁

∘
1 = 𝑁∘

2 if and only if 𝑁∘
3 = 𝑁∘

4 .

Proof. There are 𝑖, 𝑗 such that (𝑖, 𝑁1), (𝑗, 𝑁2) ∈ 𝑆𝒩𝐴 and (𝑖, 𝑁3), (𝑗, 𝑁4) ∈ 𝑇𝒩𝐴 . Suppose that 𝑁∘
1 = 𝑁∘

2 ;
we show that 𝑁∘

3 = 𝑁∘
4 .

First, suppose that 𝑁∘
1 is 𝐴-flexible. Then by proposition 5.12, we have

∀𝑗, (∃𝑁′, (𝑗, 𝑁′) ∈ 𝑆𝒩𝐴 ∧ 𝑁∘
1 = 𝑁′∘) ↔ (∃𝑁′, (𝑗, 𝑁′) ∈ 𝑇𝒩𝐴 ∧ 𝑁∘

3 = 𝑁′∘)

So as (𝑗, 𝑁2) ∈ 𝑆𝒩𝐴 and 𝑁∘
1 = 𝑁∘

2 , there is 𝑁′ with (𝑗, 𝑁′) ∈ 𝑇𝒩𝐴 and 𝑁∘
3 = 𝑁′∘, but clearly 𝑁′ = 𝑁4,

giving the result.

Now suppose that 𝑁∘
1 is 𝐴-inflexible, so there is an inflexible 𝛽-path (𝛾, 𝛿, 𝜀, 𝐵) and tangle 𝑡 ∶ Tang𝛿

such that
𝐴 = 𝐵𝜀⊥; 𝑁∘

1 = 𝑓𝛿,𝜀(𝑡)
Then by proposition 5.12, there is some 𝛿-allowable 𝜌 such that 𝑁∘

3 = 𝑓𝛿,𝜀(𝜌(𝑡)) and

∀𝑗, ∀𝑎, (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐵 → ∀𝑖, (𝑖, 𝑎) ∈ 𝑆𝒜𝐴𝛿𝐵
↔ (𝑖, 𝜌𝐵(𝑎)) ∈ 𝑇𝒜𝐴𝛿𝐵

∀𝑗, ∀𝑁, (𝑗, 𝑁) ∈ supp(𝑡)𝒩𝐵 → ∀𝑖, (𝑖, 𝑁) ∈ 𝑆𝒩𝐴𝛿𝐵
↔ (𝑖, 𝜌𝐵(𝑁)) ∈ 𝑇𝒩𝐴𝛿𝐵

But as 𝑁∘
1 = 𝑁∘

2 , we draw the same conclusion about 𝑁2 and 𝑁4, giving a 𝛿-allowable permutation 𝜌′
such that 𝑁∘

4 = 𝑓𝛿,𝜀(𝜌′(𝑡)); note that the inflexible path and tangle in question will be the same for
both pairs. We also have

∀𝑗, ∀𝑎, (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐵 → ∀𝑖, (𝑖, 𝑎) ∈ 𝑆𝒜𝐴𝛿𝐵
↔ (𝑖, 𝜌′𝐵(𝑎)) ∈ 𝑇𝒜𝐴𝛿𝐵

∀𝑗, ∀𝑁, (𝑗, 𝑁) ∈ supp(𝑡)𝒩𝐵 → ∀𝑖, (𝑖, 𝑁) ∈ 𝑆𝒩𝐴𝛿𝐵
↔ (𝑖, 𝜌′𝐵(𝑁)) ∈ 𝑇𝒩𝐴𝛿𝐵

Combining these, we obtain

∀𝑗, ∀𝑎, (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐵 → ∀𝑖, (𝑖, 𝜌𝐵(𝑎)) ∈ 𝑇𝒜𝐴𝛿𝐵
↔ (𝑖, 𝜌′𝐵(𝑎)) ∈ 𝑇𝒜𝐴𝛿𝐵

∀𝑗, ∀𝑁, (𝑗, 𝑁) ∈ supp(𝑡)𝒩𝐵 → ∀𝑖, (𝑖, 𝜌𝐵(𝑁)) ∈ 𝑇𝒩𝐴𝛿𝐵
↔ (𝑖, 𝜌′𝐵(𝑁)) ∈ 𝑇𝒩𝐴𝛿𝐵

We claim that 𝜌(supp(𝑡)) = 𝜌′(supp(𝑡)). As 𝑇 is strong, for each atom 𝑎 such that (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐵 ,
there is some 𝑘 such that (𝑖, 𝜌𝐵(𝑎)) ∈ 𝑇𝒜𝐴𝛿𝐵

. Thus 𝜌𝐵(𝑎) = 𝜌′𝐵(𝑎). The same conclusion may be
drawn for near-litters. Thus 𝜌(supp(𝑡)) = 𝜌′(supp(𝑡)), giving 𝜌(𝑡) = 𝜌′(𝑡), and hence 𝑁∘

3 = 𝑁∘
4 .

Proposition5.18. Let𝑆, 𝑇 be strong supports such that spec(𝑆) = spec(𝑇). Then for each (𝑁1, 𝑁3), (𝑁2, 𝑁4) ∈
conv𝒩𝑆𝐴,𝑇𝐴 ,

interf(𝑁1, 𝑁2) ⊆ coim conv𝒜𝑆𝐴,𝑇𝐴 ; interf(𝑁3, 𝑁4) ⊆ im conv𝒜𝑆𝐴,𝑇𝐴

Chapter 5: The counting argument 37

Proof. As 𝑆 is strong, we have interf(𝑁1, 𝑁2) ⊆ im 𝑆𝒜𝐴 . But coim conv𝒜𝑆𝐴,𝑇𝐴 = im 𝑆𝒜𝐴 , as required.4
The result for interf(𝑁3, 𝑁4) then follows by symmetry.

Definition 5.19. Let 𝑆, 𝑇 be strong 𝛽-supports such that spec(𝑆) = spec(𝑇). Then for each 𝐴, we
define the base action conv𝑆𝐴,𝑇𝐴 to be (conv𝒜𝑆𝐴,𝑇𝐴 , conv

𝒩
𝑆𝐴,𝑇𝐴

); this is a base action by propositions 5.15
to 5.18. We now define the 𝛽-action conv𝑆,𝑇 by (conv𝑆,𝑇)𝐴 = conv𝑆𝐴,𝑇𝐴 .

Proposition 5.20. Let 𝑆, 𝑇 be strong supports such that spec(𝑆) = spec(𝑇). Then conv𝑆,𝑇 is coher-
ent.

Proof. Suppose that (𝑁1, 𝑁2) ∈ conv𝒩𝑆𝐴,𝑇𝐴 , so there is 𝑖 such that (𝑖, 𝑁1) ∈ 𝑆𝒩𝐴 and (𝑖, 𝑁2) ∈ 𝑇𝒩𝐴 .

Suppose that 𝑁∘
1 is 𝐴-flexible. By proposition 5.12, we immediately conclude that 𝑁∘

2 is 𝐴-flexible as
required.

Now suppose that 𝑁∘
1 is 𝐴-inflexible with inflexible 𝛽-path 𝐼 = (𝛾, 𝛿, 𝜀, 𝐵) and tangle 𝑡 ∶ Tang𝛿. By

proposition 5.12, there is some 𝛿-allowable permutation 𝜌 such that 𝑁∘
2 = 𝑓𝛿,𝜀(𝜌(𝑡)) and

∀𝑗, ∀𝑎, (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐶 → ∀𝑖, (𝑖, 𝑎) ∈ 𝑆𝒜𝐵𝛿𝐶 ↔ (𝑖, 𝜌𝐶(𝑎)) ∈ 𝑇𝒜𝐵𝛿𝐶
∀𝑗, ∀𝑁, (𝑗, 𝑁) ∈ supp(𝑡)𝒩𝐶 → ∀𝑖, (𝑖, 𝑁) ∈ 𝑆𝒩𝐵𝛿𝐶 ↔ (𝑖, 𝜌𝐶(𝑁)) ∈ 𝑇𝒩𝐵𝛿𝐶

We must show that ((conv𝑆,𝑇)𝐵)𝛿(supp(𝑡)) = 𝜌(supp(𝑡)). We will show the result for atoms; the
result for near-litters is identical. Let (𝑗, 𝑎) ∈ supp(𝑡)𝒜𝐶 . Then as 𝑆 is strong, there is 𝑘 such that
(𝑘, 𝑎) ∈ 𝑆𝒜𝐵𝛿𝐶 . Then by the equation above, (𝑘, 𝜌𝐶(𝑎)) ∈ 𝑇𝒜𝐵𝛿𝐶 . Hence (𝑎, 𝜌𝐶(𝑎)) ∈ (((conv𝑆,𝑇)𝐵)𝛿)𝐶
as required.

Proposition 5.21. Let 𝑆, 𝑇 be strong supports such that spec(𝑆) = spec(𝑇). Then there is an allow-
able permutation 𝜌 such that 𝜌(𝑆) = 𝑇.

Proof. By proposition 5.20, wemay apply theorem 4.38 to conv𝑆,𝑇 to obtain an allowable permutation
𝜌 that conv𝑆,𝑇 approximates, which directly gives 𝜌(𝑆) = 𝑇 as required.

5.4 Recoding
Definition 5.22. Let 𝛾 < 𝛽 be proper type indices at most 𝛼. An object 𝑥 ∶ TSet𝛽 is called a 𝛾-
combination of a set of 𝛽-coding functions 𝑠 with respect to a 𝛽-support 𝑆 if

𝑈𝛽(𝑥)(𝛾) = ⋃
(𝑉,𝑣)∈𝜒∈𝑠,𝑉≥𝑆

𝑈𝛽(𝑣)(𝛾)

By extensionality, a set of coding functions 𝑠 has at most one 𝛾-combination with respect to a given
support 𝑆.
Proposition 5.23. If 𝑥 is a 𝛾-combination of 𝑠 with respect to 𝑆 then 𝜌(𝑥) is a 𝛾-combination of 𝑠
with respect to 𝜌(𝑆).

4Make this a lemma.

Chapter 5: The counting argument 38

Proof. We can calculate

𝑈𝛽(𝜌(𝑥))(𝛾) = 𝜌𝛾[𝑈𝛽(𝑥)(𝛾)]

= 𝜌𝛾 [⋃
(𝑉,𝑣)∈𝜒∈𝑠,𝑉≥𝑆

𝑈𝛽(𝑣)(𝛾)]

= ⋃
(𝑉,𝑣)∈𝜒∈𝑠,𝑉≥𝑆

𝜌𝛾 [𝑈𝛽(𝑣)(𝛾)]

= ⋃
(𝑉,𝑣)∈𝜒∈𝑠,𝑉≥𝑆

𝑈𝛽(𝜌(𝑣))(𝛾)

= ⋃
(𝑉,𝑣)∈𝜒∈𝑠,𝑉≥𝜌(𝑆)

𝑈𝛽(𝑣)(𝛾)

where the last inequality uses the fact that coding functions are defined on a support orbit.

Definition 5.24. Let 𝑠 be a set of 𝛽-coding functions, and let 𝑜 be a 𝛽-support orbit such that for each
𝑆 ∈ 𝑜, 𝑠 has a 𝛾-combination 𝑥 with respect to 𝑆 where 𝑆 supports 𝑥. Then the (𝛾, 𝛽)-raised coding
function for (𝑠, 𝑜) is the relation 𝜒 ∶ StrSupp𝛽 → TSet𝛽 → Prop defined by the constructor

∀𝑆 ∈ 𝑜, ∀𝑥 combinations of (𝑠, 𝑆), (𝑆, 𝑥) ∈ 𝜒

Proposition 5.25. The (𝛾, 𝛽)-raised coding function for (𝑠, 𝑜) is a coding function.

Proof. Coinjectivity follows from uniqueness of combinations. The nonemptiness and support orbit
conditions follow from the definition, as does the condition that (𝑆, 𝑥) ∈ 𝜒 implies that 𝑆 is a support
for 𝑥. It remains to show that if (𝑆, 𝑥) ∈ 𝜒 and 𝜌 is 𝛽-allowable, then (𝜌(𝑆), 𝜌(𝑥)) ∈ 𝜒, and this follows
directly from proposition 5.23.

Definition 5.26 (designated support). For a type index 𝛽 ≤ 𝛼, a 𝛽-set orbit is the quotient of TSet𝛽
under the relation of being in the same orbit under 𝛽-allowable permutations. We write [𝑥] for the
set orbit of 𝑥. For each set orbit 𝑜, we choose a representative repr(𝑜) ∶ TSet𝛽 with [repr(𝑜)] = 𝑜,
and define a support 𝑆𝑜 for repr(𝑜). For each set, we choose a 𝛽-allowable permutation twist𝑡 with
the property that twist𝑡(repr([𝑡])) = 𝑡, and we define the designated support of 𝑡 to be dsupp(𝑡) =
twist𝑡(𝑆[𝑡]). This is a support for 𝑡.
Definition 5.27. Let 𝛾 < 𝛽 be proper type indices. Let 𝑆 be a 𝛽-support and let 𝑢 ∶ TSet𝛾. Then the
(𝛾, 𝛽)-raised singleton coding function is

raise(𝑆, 𝑢) = 𝜒(singleton𝛽(𝑢),𝑆+dsupp(𝑢)𝛽)

A coding function is called a (𝛾, 𝛽)-raised singleton if it is of the form raise(𝑆, 𝑢).
Proposition 5.28. Let 𝛾 < 𝛽 be proper type indices, and let 𝑥 ∶ TSet𝛽. Then for any support 𝑆 of 𝑥,
𝑥 is a combination of the set

{raise(𝑆, 𝑢) ∣ 𝑢 ∈ 𝑈𝛽(𝑥)(𝛾)}

Proof. We must show that

𝑈𝛽(𝑥)(𝛾) = ⋃
𝑢∈𝑈𝛽(𝑥)(𝛾), (𝑉,𝑣)∈raise(𝑆,𝑢), 𝑉≥𝑆

𝑈𝛽(𝑣)(𝛾)

Chapter 5: The counting argument 39

First, suppose 𝑢 ∈ 𝑈𝛽(𝑥)(𝛾). Then we have

(𝑆 + dsupp(𝑢)𝛽, singleton𝛽(𝑢)) ∈ raise(𝑆, 𝑢); 𝑢 ∈ 𝑈𝛽(singleton𝛽(𝑢))(𝛾)

so the left-hand side is contained in the right-hand side.

For the converse, suppose that 𝑢 ∈ 𝑈𝛽(𝑥)(𝛾) and (𝑉, 𝑣) ∈ raise(𝑆, 𝑢) with 𝑉 ≥ 𝑆. As (𝑉, 𝑣) ∈
raise(𝑆, 𝑢), there is some 𝛽-allowable 𝜌 such that

𝜌(𝑆 + dsupp(𝑢)𝛽) = 𝑉; 𝜌(singleton𝛽(𝑢)) = 𝑣

As 𝑉 ≥ 𝑆, we obtain 𝜌(𝑆) = 𝑆,5 so 𝜌(𝑥) = 𝑥. Then

𝑈𝛽(𝑣)(𝛾) = 𝑈𝛽(𝜌(singleton𝛽(𝑢)))(𝛾)
= 𝑈𝛽(singleton𝛽(𝜌𝛾(𝑢)))(𝛾)
= {𝜌𝛾(𝑢)}
⊆ 𝑈𝛽(𝜌(𝑥))(𝛾)
= 𝑈𝛽(𝑥)(𝛾)

as required.

Proposition 5.29. Let 𝛾 < 𝛽 be proper type indices, and let 𝜒 be a 𝛽-coding function. Then there is
a set of (𝛾, 𝛽)-raised singletons 𝑠 and support orbit 𝑜 such that 𝜒 is the (𝛾, 𝛽)-raised coding function
for (𝑠, 𝑜).

Proof. Let 𝜒 be a 𝛽-coding function, and let (𝑆, 𝑥) ∈ 𝜒. Let

𝑠 = {raise(𝑆, 𝑢) ∣ 𝑢 ∈ 𝑈𝛽(𝑥)(𝛾)}

Let 𝑜 be the support orbit such that 𝑇 ∈ 𝑜 if and only if 𝑇 ∈ coim𝜒. We claim that 𝜒 is the raised
coding function for (𝑠, 𝑜). It suffices to show that (𝑆, 𝑥) is in this raised coding function. That is,
we must show that 𝑆 ∈ 𝑜, which is trivial, and that 𝑥 is a combination of 𝑠, which is the content of
proposition 5.28.

5.5 Coding the base type
Proposition 5.30 (the swap permutation). Let 𝑆 be a base support that is closed under interference
of near-litters. Let 𝑎1, 𝑎2 be atoms not in im 𝑆𝒜 such that

∀𝑁 ∈ im 𝑆𝒩 , 𝑎1 ∈ 𝑁 ↔ 𝑎2 ∈ 𝑁

Then there is a base permutation 𝜋 that fixes 𝑆 and maps 𝑎1 to 𝑎2.

Proof. Let 𝑖 be an index that does not occur in coim 𝑆𝒜, and define 𝑇1, 𝑇2 by

𝑈𝒜
𝑛 = 𝑆𝒜 ⊔ {(𝑖, 𝑎𝑛)}; 𝑈𝒩

𝑛 = 𝑆𝒩

for 𝑛 = 1, 2. We claim that 𝑇1 and 𝑇2 are have the same specification, treated as ⊥-supports. By
appealing to proposition 5.12 and noting that every litter is flexible for the unique path ⊥ ⇝ ⊥, it
suffices to check:

5This is a good lemma.

Chapter 5: The counting argument 40

• (atom condition) For all 𝑖, 𝑎1, 𝑎2, if (𝑖, 𝑎1) ∈ 𝑇𝒜1 and (𝑖, 𝑎2) ∈ 𝑇𝒜2 , we have

∀𝑗, (𝑗, 𝑎1) ∈ 𝑇𝒜1 ↔ (𝑗, 𝑎2) ∈ 𝑇𝒜2

and
∀𝑗, (∃𝑁, (𝑗, 𝑁) ∈ 𝑇𝒩1 ∧ 𝑎1 ∈ 𝑁) ↔ (∃𝑁, (𝑗, 𝑁) ∈ 𝑇𝒩2 ∧ 𝑎2 ∈ 𝑁)

• (litter condition) For all 𝑖, 𝑁1, 𝑁2, if (𝑖, 𝑁1) ∈ 𝑇𝒩1 and (𝑖, 𝑁2) ∈ 𝑇𝒩2 , we have

∀𝑗, (∃𝑁′, (𝑗, 𝑁′) ∈ 𝑇𝒩1 ∧ 𝑁∘
1 = 𝑁′∘) ↔ (∃𝑁′, (𝑗, 𝑁′) ∈ 𝑇𝒩2 ∧ 𝑁∘

2 = 𝑁′∘)

The atom condition follows directly from the two assumptions, and the litter condition is vacuously
true as 𝑇𝒩1 = 𝑇𝒩2 .

Note also that 𝑇1, 𝑇2 are strong, treated as ⊥-supports. Then, by proposition 5.21, there is a ⊥-
allowable permutation 𝜋 such that 𝜋(𝑇1) = 𝑇2. Thus, 𝜋(𝑆) = 𝑆 and 𝜋(𝑎1) = 𝑎2.

Proposition 5.31. Let 𝑆 be a base support that is closed under interference of near-litters. Suppose
that 𝑆 supports a set 𝑠 ∶ Set𝒜 under the action of base permutations. Then for every pair of atoms
𝑎1, 𝑎2, the statements

𝑎1, 𝑎2 ∉ im 𝑆𝒜

and
∀𝑁 ∈ im 𝑆𝒩 , 𝑎1 ∈ 𝑁 ↔ 𝑎2 ∈ 𝑁

imply that 𝑎1 ∈ 𝑠 ↔ 𝑎2 ∈ 𝑠.

Proof. Let 𝑎1, 𝑎2 be atoms that satisfy the two statements. By proposition 5.30, there is a base per-
mutation 𝜋 that fixes 𝑆 and maps 𝑎1 to 𝑎2. As 𝑆 supports 𝑠, we obtain 𝜋(𝑠) = 𝑠. So 𝑎1 ∈ 𝑠 if and only
if 𝑎2 ∈ 𝑠, as required.

Proposition 5.32. Let 𝑆 be a base support. Then 𝑆 supports at most 2#𝜅-many sets 𝑠 ∶ Set𝒜 under
the action of base permutations.

Proof. Without loss of generality, we may assume 𝑆 is closed under interference of near-litters, since
extensions will support any object that the original support supports.6 The information of a set 𝑠 ∶
Set𝒜 for a base support 𝑆 is a triple (𝑖𝒜, 𝑖𝒩 , 𝑝) where

• 𝑖𝒜 is the set of indices 𝑖 such that (𝑖, 𝑎) ∈ 𝑆𝒜 for some 𝑎 ∈ 𝑠;
• 𝑖𝒩 is the set of indices 𝑖 such that (𝑖, 𝑁) ∈ 𝑆𝒩 for some near-litter 𝑁 with 𝑁 ∩ 𝑠 ∖ im 𝑆𝒜 ≠ ∅;
• 𝑝 is the proposition that every atom 𝑎 ∉ im 𝑆𝒜 ∪⋃ im 𝑆𝒩 lies in 𝑠.

Suppose that 𝑠, 𝑡 are sets of atoms that 𝑆 supports. We claim that if 𝑠 and 𝑡 have the same information
(𝑖𝒜, 𝑖𝒩 , 𝑝), they are equal. By antisymmetry it suffices to show that 𝑠 ⊆ 𝑡.
Let 𝑎 ∈ 𝑠. Suppose that (𝑖, 𝑎) ∈ 𝑆𝒜 for some 𝑖. Then 𝑠 ∈ 𝑡 as 𝑠, 𝑡 have the same 𝑖𝒜.
Now suppose that 𝑎 ∉ im 𝑆𝒜, but that there is some near-litter 𝑁 with 𝑎 ∈ 𝑁 and (𝑖, 𝑁) ∈ 𝑆𝒩 . Then
there is some atom 𝑎′ ∈ 𝑁 ∩ 𝑡 ∖ im 𝑆𝒜. It suffices by proposition 5.31 to show that

∀𝑁′ ∈ im 𝑆𝒩 , 𝑎 ∈ 𝑁′ ↔ 𝑎′ ∈ 𝑁′

6This closure operation should have been developed for proposition 5.4.

Chapter 5: The counting argument 41

because then 𝑎 ∈ 𝑡 if and only if 𝑎′ ∈ 𝑡. Suppose that 𝑎 ∈ 𝑁′ for some 𝑁′ ∈ im 𝑆𝒩 . If 𝑁∘ ≠ 𝑁′∘,
then 𝑎 ∈ 𝑁 ∩ 𝑁′ ∖ im 𝑆𝒜 would contradict the assumption that 𝑆 is closed under interference. So
𝑁∘ = 𝑁′∘. If 𝑎′ ∉ 𝑁′, then 𝑎 ∈ (𝑁 △ 𝑁′) ∖ im 𝑆𝒜 would also contradict the assumption that 𝑆 is
closed under interference. Hence 𝑎′ ∈ 𝑁′ as required.

Finally, suppose that 𝑎 ∉ im 𝑆𝒜 and for all near-litters 𝑁 ∈ im 𝑆𝒩 , we have 𝑎 ∉ 𝑁. If 𝑎 ∉ 𝑡, then
𝑝 is false, so there is an atom 𝑎′ with the same properties that does not lie in 𝑠. Again, it suffices by
proposition 5.31 to show that

∀𝑁′ ∈ im 𝑆𝒩 , 𝑎 ∈ 𝑁′ ↔ 𝑎′ ∈ 𝑁′

because then 𝑎 ∈ 𝑠 if and only if 𝑎′ ∈ 𝑠. But the left-hand side and the right-hand side are both false,
giving the result.

This result shows that the map that sends a set 𝑠 that 𝑆 supports to its information is injective, and so
as there are 2#𝜅-many possible information tuples, there are at most 2#𝜅-many sets that 𝑆 supports
under the action of base permutations.

5.6 Counting
Proposition 5.33. Suppose that for all type indices 𝛿 < 𝛽, there are strictly less than #𝜇-many
𝛿-coding functions. Then there are less than #𝜇 𝛽-specifications.

Proof. There are less than #𝜇 atom conditions as #𝜅 < #𝜇 and #𝜇 is a strong limit. There are less
than #𝜇 inflexible 𝛽-paths, as each is determined by three type indices less than 𝛽 and a path with
maximum less than 𝛽, of which there are #𝜇-many. There are less than #𝜇-many coding functions
of any type 𝛿 < 𝛽, because König’s theorem gives

∑
𝛿<𝛽

#{𝛿-coding functions} <∏
𝛿<𝛽

#𝜇 = #𝜇#{𝛿<𝛽} = #𝜇

where the last equality follows from the facts that #{𝛿 < 𝛽} has cardinality less than cof(ord(#𝜇))
and that #𝜇 is a strong limit. There are less than #𝜇 𝛿-trees of relations on 𝜅 for each 𝛿 ≤ 𝛼, because
there are less than #𝜇-many relations on 𝜅 as #𝜇 is a strong limit, allowing us to conclude by one of
the remarks in definition 2.11. Hence there are less than #𝜇 𝛽-near-litter conditions. We can again
apply the result about cardinalities of types of trees to deduce that there are less than #𝜇 𝛽-trees of
enumerations of atom conditions and of 𝛽-near-litter conditions, as required.

Definition 5.34. A weak 𝛽-specification is a triple 𝑊 = (𝑅𝒜, 𝑅𝒩 , 𝜎) where 𝑅𝒜, 𝑅𝒩 are 𝛽-trees of
relations on 𝜅, and 𝜎 is a 𝛽-specification. We say that a weak specification specifies a support 𝑆 if
there is a strong support 𝑇 such that 𝜎 = spec(𝑇), 𝑆 ⪯ 𝑇, and

(𝑖, 𝑗) ∈ 𝑅𝒜𝐴 ↔ ∃𝑎, (𝑖, 𝑎) ∈ 𝑆𝒜𝐴 ∧ (𝑗, 𝑎) ∈ 𝑇𝒜𝐴
(𝑖, 𝑗) ∈ 𝑅𝒩𝐴 ↔ ∃𝑁, (𝑖, 𝑁) ∈ 𝑆𝒩𝐴 ∧ (𝑗, 𝑁) ∈ 𝑇𝒩𝐴

Proposition 5.35. Every support has a weak specification that specifies it.

Proof. Let 𝑆 be a support, and let 𝑇 be a strong support such that 𝑆 ⪯ 𝑇, which exists by proposi-
tion 5.4. Then simply define 𝑅𝒜 and 𝑅𝒩 to be the required relations.

Chapter 5: The counting argument 42

Proposition 5.36. If 𝑊 is a weak specification that specifies supports 𝑆 and 𝑇, then there is an
allowable permutation 𝜌 such that 𝜌(𝑆) = 𝑇.

Proof. Let 𝑊 = (𝑅𝒜, 𝑅𝒩 , 𝜎), and let 𝑈,𝑉 be strong supports such that spec(𝑈) = 𝜎 = spec(𝑉),
𝑆 ⪯ 𝑈, 𝑇 ⪯ 𝑉 , and

(∃𝑎, (𝑖, 𝑎) ∈ 𝑆𝒜𝐴 ∧ (𝑗, 𝑎) ∈ 𝑈𝒜
𝐴) ↔ (∃𝑎, (𝑖, 𝑎) ∈ 𝑇𝒜𝐴 ∧ (𝑗, 𝑎) ∈ 𝑉𝒜

𝐴)
(∃𝑁, (𝑖, 𝑁) ∈ 𝑆𝒩𝐴 ∧ (𝑗, 𝑁) ∈ 𝑈𝒩

𝐴) ↔ (∃𝑁, (𝑖, 𝑁) ∈ 𝑇𝒩𝐴 ∧ (𝑗, 𝑁) ∈ 𝑉𝒩
𝐴)

By proposition 5.21, there is an allowable permutation 𝜌 such that 𝜌(𝑈) = 𝑉 . We claim that 𝜌(𝑆) = 𝑇.
Suppose (𝑖, 𝑎) ∈ 𝑆𝒜𝐴 . Then as 𝑆 ⪯ 𝑈 , there is 𝑗 such that (𝑗, 𝑎) ∈ 𝑈𝒜

𝐴 . So there is 𝑎′ such that
(𝑖, 𝑎′) ∈ 𝑇𝒜𝐴 and (𝑗, 𝑎′) ∈ 𝑉𝒜

𝐴 . Then 𝑎′ = 𝜌𝐴(𝑎) as 𝜌(𝑈) = 𝑉 , as required. The same simple
calculation gives the required result for near-litters.

Proposition 5.37. Suppose that for all type indices 𝛿 < 𝛽, there are strictly less than #𝜇-many
𝛿-coding functions. Then there are less than #𝜇 weak 𝛽-specifications.

Proof. Follows directly from proposition 5.33 and the remark that there are less than #𝜇 𝛽-trees of
relations on 𝜅.

Proposition 5.38. Suppose that for all type indices 𝛿 < 𝛽, there are strictly less than #𝜇-many
𝛿-coding functions. Then there are less than #𝜇 𝛽-support orbits.

Proof. Define a function from the type of 𝛽-support orbits into the type of weak 𝛽-specifications by
mapping a representative to a weak specification that specifies it; one will always exist by proposi-
tion 5.35. This is an injection: if 𝑜1, 𝑜2 are orbits with representatives 𝑆1, 𝑆2 and 𝑆1, 𝑆2 have the same
assigned weak specification, then by proposition 5.36 there is an allowable permutation 𝜌 such that
𝜌(𝑆1) = 𝑆2, and so 𝑜1 = 𝑜2. So we are done as there are less than #𝜇 weak 𝛽-specifications by
proposition 5.37.

Proposition 5.39. Let 𝛽 be a type index (which in practice will be⊥ or the lowest proper type index).
Suppose that there are less than #𝜇 𝛽-support orbits. Let 𝜈 be a cardinal less than #𝜇 such that for
each 𝛽-support 𝑆, there are at most 𝜈-many objects 𝑥 ∶ TSet𝛽 that 𝑆 supports. Then there are less
than #𝜇 𝛽-coding functions.

Proof. Every 𝛽-coding function is of the form 𝜒(𝑥,𝑆) where 𝑆 is a representative chosen in advance
for a support orbit, and 𝑥 is an object that 𝑆 supports under the action of 𝛽-allowable permutations.
So there are at most

∑
𝑆 representatives

𝜈 = #{support orbits} ⋅ 𝜈

coding functions, which is less than #𝜇.

Proposition 5.40. There are less than #𝜇 ⊥-coding functions.

Proof. By proposition 5.39, it suffices to show that there are less than #𝜇 ⊥-support orbits and that
there is a bound less than #𝜇 on the amount of objects that a given ⊥-support supports. The first
result follows from proposition 5.38, which has vacuous assumptions in this case. The second result
follows from applying proposition 5.32 to singletons of atoms, after applying the bijections between
⊥-supports and base supports, and between ⊥-allowable permutations and base permutations.

Chapter 5: The counting argument 43

Proposition 5.41. There are less than #𝜇 𝛽-coding functions if 𝛽 is the minimal inhabitant of 𝜆.

Proof. Again, we apply proposition 5.39. The first claim follows from proposition 5.38, where this
time we use the fact that there are less than #𝜇 ⊥-coding functions (proposition 5.40). The second
claim follows from proposition 5.32 to ⊥-extensions of type 𝛽 objects, noting that 𝛽-supports corres-
pond to base supports and that 𝛽-allowable permutations correspond to base permutations.7 The
fact that 𝛽-allowable permutations correspond to base permutations relies on the fact that we can
construct a 𝛽-permutation from a base permutation using coherent data (definition 2.25).

Proposition 5.42. Suppose that for all type indices 𝛿 < 𝛽, there are strictly less than #𝜇-many 𝛿-
coding functions. Then if 𝛾 < 𝛽 is a proper type index, there are strictly less than #𝜇 (𝛾, 𝛽)-raised
singletons.

Proof. A (𝛾, 𝛽)-raised singleton raise(𝑆, 𝑢) = 𝜒(singleton𝛽(𝑢),𝑆+dsupp(𝑢)𝛽) is determined by a triple (𝑅, 𝑜, 𝜒)
where

• 𝑅 is the 𝛽-tree given by 𝑅𝐴 = 𝑖 when 𝑆𝐴 = (𝑖, 𝑓);
• 𝑜 is the support orbit of 𝑆 + dsupp(𝑢)𝛽; and
• 𝜒 is the coding function 𝜒(𝑢,dsupp(𝑢)).

Indeed, suppose raise(𝑆, 𝑢) and raise(𝑇, 𝑣) have the same triple (𝑅, 𝑜, 𝜒). We must show that

𝜒(singleton𝛽(𝑢),𝑆+dsupp(𝑢)𝛽) = 𝜒(singleton𝛽(𝑣),𝑆+dsupp(𝑣)𝛽)

Then there is a 𝛽-allowable 𝜌 such that 𝜌(𝑆 + dsupp(𝑢)𝛽) = 𝑇 + dsupp(𝑣)𝛽, and as they have the
same tree 𝑅, we can decompose this into 𝜌(𝑆) = 𝑇 and 𝜌(dsupp(𝑢)𝛽) = dsupp(𝑣)𝛽. In particular,
𝜌𝛽(dsupp(𝑢)) = dsupp(𝑣). As 𝜒(𝑢,dsupp(𝑢)) = 𝜒(𝑣,dsupp(𝑣)), there is a 𝛾-allowable permutation 𝜌′ such
that 𝜌′(𝑢) = 𝑣 and 𝜌′(dsupp(𝑢)) = dsupp(𝑣). Hence 𝜌𝛽(𝑢) = 𝑣. This gives

𝜌(singleton𝛽(𝑢)) = singleton𝛽(𝜌𝛽(𝑢)) = singleton𝛽(𝑣)

as required.

Now, it remains to show that there are less than #𝜇 such triples (𝑅, 𝑜, 𝜒). But this follows directly
from proposition 5.38 and the assumption on the cardinalities of the types of coding functions.

Proposition 5.43. There are less than #𝜇-many 𝛽-coding functions for all type indices 𝛽 ≤ 𝛼.

Proof. By induction we may assume that for all type indices 𝛿 < 𝛽, there are strictly less than #𝜇-
many 𝛿-coding functions. By propositions 5.40 and 5.41, we may assume that 𝛽 is a proper type
index, and that it is not minimal in 𝜆, so there is some proper type index 𝛾 < 𝛽. By proposition 5.29,
every 𝛽-coding function is determined by a set of (𝛾, 𝛽)-raised singletons 𝑠 and support orbit 𝑜. The
conclusion then follows from propositions 5.38 and 5.42 and the fact that #𝜇 is a strong limit.

Proposition 5.44. For each type index 𝛽 ≤ 𝛼, #TSet𝛽 = #𝜇.
7One useful claim to prove for this is that there is a unique path 𝛽 ⇝ ⊥, and so type 𝛽 objects satisfy ⊥-extensionality by

injectivity of𝑈𝛽 .

Chapter 5: The counting argument 44

Proof. If 𝛽 is ⊥, we already know #TSet⊥ = #𝒜 = #𝜇, so suppose #𝛽 is a proper type index. Each
object 𝑥 ∶ TSet𝛽 is determined by a 𝛽-coding function and a 𝛽-support. Since there are less than #𝜇-
many 𝛽-coding functions (proposition 5.43) and there are exactly#𝜇𝛽-supports, we obtain#TSet𝛽 ≤
#𝜇. Since the typed near-litter map𝒩 → TSet𝛽 is injective, there are at least #𝒩 = #𝜇 inhabitants
of TSet𝛽, giving the result by antisymmetry.

Proposition 5.45. For each type index 𝛽 ≤ 𝛼, #Tang𝛽 = #𝜇.

Proof. Use proposition 5.44 and the fact that there are precisely #𝜇-many 𝛽-supports.

Chapter 6

Wrapping up the main induction

6.1 Induction, in abstract
In this section, we prove a theorem on inductive constructions using a proof-irrelevant Prop.

Definition 6.1. Let 𝐼 ∶ Type𝑢 be a type with a well-founded transitive relation≺. Let𝐴 ∶ 𝐼 → Type𝑣
be a family of types indexed by 𝐼, and let

𝐵 ∶∏
𝑖∶𝐼

𝐴𝑖 → (∏
𝑗∶𝐼

𝑗 ≺ 𝑖 → 𝐴𝑗) → Sort𝑤

An inductive construction for (𝐼, 𝐴, 𝐵) is a pair of functions

𝐹𝐴 ∶∏
𝑖∶𝐼

∏
𝑑∶∏𝑗∶𝐼 𝑗≺𝑖→𝐴𝑗

(∏
𝑗∶𝐼

∏
ℎ∶𝑗≺𝑖

𝐵 𝑗 (𝑑 𝑗 ℎ) (𝑘 ℎ′ ↦ 𝑑 𝑘 (trans(ℎ′, ℎ)))) → 𝐴𝑖

𝐹𝐵 ∶∏
𝑖∶𝐼

∏
𝑑∶∏𝑗∶𝐼 𝑗≺𝑖→𝐴𝑗

∏
ℎ∶(∏𝑗∶𝐼 ∏ℎ∶𝑗≺𝑖 𝐵 𝑗 (𝑑 𝑗 ℎ) (𝑘 ℎ′↦𝑑 𝑘 (trans(ℎ′,ℎ))))

𝐵 𝑖 (𝐹𝐴 𝑖 𝑑 ℎ) 𝑑

Proposition 6.2 (inductive construction theorem for propositions). Let (𝐹𝐴, 𝐹𝐵) be an inductive con-
struction for (𝐼, 𝐴, 𝐵), where 𝑤 is 0. Then there are computable functions

𝐺 ∶∏
𝑖∶𝐼

𝐴𝑖; 𝐻 ∶∏
𝑖∶𝐼

𝐵 𝑖 𝐺𝑖 (𝑗 _↦ 𝐺𝑗)

such that for each 𝑖 ∶ 𝐼,
𝐺𝑖 = 𝐹𝐴 𝑖 (𝑗 _↦ 𝐺𝑗) (𝐹𝐵 𝑖 (𝑗 _↦ 𝐻𝑗))

Chapter 6: Wrapping up the main induction 46

Proof. Recall that Part𝛼 denotes the type∑𝑝∶Prop(𝑝 → 𝛼). For 𝑖 ∶ 𝐼, we define the hypothesis on data
𝑡 ∶ ∏𝑗∶𝐼 𝑗 ≺ 𝑖 → Part𝐴𝑗 to be the proposition

IH(𝑖, 𝑡) = ∑
𝐷∶∏𝑗∶𝐼 ∏ℎ∶𝑗≺𝑖 pr1(𝑡 𝑗 ℎ)

∏
𝑗∶𝐼

∏
ℎ∶𝑗≺𝑖

𝐵 𝑗 (pr2(𝑡 𝑗 ℎ) (𝐷 𝑗 ℎ))

(𝑘 ℎ′ ↦ (pr2(𝑡 𝑘 (trans(ℎ′, ℎ))) (𝐷 𝑘 (trans(ℎ′, ℎ)))))
Now we define 𝐾 ∶ ∏𝑖∶𝐼 Part𝐴𝑖 by

𝐾 = fixPart𝐴(−) (𝑖𝑡 ↦ ⟨IH(𝑖, 𝑡), ℎ ↦ 𝐹𝐴 𝑖 (𝑗 ℎ′ ↦ (pr2(𝑡 𝑗 ℎ′) (pr1(ℎ) 𝑗 ℎ′))) pr2(ℎ)⟩)

where fix𝐶 is the fixed point function for ≺ and induction motive 𝐶 ∶ 𝐼 → Type𝑣, with type

fix𝐶 ∶ (∏
𝑖∶𝐼

(∏
𝑗∶𝐼

𝑗 ≺ 𝑖 → 𝐶𝑗) → 𝐶𝑖) →∏
𝑖∶𝐼

𝐶𝑖

By definition of fix, we obtain the equation

𝐾𝑖 = ⟨IH(𝑖, 𝑗_↦ 𝐾𝑗), ℎ ↦ 𝐹𝐴 𝑖 (𝑗 ℎ′ ↦ (pr2(𝐾𝑗) (pr1(ℎ) 𝑗 ℎ′))) pr2(ℎ)⟩
Further, if ℎ1 ∶ pr1(𝐾𝑖), we have the equation

pr2(𝐾𝑖) ℎ1 = 𝐹𝐴 𝑖 (𝑗 ℎ′ ↦ (pr2(𝐾𝑗) (pr1(ℎ2) 𝑗 ℎ′))) pr2(ℎ2)
where ℎ2 ∶ IH(𝑖, 𝑗_ ↦ 𝐾𝑗) is obtained by casting from ℎ1 using the previous equation; this equation
is derived from the extensionality principle of Part, which states that

∏
𝑥,𝑦∶Part𝛼

(∏
𝑎∶𝛼

(∃ℎ, 𝑎 = pr2(𝑥) ℎ) ↔ (∃ℎ, 𝑎 = pr2(𝑦) ℎ)) 𝑥 = 𝑦

Using these two equations, we may now show directly by induction on 𝑖 that 𝐷′ ∶ ∏𝑖∶𝐼 pr1(𝐾𝑖).1
From this, wemaydefine𝐺 ∶ ∏𝑖∶𝐼 𝐴𝑖 by𝐺𝑖 = pr2(𝐾𝑖)𝐷′

𝑖 . Wemay then easily obtain𝐻 ∶ ∏𝑖∶𝐼 𝐵 𝑖 𝐺𝑖 (𝑗_↦
𝐺𝑗) by appealing to 𝐹𝐵 and the two equations above. The required equality also easily follows from
the two given equations.

Theorem6.3 (inductive construction theorem). Let (𝐹𝐴, 𝐹𝐵) be an inductive construction for (𝐼, 𝐴, 𝐵).
Then there are noncomputable functions

𝐺 ∶∏
𝑖∶𝐼

𝐴𝑖; 𝐻 ∶∏
𝑖∶𝐼

𝐵 𝑖 𝐺𝑖 (𝑗 _↦ 𝐺𝑗)

such that for each 𝑖 ∶ 𝐼,
𝐺𝑖 = 𝐹𝐴 𝑖 (𝑗 _↦ 𝐺𝑗) (𝐹𝐵 𝑖 (𝑗 _↦ 𝐻𝑗))

Proof. Define

𝐶 ∶∏
𝑖∶𝐼

𝐴𝑖 → (∏
𝑗∶𝐼

𝑗 ≺ 𝑖 → 𝐴𝑗) → Prop

by 𝐶 𝑖 𝑥 𝑑 = Nonempty(𝐵 𝑖 𝑥 𝑑). We then define the inductive construction (𝐹′𝐴, 𝐹′𝐵) for (𝐼, 𝐴, 𝐶) by
𝐹′𝐴 𝑖 𝑑 ℎ = 𝐹𝐴 𝑖 𝑑 (𝑗ℎ′ ↦ some(ℎ 𝑗 ℎ′)); 𝐹′𝐵 𝑖 𝑑 ℎ = ⟨𝐹𝐵 𝑖 𝑑 (𝑗ℎ′ ↦ some(ℎ 𝑗 ℎ′))⟩

where ⟨−⟩ is the constructor and some is the noncomputable destructor of Nonempty. The result is
then direct from proposition 6.2.

1TODO: More details?

Chapter 6: Wrapping up the main induction 47

6.2 Building the tower
Definition 6.4. For a proper type index 𝛼, the main motive at 𝛼 is the type Motive𝛼 consisting of
model data at 𝛼, a position function for Tang𝛼, and typed near-litters at 𝛼, such that if (𝑥, 𝑆) is an
𝛼-tangle and 𝑦 is an atom or near-litter that occurs in the range of 𝑆𝐴, then 𝜄(𝑦) < 𝜄(𝑥, 𝑆).
Definition 6.5. We define themain hypothesis

Hypothesis ∶∏
𝛼∶𝜆

Motive𝛼 → (∏
𝛽<𝛼

Motive𝛽) → Type𝑢+1

at 𝛼, given Motive𝛼 and∏𝛽<𝛼Motive𝛽, to be the type consisting of the following data.

• For 𝛾 < 𝛽 ≤ 𝛼, there is a map AllPerm𝛽 → AllPerm𝛾 that commutes with the coercions from
AllPerm(−) to StrPerm(−).

• Let 𝛽, 𝛾 < 𝛼 be distinct with 𝛾 proper. Let 𝑡 ∶ Tang𝛽 and 𝜌 ∶ AllPerm𝛼. Then

(𝜌𝛾)⊥(𝑓𝛽,𝛾(𝑡)) = 𝑓𝛽,𝛾(𝜌𝛽(𝑡))

• Suppose that (𝜌(𝛽))𝛽<𝛼 is a collection of allowable permutations such that whenever 𝛽, 𝛾 < 𝛼
are distinct, 𝛾 is proper, and 𝑡 ∶ Tang𝛾, we have

(𝜌(𝛾))⊥(𝑓𝛽,𝛾(𝑡)) = 𝑓𝛽,𝛾(𝜌(𝛽)(𝑡))

Then there is an 𝛼-allowable permutation 𝜌 with 𝜌𝛽 = 𝜌(𝛽) for each 𝛽 < 𝛼.
• For any 𝛽 < 𝛼,

𝑈𝛼(𝑥)(𝛽) ⊆ ran𝑈𝛽

• (extensionality) If 𝛽 ∶ 𝜆 is such that 𝛽 < 𝛼, the map 𝑈𝛼(−)(𝛽) ∶ TSet𝛽 → Set StrSet𝛽 is
injective.

• If 𝛽 ∶ 𝜆 is such that 𝛽 < 𝛼, for every 𝑥 ∶ TSet𝛽 there is some 𝑦 ∶ TSet𝛼 such that𝑈𝛼(𝑦)(𝛽) = {𝑥},
and we write singleton𝛼(𝑥) for this object 𝑦.

Definition 6.6. The inductive step for the main motive is the function

Step𝑀 ∶∏
𝛼∶𝜆

∏
𝑀∶∏𝛽<𝛼 Motive𝛽

(∏
𝛽∶𝜆

∏
ℎ∶𝛽<𝛼

Hypothesis 𝛽 (𝑀 𝛽 ℎ) (𝛾 ℎ′ ↦ 𝑀 𝛾 (trans(ℎ′, ℎ)))) → Motive𝛼

given as follows. Given the hypotheses 𝛼,𝑀,𝐻, we use definition 3.12 to construct model data at
level 𝛼. Then, combine this with 𝐻 to create an instance of coherent data below level 𝛼.2 By propos-
ition 5.45, we conclude that #Tang𝛼 = #𝜇, and so by proposition 3.15 there is a position function on
Tang𝛼 that respects the typed near-litters defined in definition 3.13. These data comprise the main
motive at level 𝛼.

2This requires using the definition of new allowable permutations. There may be some difficulties here in converting
between the types of model data at level 𝛼 together with model data at all 𝛽 < 𝛼, and model data at all levels 𝛽 ≤ 𝛼.

Chapter 6: Wrapping up the main induction 48

Definition 6.7. The inductive step for the main hypothesis is the function

Step𝐻 ∶∏
𝛼∶𝜆

∏
𝑀∶∏𝛽<𝛼 Motive𝛽

∏
𝐻∶∏𝛽∶𝜆∏ℎ∶𝛽<𝛼 Hypothesis 𝛽 (𝑀 𝛽 ℎ) (𝛾 ℎ′↦𝑀 𝛾 (trans(ℎ′,ℎ)))

Hypothesis 𝛼 (Step𝑀 𝛼 𝑀 𝐻) 𝑀

given as follows. Given the hypotheses 𝛼,𝑀,𝐻, we use the definitions from definition 6.6 to obtain
model data at level 𝛼 and coherent data below level 𝛼. The remaining proof obligations are handled
by definition 3.14 and proposition 3.15.

Theorem 6.8 (model construction). There are noncomputable functions

ComputeMotive ∶∏
𝛼∶𝜆

Motive𝛼

and

ComputeHypothesis ∶∏
𝛼∶𝜆

Hypothesis 𝛼 ComputeMotive𝛼 (𝛽 _↦ ComputeMotive𝛽)

such that for each 𝛼 ∶ 𝜆,

ComputeMotive𝛼 = Step𝑀 𝛼 (𝛽 _↦ ComputeMotive𝛽)
(Step𝐻 𝛼 (𝛽 _↦ ComputeHypothesis𝛽))

Proof. Direct from theorem 6.3.

We can then reconstruct, for each level 𝛼, the type of coherent data below 𝛼.

Chapter 7

Verifying Con(TTT)

7.1 Raising strong supports
In this section, let 𝛾 < 𝛽 be proper type indices strictly below the current level 𝛼.
Proposition 7.1. Let 𝑇 be a 𝛾-support, and let 𝑈 be the strong support generated by 𝑇𝛽. If 𝐴 is a
path such that im𝑈𝒩

𝐴 is nonempty, then 𝐴 has length at least 2.

Proof. Let 𝑁 ∈ im𝑈𝒩
𝐴 . Either 𝐴 is of the form 𝐵𝛽 for 𝐵 ∶ 𝛾 ⇝ ⊥ and 𝑁 ∈ im𝑇𝒩𝐵 , in which case 𝐵

clearly has length at least 2 as 𝛾 is a proper type index, or 𝑁 ∈ im𝑉𝒩
𝐵 where 𝐴 = 𝐵𝛽 and 𝐵 ∶ 𝛿 ⇝ ⊥,

and 𝑉 supports some 𝛿-set. But we cannot have 𝛿 = ⊥, because ⊥-supports that support some 𝛿-set
cannot contain near-litters, so in this other case 𝐴 also has length at least 2.

Proposition 7.2. Let 𝑇 be a 𝛾-support, and let𝑈 be the strong support generated by 𝑇𝛽. Then𝑈𝛼 is
strong.

Proof. The interference condition is clear.

First we show that proofs that 𝐴𝛼-inflexibility for litters that appear in𝑈𝛼 correspond to proofs of 𝐴-
inflexibility. Clearly if 𝐿 is 𝐴𝛼-flexible then 𝐿 is 𝐴-flexible. Instead, let 𝐼 = (𝛿, 𝜀, 𝜁, 𝐴) be an inflexible
𝛼-path and 𝑡 ∶ Tang𝜀 such that there is a near-litter 𝑁 ∈ im(𝑈𝛼)𝒩𝐴𝜁⊥

with 𝑁∘ = 𝑓𝜀,𝜁(𝑡). Suppose that
𝐴 is the empty path, so 𝛿 = 𝛼. Then (𝑈𝛼)𝒩𝐴𝜁⊥

= (𝑈𝛼)𝒩𝜁⊥ is nonempty, so 𝜁 = 𝛽. This shows that
im(𝑈𝛼)𝒩𝛽⊥ = im𝑈𝒩

⊥ is nonempty, contradicting proposition 7.1. So 𝐴 is nonempty, and is of the form
𝐵𝛼 for 𝐵 ∶ 𝛽 ⇝ 𝛿. So (𝛿, 𝜀, 𝜁, 𝐵) is an inflexible 𝛽-path for 𝑁∘.

The expected conclusion then follows directly from the fact that 𝑈 is strong.

Proposition 7.3. Let 𝑆 be a strong 𝛼-support and let 𝑇 be a 𝛾-support. Let 𝑈 be the strong support
generated by 𝑇𝛽, and let 𝑉 be the support whose image is precisely those atoms in the interference
of 𝑆𝛽 and 𝑈 . Let 𝜌 be a 𝛽-allowable permutation that fixes 𝑆𝛽. Then 𝑆 + (𝜌(𝑈 + 𝑉))𝛼 is strong.

Proof. Follows directly from propositions 5.3 and 7.2.

Chapter 7: Verifying Con(TTT) 50

Proposition 7.4. Let 𝑆 be a strong 𝛼-support. Let 𝑈 be a strong 𝛽-support with the property that if
𝐴 is a path such that im𝑈𝒩

𝐴 is nonempty, then 𝐴 has length at least 2. Then for every 𝛽-allowable 𝜌
that fixes 𝑆𝛽, we have spec(𝑆 + 𝑈𝛼) = spec(𝑆 + (𝜌(𝑈))𝛼).

Proof. Appeal to proposition 5.12. First, note that (𝑖, 𝑎) ∈ (𝑆 + (𝜌(𝑈))𝛼)𝒜𝐴 if and only if (𝑖, 𝑎) ∈ 𝑆 or
𝐴 = 𝐵𝛼 and (𝑖, 𝑎) ∈ 𝜌(𝑈)𝒜𝐵 . Thus,

(𝑖, 𝑎1) ∈ (𝑆 + 𝑈𝛼)𝒜𝐴 → ∃𝑎2, (𝑖, 𝑎2) ∈ (𝑆 + (𝜌(𝑈))𝛼)𝒜𝐴
∧ [(∃𝐵, 𝐴 = 𝐵𝛼 ∧ 𝜌𝐵(𝑎1) = 𝑎2) ∨ ((∀𝐵, 𝐴 ≠ 𝐵𝛼) ∧ 𝑎1 = 𝑎2)]

and the same holds for the other direction1 and for near-litters.

The coimage condition is clear. Suppose that (𝑖, 𝑎1) ∈ (𝑆 +𝑈𝛼)𝒜𝐴 and (𝑖, 𝑎2) ∈ (𝑆 + (𝜌(𝑈))𝛼)𝒜𝐴 . Then
by coinjectivity we can apply the above result, giving that either there is 𝐵 such that 𝐴 = 𝐵𝛼 and
𝜌𝐵(𝑎1) = 𝑎2, or there is no such 𝐵, and 𝑎1 = 𝑎2. In either case, the result is easy to show.
The result for litters follows from the fact that the condition on 𝑈 implies that proofs of inflexiblity
of litters in 𝑈 correspond bijectively to proofs of inflexibility of litters in 𝑈𝛼.2

Proposition 7.5. Let 𝑆 be a strong 𝛼-support and let 𝑇 be a 𝛾-support. Let 𝜌 be a 𝛽-allowable per-
mutation that fixes 𝑆𝛽. Then there is an 𝛼-allowable permutation 𝜌′ such that

𝜌′(𝑆) = 𝑆; (𝜌′𝛽)𝛾(𝑇) = 𝜌𝛾(𝑇)

Proof. Let𝑈 be the strong support generated by𝑇𝛽, and let𝑉 be the support whose image is precisely
those atoms in the interference of 𝑆𝛽 and 𝑈 . Then apply propositions 5.21, 7.1, 7.3 and 7.4.

7.2 Tangled type theory
Definition 7.6 (tangled membership). We define the membership relation ∈𝛼

𝛽∶ TSet𝛽 → TSet𝛼 →
Prop by

𝑥 ∈𝛼
𝛽 𝑦 ↔ 𝑈𝛽(𝑥) ∈ 𝑈𝛼(𝑦)(𝛽)

Extensionality holds at all proper type indices by proposition 3.8. Also, for every 𝛼-allowable 𝜌, we
have

𝜌𝛽(𝑥) ∈𝛼
𝛽 𝜌(𝑦) ↔ 𝑥 ∈𝛼

𝛽 𝑦

Definition 7.7 (symmetric). Let 𝛽 < 𝛼 be proper type indices. A set 𝑠 ∶ TSet𝛽 is called 𝛼-symmetric
if there is some 𝛼-support 𝑆 such that if 𝜌 is an 𝛼-allowable permutation that fixes 𝑆, then 𝜌 fixes 𝑠
setwise. Note that it suffices to prove that for all 𝜌 that fix 𝑆, 𝑠 ⊆ 𝜌[𝑠] (or alternatively, 𝜌[𝑠] ⊆ 𝑠).
Every small set is symmetric, since a support can be obtained by raising the types of chosen supports
for elements of the set and then collating the results.

Proposition 7.8. Let 𝛽 < 𝛼 be proper type indices. Let 𝑠 ∶ TSet𝛽 be 𝛼-symmetric. Then there is
𝑥 ∶ TSet𝛼 such that

∀𝑦 ∶ TSet𝛽, 𝑦 ∈𝛼
𝛽 𝑥 ↔ 𝑦 ∈ 𝑠

Moreover, every 𝑥 ∶ TSet𝛼 arises in this way; this is an induction principle for TSet𝛼.
1We can prove the other direction easily from this by substituting 𝜌(𝑈) and 𝜌−1.
2TODO: Probably want more details when we get here.

Chapter 7: Verifying Con(TTT) 51

Proof. If 𝑠 is empty, the result follows directly from the definition of TSet𝛼. Otherwise, consider the
code (𝛽, 𝑠). By definition 3.7, there is exactly one code 𝑑 such that 𝑐 ↬ (𝛽, 𝑠). Then 𝑐 is a new t-set at
level 𝛼, so is naturally an inhabitant of TSet𝛼. Using the membership relation from proposition 3.8,
the type-𝛽 members of 𝑐 are precisely 𝑠, as required.
For the induction principle, we apply the above construction to the set

𝑠 = {𝑦 ∣ 𝑦 ∈𝛼
𝛽 𝑥}

and use extensionality to deduce that the object constructed is exactly 𝑥.

Proposition 7.9 (unions of singletons). Let 𝛾 < 𝛽 < 𝛼 be proper type indices. Let 𝑠 ∶ Set TSet𝛾 be
such that singleton𝛽[𝑠] is 𝛼-symmetric. Then 𝑠 is 𝛽-symmetric.

Proof. Let 𝑆 be an 𝛼-support for singleton𝛽[𝑠], which without loss of generality is strong. We claim
that the𝛼-symmetry of 𝑠 iswitnessed by 𝑆𝛽. Let𝜌 be a𝛽-allowable permutation such that 𝜌(𝑆𝛽) = 𝑆𝛽.
Let 𝑥 ∈ 𝑠; it suffices by substituting 𝜌−1 to prove that 𝜌𝛾(𝑥) ∈ 𝑠. As 𝑥 ∶ TSet𝛾, there is a 𝛾-support 𝑇
for 𝑥. By proposition 7.5, there is an 𝛼-allowable permutation 𝜌′ such that

𝜌′(𝑆) = 𝑆; (𝜌′𝛽)𝛾(𝑇) = 𝜌𝛾(𝑇)

Thus,
𝜌′𝛽(singleton𝛽[𝑠]) = singleton𝛽[𝑠]; (𝜌′𝛽)𝛾(𝑥) = 𝜌𝛾(𝑥)

We thus have

𝑥 ∈ 𝑠
singleton𝛽(𝑥) ∈ singleton𝛽[𝑠]

𝜌′𝛽(singleton𝛽(𝑥)) ∈ 𝜌′𝛽(singleton𝛽[𝑠])
𝜌′𝛽(singleton𝛽(𝑥)) ∈ singleton𝛽[𝑠]

singleton𝛽((𝜌′𝛽)𝛾(𝑥)) ∈ singleton𝛽[𝑠]
singleton𝛽(𝜌𝛾(𝑥)) ∈ singleton𝛽[𝑠]

𝜌𝛾(𝑥) ∈ 𝑠

Theorem 7.10 (consistency of tangled type theory). Let {𝑥}𝛽 be an abbreviation for singleton𝛽(𝑥),
and let ⟨𝑥, 𝑦⟩𝛾,𝛽 be an abbreviation for {{𝑥}𝛾, {𝑥, 𝑦}𝛾}𝛽. Then, the following axioms hold for our model
TSet at all sequences of proper type indices 𝜁 < 𝜀 < 𝛿 < 𝛾 < 𝛽 < 𝛼.

Chapter 7: Verifying Con(TTT) 52

− extensionality ∀𝑥𝛼, ∀𝑦𝛼, (∀𝑧𝛽, 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦
P1(a) intersection ∀𝑥𝛼𝑦𝛼, ∃𝑧𝛼, ∀𝑤𝛽, 𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦)
P1(b) complement ∀𝑥𝛼, ∃𝑧𝛼, ∀𝑤𝛽, 𝑤 ∈ 𝑧 ↔ 𝑤 ∉ 𝑥
− singleton ∀𝑥𝛽, ∃𝑦𝛼, ∀𝑧𝛽, 𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥
P2 singleton image ∀𝑥𝛽, ∃𝑦𝛼, ∀𝑧𝜀𝑤𝜀, ⟨{𝑧}𝛿, {𝑤}𝛿⟩𝛾,𝛽 ∈ 𝑦 ↔ ⟨𝑧, 𝑤⟩𝛿,𝛾 ∈ 𝑥
P3 insertion two ∀𝑥𝛾, ∃𝑦𝛼, ∀𝑧𝜁𝑤𝜁𝑡𝜁, ⟨{{𝑧}𝜀}𝛿, ⟨𝑤, 𝑡⟩𝜀,𝛿⟩𝛾,𝛽 ∈ 𝑦 ↔ ⟨𝑧, 𝑡⟩𝜀,𝛿 ∈ 𝑥
P4 insertion three ∀𝑥𝛾, ∃𝑦𝛼, ∀𝑧𝜁𝑤𝜁𝑡𝜁, ⟨{{𝑧}𝜀}𝛿, ⟨𝑤, 𝑡⟩𝜀,𝛿⟩𝛾,𝛽 ∈ 𝑦 ↔ ⟨𝑧, 𝑤⟩𝜀,𝛿 ∈ 𝑥
P5 cross product ∀𝑥𝛾, ∃𝑦𝛼, ∀𝑧𝛽, 𝑧 ∈ 𝑦 ↔ ∃𝑤𝛿𝑡𝛿, 𝑧 = ⟨𝑤, 𝑡⟩𝛾,𝛽 ∧ 𝑡 ∈ 𝑥
P6 type lowering ∀𝑥𝛼, ∃𝑦𝛿, ∀𝑧𝜀, 𝑧 ∈ 𝑦 ↔ ∀𝑤𝛿, ⟨𝑤, {𝑧}𝛿⟩𝛾,𝛽 ∈ 𝑥
P7 converse ∀𝑥𝛼, ∃𝑦𝛼, ∀𝑧𝛿𝑤𝛿, ⟨𝑧, 𝑤⟩𝛾,𝛽 ∈ 𝑦 ↔ ⟨𝑤, 𝑧⟩𝛾,𝛽 ∈ 𝑥
P8 cardinal one ∃𝑥𝛼, ∀𝑦𝛽, 𝑦 ∈ 𝑥 ↔ ∃𝑧𝛾, ∀𝑤, 𝑤 ∈ 𝑦 ↔ 𝑤 = 𝑧
P9 subset ∃𝑥𝛼, ∀𝑦𝛿𝑧𝛿, ⟨𝑦, 𝑧⟩𝛾,𝛽 ∈ 𝑥 ↔ ∀𝑤𝜀, 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧

Proof. The axiom of extensionality was proven in proposition 3.8. All axioms except for the type
lowering axiom can be easily proven using proposition 7.8. For type lowering, consider the set

𝑦′ = {{{{𝑧𝜀}𝛿}𝛾}𝛽 ∣ ∀𝑤𝛿, ⟨𝑤, {𝑧}𝛿⟩𝛾,𝛽 ∈ 𝑥}

which exists by proposition 7.8, and then apply proposition 7.9 three times.

Chapter 8

Model theory and verifying Con(NF)

In this chapter, we establish themodel theory that is used to derive the consistency of NF from that of
TTT. This requires much of mathlib’s model theory library to be completely rewritten for the many-
sorted case, which is (so far) not an objective of this project. Some potential design decisions are
considered in the following sections. On the whole, this chapter should be considered just a sketch
of the main argument: sufficient for a human reader, but insufficient for a detailed blueprint.

8.1 Many-sorted model theory
This is loosely based off the perspective on categorical logic offered by Johnstone in Volume 2 of
Sketches of an Elephant, and takes heavy inspiration from the Flypitch project.

Definition 8.1. A Σ-language consists of a map Functions ∶ ∏𝑛∶ℕ(Fin𝑛 → Σ) → Σ → Type𝑢 and a
map Relations ∶ ∏𝑛∶ℕ(Fin𝑛 → Σ) → Type𝑣.

Definition 8.2. Let Φ ∶ Σ → Σ′. Let 𝐿 be a Σ-language and let 𝐿′ be a Σ′-language. Then a Φ-
morphism of languages 𝐿 Φ−→ 𝐿′ consists of a map

onFunction ∶∏
𝑛∶ℕ

∏
𝐴∶Fin𝑛→Σ

∏
𝐵∶Σ

Functions𝐿(𝑛, 𝐴, 𝐵) → Functions𝐿′(Φ ∘ 𝐴,Φ(𝐵))

and a map
onRelation ∶∏

𝑛∶ℕ
∏

𝐴∶Fin𝑛→Σ
Relations𝐿(𝑛, 𝐴) → Functions𝐿′(Φ ∘ 𝐴)

If 𝐿, 𝐿′ are Σ-languages, we may simply say that a morphism of languages 𝐿 → 𝐿′ is a idΣ-morphism
𝐿 idΣ−−→ 𝐿′.1

Definition 8.3. Let 𝐿, 𝐿′ be Σ-languages. We define 𝐿 ⊕ 𝐿′ to be the Σ-language with

Functions(𝑛, 𝐴, 𝐵) = Functions𝐿(𝑛, 𝐴, 𝐵) ⊕ Functions𝐿′(𝑛, 𝐴, 𝐵)

and
Relations(𝑛, 𝐴) = Relations𝐿(𝑛, 𝐴) ⊕ Relations𝐿′(𝑛, 𝐴)

There are morphisms of languages 𝐿, 𝐿′ → 𝐿⊕ 𝐿′.
1It is crucial that id ∘𝑓 ≡ 𝑓 ∘ id ≡ 𝑓 definitionally.

Chapter 8: Model theory and verifying Con(NF) 54

Definition 8.4. Let 𝐿 be a Σ-language, and let 𝑀 ∶ Σ → Type𝑤. An 𝐿-structure on 𝑀 consists of a
map

funMap ∶∏
𝑛∶ℕ

∏
𝐴∶Fin𝑛→Σ

∏
𝐵∶Σ

Functions(𝑛, 𝐴, 𝐵) → (∏
𝑖∶Fin𝑛

𝑀(𝐴(𝑖))) → 𝑀(𝐵)

and a map

relMap ∶∏
𝑛∶ℕ

∏
𝐴∶Fin𝑛→Σ

Relations(𝑛, 𝐴) → (∏
𝑖∶Fin𝑛

𝑀(𝐴(𝑖))) → Prop

Wewill write 𝑓𝑀 for funMap(𝑛, 𝐴, 𝐵, 𝑓), and similarly 𝑅𝑀 for relMap(𝑛, 𝑅). If𝑀 is an 𝐿-structure and
an 𝐿′-structure, it is also naturally an (𝐿 ⊕ 𝐿′)-structure. If 𝑀 is an 𝐿-structure and an 𝐿′-structure,
then a morphism of Σ-languages Φ ∶ 𝐿 → 𝐿′ is called an expansion on 𝑀 if it commutes with the
interpretations of all symbols on𝑀.

Definition 8.5. Let 𝐿 be a Σ-language. A morphism of 𝐿-structures 𝑀 → 𝑁 consists of functions
ℎ𝐴 ∶ 𝑀𝐴 → 𝑁𝐴 such that for all 𝑛 ∶ ℕ, 𝐴 ∶ Fin𝑛 → Σ, and 𝐵 ∶ Σ, all function symbols 𝑓 ∶
Functions(𝑛, 𝐴, 𝐵), and all 𝑥 ∶ ∏𝑖∶Fin𝑛𝑀(𝐴(𝑖)),

ℎ𝐵(𝑓𝑀(𝑥)) = 𝑓𝑁(𝑖 ↦ ℎ𝐴(𝑖)(𝑥(𝑖)))

and for all relation symbols 𝑅 ∶ Relations(𝑛, 𝐴),

𝑅𝑀(𝑥) → 𝑅𝑁(𝑖 ↦ ℎ𝐴(𝑖)(𝑥(𝑖)))

Definition 8.6. Let 𝐿 be a Σ-language, and let 𝛼 ∶ Type𝑢′ be a sort of variables of sort 𝑆 ∶ 𝛼 → Σ.
An 𝐿-term on 𝛼 ∶ 𝑆 of sort 𝐴, the type of which is denoted Term𝛼∶𝑆 𝐴, is either

• a variable, comprised solely of a name 𝑛 ∶ 𝛼 such that 𝑆(𝑛) = 𝐴, or
• an application of a function symbol, comprised of some 𝑛 ∶ ℕ, a map 𝐵 ∶ Fin𝑛 → Σ, a function
symbol 𝑓 ∶ Functions(𝑛, 𝐵, 𝐴), and terms 𝑡 ∶ ∏𝑖∶Fin𝑛 Term𝛼∶𝑆 𝐵(𝑖).

Definition 8.7. Let 𝐿 be a Σ-language, and let 𝛼 ∶ Type𝑢′ and 𝑆 ∶ 𝛼 → Σ. We define the type of
𝐿-bounded formulae on 𝛼 ∶ 𝑆 with free variables indexed by 𝛼, and 𝑛 additional free variables of sorts
𝑓 ∶ Fin𝑛 → Σ, denoted BForm𝑓

𝛼∶𝑆, by the following constructors.

• falsum ∶ BForm𝑓
𝛼∶𝑆;

• equal ∶ ∏𝐴∶Σ Term𝛼⊕Fin𝑛∶𝑆⊕𝑓 𝐴 → Term𝛼⊕Fin𝑛∶𝑆⊕𝑓 𝐴 → BForm𝑓
𝛼∶𝑆;

• rel ∶ ∏𝑚∶ℕ∏𝐵∶Fin𝑚→Σ∏𝑅∶Relations(𝑚,𝐵) (∏𝑖∶Fin𝑚 Term𝛼⊕Fin𝑛∶𝑆⊕𝑓 𝐵(𝑖)) → BForm𝑓
𝛼∶𝑆;

• imp ∶ BForm𝑓
𝛼∶𝑆 → BForm𝑓

𝛼∶𝑆 → BForm𝑓
𝛼∶𝑆; and

• all ∶ ∏𝐴∶Σ BForm
𝐴∶∶𝑓
𝛼∶𝑆 → BForm𝑓

𝛼∶𝑆,

where the syntax 𝐴 ∶∶ 𝑓 denotes the cons operation on maps from Fin𝑛.2 An 𝐿-formula on 𝛼 ∶ 𝑆
with free variables indexed by 𝛼 is an inhabitant of BForm#[]

𝛼∶𝑆.
3 An 𝐿-sentence is an 𝐿-formula with

free variables indexed by Empty ∶ 𝑓, where 𝑓 is the unique function Empty → Σ. An 𝐿-theory is a set
of 𝐿-sentences.

2This is implemented in mathlib as Fin.cons.
3The expression #[] is mathlib’s syntax for the unique map Fin0 → Σ.

Chapter : Model theory and verifying Con(NF) 55

8.2 Termmodels
Definition 8.8. Let 𝐿 be a Σ-language. A 1-𝐿-formula of sort 𝐴 is an 𝐿-bounded formula on Empty
with one additional free variable of sort 𝑓 ∶ Fin 1 → Σ given by 𝑓(𝑥) = 𝐴.
Definition 8.9. Let 𝐿 be a Σ-language. The witness symbols for 𝐿 is the language 𝐿𝑊 consisting of a
single constant of sort 𝐴 for every 1-𝐿-formula of sort 𝐴.
Proposition 8.10. Let𝑀 be a nonempty 𝐿-structure. Then𝑀 has an 𝐿𝑊 -structure such that for each
1-𝐿-formula 𝜙 of sort 𝐴, there is a constant symbol 𝑐 ∶ Functions(0, #[], 𝐴) such that

∀𝑥 ∶ 𝑀𝐴, 𝜙(𝑥) → 𝜙(𝑐)

Proof. We define the interpretation of the constant for 𝜙 to be some 𝑥 ∶ 𝑀 such that𝑀 ⊨ 𝜙(𝑥) if one
exists, or an arbitrary 𝑦 ∶ 𝑀 otherwise.4 This defines an 𝐿𝑊 -structure for𝑀, and clearly𝑀 satisfies
the required property.

Definition 8.11. For each 𝑛 ∶ ℕ, we define

𝐿(0) = 𝐿; 𝐿(𝑛+1) = 𝐿(𝑛) ⊕ (𝐿(𝑛))𝑊

This forms a directed diagram of languages, which has a colimit 𝐿(𝜔). There are natural morphisms
𝐿 → 𝐿(𝜔) and 𝐿(𝑛) → 𝐿(𝜔) which are expansions on𝑀.

Proposition 8.12. Let 𝑀 be a nonempty 𝐿-structure. Then 𝑀 has an 𝐿(𝜔)-structure such that for
each 1-𝐿(𝜔)-formula 𝜙 of sort 𝐴, there is a constant symbol 𝑐 ∶ Functions(0, #[], 𝐴) such that

∀𝑥 ∶ 𝑀𝐴, 𝜙(𝑥) → 𝜙(𝑐)

Then, by the Tarski–Vaught test (which must be proven in the many-sorted case), the set 𝑁 ⊆ 𝑀
comprised of all of the interpretations of𝐿(𝜔)-terms, is the domain of an𝐿(𝜔)-elementary substructure
of𝑀.

This will take substantial work.

8.3 Ambiguity

Definition 8.13. Let 𝐿 be an ℕ-language. A type raising morphism is a map of languages 𝐿 succ−−→ 𝐿,
where succ ∶ ℕ → ℕ is the successor function.

The remainder of this chapter is left unfinished until we finish the main part of the project.

4Use mathlib’s Classical.epsilon.

Appendix A

Auxiliary results

A.1 Relations
Definition A.1. Let 𝑅 ∶ 𝜎 → 𝜏 → Prop. We define

• the image of 𝑅 to be the set im𝑅 = {𝑦 ∶ 𝜏 ∣ ∃𝑥 ∶ 𝜎, 𝑥 𝑅 𝑦};
• the coimage of 𝑅 to be the set coim𝑅 = {𝑥 ∶ 𝜎 ∣ ∃𝑦 ∶ 𝜏, 𝑥 𝑅 𝑦} (note that this is not the same as
the category-theoretic coimage of a morphism);

• the field of 𝑅 to be the set field𝑅 = coim𝑅 ∪ im𝑅;
• the image of 𝑅 on 𝑠 ∶ Set𝜎 to be the set im𝑅|𝑠 = {𝑦 ∶ 𝜏 ∣ ∃𝑥 ∈ 𝑠, 𝑥 𝑅 𝑦};
• the coimage of 𝑅 on 𝑡 ∶ Set 𝜏 to be the set coim𝑅|𝑡 = {𝑥 ∶ 𝜎 ∣ ∃𝑦 ∈ 𝑡, 𝑥 𝑅 𝑦};
• the converse of 𝑅 to be the relation 𝑅−1 ∶ 𝜏 → 𝜎 → Prop such that 𝑦 𝑅−1 𝑥 if and only if 𝑥 𝑅 𝑦;
• if 𝑆 ∶ 𝜏 → 𝜐 → Prop, the composition 𝑆 ∘ 𝑅 ∶ 𝜎 → 𝜐 → Prop is the relation given by 𝑥 (𝑆 ∘ 𝑅) 𝑧
if and only if there is 𝑦 ∶ 𝜏 such that 𝑥 𝑅 𝑦 and 𝑦 𝑆 𝑧;

• for a natural number 𝑛, the 𝑛th power of 𝑅 ∶ 𝜏 → 𝜏 → Prop is defined by 𝑅𝑛+1 = 𝑅 ∘ 𝑅𝑛 and
𝑅0 is the identity relation on coim𝑅;

• for an integer 𝑛, the 𝑛th power of 𝑅 ∶ 𝜏 → 𝜏 → Prop is defined by 𝑅(𝑛∶ℤ) = 𝑅𝑛 and 𝑅−(𝑛∶ℤ) =
(𝑅𝑛)−1 for 𝑛 ∶ ℕ.1

We say that 𝑅 is
• injective, if 𝑠1 𝑅 𝑡, 𝑠2 𝑅 𝑡 imply 𝑠1 = 𝑠2;
• surjective, if for every 𝑡 ∶ 𝜏, there is some 𝑠 ∶ 𝜎 such that 𝑠 𝑅 𝑡;
• coinjective, if 𝑠 𝑅 𝑡1, 𝑠 𝑅 𝑡2 imply 𝑡1 = 𝑡2;
• cosurjective, if for every 𝑠 ∶ 𝜎, there is some 𝑡 ∶ 𝜏 such that 𝑠 𝑅 𝑡;
• functional, if 𝑅 is coinjective and cosurjective, or equivalently, for every 𝑠 ∶ 𝜎 there is exactly
one 𝑡 ∶ 𝜏 such that 𝑠 𝑅 𝑡;

1This may be implemented using Int.negInduction from mathlib.

Chapter A: Auxiliary results 57

• cofunctional, if 𝑅 is injective and surjective, or equivalently, for every 𝑡 ∶ 𝜏 there is exactly one
𝑠 ∶ 𝜎 such that 𝑠 𝑅 𝑡;

• one-to-one, if 𝑅 is injective and coinjective;
• bijective, if 𝑅 is functional and cofunctional;
• permutative, if 𝑅 ∶ 𝜏 → 𝜏 → Prop is one-to-one and has equal image and coimage.

We also define the graph of a function 𝑓 ∶ 𝜎 → 𝜏 to be the functional relation 𝑅 ∶ 𝜎 → 𝜏 → Prop
given by (𝑥, 𝑦) ∈ 𝑅 if and only if 𝑓(𝑥) = 𝑦. Most of these definitions are from https://www.kylem.
net/math/relations.html, and most of these are in mathlib under Mathlib.Logic.Relator.
Proposition A.2.

1. 𝑅 ∶ 𝜏 → 𝜏 → Prop is permutative if and only if it is one-to-one and for all 𝑥 ∶ 𝜏, there exists 𝑦
such that 𝑥 𝑅 𝑦 if and only if there exists 𝑦 such that 𝑦 𝑅 𝑥.

2. If 𝑅, 𝑆 ∶ 𝜏 → 𝜏 → Prop are permutative and coim𝑅 ∩ coim 𝑆 = ∅, then 𝑅 ⊔ 𝑆 is permutative
and has coimage coim𝑅 ∪ coim 𝑆.

3. If 𝑅, 𝑆 ∶ 𝜏 → 𝜏 → Prop are permutative and coim𝑅 = coim 𝑆, then 𝑅 ∘ 𝑆 is permutative and
has coimage equal to that of 𝑅 and 𝑆.

4. If 𝑅 is permutative, then coim𝑅𝑛 = coim𝑅 = im𝑅 = im𝑅𝑛 for any natural number or integer
𝑛.

5. If 𝑅 is permutative and 𝑠1, 𝑠2 ⊆ coim𝑅, then the image of 𝑅 on 𝑠1 is equal to 𝑠2 if and only if the
coimage of 𝑅 on 𝑠2 is equal to 𝑠1.

Definition A.3. Let 𝑠 ∶ Set 𝜏. An orbit restriction for 𝑠 (over some type 𝜎) consists of a set 𝑡 ∶ Set 𝜏
disjoint from 𝑠, a function 𝑓 ∶ 𝜏 → 𝜎, and a permutation 𝜋 ∶ 𝜎 ≃ 𝜎, such that for each 𝑢 ∶ 𝜎, the set
𝑡 ∩ 𝑓−1(𝑢) has cardinality at leastmax(ℵ0, #𝑠, #𝑑).
An orbit restriction encapsulates information about how orbits should be completed.

• 𝑡 is the sandbox, the set inside which all added items must reside.
• 𝑓 is a categorisation function, placing each value 𝑥 ∶ 𝜏 into a category 𝑢 ∶ 𝜎.
• 𝜋 is a permutation of categories. If 𝑥 has category 𝑢, then anything that 𝑥 is mapped to should
have category 𝜋(𝑢).

Proposition A.4 (completing restricted orbits). Let 𝑅 ∶ 𝜏 → 𝜏 → Prop be a one-to-one relation, and
let (𝑡, 𝑓, 𝜋) be an orbit restriction for field𝑅 over some type 𝜎. Then there is a permutative relation 𝑇
such that

• coim𝑇 ⊆ field𝑅 ∪ 𝑡;
• # coim𝑇 ≤ max(ℵ0, # coim𝑅);
• 𝑅 ≤ 𝑇; and
• if (𝑥, 𝑦) ∈ 𝑇, then (𝑥, 𝑦) ∈ 𝑅 ∨ 𝑓(𝑦) = 𝜋(𝑓(𝑥)).

Proof. For each 𝑢 ∶ 𝜎, define an injection 𝑖𝑢 ∶ field𝑅 × ℕ → 𝜏 where im 𝑖𝑢 ⊆ 𝑡 ∩ 𝑓−1(𝑢). Define a

https://www.kylem.net/math/relations.html
https://www.kylem.net/math/relations.html

Chapter A: Auxiliary results 58

relation 𝑆 on 𝜏 by the following constructors.

∀𝑥 ∈ coim𝑅 ∖ im𝑅, (𝑖𝜋−1(𝑓(𝑥))(𝑥, 0), 𝑥) ∈ 𝑆
∀𝑛 ∶ ℕ, ∀𝑥 ∈ coim𝑅 ∖ im𝑅, (𝑖𝜋−𝑛−2(𝑥)(𝑥, 𝑛 + 1), 𝑖𝜋−𝑛−1(𝑥)(𝑥, 𝑛)) ∈ 𝑆

∀𝑥 ∈ im𝑅 ∖ coim𝑅, (𝑥, 𝑖𝜋(𝑓(𝑥))(𝑥, 0)) ∈ 𝑆
∀𝑛 ∶ ℕ, ∀𝑥 ∈ im𝑅 ∖ coim𝑅, (𝑖𝜋𝑛+1(𝑓(𝑥))(𝑥, 𝑛), 𝑖𝜋𝑛+2(𝑓(𝑥))(𝑥, 𝑛 + 1)) ∈ 𝑆

Note that (𝑥, 𝑦) ∈ 𝑆 implies 𝑓(𝑦) = 𝜋(𝑓(𝑥)). Finally, as 𝑅 ⊔ 𝑆 is permutative, it satisfies the required
conclusion.

Proposition A.5 (completing orbits). Let 𝑅 ∶ 𝜏 → 𝜏 → Prop be a one-to-one relation. Let 𝑠 ∶ Set 𝜏
be an infinite set such that # field𝑅 ≤ #𝑠, and field𝑅 and 𝑠 are disjoint. Then there is a permutative
relation 𝑆 such that 𝑅 ≤ 𝑆 and coim 𝑆 ⊆ field𝑅 ∪ 𝑠.

Proof. Define the orbit restriction (𝑠, 𝑓, 𝜋) for field𝑅 over Unit. Note that for this to be defined, we
used the inequality

#𝑠 ≥ max(ℵ0, # field𝑅)
Use proposition A.4 to obtain a permutative relation 𝑇 extending 𝑅 defined on field𝑅 ∪ 𝑠.

A.2 Cardinal arithmetic
Lemma A.6 (mathlib). Let#𝜇 be a strong limit cardinal. Then there are precisely#𝜇-many subsets
of 𝜇 of size strictly less than cof(ord(#𝜇)).

Proof. Endow 𝜇 with its initial well-ordering. Each such subset is bounded in 𝜇 with respect to this
well-ordering as its size is less than cof(ord(#𝜇)). So it suffices to prove there are precisely #𝜇-many
bounded subsets of 𝜇.

#{𝑠 ∶ Set𝜇 ∣ ∃𝜈 ∶ 𝜇, ∀𝑥 ∈ 𝑠, 𝑥 < 𝜈} = #⋃
𝜈∶𝜇

{𝑠 ∶ Set𝜇 ∣ ∀𝑥 ∈ 𝑠, 𝑥 < 𝜈}

≤ ∑
𝜈∶𝜇

#{𝑠 ∶ Set𝜇 ∣ ∀𝑥 ∈ 𝑠, 𝑥 < 𝜈}

= ∑
𝜈∶𝜇

#{𝑠 ∶ Set{𝑥 ∶ 𝜇 ∣ 𝑥 < 𝜈}}

= ∑
𝜈∶𝜇

2#{𝑥∶𝜇∣𝑥<𝜈}⏟⎵⎵⏟⎵⎵⏟
<𝜇

≤ 𝜇

Bibliography

[1] Scott Fenton. New Foundations set theory developed in metamath, 2015. URL: https://us.
metamath.org/nfeuni/mmnf.html.

[2] Theodore Hailperin. A set of axioms for logic. Journal of Symbolic Logic, 9(1):1–19, 1944. doi:
10.2307/2267307.

[3] M. Randall Holmes. The Equivalence of NF-Style Set Theories with “Tangled” Theories;
The Construction of ω-Models of Predicative NF (and more). The Journal of Symbolic Logic,
60(1):178–190, 1995. URL: http://www.jstor.org/stable/2275515.

[4] M. Randall Holmes and Sky Wilshaw. NF is Consistent, 2024. arXiv:1503.01406.
[5] W. V. Quine. NewFoundations forMathematical Logic. AmericanMathematicalMonthly, 44:70–

80, 1937. URL: https://api.semanticscholar.org/CorpusID:123927264.
[6] Ernst P. Specker. The Axiom of Choice in Quine’s New Foundations for Mathematical Logic.

Proceedings of the National Academy of Sciences of the United States of America, 39(9):972–975,
1953. URL: http://www.jstor.org/stable/88561.

[7] Ernst P. Specker. Typical Ambiguity. In Ernst Nagel, editor, Logic, Methodology and Philosophy
of Science, pages 116–123. Stanford University Press, 1962.

[8] Sky Wilshaw, Yaël Dillies, et al. New Foundations is consistent, 2022–2024. URL: https://
leanprover-community.github.io/con-nf/.

https://us.metamath.org/nfeuni/mmnf.html
https://us.metamath.org/nfeuni/mmnf.html
https://doi.org/10.2307/2267307
https://doi.org/10.2307/2267307
http://www.jstor.org/stable/2275515
https://arxiv.org/abs/1503.01406
https://api.semanticscholar.org/CorpusID:123927264
http://www.jstor.org/stable/88561
https://leanprover-community.github.io/con-nf/
https://leanprover-community.github.io/con-nf/

	Introduction
	Overview
	The simple theory of types
	New Foundations
	Tangled type theory
	Finitely axiomatising tangled type theory

	Setting up the environment
	Conventions
	Model parameters
	The structural hierarchy
	Position functions
	Hypotheses of the recursion

	Constructing the types
	Codes and clouds
	Model data defined
	Typed near-litters, singletons, and positions

	Freedom of action
	Base approximations
	Extensions of approximations
	Structural approximations
	Proving freedom of action
	Base actions
	Structural actions

	The counting argument
	Strong supports
	Coding functions
	Specifications
	Recoding
	Coding the base type
	Counting

	Wrapping up the main induction
	Induction, in abstract
	Building the tower

	Verifying Con(TTT)
	Raising strong supports
	Tangled type theory

	Model theory and verifying Con(NF)
	Many-sorted model theory
	Term models
	Ambiguity

	Auxiliary results
	Relations
	Cardinal arithmetic

