Lean Cheatsheet

In the following table, name always refers to a name already known to Lean while new_name refers to a new name provided by the user. When one of these words appears twice in the same line, the appearances do not designate the same name. expr designates an expression, for example the name of an object in the context, an arithmetic expression that is a function of such objects, a hypothesis in the context, or a lemma applied to any of these.

Logical symbol	Appears in goal	Appears in hypothesis
\forall (for all)	intro new_name	apply expr or specialize name expr
\exists (there exists)	use expr	cases expr with new_name new_name
\rightarrow (implies)	intro new_name	apply expr or specialize name expr
\leftrightarrow (if and only if)	split	rw expr or $\mathrm{rw} \leqslant \operatorname{expr}$
\wedge (and)	split	cases expr with new_name new_name
\checkmark (or)	left or right	cases expr with new_name new_name
$\neg(\mathrm{not})$	intro new_name	apply expr or specialize name expr

Note: Traditional paper-based practice uses \Rightarrow for implication, uses \Longleftrightarrow for equivalence, and does not use a notation for "and", "or" and "not".
In the left-hand column of the following table, the parts in brackets are optional. The effect of these parts is also in brackets in the right-hand column. It is almost always a matter of specifying that a manipulation, which acts by default on the goal, must be performed rather on a certain hypothesis named byp.

Tactic	Effect
exact expr	asserts that the goal can be satisfied by expr
have new_name : fact	introduces a name new_name asserting that fact is provable
unfold name (at hyp)	unfold the definition of name in the goal (or in the hypothesis hyp)
change expr (at byp)	transform the goal (or the hypothesis hyp) into the expression expr to which it is equivalent by definition
rw (+) $\operatorname{expr}($ at $h y p$)	in the goal (or in the hypothesis hyp), replace the left-hand side (or the right-hand side, if \leftarrow is present) of the equality or equivalence expr by the other side. The expression to be replaced must appear explicitly, one may use unfold or change to ensure this.
linarith	prove the goal by a linear combination of hypotheses
ring	prove the goal by combining the axioms of a commutative (semi)ring
library_search	search for a single existing lemma which closes the goal, also using local hypotheses.
choose new_name new_name using expr	given expr : $\forall x, \exists y, \mathrm{P}(x, y)$, use the axiom of choice to produce a function $x \mapsto y(x)$ satisfying $\forall x, \mathrm{P}(x, y(x))$
exfalso	apply the rule ex falso quod libet
by_contradiction new_name	start a proof by contradiction, using new_name as name for the hypothesis that is the negation of the goal
by_cases new_name : expr	split the proof into two cases depending on whether expr is true or false, using new_name as name for this hypothesis
contrapose	transform a goal of the form expr \rightarrow expr into its contrapositive
push_neg (at hyp)	push negations in the goal (or in the hypothesis hyp)

