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Summary

Project: The sphere is a smooth manifold.

Scale:

@ ~ 400 lines of code refactor, ~ 500 new lines of code in preliminaries

@ ~ 300 lines of code for the result

Status: 8 merged PRs to mathlib, 6 open PRs

Foundations: mathlib libraries for smooth functions (times_cont _diff)
and manifolds, the work of Sébastien Gouézel
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This has been formalized before ...
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Abstract

We formalize the definition and basic properties of smooth
manifolds in Isabelle/HOL. Concepts covered include parti-
tion of unity, tangent and cotangent spaces, and the funda-
mental theorem for line integrals. We also construct some
concrete manifolds such as spheres and projective spaces.
The formalization makes extensive use of the existing li-
braries for topology and analysis. The existing library for
linear algebra is not flexible enough for our needs. We there-
fore set up the first systematic and large scale application of
“types to sets”. It allows us to automatically transform the
existing (type based) library of linear algebra to one with
explicit carrier sets.
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geometry (leading to the modern theory of classical mechan-
ics). It also plays important roles in the theory of dynamical
systems and partial differential equations. Formalization of
the theory of smooth manifolds in a proof assistant, therefore,
is an important step towards making interactive theorem
proving applicable to many areas of study.

In addition to its importance in mathematics, formalizing
smooth manifolds is also interesting as a difficult test case for
proof assistants. Reasoning about smooth manifolds requires
large libraries in both mathematical analysis and linear al-
gebra. Moreover, the prevalent use of subsets and partial
functions, as well as constructions depending on dimension
or points in the manifold, offer a rigorous test of the proof
assistant’s type system.

In this paper, we describe how to formalize the basic con-
cepts of smooth manifolds in Isabelle/HOL. We largely follow
chapters 1, 2, 3, and 11 of the textbook Introduction to Smooth
Manifolds by Lee [12], formalizing about one half of the ma-
terial in these chapters. Occasionally, we also refer to other
textbooks such as [5] and [19].

Our developments are available in the Archive of Formal
Proof [9] and consist of about 11k lines of code.

We emphasize that we are formalizing in this paper mani-
folds with a smooth structure, not just topological manifolds,
a simpler concept that has already been formalized in sys-
tems such as Mizar [16]. Moreover, we treat manifolds as
abstract topological spaces endowed with'‘eompatible charts,
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This has been formalized before ...

229 proot goal_cases

230 case 1

231 have x: "smooth_on ((\<lambda>(x::'a, z). x /\<"sub>R (1 - z)) ° (({a. norm a = 1} - {(0, 1)}) \<inter> ({a. norm a = 1} - {(0, - 1)})))
232 ((\<lambda>(x, z). x /\<*sub>R (1 + z)) \<circ> (\<lambda>x. ((2 / ((norm x)\<*sup>2 + 1)) *\<*sub>R x, ((norm x)\<”~sup>2 - 1) / ((norm x)\<*sup>2 + 1)
233 apply (rule smooth_on_subset[where T="UNIV - {0}"])

234 subgoal

235 by (auto intro!: smooth_on_divide smooth_on_inverse smooth_on_scaleR smooth_on_mult smooth_on_add

236 smooth_on_minus smooth_on_norm simp: o_def power2_eq_square add_nonneg_eq_0_iff divide_simps)

237 apply (auto simp: norm_prod_def power2_eq_square) apply sos

238 done

239 show ?case

240 by transfer (rule )

241 next

242 case 2

243 have x: "smooth_on ((\<lambda>(x::'a, z). x /\<*sub>R (1 + z)) ° (({a. norm a = 1} - {(0, 1)}) \<inter> ({a. norm a = 1} - {(0, - 1)})))
244 ((\<lambda>(x, z). x /\<*sub>R (1 - z)) \<circ> (\<lambda>x. ((2 / ((norm x)\<*sup>2 + 1)) *\<*sub>R x, (1 - (norm x)\<*sup>2) / ((norm x)\<*sup>2 + 1)
245 apply (rule smooth_on_subset[where T="UNIV - {0}"])

246 subgoal

247 by (auto intro!: smooth_on_divide smooth_on_inverse smooth_on_scaleR smooth_on_mult smooth_on_add

248 smooth_on_minus smooth_on_norm simp: o_def power2_eq_square add_nonneg_eq_0_iff divide_simps)

249 apply (auto simp: norm_prod_def add_eq_0_iff) apply sos

250 done

251 show ?case

252 by transfer (rule )

253 qed

254

255 definition charts_sphere :: "('a::euclidean_space sphere, 'a) chart set" where

256 “charts_sphere \<equiv> {st_projl_chart, st_proj2_chart}"

257

258 lemma c_manifold_atlas_sphere: "c_manifold charts_sphere \<infinity>"

259 apply (unfold_locales)

260 unfolding charts_sphere_def

261 using smooth_compat_commute smooth_compat_refl st_projs_compat by fastforce

262

263 end

264
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Let's take a tour of the mathlib manifolds library, using the sphere as our
example.
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Step 1: Local homeomorphisms
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/—— Local equivalence between subsets “source’ and “target’ of a and B respectively. The (global)
maps “to_fun : a - B and ‘inv_fun : B » o map ‘source’ to ‘target’ and conversely, and are inverse
to each other there. The values of “to_fun® outside of “source’ and of “inv_fun® outside of "target’
are irrelevant. -/

@[nolint has_inhabited_instancel]

structure local_equiv (a : Typex) (B : Typex) :=

(to_fun o - B)
(inv_fun : B a)
(source : set a)
(target : set B)
(map_source' : V{x}, x € source -» to_fun x € target)
p_ta : ¥{x}, x € target - inv_fun x € source)
(left_inv' : V{x}, x € source - inv_fun (to_fun x) = x)
(right_inv' : V{x}, x € target - to_fun (inv_fun x) = x)

/—— local homeomorphisms, defined on open subsets of the space -/

@[nolint has_inhabited_instance]

structure local_homeomorph (a : Typex) (B : Typex) [topological_space al [topological_space B]
| extends local_kquiv a B :=

(open_source : is_open source)
(open_target : is_open target)
(continuous_to_fun : continuous_on to_fun source)

(continuous_inv_fun : continuous_on inv_fun target)
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Step 1: Local homeomorphisms
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Step 1: Local homeomorphisms
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Step 1: Local homeomorphisms

188 orthogonal_projection_mem_subspace_eq_self w,

189 have hs : inner_right v w = (0:R) := inner_right_of_mem_orthogonal_singleton v w.2,
190 have ha : inner_right v v = (1:R) := by simp [real_inner_self_eq_norm_square, hvl,
191 simp [hi, hz, hs, ha, continuous_linear_map.map_add, continuous_linear_map.map_smul,
192 mul_smul] },

193 { simp }

194 end

195

196 /—— Stereographic projection from the unit sphere in ‘E°, centred at a unit vector ‘v' in "E*; this
197 is the version as a local homeomorphism. -/
198 def stereographic (hv : 1vi = 1) : local_homeomorph (sphere (0:E) 1) (R « v)! :=

199 { to_fun := (stereo_to_fun v) - coe,

200 inv_fun := v,

201 source := Y e,

202 target = set.univ,

203 map_source' := by simp,

204 map_target' := A w _, stereo_inv_fun_ne_north_pole hv w,

205 left_inv' := A _ hx, stereo_left_inv hv (A h, hx (subtype.ext h)),

206 right_inv' := A w _, stereo_right_inv hv w,

207 open_source := is_open_compl_singleton,

208 open_target := is_open_univ,

209 continuous_to_fun := continuous_on_stereo_to_fun.comp continuous_subtype_coe.continuous_on
210 (A wh, h o subtype.ext o eq.symm o (inner_eq_norm_mul_iff_of_norm_one hv (by simp)).mp),
211 continuous_inv_fun := (continuous_stereo_inv_fun hv).continuous_on }

212

213 @[simp] lemma stereographic_source (hv : ivi = 1) :

214 (stereographic hv).source = {(v, by simp [hv])}c :=

215 rfl

216

217 @[simp] lemma stereographic_target (hv : Ivi = 1) : (stereographic hv).target = set.univ := rfl
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Step 1: Local homeomorphisms

130
131 lemma stereo_left_inv (hv : 1vi = 1) {x : sphere (0:E) 1} (hx : (x:E) # v)

132 stereo_inv_fun hv (stereo_to_fun v x) = x :=

133 begin

134 ext,

135 simp only [stereo_to_fun_apply, stereo_inv_fun_apply, smul_add],

136 —— name two frequently-occuring quantities and write down their basic properties
137 set a : R := inner_right v x,

138 set y := orthogonal_projection (R ¢ v)*! x,

139 have split : tx = a * v + 1y,

140 { convert eq_sum_orthogonal_projection_self_orthogonal_complement (R « v) X,

141 exact (orthogonal_projection_unit_singleton R hv x).symm },

142 have hvy : (v, y) R = 0 := inner_right_of_mem_orthogonal_singleton v y.2,

143 have pythag(: 1 =a ~ 2 + I(y:E)1 ©~ 2,

144 { have hvy' : (@ * v, y)_R =0 := by simp [inner_smul_left, hvy],

145 convert norm_add_square_eq_norm_square_add_norm_square_of_inner_eq_zero _ _ hvy' using 2,
146 { simp [« split] },

147 { simp [norm_smul, hv, real.norm_eq_abs, « pow_two, abs_sq_eql },

148 { exact pow_two _ } },

149 —— two facts which will be helpful for clearing denominators in the main calculation
150 have ha :(1 - a # 0,

151 { have : a < 1 := (inner_lt_one_iff_real_of_norm_one hv (by simp)).mpr hx.symm,
152 linarith },

153 have : 2~ 2 x 1(y:E)i *2 +4 % (1 -a) ~2=0,

154 { refine ne_of_gt _,

155 have := norm_nonneg (y:E),

156 have : @ < (1 - a) ~ 2 := pow_two_pos_of_ne_zero (1 - a) ha,

157 nlinarith },

158 —— the core of the problem is these two algebraic identities:

159 have h: : (222 /(1 -a) *2*xy1 ~2+4)-* x4%(2/(1-a)) =1,

1A0 { field cimn_
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Step 2: Charted space (= topological manifold)
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/- ### Charted spaces -/

/—— A charted space is a topological space endowed with an atlas, i.e., a set of local
homeomorphisms taking value in a model space 'H', called charts, such that the domains of the charts
cover the whole space. We express the covering property by chosing for each ‘x' a member

‘chart_at H x* of the atlas containing ‘x° in its source: in the smooth case, this is convenient to
construct the tangent bundle in an efficient way.

The model space is written as an explicit parameter as there can be several model spaces for a

given topological space. For instance, a complex manifold (modelled over “C~n‘) will also be seen
sometimes as a real manifold over ‘R™(2n)".

-/
class charted_space (H : Typex) ([topological_space H] (M : Typex) [topological_space M] :=
(atlas [] : set (local_homeomorp

(chart_at [] : M - local_homeomorph M H)
(mem_chart_source [] : ¥X, x € (chart at x).source)
(chart_mem_atlas [] ¢ Vx, chart_at x € atlas)

export charted_space
attribute [simp, mfld_simps] mem_chart_source chart_mem_atlas

section charted_space
/-— Any space is a charted_space modelled over itself, by just using the identity chart -/

instance charted_space_self (H : Typex) [topological_space H] : charted_space H H :=
{ atlas := {local_homeomorph.refl H},

chart_at = Ax, local_homeomorph.refl H,
mem_chart_source := Ax, mem_univ X,
chart_mem_atlas := Ax, mem_singleton _ }

/-— In the trivial charted_space structure of a space modelled over itself through the identity, the
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Step 2: Charted space (= topological manifold)
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Step 2: Charted space (= topological manifold)
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orthogonatllzation, butT 1n The Tlnlte-—aimensional cCase 1T TOLLOwWS more €easlly Dy dimension-countlng.
-/

/-— Variant of the stereographic projection (see ‘stereographic’), for the sphere in a finite-
dimensional inner product space 'E'. This version has codomain the Euclidean space of dimension
‘findimR E - 1. -/
def stereographic' (v : sphere (0:E) 1) :

local_homeomorph (sphere (0:E) 1) (euclidean_space R (fin (findim R E - 1))) :=

(stereographic (norm_eq_of_mem_sphere v)).trans
Won - _equliv.o¥_¥1| nalim ."
egin

[ rw findim_orthogonal_span_singleton (nonzero_of_mem_unit_sphere v),
simp
‘d )) . to_homeomorph.to_local_homeomorph

@[simp] lemma stereographic'_source (v : sphere (0:E) 1)
(stereographic' v).source = {v}c :=
by simp [stereographic'l]

@[simp] lemma stereographic'_target (v : sphere (0:E) 1)
(stereographic' v).target = set.univ :=
by simp [stereographic'l]

/—— The unit sphere in a finite-dimensional inner product space "E’ is a charted space modelled on
the Euclidean space of dimension “findim R E - 1. -/
instance : charted_space (euclidean_space R (fin (findim R E - 1))) (sphere (0:E) 1) :=

{ atlas :=W), f = stereographic' v},
chart_at := A v, stereographi -v),

mem_chart_source := A v, by simpa using ne_neg_of_mem_unit_sphere R v,
chart_mem_atlas Av, (-v, rfl) }
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Step 3: Smooth manifold

49/
498 /- ### Smooth manifolds with corners -/
499
500 set_option old_structure_cmd true
501
502 /—— Typeclass defining smooth manifolds with corners with respect to a model with corners, over a
503 field "k° and with infinite smoothness to simplify typeclass search and statements later on. -/
504  @l[ancestor has_groupoid]
505 class smooth_manifold_with_corners {k : Typex} [nondiscrete_normed_field k]
506 {E : Typex} [normed_group E] [normed_space k E]
507 {H : Typex} [topological_space H] (I :/model_with_corners k E H)
508 (M : Typex) [topological_space M] [charted_space H M] extends
509 has_groupoid M (times_cont_diff_groupoid « I) : Prop
510
511 lemma smooth_manifold_with_corners_of_times_cont_diff_on
512 {k : Typex} [nondiscrete_normed_field k]
513 {E : Typex} [normed_group E] [normed_space k E]
514 {H : Typex} [topological_space H] (I : model_with_corners k E H)
515 (M : Typex) [topological_space M] [charted_space H M]
516 (h : V (e e' : local_homeomorph M H), e € atlas HM - e' € atlas HM -
517 times_cont_diff_on OO (I o (e.symm OO e') o I.symm)
518 (I.symm -1' (e.symm OO e').source n range I))
519 smooth_manifold_with_corners I M :=
520 { compatible :=
521 begin
522 havel : has_groupoid M (times_cont_diff_groupoid « I) := has_groupoid_of_pregroupoid _ h,
523 apply structure_groupoid.compatible,
524 end }
525
526 /—— For any model with corners, the model space is a smooth manifold -/
527 inctance mndel cnare emanth {k * Tunex} [nandicrrete narmed field LI
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Step 3: Smooth manifold
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lemma times_cont_diff_on_stereo_to_fun [complete_space E]
times_cont_diff_on R T (stereo_to_fun v) {x : E | inner_right v x # (1:R)} :=
begin
refine times_cont_diff_on.smul _
(orthogonal_projection ((R ¢ v)*)).times_cont_diff.times_cont_diff_on,
refine times_cont_diff_const.times_cont_diff_on.div _ _,
{ exact (times_cont_diff_const.sub (inner_right v).times_cont_diff).times_cont_diff_on },
{ intros x h h',
exact h (sub_eq_zero.mp h').symm }
end

lemma times_cont_diff_stereo_inv_fun_aux : times_cont_diff R T (stereo_inv_fun_aux v) :=
begin
have he : times_cont_diff R T (A w : E, mwi ~ 2) := times_cont_diff_norm_square,
have hi : times_cont_diff R T (A w : E, (w1 ~ 2 + 4)-1),
{ refine (he.add times_cont_diff_const).inv _,
intros x,
nlinarith },
have hz : times_cont_diff R T (A w, (4:R) e w + (w1 ~ 2 - 4) » v),
{ refine (times_cont_diff_const.smul times_cont_diff_id).add _,
refine (ho.sub times_cont_diff_const).smul times_cont_diff_const },
convert hi.smul h:2
end
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Preliminaries

@ Refactor orthogonal projection library:

» upgrade from linear map to continuous_linear map

» change standard hypothesis from (h : is_complete (K : set E))
to [complete_space K]

» change codomain from E (whole space) to K (subspace)

o Notation for orthogonal complement K= and span of a single vector
R-v
@ Fill gaps in the library:
» Orthogonal complement of the orthogonal complement is itself
» Span of a single nonzero vector has dimension one
» Two unit vectors have inner product < 1, if and only if they are
different
> etc etc
@ Practically no new lemmas needed about continuity or smoothness.
Maybe these libraries are complete?

4 Jan 2021 16 /17

Heather Macbeth (Fordham) An example of a manifold



Further exercises

@ Make some smooth maps:
> the covering map : R — S!
» the Hopf fibration : $3 — S?

@ Put a conformally flat structure on the sphere (i.e., define the
conformally flat groupoid, show that the transition functions belong
to it)

@ Make other manifolds:

> projective space

S0O(n)

level sets of submersions

orbits of free proper Lie group actions

vV v .y

@ Define submanifolds and quotient manifolds. Show that the sphere is
a submanifold of R".

@ Sphere eversion
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