Formalizing Results in Anabelian Geometry (Some Baby Steps)

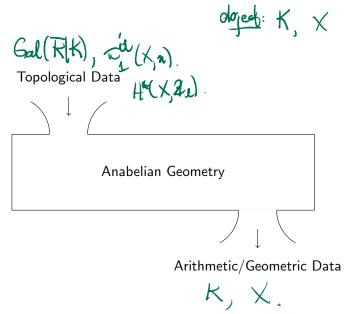
Adam Topaz

University of Alberta

January 6, 2021 H. M Colder Mainald.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What?



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

- 1. Originated from Grothendieck's Esquisse d'un Programme.
- 2. Study solns to polynomial equations using "topological" tools.
- 3. Interaction between arith and geom highlighted in $\pi_1^{\text{ét}}$.
- 4. This can lead to new insight.

Mondell Com.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

Why?

It's Fun!

+ Interesting.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Why formalize?

- 1. Work based on a handful of (relatively elementary, but very deep) technical results.
- 2. No low-hanging fruit. Progress made incrementally.
- 3. Constructions vs. functoriality. $G_{K} \cong G_{L} \cong K \cong L$ $G_{K} \cong K \cong L$ $I_{son}(K,L) \cong I_{son}(G_{L},G_{K})$ 4. Interaction between different areas of pure math. Hostin. Neuleinelin-Uduida

Why formalize?

It's Fun!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Valuations are the *bridge* that allows us to move from the "topological data" side to the "arithmetic/geometric" side.

Key Reason: Valuations leave a very distinct and recognizable impression on the structures appearing in the topological side.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Valuation Rings

Definition

Let K be a field. A valuation ring (of K) is a subring \mathcal{O} such that for all $x \in K$, one has $x \in \mathcal{O}$ or $x^{-1} \in \mathcal{O}$.

as in worthlib $O^{-1}=0$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Some objects associated with \mathcal{O} : $\mathfrak{A} \neq \mathfrak{o} \Lambda$.

- 1. The unit group $\mathcal{O}^{\times} = \{x : K \mid x \in \mathcal{O} \land x^{-1} \in \mathcal{O}\}.$
- 2. The maximal ideal $\mathfrak{m} = \{x : K \mid x \in \mathcal{O} \land x \notin \mathcal{O}^{\times}\}.$
- 3. The principal units $1 + \mathfrak{m} := \{x : K \mid x 1 \in \mathfrak{m}\}.$

 \mathcal{O}^{\times} and $1 + \mathfrak{m}$ are both multiplicative subgroups of K^{\times} . $\{\mathfrak{A}: \mathsf{K} \mid \mathfrak{A} \neq \mathfrak{o}\}.$ Examples

Val rige of () = { Z(p) | p prime }

Some arithmetic examples:

1.
$$\mathbb{Z}_{(p)} = \{\frac{a}{b} \mid b \notin p \cdot \mathbb{Z}\} \subset \mathbb{Q}.$$

2. $\mathbb{Z}_p \subset \mathbb{Q}_p.$
Some geometric examples:
3. $kT = \{\frac{f}{g} \mid f(0) \neq 0\} \subset k(T).$
4. $k[[T]] \subset k((T)).$
May observations
May observations
 $far [\exists new] r \subset \mathbb{R}^{4}$
 $far [\exists new] r \subset \mathbb{R}^{4}$
 $far [art \leq n]$

Valuations in mathlib

A byproduct of the perfectoid project?

N(2) = / 2/v.

Definition

A valuation on a commutative ring A is a morphism of monoids $I \cdot I_V : A \to \Gamma$, where Γ is a totally ordered commutative group with 0, satisfying:

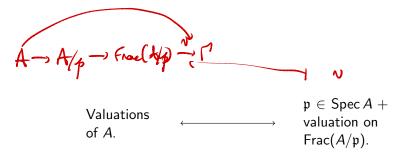
puer in yen

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1.
$$v0 = 0$$
.
2. $v(x + y) \le \max(v(x), v(y))$ for all $x, y \in A$.

Valuations usually considered up-to equivalence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶



ヘロト 人間ト 人間ト 人間ト

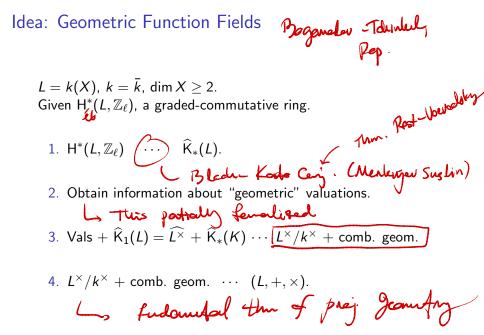
æ

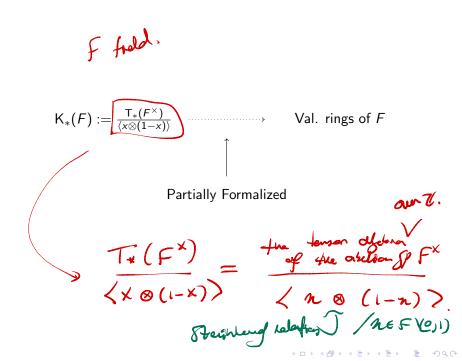
Example: Number Fields then (Neukineh - Uchida): if Kit are # fields then

 $K \cong L$ $H = Gal_L$ $fal_L \cong Gal_L$. K and L number fields. Given $\phi : Gal_K \cong Gal_L$.

1. ϕ induces bijection on *decomposition groups*. Los Glaboal Class field theory 2. Valuations "parameterized" by decomposition groups. Ly valuation thy (toppia thus for indep varke). 3. Numerical data determined by decomposition groups. L. N padte val D, - p, q, e, f, IncD, etc. 4. Local correspondence + numerical data $\overline{K} | K \cong \overline{L} | L$. Local CFT.

日本《國本《日本《日本》目





(DEMO)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Future

- 1. Generalize: $\mathbb{Z}/2 \rightsquigarrow \mathbb{Z}/p$, \mathbb{Q} , \mathbb{Z} , \mathbb{Z}_{ℓ} .
- 2. The Fundamental Theorem of Projective Geometry.

(eventually...)

3. Connect with the Galois-theoretic side of the story: $\pi_1^{\text{ét}}$, $H^*(X, \mathbb{Z}_{\ell})$, $\text{Gal}(\bar{K}|K)$, Kummer theory, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00