goals accomplished &
we formalized Hall's Marriage Theorem

Alena Gusakov
Joint work with Kyle Miller and Bhavik Mehta

arXiv:2101.00127
January 7th - Lean Together 2021

What is this?

Hall's Marriage Theorem is a standard part of the undergraduate discrete
mathematics curriculum.

It's not in mathlib yet.

We’re working on it.

Outline

Adopting dogs

Three ways of formulating the theorem
The proof

Three ways of formalizing the theorem
The Lean proof

Adopting dogs

Three Ways of Formulating

e Indexed families of finite sets
e Relations between types
e Matchings in bipartite graphs

Indexed families of finite sets

Definition 2.1.1. For a fixed set S, a family of finite subsets {X;}ic1 indexed by a set I is a collection of
subsets X; C S for each i € I. The set I is called the index set. An element z € [[._, X| is called a family
of elements of the indexed family, and it may be regarded as a function I — S with z; := z(i) with x; € X
for each i € I.

Definition 2.1.2. A matching (or transversal) of an indexed family of subsets {x; }ics is a family of elements
x that is injective when thought of as a function I — S, which is to say that x; = z; implies i = j.

Theorem 2.1.3 (Hall’'s Marriage Theorem |Hal353|). Let {X;}ic; be an indexed family of finite subsets with
finite index set I. The indexed family has a matching if and only if for all J C I, we have |.J| < IU) e X.,-|.

Relations between types

For sets A and B. consider a relation r between A and B, with r a b indicating that a € A is related to
b€ B by r. For a subset S C A, let »(S) denote the set {b € B |3Jda € A,r a b}.

Definition 2.2.1. Given a relation r between sets A and B, a matching of r that saturates a subset S
is an injective function f: S — B that respects the relation r, which is to say that » a f{a) for all a €
matching that saturates A is simply called a matching.

ScA
€8S. A

Theorem 2.2.2 (Hall's Marriage Theorem). Let r be a relation between a finite set A and a finite set B.
The relation has a matching that saturates A if and only if for all S € A then |S| < |r(S)].

Matchings in bipartite graphs

A (simple) graph G on a set V of vertices is a symmetric irreflexive binary relation on V. where vertices
v,w € V are adjacent if they are related by this relation. An edge of (G is an unordered pair of adjacent
vertices, and the set of all edges of G is denoted E((): the vertices comprising an edge are said to be incident
to it. For subsets S C V of vertices, the neighborhood I'(S) of S is the set of all vertices in V' adjacent to at
least one vertex in S.

Definition 2.3.1. A matching M on a graph G is a subset M C FE((G) of edges such that distinct edges
of M share no incident vertices. The matching is said to saturate a subset W C V if every vertex of W is
incident to an edge of M.

Definition 2.3.2. A (proper) coloring of a graph G with color set C is a function f : V' — C assigning colors
to each vertex such that adjacent vertices have different colors. For color ¢ € C, the color class associated
to cis f~(e).

Definition 2.3.3. A bipartition of a graph G is a coloring of G with color set {1,2}. Let V; and V5
respectively denote the color classes for colors 1 and 2. If a bipartition exists, the graph is called bipartite.

Theorem 2.3.4 (Hall’s Marriage Theorem). Let G be a bipartitioned simple graph with Vi finite and I'(v)
finite for each v € Vi. G has a matching that saturates Vy if and only if for all S C V) then |S| < |I'(S)].

Proof

Theorem 2.2.2 (Hall’s Marriage Theorem). Let r be a relation between a finite set A and a finite set B.
The relation has a matching that saturates A if and only if for all § € A then |S| < |r(S)|.

Proof. First suppose that there exists a matching M that saturates A. If § C A, then since M saturates A
it must also saturate S. If AM/(S) denotes the image of S by M in B, then |S| = |[M(S)| by injectivity. Since
M(S) C r(S), we have that |S| = |M(S)| < |r(S)|.

The converse is the “hard” direction. We proceed by strong induction on n = |4|.

Base case (n =0): This means that A = (). The empty matching saturates ().

Base case (n = 1): This means that A = {a} for some a. hence every S C A is either the empty set or {a}.
Since we have that |S| < |r(S)| for every S C A, we know that |{a}| < |r({a})|. so there exists some
b € B such that r a b. We can define our matching as the function f: A — B such that f(a) = b.

Induction hypothesis: If r is a relation between a finite set A with |A| < & and a finite set B, then if
|S| < |r(S)| for every S C A, there exists a matching of r that saturates A.

Induction step: Suppose |[A| = k+ 1 and |S| < |r(S)| for every S € A. We have two cases: either (1)
every proper nonempty subset S C A satisfies |S| < |r(S)| or (2) there is some proper nonempty subset
S C A such that |S| = |r(S)].

Case 1: Assume for every nonempty subset S C A that |S| < |r(S)|. and choose arbitrary a € A and
b e r({a}). Set A" ;= A\ {a} and B’ := B\ {b}, and let »’ be the restriction of r to A’ and
B'. We prove that Hall’s condition is satisfied for /. Let T"C A’. Since |T'| < |r(T")|. we know
that |T'| + 1 < |¢(T)|, and removing b from B gives us |r(T)| — 1 < |[#/(T’)|, so we now have that
|T'| < |#'(T")|. By our induction hypothesis, there exists a matching M’ : A" — B, which can be
extended to a matching M : A — B with M(a) = b.

Case 2: There exists some proper nonempty Sy C A such that [Sp| = |r(Sp)|. We first prove that

Hall's condition is satisfied for S;. We restrict r to a relation " between Sy and 7(S,), hence for
T C Sy we have r(T') = »'(T). Since for all T C S, |Sy| < k and |T| = |»(T)|. by our induction
hypothesis there is a matching M, of ' that saturates Sy.
Now we consider A” = A\ Sy and B” = B\ r(Sp). Let 1"’ be the restriction of r to A” and B".
Thus, for T C A,

r"(T)={y | r x y for some z € T and y € B'}.

Since 7" and Sy are disjoint and +"'(7) and »'(Sy) are disjoint, we have that |Sy UT| = |So| + |7,
and r(SoUT) = v'(So) Ur"(T) so therefore |r(SoUT)| = |r'(So)| + |r"(T)]. Since |S| < |r(S)| for
all § C A, we have that |So| + |T| = |So U T| < |r(So U T)| = |r'(So)| + [r"(T)], so |So| + |T| <
1P(So)| + |r"(T)|. Since |Sp| = |r'(So)|, we therefore have |T'| < |»"(T)| for all T C A”. By our
induction hypothesis, this means we have a matching M, for r” that saturates A”.

Since the domains of M, and M, are disjoint, we can define a matching M that saturates A by
M(a) = My(a) for a € Sy and M(a) = M,(a) otherwise.

This completes the proof. O

Three Ways of Formalizing

e Indexed families of finite sets
e Relations between types
e Matchings in bipartite graphs

Indexed families of finite sets

universes u v

variables {a : Type u} {p : Type v} (+ : o« — finset)
structure matching :

(f : « — B)

(mem_prod : V (a :

: x), fa€ .t a)
(injective’ : injective f)

theorem hall [fintype «]
(v (s : finset a), s.card < (s.bind :).card) <> nonempty (matching t)

Relations between types

variables {a B : Type u} [fintype «] [fintype PB]
variables (r : @« — B — Prop)
def image_rel (A : finset «) : finset [} := univ.filter (A b, 3 a € A, r a b)

theorem hall :
(v (A : finset o), A.card < (image_rel r A).card)
< (3 (f : « — B), function.injective f A ¥V x, r x (f x))

Matchings in bipartite graphs - simple graphs

structure simple_graph (V : Type u) :=
(adj : V — V — Prop)

(sym : symmetric adj)

(loopless : irreflexive adj)

/-- The set of all 'w adjacent to a given v . -/

def neighbor_set (v : V) : set V := {w : V | G.adj v w}

/-- The set of all ‘v adjacent to an element of 'S'.
def neighbor_set_image (S : set V) : set V :=
{w:V | 3Jv, ve SAweE Gneighbor_set v}

R _ '\t 7 R X o _
The set of all unordered pairs '|[(v, w/)| such that G.adj v w

def edge_set : set (sym2 V) := sym2.from_rel G.sym

Matchings in bipartite graphs - bipartitions

/-- ‘G.coloring C' is the type of ‘C'-colorings of ‘G'. -/
structure coloring (G : simple_graph V) (C : Type v) :=
(color : V — C)

-- Adjacenl vertices have distincl colors:

(valid : ¥V {v w : V[}, G.adj v w — color v # color w)

/-- The set of vertices in the color class for ‘c'. -/
def coloring.color_set (c : C) : set V := f.color ~! {c}

. . \ ,, . \ . s VA
/-- A bipartition [: G.bipartition is a coloring o G b
£ J < y
\ . \ - ™ \ ’ \
the two-term type fin 2. The color classes f.color_set 0
: :

and ‘f.color_set 1' give the partition of ‘V'. -/
def bipartition (G : simple_graph V) := G.coloring (fin 2)

Matchings in bipartite graphs - theorem

structure matching (G : simple_graph V)
(edges : set (sym2 V))

(sub_edges : edges C G.edge_set)

-- If two edges are in Lthe matching,
-- then the edges are the same:

and 1f v 15 a vertexr incident to both,
(disjoint : V (x y € edges) (v :

def matching.saturates (M : G.matching) (S

S &4y Y Fix; o8

: set V) : Prop :=
- M.edges A v € x}

variables (G : simple_graph V) [fintype V] (b : G.bipartition)

theorem hall_marriage_theorem :
(¥ (S € (b.color_set 0)),

fintype.card S < fintype.card (G.neighbor_set_image S))
< (3 M :

: G.matching), M.saturates (b.color_set 0))

Formalized Proof - Easy direction & base cases

variables {ax f : Type u} [fintype a] [fintype B]
variables (r : « — B — Prop)
def image_rel (A : finset «) : finset B := univ.filter (A b, dJa € A, r a b)
theorem hall :
(V (A : finset o), A.card < (image_rel r A).card)
< (3 (f : « — PB), function.injective f A ¥V x, r x (f x))

theorem hall_easy (f : o« — () (hf; : function.injective f) (hfs : ¥V x, r x (f x))
(A : finset @) : A.card < (image_rel r A).card

theorem hall_hard_inductive_zero (hn : fintype.card o = 0)
(hr : ¥ (A : finset «), A.card < (image_rel r A).card)
3 (f : « — PB), function.injective f A ¥V x, r x (f x)

theorem hall_hard_inductive_one (hn : fintype.card a = 1)
(hr : ¥ (A : finset «), A.card < (image_rel r A).card)
3 (f : « — PB), function.injective f A ¥V x, r x (f x)

Formalized Proof - Hard direction induction

lemma hall_hard_inductive_step_1 [nontrivial «] {n : N}

(hn : fintype.card a < n.succ)

(ha : ¥ (A : finset «), A.nonempty — A # univ — A.card < (image_rel r A).card) |

(ih : ¥V {«’ B" : Type u} [fintype '] [fintype P’'] (' : &' — B’ — Prop),
fintype.card ' < n —
(V¥ (A" : finset '), A'.card < (image_rel r’' A’).card) —
3 (£ : « = B'), function.injective £’ A ¥ x, r' x (f x))

3 (f : « = P), function.injective f A ¥V x, r x (f x)

lemma hall_hard_inductive_step_2 [nontrivial «] {n : N}
(hn : fintype.card x < n.succ)

(hr : ¥ (A : finset), A.card < (image rel r A).card)
[(ha : 3 (A : finset «), A.nonempty A A # univ A A.card = (image_rel r A).card) |
(ih : ¥V {a’ B’ : Type u} [fintype «'] [fintype P’] (¥ : o« — B’ — Prop),
fintype.card ' < n —
(v (A" : finset a'), A'.card < (image_rel r’' A’).card) —
3 (f : o - B'), function.injective £’ A ¥V x, ¥’ x (f' x))
3 (f : « =+ B), function.injective f A ¥V x, r x (f x)

Next Steps

We have the countably infinite Hall

theorem infinite_hall {x : Type u} {p : Type v} (¢ : & — finset B)|(h : N ~ o) |:

(¥ (s : finset o), s.card < (s.bind ¢).card) <> nonempty (matching t)

Next Steps

We have the countably infinite Hall

We want to use the category theory library to prove the full infinite Hall

theorem infinite_hall {a : Type u} {p : Type v} (¢t : ox —
(V (s : finset a), s.card < (s.bind ¢).card) ¢ nonempt

finset

(h s

N ~ g)M:

Thanks &%

For more details, see arXiv:2101.00127

