goals accomplished

we formalized Hall's Marriage Theorem

Alena Gusakov Joint work with Kyle Miller and Bhavik Mehta

arXiv:2101.00127

January 7th - Lean Together 2021

What is this?

Hall's Marriage Theorem is a standard part of the undergraduate discrete mathematics curriculum.

It's not in mathlib yet.

We're working on it.

Outline

- Adopting dogs
- Three ways of formulating the theorem
- The proof
- Three ways of formalizing the theorem
- The Lean proof

Adopting dogs

Three Ways of Formulating

- Indexed families of finite sets
- Relations between types
- Matchings in bipartite graphs

Indexed families of finite sets

Definition 2.1.1. For a fixed set S, a family of finite subsets $\{X_i\}_{i \in I}$ indexed by a set I is a collection of subsets $X_i \subseteq S$ for each $i \in I$. The set I is called the *index set*. An element $x \in \prod_{i \in I} X_i$ is called a family of elements of the indexed family, and it may be regarded as a function $I \to S$ with $x_i := x(i)$ with $x_i \in X_i$ for each $i \in I$.

Definition 2.1.2. A matching (or transversal) of an indexed family of subsets $\{x_i\}_{i \in I}$ is a family of elements x that is injective when thought of as a function $I \to S$, which is to say that $x_i = x_j$ implies i = j.

Theorem 2.1.3 (Hall's Marriage Theorem [Hal35]). Let $\{X_i\}_{i \in I}$ be an indexed family of finite subsets with finite index set I. The indexed family has a matching if and only if for all $J \subseteq I$, we have $|J| \leq |\bigcup_{i \in J} X_i|$.

Relations between types

For sets A and B, consider a relation r between A and B, with r a b indicating that $a \in A$ is related to $b \in B$ by r. For a subset $S \subseteq A$, let r(S) denote the set $\{b \in B \mid \exists a \in A, r \mid a \mid b\}$.

Definition 2.2.1. Given a relation r between sets A and B, a matching of r that saturates a subset $S \subseteq A$ is an injective function $f: S \to B$ that respects the relation r, which is to say that $r \ a \ f(a)$ for all $a \in S$. A matching that saturates A is simply called a matching.

Theorem 2.2.2 (Hall's Marriage Theorem). Let r be a relation between a finite set A and a finite set B. The relation has a matching that saturates A if and only if for all $S \subseteq A$ then $|S| \leq |r(S)|$.

Matchings in bipartite graphs

A (simple) graph G on a set V of vertices is a symmetric irreflexive binary relation on V, where vertices $v, w \in V$ are adjacent if they are related by this relation. An edge of G is an unordered pair of adjacent vertices, and the set of all edges of G is denoted E(G); the vertices comprising an edge are said to be incident to it. For subsets $S \subseteq V$ of vertices, the neighborhood $\Gamma(S)$ of S is the set of all vertices in V adjacent to at least one vertex in S.

Definition 2.3.1. A matching M on a graph G is a subset $M \subseteq E(G)$ of edges such that distinct edges of M share no incident vertices. The matching is said to saturate a subset $W \subseteq V$ if every vertex of W is incident to an edge of M.

Definition 2.3.2. A *(proper) coloring* of a graph G with color set C is a function $f: V \to C$ assigning colors to each vertex such that adjacent vertices have different colors. For color $c \in C$, the *color class* associated to c is $f^{-1}(c)$.

Definition 2.3.3. A bipartition of a graph G is a coloring of G with color set $\{1, 2\}$. Let V_1 and V_2 respectively denote the color classes for colors 1 and 2. If a bipartition exists, the graph is called *bipartite*.

Theorem 2.3.4 (Hall's Marriage Theorem). Let G be a bipartitioned simple graph with V_1 finite and $\Gamma(v)$ finite for each $v \in V_1$. G has a matching that saturates V_1 if and only if for all $S \subseteq V_1$ then $|S| \leq |\Gamma(S)|$.

Proof

Theorem 2.2.2 (Hall's Marriage Theorem). Let r be a relation between a finite set A and a finite set B. The relation has a matching that saturates A if and only if for all $S \subseteq A$ then $|S| \leq |r(S)|$.

Proof. First suppose that there exists a matching M that saturates A. If $S \subseteq A$, then since M saturates A it must also saturate S. If M(S) denotes the image of S by M in B, then |S| = |M(S)| by injectivity. Since $M(S) \subseteq r(S)$, we have that $|S| = |M(S)| \le |r(S)|$.

The converse is the "hard" direction. We proceed by strong induction on n = |A|.

Base case (n = 0): This means that $A = \emptyset$. The empty matching saturates \emptyset .

- **Base case** (n = 1): This means that $A = \{a\}$ for some a, hence every $S \subseteq A$ is either the empty set or $\{a\}$. Since we have that $|S| \leq |r(S)|$ for every $S \subseteq A$, we know that $|\{a\}| \leq |r(\{a\})|$, so there exists some $b \in B$ such that $r \mid a \mid b$. We can define our matching as the function $f : A \to B$ such that f(a) = b.
- **Induction hypothesis:** If r is a relation between a finite set A with $|A| \leq k$ and a finite set B, then if $|S| \leq |r(S)|$ for every $S \subseteq A$, there exists a matching of r that saturates A.
- **Induction step:** Suppose |A| = k + 1 and $|S| \le |r(S)|$ for every $S \subseteq A$. We have two cases: either (1) every proper nonempty subset $S \subsetneq A$ satisfies |S| < |r(S)| or (2) there is some proper nonempty subset $S \subsetneq A$ such that |S| = |r(S)|.
 - **Case 1:** Assume for every nonempty subset $S \subsetneq A$ that |S| < |r(S)|, and choose arbitrary $a \in A$ and $b \in r(\{a\})$. Set $A' := A \setminus \{a\}$ and $B' := B \setminus \{b\}$, and let r' be the restriction of r to A' and B'. We prove that Hall's condition is satisfied for r'. Let $T \subseteq A'$. Since |T| < |r(T)|, we know that $|T| + 1 \le |r(T)|$, and removing b from B gives us $|r(T)| 1 \le |r'(T)|$, so we now have that $|T| \le |r'(T)|$. By our induction hypothesis, there exists a matching $M' : A' \to B'$, which can be extended to a matching $M : A \to B$ with M(a) = b.

Case 2: There exists some proper nonempty $S_0 \subsetneq A$ such that $|S_0| = |r(S_0)|$. We first prove that Hall's condition is satisfied for S_0 . We restrict r to a relation r' between S_0 and $r(S_0)$, hence for $T \subseteq S_0$ we have r(T) = r'(T). Since for all $T \subseteq S_0$, $|S_0| \le k$ and |T| = |r'(T)|, by our induction hypothesis there is a matching M_0 of r' that saturates S_0 .

Now we consider $A'' = A \setminus S_0$ and $B'' = B \setminus r(S_0)$. Let r'' be the restriction of r to A'' and B''. Thus, for $T \subseteq A'$,

 $r''(T) = \{ y \mid r \ x \ y \text{ for some } x \in T \text{ and } y \in B' \}.$

Since T and S_0 are disjoint and r''(T) and $r'(S_0)$ are disjoint, we have that $|S_0 \cup T| = |S_0| + |T|$, and $r(S_0 \cup T) = r'(S_0) \cup r''(T)$ so therefore $|r(S_0 \cup T)| = |r'(S_0)| + |r''(T)|$. Since $|S| \le |r(S)|$ for all $S \subseteq A$, we have that $|S_0| + |T| = |S_0 \cup T| \le |r(S_0 \cup T)| = |r'(S_0)| + |r''(T)|$, so $|S_0| + |T| \le |r'(S_0)| + |r''(T)|$. Since $|S_0| = |r'(S_0)|$, we therefore have $|T| \le |r''(T)|$ for all $T \subset A''$. By our induction hypothesis, this means we have a matching M_1 for r'' that saturates A''.

Since the domains of M_0 and M_1 are disjoint, we can define a matching M that saturates A by $M(a) = M_0(a)$ for $a \in S_0$ and $M(a) = M_1(a)$ otherwise.

This completes the proof.

Three Ways of Formalizing

- Indexed families of finite sets
- Relations between types
- Matchings in bipartite graphs

Indexed families of finite sets

```
universes u v
variables {\alpha : Type u} {\beta : Type v} (\iota : \alpha \rightarrow finset \beta)
structure matching :=
(f : \alpha \rightarrow \beta)
(mem_prod' : \forall (a : \alpha), f a \in \iota a)
(injective' : injective f)
```

```
theorem hall [fintype \alpha] :
(\forall (s : finset \alpha), s.card \leq (s.bind \iota).card) \leftrightarrow nonempty (matching \iota)
```

Relations between types

```
variables {\alpha \ \beta : Type u} [fintype \alpha] [fintype \beta]
variables (r : \alpha \rightarrow \beta \rightarrow Prop)
def image_rel (A : finset \alpha) : finset \beta := univ.filter (\lambda b, \exists a \in A, r a b)
```

```
theorem hall :

(\forall (A : finset \alpha), A.card \leq (image_rel r A).card)

\leftrightarrow (\exists (f : \alpha \rightarrow \beta), function.injective f \land \forall x, r x (f x))
```

Matchings in bipartite graphs - simple graphs

```
structure simple_graph (V : Type u) :=
(adj : V \rightarrow V \rightarrow Prop)
(sym : symmetric adj)
(loopless : irreflexive adj)
/-- The set of all 'w' adjacent to a given 'v'. -/
def neighbor_set (v : V) : set V := {w : V | G.adj v w}
/-- The set of all 'w' adjacent to an element of 'S'. -/
def neighbor_set_image (S : set V) : set V :=
{w : V | \exists v, v \in S \land w \in G.neighbor_set v}
```

/-- The set of all unordered pairs `[(v, w)]` such that `G.adj v w` -/ def edge_set : set (sym2 V) := sym2.from_rel G.sym

Matchings in bipartite graphs - bipartitions

```
/-- 'G.coloring C is the type of 'C -colorings of 'G'. -/
structure coloring (G : simple_graph V) (C : Type v) :=
(color : V \rightarrow C)
-- Adjacent vertices have distinct colors:
(valid : \forall \{|v w : V|\}, G.adj v w \rightarrow color v \neq color w)
```

```
/-- The set of vertices in the color class for 'c'. -/
def coloring.color_set (c : C) : set V := f.color ^{-1'} {c}
```

/-- A bipartition `f : G.bipartition` is a coloring of `G` by
 the two-term type `fin 2`. The color classes `f.color_set 0`
 and `f.color_set 1` give the partition of `V`. -/
def bipartition (G : simple_graph V) := G.coloring (fin 2)

Matchings in bipartite graphs - theorem

```
structure matching (G : simple_graph V) :=
 (edges : set (sym2 V))
 (sub\_edges : edges \subseteq G.edge\_set)
 -- If two edges are in the matching, and if v is a vertex incident to both,
 -- then the edges are the same:
 (disjoint : \forall (x y \in edges) (v : V), v \in x \rightarrow v \in y \rightarrow x = y)
def matching.saturates (M : G.matching) (S : set V) : Prop :=
S \subseteq \{v : V \mid \exists x, x \in M.edges \land v \in x\}
variables (G : simple_graph V) [fintype V] (b : G.bipartition)
theorem hall_marriage_theorem :
  (\forall (S \subseteq (b.color_set 0))).
     fintype.card S \leq fintype.card (G.neighbor_set_image S))
  \leftrightarrow (\exists (M : G.matching), M.saturates (b.color_set 0))
```

Formalized Proof - Easy direction & base cases

```
variables {\alpha \beta : Type u} [fintype \alpha] [fintype \beta]
 variables (r : \alpha \rightarrow \beta \rightarrow \text{Prop})
 def image_rel (A : finset \alpha) : finset \beta := univ.filter (\lambda b, \exists a \in A, r a b)
theorem hall :
   (\forall (A : finset \alpha), A.card \leq (image_rel r A).card)
      \leftrightarrow (\exists (f : \alpha \rightarrow \beta), function.injective f \land \forall x, r x (f x))
theorem hall_easy (f : \alpha \rightarrow \beta) (hf<sub>1</sub> : function.injective f) (hf<sub>2</sub> : \forall x, r x (f x))
(A : finset \alpha) : A.card \leq (image_rel r A).card
theorem hall_hard_inductive_zero (hn : fintype.card \alpha = 0)
   (hr : \forall (A : finset \alpha), A.card \leq (image_rel r A).card) :
   \exists (f : \alpha \rightarrow \beta), function.injective f \land \forall x, r x (f x)
```

```
theorem hall_hard_inductive_one (hn : fintype.card \alpha = 1)
(hr : \forall (A : finset \alpha), A.card \leq (image_rel r A).card) :
\exists (f : \alpha \rightarrow \beta), function.injective f \land \forall x, r x (f x)
```

Formalized Proof - Hard direction induction

lemma hall_hard_inductive_step_1 [nontrivial α] {n : N} (hn : fintvpe.card $\alpha < n.succ$) (ha : \forall (A : finset α), A.nonempty \rightarrow A \neq univ \rightarrow A.card < (image_rel r A).card) (ih : $\forall \{\alpha' \ \beta' : \text{Type u}\}$ [fintype α'] [fintype β'] (r' : $\alpha' \rightarrow \beta' \rightarrow \text{Prop}$), fintype.card $\alpha' \leq n \rightarrow$ $(\forall (A' : finset \alpha'), A'.card \leq (image_rel r' A').card) \rightarrow$ \exists (f' : $\alpha' \rightarrow \beta'$), function.injective f' $\land \forall$ x, r' x (f' x)) : \exists (f : $\alpha \rightarrow \beta$), function.injective f $\land \forall x, r x$ (f x) lemma hall_hard_inductive_step_2 [nontrivial α] {n : \mathbb{N} } (hn : fintype.card $\alpha \leq$ n.succ) (hr : \forall (A : finset α), A.card < (image_rel r A).card) (ha : \exists (A : finset α), A.nonempty \land A \neq univ \land A.card = (image_rel r A).card) (ih : $\forall \{ \alpha' \ \beta' : \text{Type u} \}$ [fintype α'] [fintype β'] (r' : $\alpha' \to \beta' \to \text{Prop}$), fintype.card $\alpha' < n \rightarrow$ $(\forall (A' : finset \alpha'), A'.card \leq (image_rel r' A').card) \rightarrow$ \exists (f' : $\alpha' \rightarrow \beta'$), function.injective f' $\land \forall x, r' x (f' x)$) : \exists (f : $\alpha \rightarrow \beta$), function.injective f $\land \forall x, r x$ (f x)

Next Steps

We have the countably infinite Hall

theorem infinite_hall { α : Type u} { β : Type v} (ι : $\alpha \rightarrow$ finset β) (h : $\mathbb{N} \simeq \alpha$) : (\forall (s : finset α), s.card \leq (s.bind ι).card) \leftrightarrow nonempty (matching ι)

Next Steps

We have the countably infinite Hall

We want to use the category theory library to prove the full infinite Hall

For more details, see arXiv:2101.00127