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What is this?

Hall's Marriage Theorem is a standard part of the undergraduate discrete
mathematics curriculum.

It's not in mathlib yet.

We’re working on it.
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Three Ways of Formulating

e Indexed families of finite sets
e Relations between types
e Matchings in bipartite graphs



Indexed families of finite sets

Definition 2.1.1. For a fixed set S, a family of finite subsets {X;}ic1 indexed by a set I is a collection of
subsets X; C S for each i € I. The set I is called the index set. An element z € [[._, X| is called a family
of elements of the indexed family, and it may be regarded as a function I — S with z; := z(i) with x; € X
for each i € I.

Definition 2.1.2. A matching (or transversal) of an indexed family of subsets {x; }ics is a family of elements
x that is injective when thought of as a function I — S, which is to say that x; = z; implies i = j.

Theorem 2.1.3 (Hall’'s Marriage Theorem |Hal353|). Let {X;}ic; be an indexed family of finite subsets with
finite index set I. The indexed family has a matching if and only if for all J C I, we have |.J| < IU) e X.,-|.



Relations between types

For sets A and B. consider a relation r between A and B, with r a b indicating that a € A is related to
b€ B by r. For a subset S C A, let »(S) denote the set {b € B |3Jda € A,r a b}.

Definition 2.2.1. Given a relation r between sets A and B, a matching of r that saturates a subset S
is an injective function f: S — B that respects the relation r, which is to say that » a f{a) for all a €
matching that saturates A is simply called a matching.
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Theorem 2.2.2 (Hall's Marriage Theorem). Let r be a relation between a finite set A and a finite set B.
The relation has a matching that saturates A if and only if for all S € A then |S| < |r(S)].




Matchings in bipartite graphs

A (simple) graph G on a set V of vertices is a symmetric irreflexive binary relation on V. where vertices
v,w € V are adjacent if they are related by this relation. An edge of (G is an unordered pair of adjacent
vertices, and the set of all edges of G is denoted E((): the vertices comprising an edge are said to be incident
to it. For subsets S C V of vertices, the neighborhood I'(S) of S is the set of all vertices in V' adjacent to at
least one vertex in S.

Definition 2.3.1. A matching M on a graph G is a subset M C FE((G) of edges such that distinct edges
of M share no incident vertices. The matching is said to saturate a subset W C V if every vertex of W is
incident to an edge of M.

Definition 2.3.2. A (proper) coloring of a graph G with color set C is a function f : V' — C assigning colors
to each vertex such that adjacent vertices have different colors. For color ¢ € C, the color class associated
to cis f~(e).

Definition 2.3.3. A bipartition of a graph G is a coloring of G with color set {1,2}. Let V; and V5
respectively denote the color classes for colors 1 and 2. If a bipartition exists, the graph is called bipartite.

Theorem 2.3.4 (Hall’s Marriage Theorem). Let G be a bipartitioned simple graph with Vi finite and I'(v)
finite for each v € Vi. G has a matching that saturates Vy if and only if for all S C V) then |S| < |I'(S)].




Proof

Theorem 2.2.2 (Hall’s Marriage Theorem). Let r be a relation between a finite set A and a finite set B.
The relation has a matching that saturates A if and only if for all § € A then |S| < |r(S)|.

Proof. First suppose that there exists a matching M that saturates A. If § C A, then since M saturates A
it must also saturate S. If AM/(S) denotes the image of S by M in B, then |S| = |[M(S)| by injectivity. Since
M(S) C r(S), we have that |S| = |M(S)| < |r(S)|.

The converse is the “hard” direction. We proceed by strong induction on n = |4|.

Base case (n =0): This means that A = (). The empty matching saturates ().

Base case (n = 1): This means that A = {a} for some a. hence every S C A is either the empty set or {a}.
Since we have that |S| < |r(S)| for every S C A, we know that |{a}| < |r({a})|. so there exists some
b € B such that r a b. We can define our matching as the function f: A — B such that f(a) = b.

Induction hypothesis: If r is a relation between a finite set A with |A| < & and a finite set B, then if
|S| < |r(S)| for every S C A, there exists a matching of r that saturates A.

Induction step: Suppose |[A| = k+ 1 and |S| < |r(S)| for every S € A. We have two cases: either (1)
every proper nonempty subset S C A satisfies |S| < |r(S)| or (2) there is some proper nonempty subset
S C A such that |S| = |r(S)].

Case 1: Assume for every nonempty subset S C A that |S| < |r(S)|. and choose arbitrary a € A and
b e r({a}). Set A" ;= A\ {a} and B’ := B\ {b}, and let »’ be the restriction of r to A’ and
B'. We prove that Hall’s condition is satisfied for /. Let T"C A’. Since |T'| < |r(T")|. we know
that |T'| + 1 < |¢(T)|, and removing b from B gives us |r(T)| — 1 < |[#/(T’)|, so we now have that
|T'| < |#'(T")|. By our induction hypothesis, there exists a matching M’ : A" — B, which can be
extended to a matching M : A — B with M(a) = b.

Case 2: There exists some proper nonempty Sy C A such that [Sp| = |r(Sp)|. We first prove that

Hall's condition is satisfied for S;. We restrict r to a relation " between Sy and 7(S,), hence for
T C Sy we have r(T') = »'(T). Since for all T C S, |Sy| < k and |T| = |»(T)|. by our induction
hypothesis there is a matching M, of ' that saturates Sy.
Now we consider A” = A\ Sy and B” = B\ r(Sp). Let 1"’ be the restriction of r to A” and B".
Thus, for T C A,

r"(T)={y | r x y for some z € T and y € B'}.

Since 7" and Sy are disjoint and +"'(7) and »'(Sy) are disjoint, we have that |Sy UT| = |So| + |7,
and r(SoUT) = v'(So) Ur"(T) so therefore |r(SoUT)| = |r'(So)| + |r"(T)]. Since |S| < |r(S)| for
all § C A, we have that |So| + |T| = |So U T| < |r(So U T)| = |r'(So)| + [r"(T)], so |So| + |T| <
1P(So)| + |r"(T)|. Since |Sp| = |r'(So)|, we therefore have |T'| < |»"(T)| for all T C A”. By our
induction hypothesis, this means we have a matching M, for r” that saturates A”.

Since the domains of M, and M, are disjoint, we can define a matching M that saturates A by
M(a) = My(a) for a € Sy and M(a) = M,(a) otherwise.

This completes the proof. O



Three Ways of Formalizing

e Indexed families of finite sets
e Relations between types
e Matchings in bipartite graphs



Indexed families of finite sets

universes u v

variables {a : Type u} {p : Type v} (+ : o« — finset )
structure matching :

(f : « — B)

(mem_prod : V (a :

: x), fa€ .t a)
(injective’ : injective f)

theorem hall [fintype «]
(v (s : finset a), s.card < (s.bind :).card) <> nonempty (matching t)



Relations between types

variables {a B : Type u} [fintype «] [fintype PB]
variables (r : @« — B — Prop)
def image_rel (A : finset «) : finset [} := univ.filter (A b, 3 a € A, r a b)

theorem hall :
(v (A : finset o), A.card < (image_rel r A).card)
< (3 (f : « — B), function.injective f A ¥V x, r x (f x))



Matchings in bipartite graphs - simple graphs

structure simple_graph (V : Type u) :=
(adj : V — V — Prop)

(sym : symmetric adj)

(loopless : irreflexive adj)

/-- The set of all 'w adjacent to a given v . -/

def neighbor_set (v : V) : set V := {w : V | G.adj v w}

/-- The set of all ‘v adjacent to an element of 'S'.
def neighbor_set_image (S : set V) : set V :=
{w:V | 3Jv, ve SAweE Gneighbor_set v}

R _ '\t 7 R X o _
The set of all unordered pairs '|[(v, w/)| such that G.adj v w

def edge_set : set (sym2 V) := sym2.from_rel G.sym



Matchings in bipartite graphs - bipartitions

/-- ‘G.coloring C' is the type of ‘C'-colorings of ‘G'. -/
structure coloring (G : simple_graph V) (C : Type v) :=
(color : V — C)

-- Adjacenl vertices have distincl colors:

(valid : ¥V {v w : V[}, G.adj v w — color v # color w)

/-- The set of vertices in the color class for ‘c'. -/
def coloring.color_set (c : C) : set V := f.color ~! {c}

. . \ ,, . \ . s VA
/-- A bipartition [ : G.bipartition is a coloring o G b
£ J < y
\ . \ - ™ \ ’ \
the two-term type fin 2. The color classes f.color_set 0
: :

and ‘f.color_set 1' give the partition of ‘V'. -/
def bipartition (G : simple_graph V) := G.coloring (fin 2)



Matchings in bipartite graphs - theorem

structure matching (G : simple_graph V)
(edges : set (sym2 V))

(sub_edges : edges C G.edge_set)

-- If two edges are in Lthe matching,
-- then the edges are the same:

and 1f v 15 a vertexr incident to both,
(disjoint : V (x y € edges) (v :

def matching.saturates (M : G.matching) (S

S &4y Y Fix; o8

: set V) : Prop :=
- M.edges A v € x}

variables (G : simple_graph V) [fintype V] (b : G.bipartition)

theorem hall_marriage_theorem :
(¥ (S € (b.color_set 0)),

fintype.card S < fintype.card (G.neighbor_set_image S))
< (3 M :

: G.matching), M.saturates (b.color_set 0))



Formalized Proof - Easy direction & base cases

variables {ax f : Type u} [fintype a] [fintype B]
variables (r : « — B — Prop)
def image_rel (A : finset «) : finset B := univ.filter (A b, dJa € A, r a b)
theorem hall :
(V (A : finset o), A.card < (image_rel r A).card)
< (3 (f : « — PB), function.injective f A ¥V x, r x (f x))

theorem hall_easy (f : o« — () (hf; : function.injective f) (hfs : ¥V x, r x (f x))
(A : finset @) : A.card < (image_rel r A).card

theorem hall_hard_inductive_zero (hn : fintype.card o = 0)
(hr : ¥ (A : finset «), A.card < (image_rel r A).card)
3 (f : « — PB), function.injective f A ¥V x, r x (f x)

theorem hall_hard_inductive_one (hn : fintype.card a = 1)
(hr : ¥ (A : finset «), A.card < (image_rel r A).card)
3 (f : « — PB), function.injective f A ¥V x, r x (f x)



Formalized Proof - Hard direction induction

lemma hall_hard_inductive_step_1 [nontrivial «] {n : N}

(hn : fintype.card a < n.succ)

(ha : ¥ (A : finset «), A.nonempty — A # univ — A.card < (image_rel r A).card) |

(ih : ¥V {«’ B" : Type u} [fintype '] [fintype P’'] (' : &' — B’ — Prop),
fintype.card ' < n —
(V¥ (A" : finset '), A'.card < (image_rel r’' A’).card) —
3 (£ : « = B'), function.injective £’ A ¥ x, r' x (f x))

3 (f : « = P), function.injective f A ¥V x, r x (f x)

lemma hall_hard_inductive_step_2 [nontrivial «] {n : N}
(hn : fintype.card x < n.succ)

(hr : ¥ (A : finset ), A.card < (image rel r A).card)
[(ha : 3 (A : finset «), A.nonempty A A # univ A A.card = (image_rel r A).card) |
(ih : ¥V {a’ B’ : Type u} [fintype «'] [fintype P’] (¥ : o« — B’ — Prop),
fintype.card ' < n —
(v (A" : finset a'), A'.card < (image_rel r’' A’).card) —
3 (f : o - B'), function.injective £’ A ¥V x, ¥’ x (f' x))
3 (f : « =+ B), function.injective f A ¥V x, r x (f x)




Next Steps

We have the countably infinite Hall

theorem infinite_hall {x : Type u} {p : Type v} (¢ : & — finset B)|(h : N ~ o) |:

(¥ (s : finset o), s.card < (s.bind ¢).card) <> nonempty (matching t)



Next Steps

We have the countably infinite Hall

We want to use the category theory library to prove the full infinite Hall

theorem infinite_hall {a : Type u} {p : Type v} (¢t : ox —
(V (s : finset a), s.card < (s.bind ¢).card) ¢ nonempt

finset

(h s

N ~ g)M:




Thanks &%

For more details, see arXiv:2101.00127



