
© Galois, Inc 2021

Towards Verified Decompilation
using Lean 4
Joe Hendrix
Galois, Inc

1

© Galois, Inc 2021

We are building this with help from

■ Developers of Lean 4: Leonardo de Moura and Sebastian Ullrich

■ CVC4 Team: Haniel Barbosa, Mathias Preiner, Arjun Viswanathan, Cesare Tinelli, and Clark Barrett

■ UIUC X86_64 ISA formalization: Sandeep Dasgupta

Acknowledgements2

This presentation describes work sponsored by the Office of Naval Research under Contract No. N68335-17-C-0558.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Office of Naval Research.

Andrew Kent Simon Winwood Ledah Casburn Jason Dagit Andrei Stefanescu

© Galois, Inc 2021

About Galois
■ Galois focus is to ensure trusted systems are trustworthy.

■ Predominant focus on consulting, tools, techniques and demonstrations.

■ Contribute heavily to open source.

■ Use spinouts for commercialization.

■ We have expertise and hire in a variety of area: cryptography, data science, distributed systems,
formal methods, hardware, programming languages, etc.

3

© Galois, Inc 2021

Lean at Galois
■ Our SAW symbolic execution tools internally use a dependent calculus, SAWCore, for

representing program values.

■ SAWCore has been heavily influenced by Lean.

■ We have also had two projects using Lean for verification:

■ A protocol verification effort using Lean 3.

■ A LLVM decompiler verifier using Lean 4

■ There are many people at Galois interested in other ITPs as well: Coq, Isabelle, ACL2

4

© Galois, Inc 2021

Decompilation

5

© Galois, Inc 2021

Decompilation
■ Decompilation recovers information obscured during compilation to reverse the process.

Source
Code

Headers

Frontend
Lowering

Optimization,
Machine Code
Generation and

Assembly

LLVM
Bitcode Linking &

Use
Analysis

Executable

Object
Files

Static
Libraries

Dynamic
Libraries

LLVM clang compilation

6

© Galois, Inc 2021

Decompiler Uses
■ Decompilation is currently used for program understanding.

■ Decompile to a language understandable by people.
■ Use a combination of static analysis, heuristics, and hints from the user.
■ Without hints or existing source to target, it is likely impossible to recover the original source.

■ Research looking into using decompiler to recompile an application.
■ Use new security measures or optimizations on legacy applications to take advantage of new features or

security mechanisms.
■ Patch an existing binary.
■ Porting a compiled binary from one platform to another.

7

© Galois, Inc 2021

Recompilation Observations
Recompilation use case differences.

■ Sufficient to lift to compiler IR or object file representation rather than source.

■ Assured decompilation is much more important.

8

© Galois, Inc 2021

Program Recompilation
■ My talk today is focused on binary raising for reopt, a tool for optimization of compiled

executables.

■ This can be used for optimization, dead code elimination, and hardening legacy binaries.

Dead code

Necessary code

Application Reopt

Mission
optimized

binary

9

© Galois, Inc 2021

Argument &
stack analysis
Escape analysis

Reopt’s Decompilation Pipeline

Elf Binary

Control Flow Graph
Reconstruction

main (0x400):
 *rsp := rbp
 rsp := rsp - 8
 rdi := 7
 call 0x420
 jump 0x412
0x412:
 rax := rax + 1
 return

Function
Reconstruction

main:
 y := call f(7)
 jump lbl1
lbl1:
 z := y + 1
 return z

LLVM

10
Extract Contents

.text

.data/.bss

.eh_frame

Program hdrs

Section hdrs

Symbols/Versions

.init/ctors/dtors

.debug_…

Relocations

Recursive
exploration,
µ-ops,
Jump class.,
unused code
elimination.

© Galois, Inc 2021

Verification

11

© Galois, Inc 2021

Verification Properties
Recompilation Soundness

■ Every observable execution in the LLVM should be possible in the machine code program.

Verification Soundness

■ If a property is true of the raised program, then it should be true of the machine code program.

12

t ∈ traces(PLLVM) ⇒ ∃ t’ ∈ traces(PMC), t ≡ t’

© Galois, Inc 2021

Observational Equivalence
■ Our current notion of equivalence is based on event traces.

■ Required events include:

■ Writes to non-stack addresses.

■ Other operations that may raise signals (e.g., divide-by-zero).

■ System calls

■ Internally, we make additional equivalence checks for compositional purposes.

13

© Galois, Inc 2021

Verification Approaches
1. Build a verified decompiler using

interactive theorem proving.

■ Decompilation is an open-ended problem.

■ Very complex to implement, and needs
continued improvement.

14
2. Use an automated checker to check the

programs are equivalent.

■ Program equivalence is ordinarily
decidable…

■ However, the decompiler output is
structurally similar to input binary.

■ We have developed a compositional
approach that checks equivalence of
basic blocks using SMT solving.

© Galois, Inc 2021

Verification Approaches
1. Build a verified decompiler using

interactive theorem proving.

■ Decompilation is an open-ended problem.

■ Very complex to implement, and needs
continued improvement.

15
2. Use an automated checker to check the

programs are equivalent.

■ Program equivalence is ordinarily
decidable…

■ However, the decompiler output is
structurally similar to input binary.

■ We have developed a compositional
approach that checks equivalence of
basic blocks using SMT solving.

© Galois, Inc 2021

■ We have implemented a verifier based on translation validation.

Verification Approach

Generated LLVM

Original Binary

Generated Annotations reopt-vcg SMTLIB Problems

Correctness claim: If all SMTLIB SAT problems are unsat, then the generated LLVM refines the original binary

16

© Galois, Inc 2021

Compositional Proofs
■ The key to making this work is to develop a compositional proof strategy, and this uses additional

proof obligations:

■ Functions must respect the ABI (how arguments are passed, callee-saved registers, etc)

■ The bottom of the stack must have unallocated guard pages, and no function stack frame is
larger than the guard page region.

■ Our block annotations describe preconditions on each block, which can be assumed at the
start of each block execution, and must be proven when jumping to a new block.

■ One limitation, as we do not control LLVM stack usage completely, the recompiled LLVM program
may use more stack space than the original machine code program.

17

© Galois, Inc 2021

Current Verifier Status
■ Reopt generates the annotation files.

■ Working on small test programs, and now debugging issues on a larger web server example.

■ Code statistics

18

Tool/Library Rough LOC
reopt 134kloc

reopt-vcg (- semantics) 23kloc
Lean x86 semantics 62kloc

© Galois, Inc 2021

■ reopt and reopt-vcg are publicly available, but still under active development.

■ Fledgling libraries in Lean 4 for:
■ LLVM bitcode parsing

■ Links against libllvm (using @extern attribute)
■ Elf object file parsing
■ x86_64 machine code decoding and interpreting

■ As of yesterday we can import semantics specific using UIUC K x86_64 formalization.
■ SMT Generation and running external solvers.

https://github.com/GaloisInc/reopt

https://github.com/GaloisInc/reopt-vcg

© Galois, Inc 2021

Planned Work
■ Continue expanding the scope of programs we can decompile and verify.

■ Type analysis of heap in machine code programs.

■ Needed for sound verification of programs with indirect function calls.

■ Formalize correctness of reopt-vcg

© Galois, Inc 2021

■ We are also working on getting Lean 4 controlling a
robot.

■ Andrew Kent is working on this.

■ We are really excited about a programming language
with powerful verification capabilities.

One more thing

© Galois, Inc 2021

Thank You

22

