lowards Verified Decompilation
I8 using Lean 4

Joe Hendrix
Galois, Inc

© Galois, Inc 2021

Acknowledgements

Andrew Kent Simon Winwood | edah Casburn Jason Dagit Andrei Stefanescu

We are building this with help from
" Developers of Lean 4: Leonardo de Moura and Sebastian Ullrich
" CVC4 Team: Haniel Barbosa, Mathias Preiner, Arjun Viswanathan, Cesare Tinelli, and Clark Barrett

" UIUC X86_64 ISA formalization: Sandeep Dasgupta

This presentation describes work sponsored by the Office of Naval Research under Contract No. N68335-17-C-0558.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and .
do not necessarily reflect the views of the Office of Naval Research. © Galois, Inc 2021

e} About Galois

" Galois focus is to ensure trusted systems are trustworthy.

" Predominant focus on consulting, tools, technigues and demonstrations.
" Contribute heavily to open source.
" Use spinouts for commercialization.

" We have expertise and hire in a variety of area: cryptography, data science, distributed systems,
formal methods, hardware, programming languages, etc.

© Galois, Inc 2021

48 | ean at Galois

" Our SAW symbolic execution tools internally use a dependent calculus, SAWCore, for
representing program values.

" SAWCore has been heavily influenced by Lean.

" We have also had two projects using Lean for verification:
“ A protocol verification effort using Lean 3.
“ A LLVM decompiler verifier using Lean 4

" There are many people at Galois interested in other ITPs as well: Coq, Isabelle, ACL2

© Galois, Inc 2021

Decompilation

© Galois, Inc 2021

Decompilation

“ Decompilation recovers information obscured during compilation to reverse the process.

Source
Code

Optimization, |
Frontend LLVM MackiE Ok Object

Lowering Bitcode Ge}r&zrse;trigg Iand Files Linking &
y
Headers Use

Analysis

Executable

Static
Libraries

LLVM clang compilation

Dynamic

Libraries

© Galois, Inc 2021

I8 Decompiler Uses

* Decompilation is currently used for program understanding.

* Decompile to a language understandable by people.

* Use a combination of static analysis, heuristics, and hints from the user.

* Without hints or existing source to target, it is likely impossible to recover the original source.
* Research looking into using decompiler to recompile an application.

* Use new security measures or optimizations on legacy applications to take advantage of new features or
security mechanisms.

® Patch an existing binary.

* Porting a compiled binary from one platform to another.

© Galois, Inc 2021

Recompilation Observations

Recompilation use case differences.
" Sufficient to lift to compiler IR or object file representation rather than source.

" Assured decompilation is much more important.

Source
Code Optimization,

Frontend LLVM Machine Code
Lowering Bitcode Generation and

Assembly Linking &

Use Executable
Analysis

Static

Librari
LLVM clang compilation DIes

Dynamic

Libraries

© Galois, Inc 2021

Program Recompilation

" My talk today is focused on binary raising for reopt, a tool for optimization of compiled

executables.
Application Reopt
X (\ X
Necessary code (0\ Mission
P optimized

“ This can be used for optimization, dead code elimination, and hardening legacy binaries.

© Galois, Inc 2021

1l08 Reopt’s Decompilation Pipeline

Elf Binary

Extract Contents

Proagram hdrs
text
.eh_frame
Jinit/ctors/dtors
.data/.bss
.debug_...
Relocations
Symbols/Versions

Section hdrs

Recursive

exploration,
-0OPS

Jump class.,

unused code

elimination.

Control Flow Graph
Reconstruction

main (0x4
Xrsp =
rsp :
rdi :=
call Ox
jump 0x

0x412:
rax :=
return

00) :
rbp
rsp — 8

7

420

412

rax + 1

Argument &
stack analysis
Escape analysis

Function
Reconstruction

main:

y := call f(7)
jump lbll

bl1:
z 1=y +1
return z

LLVM

© Galois, Inc 2021

Veritication

© Galois, Inc 2021

IV \erification Properties

Recompilation Soundness

" Every observable execution in the LLVM should be possible in the machine code program.

t € traces(Puwvm) = 3t € traces(Pme), t =t

Verification Soundness

“ It a property is true of the raised program, then it should be true of the machine code program.

© Galois, Inc 2021

Observational Equivalence

" Qur current notion of equivalence is based on event traces.
“ Required events include:
* Writes to non-stack addresses.

" Other operations that may raise signals (e.g., divide-by-zero).

" System calls

“ Internally, we make additional equivalence checks for compositional purposes.

© Galois, Inc 2021

1A% \/erification Approaches

1. Build a verified decompiler using 2. Use an automated checker to check the
iInteractive theorem proving. programs are equivalent.

* Program equivalence is ordinarily
decidable...

" However, the decompiler output is
structurally similar to input binary.

* Decompilation is an open-ended problem. " \We have developed a compositional

approach that checks equivalence of

" Very complex to implement, and needs . . .
Y PIExX F0 P basic blocks using SMT solving.

continued improvement.

© Galois, Inc 2021

1ke) \/erification Approaches

2. Use an automated checker to check the
programs are equivalent.

QiLild a verified decompiler using
INtSgCtive theorem proving.

" Program equivalence is ordinarily
" . decidable...

) 4 " However, the decompiler output is
structurally similar to input binary.

" Decompilz##®h is an open-ere@wgd problem. * \We have developed a compositional
approach that checks equivalence of

basic blocks using SMT solving.

" Verny@®®@mplex to implement, and NSQals
@Ptinued iImprovement.

© Galois, Inc 2021

16} \erification Approach

“ We have implemented a verifier based on translation validation.

Original Binary

Generated Annotations reopt-vcg SMTLIB Problems

Generated LLVM

Correctness claim: If all SMTLIB SAT problems are unsat, then the generated LLVM refines the original binary

© Galois, Inc 2021

Compositional Proofs

" The key to making this work is to develop a compositional proof strategy, and this uses additional
proof obligations:

" Functions must respect the ABI (how arguments are passed, callee-saved registers, etc)

“ The bottom of the stack must have unallocated guard pages, and no function stack frame is
larger than the guard page region.

" QOur block annotations describe preconditions on each block, which can be assumed at the
start of each block execution, and must be proven when jumping to a new block.

" One limitation, as we do not control LLVM stack usage completely, the recompiled LLVM program
may use more stack space than the original machine code program.

© Galois, Inc 2021

Current Verifier Status

" Reopt generates the annotation files.
" Working on small test programs, and now debugging issues on a larger web server example.

" Code statistics

Tool/Librar Rough LOC

reopt 134kloc
reopt-vcg (- semantics) 23kloc
Lean x86 semantics o2kloc

© Galois, Inc 2021

" reopt and reopt-vcg are publicly available, but still under active development.

https://github.com/GaloisInc/reopt
https://github.com/GaloisInc/reopt-vcg

" Fledgling libraries in Lean 4 for:

* LLVM bitcode parsing
" Links against libllvm (using @extern attribute)
" Elf object file parsing
" x86_64 machine code decoding and interpreting
" As of yesterday we can import semantics specific using UIUC K x86_64 formalization.
" SMT Generation and running external solvers.

© Galois, Inc 2021

Planned VWork

" Continue expanding the scope of programs we can decompile and verify.

“ Type analysis of heap in machine code programs.
" Needed for sound verification of programs with indirect function calls.

" Formalize correctness of reopt-vcg

© Galois, Inc 2021

One more thing

" We are also working on getting Lean 4 controlling a

robot.
" Andrew Kent is working on this. . remenpimase

" We are really excited about a programming language
with powerful verification capabillities.

© Galois, Inc 2021

Thank You

© Galois, Inc 2021

