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We are building this with help from 

■ Developers of Lean 4: Leonardo de Moura and Sebastian Ullrich 

■ CVC4 Team: Haniel Barbosa, Mathias Preiner, Arjun Viswanathan, Cesare Tinelli, and Clark Barrett 

■ UIUC X86_64 ISA formalization: Sandeep Dasgupta
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About Galois
■ Galois focus is to ensure trusted systems are trustworthy. 

■ Predominant focus on consulting, tools, techniques and demonstrations. 

■ Contribute heavily to open source. 

■ Use spinouts for commercialization. 

■ We have expertise and hire in a variety of area: cryptography, data science, distributed systems, 
formal methods, hardware, programming languages, etc. 
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Lean at Galois
■ Our SAW symbolic execution tools internally use a dependent calculus, SAWCore, for 

representing program values. 

■ SAWCore has been heavily influenced by Lean. 

■ We have also had two projects using Lean for verification: 

■ A protocol verification effort using Lean 3. 

■ A LLVM decompiler verifier using Lean 4  

■ There are many people at Galois interested in other ITPs as well: Coq, Isabelle, ACL2 
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Decompilation
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Decompilation
■ Decompilation recovers information obscured during compilation to reverse the process.
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Decompiler Uses
■ Decompilation is currently used for program understanding. 

■ Decompile to a language understandable by people. 
■ Use a combination of static analysis, heuristics, and hints from the user. 
■ Without hints or existing source to target, it is likely impossible to recover the original source. 

■ Research looking into using decompiler to recompile an application. 
■ Use new security measures or optimizations on  legacy applications to take advantage of new features or 

security mechanisms. 
■ Patch an existing binary. 
■ Porting a compiled binary from one platform to another.
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Recompilation Observations
Recompilation use case differences.  

■ Sufficient to lift to compiler IR or object file representation rather than source. 

■ Assured decompilation is much more important.
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Program Recompilation
■ My talk today is focused on binary raising for reopt, a tool for optimization of compiled 

executables. 

■ This can be used for optimization, dead code elimination, and hardening legacy binaries.
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9



© Galois, Inc 2021

Argument &  
stack analysis 
Escape analysis

Reopt’s Decompilation Pipeline

Elf Binary

Control Flow Graph 
Reconstruction 

main (0x400): 
  *rsp := rbp 
  rsp := rsp - 8 
  rdi := 7 
  call 0x420  
  jump 0x412  
0x412:   
  rax := rax + 1 
  return 

Function 
Reconstruction

main: 
 y := call f(7)     
  jump lbl1  
lbl1: 
  z := y + 1 
  return z 

LLVM
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Verification
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Verification Properties
Recompilation Soundness 

■ Every observable execution in the LLVM should be possible in the machine code program.  

Verification Soundness 

■ If a property is true of the raised program, then it should be true of the machine code program.
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t ∈ traces(PLLVM) ⇒ ∃ t’ ∈ traces(PMC), t ≡ t’ 
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Observational Equivalence
■ Our current notion of equivalence is based on event traces. 

■ Required events include: 

■ Writes to non-stack addresses. 

■ Other operations that may raise signals (e.g., divide-by-zero). 

■ System calls 

■  Internally, we make additional equivalence checks for compositional purposes.
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Verification Approaches
1. Build a verified decompiler using 

interactive theorem proving. 

■ Decompilation is an open-ended problem. 

■ Very complex to implement, and needs 
continued improvement.
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2. Use an automated checker to check the 

programs are equivalent. 

■ Program equivalence is ordinarily 
decidable… 

■ However, the decompiler output is 
structurally similar to input binary. 

■ We have developed a compositional 
approach that checks equivalence of 
basic blocks using SMT solving.
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■ We have implemented a verifier based on translation validation.  

Verification Approach

Generated LLVM

Original Binary

Generated Annotations reopt-vcg SMTLIB Problems

Correctness claim: If all SMTLIB SAT problems are unsat, then the generated LLVM refines the original binary
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Compositional Proofs
■ The key to making this work is to develop a compositional proof strategy, and this uses additional 

proof obligations: 

■ Functions must respect the ABI (how arguments are passed, callee-saved registers, etc) 

■ The bottom of the stack must have unallocated guard pages, and no function stack frame is 
larger than the guard page region. 

■ Our block annotations describe preconditions on each block, which can be assumed at the 
start of each block execution, and must be proven when jumping to a new block. 

■ One limitation, as we do not control LLVM stack usage completely, the recompiled LLVM program 
may use more stack space than the original machine code program.
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Current Verifier Status 
■ Reopt generates the annotation files. 

■ Working on small test programs, and now debugging issues on a larger web server example. 

■ Code statistics
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Tool/Library Rough LOC
reopt 134kloc

reopt-vcg (- semantics) 23kloc
Lean x86 semantics 62kloc
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■ reopt and reopt-vcg are publicly available, but still under active development. 

■ Fledgling libraries in Lean 4 for:
■ LLVM bitcode parsing 

■ Links against libllvm (using @extern attribute) 
■ Elf object file parsing 
■ x86_64 machine code decoding and interpreting 

■ As of yesterday we can import semantics specific using UIUC K x86_64 formalization. 
■ SMT Generation and running external solvers.

https://github.com/GaloisInc/reopt

https://github.com/GaloisInc/reopt-vcg
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Planned Work
■ Continue expanding the scope of programs we can decompile and verify. 

■ Type analysis of heap in machine code programs. 

■ Needed for sound verification of programs with indirect function calls. 

■ Formalize correctness of reopt-vcg
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■ We are also working on getting Lean 4 controlling a 
robot. 

■ Andrew Kent is working on this. 

■ We are really excited about a programming language  
with powerful verification capabilities.

One more thing
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Thank You
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