Formalizing Perfectoid Fields

Kenny Lau

Imperial College London

January 6, 2021

A Tale of Two Cities

A number field is a finite extension of \mathbb{Q} , such as:

- ▶ Q
 ▶ Q(i)
- $\blacktriangleright \mathbb{Q}(\sqrt{2})$

These fields have characteristic 0 and are central to number theory.

A function field is a finite extension of $\mathbb{F}_q(t)$, such as:

- $\blacktriangleright \mathbb{F}_{37^2}(t)$
- $\blacktriangleright \mathbb{F}_{37}(\sqrt{t})$

These fields have characteristic p and arise from projective curves over finite fields.

Given a prime number p, we can form the field of p-adic numbers \mathbb{Q}_p as the completion of \mathbb{Q} under the p-adic norm $\|\cdot\|_p$.

Recall that $\|p\|_p = p^{-1}$.

Similarly, we can complete $\mathbb{F}_p(t)$ under the norm $\|\cdot\|_t$ to form $\mathbb{F}_p((t))$.

Recall that $||t||_t = p^{-1}$.

A Tale of Two Cities — Ring of Integers

The ring of integers of \mathbb{Q}_p is:

$$\mathbb{Z}_p = \{x \in \mathbb{Q}_p : \|x\|_p \le 1\}$$

It has a unique maximal ideal $p\mathbb{Z}_p$, and $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p$.

Similarly, the ring of integers of $\mathbb{F}_{p}((t))$ is:

$$\mathbb{F}_{p}[\![t]\!] = \{ x \in \mathbb{F}_{p}(\!(t)\!) : \|x\|_{t} \le 1 \}$$

It has a unique maximal ideal $t\mathbb{F}_{\rho}[t]$, and $\mathbb{F}_{\rho}[t]/t\mathbb{F}_{\rho}[t] \cong \mathbb{F}_{\rho}$.

1/5/202

1			function field analogy in nLab	
		number fields ("function fields of curves over E1")	function fields of curves over finite fields F _q (arithmetic curves)	Riemann surfaces/complex curves
	affine and projective line			
		Z (integers)	$\mathbb{F}_q[z]$ (polynomials, function algebra on affine line $\mathbb{A}_{\mathbb{F}_q}^1$)	Oc (holomorphic functions on complex plane)
		Q (rational numbers)	$\mathbb{F}_{q}(z)$ (rational functions)	meromorphic functions on complex plane
		p (<u>prime number</u> /non- archimedean <u>place</u>)	$x\in \mathbb{F}_p$	$x \in \mathbb{C}$
		∞ (place at infinity)		∞
		$\operatorname{Spec}(\mathbb{Z})$ (<u>Spec(Z)</u>)	$\mathbb{A}^1_{\mathbb{F}_q}$ (affine line)	complex plane
		$\operatorname{Spec}(\mathbb{Z}) \cup \operatorname{place}_\infty$	P _{Fe} (projective line)	Riemann sphere
		$\partial_p \coloneqq \frac{(-p^p-(-))}{p}$ (Fermat quotient)	$\frac{\partial}{\partial x}$ (coordinate derivation)	.
		genus of the rational numbers = 0		genus of the Riemann sphere = 0
	formal neighbourhoods			
		\mathbb{Z}_p (p-adic integers)	$\mathbb{F}_q[[t-x]]$ (power series around x)	$\mathbb{C}[[z-x]]$ (holomorphic functions on formal disk around x)

https://ncatlab.org/nlab/show/function+field+analogy

4/11

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

5/2021	function field analogy in nLab			
	number fields ("function fields of <u>curves</u> over F1")	function fields of curves over finite fields \mathbb{F}_q (arithmetic curves)	Riemann surfaces/complex curves	
	$\operatorname{Spf}(\mathbb{Z}_p) \underset{\operatorname{Spec}(\mathbb{Z})}{\times} X ("p-\underline{\operatorname{arithmetic}})$ <u>jet space</u> " of X at p)		formal disks in X	
	Q _p (<u>p-adic numbers</u>)	$\frac{\mathbb{F}_q((z-x))}{(Laurent series}$ around x)	$\mathbb{C}((z-x))$ (holomorphic functions on punctured formal disk around x)	
	$A_{Q} = \prod'_{p \text{ place}} Q_{p} \text{ (ring of adeles)}$	$A_{F_{c}((\ell))}$ (adeles of function field)	$ \prod_{x\in \mathbb{C}} \mathbb{C}((z-x)) (restricted product of holomorphic functions on all punctured formal disks, finitely of which do not extend to the unpunctured disks) $	
	$\mathbb{I}_Q = \operatorname{GL}_1(\mathbb{A}_Q) \mbox{(group of ideles)}$	$\mathbb{I}_{F_{4}((t))}$ (ideles of function field)	$\prod'_{x\in\mathbb{C}}\operatorname{GL}_1(\mathbb{C}((z-x)))$	
theta functions				
	Jacobi theta function			
zeta functions				
	Riemann zeta function	Goss zeta function		
branched covering curves	5			
	K a number field $(\mathbb{Q} \hookrightarrow K$ a possibly <u>ramified</u> finite dimensional field extension)	K a function field of an <u>algebraic</u> curve Σ over \mathbb{F}_p	K_{Σ} (sheaf of rational functions on complex curve Σ)	

https://ncatlab.org/nlab/show/function+field+analogy

5/11

1/5/202

	function field analogy in nLab			
	<u>number fields ("function</u> fields of <u>curves</u> over E1")	function fields of curves over finite fields \mathbb{F}_q (arithmetic curves)	Riemann surfaces/complex curves	
	\mathcal{O}_K (ring of integers)		\mathscr{O}_{Σ} (structure sheaf)	
	$\operatorname{Spec}_{\operatorname{sm}}(\mathscr{O}_K) \to \operatorname{Spec}(\mathbb{Z})$ (<u>spectrum</u> with archimedean <u>places</u>)	E (arithmetic curve)	$\Sigma \to \mathbb{C}P^1$ (complex curve being branched cover of Riemann sphere)	
	$\frac{(-)^{p}-\Phi(-)}{p}$ (lift of <u>Frobenius</u> morphism/Lambda-ring structure)	$\frac{\partial}{\partial z}$	<u>e</u> .	
	genus of a number field	genus of an algebraic curve	genus of a surface	
formal neighbourhoods				
	v prime ideal in <u>ring of integers</u> \mathcal{O}_K	$x\in \varSigma$	$x \in \Sigma$	
	K_v (formal completion at v)		$\mathbb{C}((z_x))$ (function algebra on punctured formal disk around x)	
	\mathcal{O}_{K_*} (ring of integers of formal completion)		$\mathbb{C}[[z_x]]$ (function algebra on formal disk around x)	
	A _K (ring of adeles)		$ \prod_{s\in\mathcal{D}}^{t} \mathbb{C}((z_s)) \text{ (restricted product of function rings on all punctured formal disks around all points in \mathcal{D})$	
	0		$\prod_{z \in \Sigma} \mathbb{C}[[z_z]] (function ring on all formal disks around all points in \Sigma)$	

https://ncatlab.org/nlab/show/function+field+analogy

6/11

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

1/5/202

	function field analogy in nLab			
	number fields ("function fields of <u>curves</u> over <u>F1</u> ")	function fields of curves over finite fields \mathbb{F}_q (arithmetic curves)	Riemann surfaces/complex curves	
	$\mathbb{I}_K = \operatorname{GL}_1(\mathbb{A}_K)$ (group of ideles)		$\prod_{x\in\Sigma}' \operatorname{GL}_1(\mathbb{C}((z_x)))$	
Galois theory				
	Galois group		$\pi_1(\Sigma)$ fundamental group	
	Galois representation	"	flat connection ("local system") on \varSigma	
<u>class field</u> <u>theory</u>				
	class field theory		geometric class field theory	
	Hilbert reciprocity law	Artin reciprocity law	Weil reciprocity law	
	$\operatorname{GL}_1(K) \setminus \operatorname{GL}_1(\mathbb{A}_K)$ (idele class group)	*		
	$\operatorname{GL}_1(K) \backslash \operatorname{GL}_1(\mathbb{A}_K) / \operatorname{GL}_1(\mathscr{O})$	w	$\operatorname{Bun}_{\operatorname{GL}_1}(\varSigma)$ (moduli stack of line bundles, by Weil uniformization theorem)	
non-abelian class field theory and automorphy				
	number field <u>Langlands</u> correspondence	function field Langlands correspondence	geometric Langlands correspondence	

https://ncatlab.org/nlab/show/function+field+analogy

7/11

1/5/202

	function field analogy in nLab			
	number fields ("function fields of curves over F1")	function fields of curves over finite fields \mathbb{F}_q (arithmetic curves)	Riemann surfaces/complex curves	
	$\operatorname{GL}_n(K) \setminus \operatorname{GL}_n(\mathbb{A}_K) / / \operatorname{GL}_n(\mathscr{O})$ (constant sheaves on this stack form unramified automorphic representations)	"	$\operatorname{Bun}_{\operatorname{GL}_n(\mathbb{C})}(\Sigma)$ (moduli stack of bundles on the curve Σ , by Weil uniformization theorem)	
	Tamagawa-Weil for number fields	Tamagawa-Weil for function fields		
theta functions				
	Hecke theta function		functional determinant line bundle of Dirac operator/chiral Laplace operator on Σ	
zeta functions				
	Dedekind zeta function	Weil zeta function	zeta function of a Riemann surface/of the Laplace operator on \varSigma	
<u>higher</u> <u>dimensional</u> spaces				
zeta functions	Hasse-Weil zeta function			

analogies in the Langlands program:

https://ncatlab.org/nlab/show/function+field+analog

8/11

The Question

How can we connect \mathbb{Q}_p and $\mathbb{F}_p((t))$? Or, more precisely, how do **extensions** of \mathbb{Q}_p and $\mathbb{F}_p((t))$ relate to each other?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First Attempt

We will try to use the fact that the rings of integers of \mathbb{Q}_p and $\mathbb{F}_p((t))$ are linked via the isomorphism $\mathbb{Z}_p/p \cong \mathbb{F}_p[\![t]\!]/t$.

$$\mathbb{Q}_{p} \xrightarrow{\text{ring of integers}} \mathbb{Z}_{p} \longrightarrow \mathbb{Z}_{p}/p$$

$$\stackrel{|\cong}{\models} \mathbb{F}_{p}((t)) \xrightarrow{\text{ring of integers}} \mathbb{F}_{p}[t] \longrightarrow \mathbb{F}_{p}[t]/t$$

But the problem is that $\mathbb{Q}_3(\sqrt{3})$ and $\mathbb{Q}_3(\sqrt{-3})$ both produce $\mathbb{F}_3[x]/(x^2)$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Solution

The solution is to adjoin the $(p^n)^{\text{th}}$ roots:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then this works, and extensions of $\mathbb{Q}_p(p^{1/p^{\infty}})$ correspond to extensions of $\mathbb{F}_p((t))(t^{1/p^{\infty}})$, unlike in the case with \mathbb{Q}_p and $\mathbb{F}_p((t))$.

What is a perfectoid field?

• \mathbb{Q}_p comes with a norm $\|\cdot\|_p$ with $\|p\|_p = \frac{1}{p}$.

• Adjoin $(p^n)^{\text{th}}$ roots of p and end up with:

$$\mathbb{Q}_p\left(p^{1/p^{\infty}}\right) := \bigcup_{n=0}^{\infty} \mathbb{Q}_p\left(p^{1/p^n}\right)$$

• Extend the norm $\|\cdot\|_p$ to $\mathbb{Q}_p\left(p^{1/p^{\infty}}\right)$ with:

$$\left\|p^{1/p^n}\right\|_p = p^{-1/p^n}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What is a perfectoid field?

► The ring of integers of Q_p is Z_p. It is characterized by:

$$\mathbb{Z}_{p} = \{x \in \mathbb{Q}_{p} : \|x\|_{p} \leq 1\}$$

• Similarly, the ring of integers of $\mathbb{Q}_p\left(p^{1/p^{\infty}}\right)$ is:

$$\mathbb{Z}_p\left[p^{1/p^{\infty}}
ight] := \bigcup_{n=0}^{\infty} \mathbb{Z}_p\left[p^{1/p^n}
ight]$$

Then Z_p [p^{1/p[∞]}] /p is a ring of characteristic p for which the Frobenius homomorphism x → x^p is surjective (cf. the definition of perfect fields where the Frobenius homomorphism is bijective).

Tilting

Recall our situation:

where we have completed the fields under the respective norms.

Note that for example the completion of $\mathbb{F}_{p}\llbracket t \rrbracket [t^{1/p^{\infty}}]$ contains:

$$\sum_{n=0}^{\infty} t^{n+1/p^n}$$

But the quotients are the same.

Tilting

It turns out that one can "construct" $\overline{\mathbb{F}_p}[\![t]\!][t^{1/p^{\infty}}]$ from $\mathbb{F}_p[\![t]\!][t^{1/p^{\infty}}]/t$ by:

$$\overline{\mathbb{F}_{p}\llbracket t \rrbracket \left[t^{1/p^{\infty}}\right]} = \lim_{x \mapsto x^{p}} \left(\mathbb{F}_{p}\llbracket t \rrbracket \left[t^{1/p^{\infty}}\right]/t \right)$$

not unlike how:

$$\mathbb{Z}_p = \varprojlim \left(\mathbb{Z}/p^n \mathbb{Z} \right)$$

and:

$$\mathbb{F}_p[\![t]\!] = \varprojlim \left(\mathbb{F}_p[t]/t^n \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tilting

So in some sense $\overline{\mathbb{F}_p((t))(t^{1/p^{\infty}})}$ can be constructed from $\overline{\mathbb{Q}_p(p^{1/p^{\infty}})}$ by the following procedure:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Perfection

Recall:

$$\overline{\mathbb{F}_{p}\llbracket t \rrbracket \left[t^{1/p^{\infty}}\right]} = \lim_{x \mapsto x^{p}} \left(\mathbb{F}_{p}\llbracket t \rrbracket \left[t^{1/p^{\infty}}\right]/t \right)$$

So we say that $\overline{\mathbb{F}_{p}[\![t]\!][t^{1/p^{\infty}}]}$ is the perfection of $\mathbb{F}_{p}[\![t]\!][t^{1/p^{\infty}}]/t$. We also have:

$$\overline{\mathbb{F}_{p}(\!(t)\!)\left(t^{1/p^{\infty}}\right)} = \lim_{\stackrel{\leftarrow}{x \mapsto x^{p}}} \overline{\mathbb{Q}_{p}\left(p^{1/p^{\infty}}\right)}$$

But this is only as monoids, i.e. the isomorphism does not preserve addition. We say that $\overline{\mathbb{F}_p((t))(t^{1/p^{\infty}})}$ is the monoid-perfection of $\overline{\mathbb{Q}_p(p^{1/p^{\infty}})}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Formalization — Ring of Integers

What do we mean by:

$$\mathbb{Z}_p = \{x \in \mathbb{Q}_p : \|x\|_p \le 1\}$$

What if we define \mathbb{Z}_p differently? How can we still relate \mathbb{Z}_p and \mathbb{Q}_p ? Answer: Characteristic predicate.

src/ring_theory/valuation/integers.lean in mathlib commit a6633e5:

43 /-- Given a valuation v : R \rightarrow Γ_0 and a ring homomorphism O \rightarrow +* R, we say that O is the integers of v

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 44 if f is injective, and its range is exactly `v.integer`. -/
- 45 structure integers : Prop :=
- 46 (hom_inj : function.injective (algebra_map 0 R))
- 47 (map_le_one : $\forall x, v$ (algebra_map 0 R x) \leq 1)
- 48 (exists_of_le_one : $\forall \{r\}, v r \leq 1 \rightarrow \exists x, algebra_map \ 0 R x = r$)

Formalization — Ring of Integers

ibid.:

- 26 /-- The ring of integers under a given valuation is the subring of elements with valuation \leq 1. -/
- 27 def integer : subring R :=
- 28 { carrier := { x | $v x \le 1$ },
- 29 one_mem' := le_of_eq v.map_one,
- 30 mul_mem' := $\lambda \times y h x h y$, trans_rel_right (\leq) (v.map_mul $\times y$) (mul_le_one' h x h y),
- 31 zero_mem' := trans_rel_right (≤) v.map_zero zero_le_one',
- 32 add_mem' := λ x y hx hy, le_trans (v.map_add x y) (max_le hx hy),
- 33 neg_mem' := λ x hx, trans_rel_right (≤) (v.map_neg x) hx }

ibid.:

- 54 theorem integer.integers : v.integers v.integer :=
- 55 { hom_inj := subtype.coe_injective,

56 map_le_one :=
$$\lambda$$
 r, r.2,

57 exists_of_le_one := λ r hr, $\langle \langle r, hr \rangle$, rfl \rangle }

・ロト・日本・日本・日本・日本

Formalization — Perfection

src/ring_theory/perfection.lean in mathlib commit a6633e5:

```
39 /-- The perfection of a ring `R` with characteristic `p`,
40 defined to be the projective limit of `R` using the Frobenius maps `R → R`
41 indexed by the natural numbers, implemented as `{ f : N → R | ∀ n, f (n + 1) ^ p = f n }`. -/
42 def ring.perfection (R : Type u<sub>1</sub>) [comm_semiring R]
43 (p : N) [hp : fact p.prime] [char_p R p] :
44 subsemiring (N → R) :=
45 { zero_mem' := λ n, zero_pow $ hp.pos,
46 add_mem' := λ f g hf hg n, (frobenius_add R p _ ).trans $ congr_arg2 _ (hf n) (hg n),
47 ...monoid.perfection R p }
```

ibid.:

- 179 /-- A perfection map to a ring of characteristic `p` is a map that is isomorphic
- 180 to its perfection. -/
- 181 @[nolint has_inhabited_instance] structure perfection_map (p : N) [fact p.prime]
- 182 {R : Type u₁} [comm_semiring R] [char_p R p]
- 183 {P : Type u₂} [comm_semiring P] [char_p P p] [perfect_ring P p] (π : P \rightarrow +* R) : Prop :=
- (injective : $\forall \{x \ y \ : \ P\}$, ($\forall \ n, \ \pi \ (pth_root \ P \ p \ [n] \ x) = \pi \ (pth_root \ P \ p \ [n] \ y)) \rightarrow x = y$)
- 185 (surjective : $\forall f$: $\mathbb{N} \rightarrow \mathbb{R}$, ($\forall n, f(n + 1) \land p = fn$) \rightarrow
- 186 $\exists x : P, \forall n, \pi (pth_root P p ^[n] x) = f n)$