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A Tale of Two Cities

A number field is a finite extension of QQ, such as:
> Q
> Q(i)
> Q(v2)

These fields have characteristic 0 and are central to number theory.

A function field is a finite extension of Fy(t), such as:
> F37(t)
> F3p(t)
> F37(V/t)

These fields have characteristic p and arise from projective curves
over finite fields.



A Tale of Two Cities — Completion

Given a prime number p, we can form the field of p-adic numbers
Qp as the completion of Q under the p-adic norm || - ||.

Recall that ||p||, = p~L.

Similiarly, we can complete F,(t) under the norm || - ||+ to form

Fp((t)-

Recall that ||t|, = p~L.



A Tale of Two Cities — Ring of Integers

The ring of integers of Q,, is:
Zp={xe€Qp: |xllp <1}
It has a unique maximal ideal pZy,, and Z,/pZ, = Fp,.
Similarly, the ring of integers of F((t)) is:
Fplt] = {x € Fp((t)) - [Ix][e < 1}

It has a unique maximal ideal tF,[t], and F,[t]/tFp[t] = Fp.
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The Question

How can we connect Q, and Fp((t))?
Or, more precisely, how do extensions of Q, and F,((t)) relate to
each other?



First Attempt

We will try to use the fact that the rings of integers of Q, and
Fp((t)) are linked via the isomorphism Z,/p = F,[t]/t.

ring of integers
Qp

Zp Zp/p

oY

Fp((£) “EES B[] — Fplel /e

But the problem is that Q3(1/3) and Q3(v/—3) both produce
F3[x]/(x%):

Q3(v3) 25 Z3[V3] = Zs[x]/(* — 3) —— Fs[x]/(x?)

Qs(v=3) 255 Za[v/ 3] = Zalx]/ (<2 + 3) —— Fs[x]/ (<)



The Solution

t

The solution is to adjoin the (p™)t" roots:

ring of integers

Qp (pl/poo) Zp [pl/poo] — Zp [pl/poo] /P

Fp((t) (£+/77) roe of et Fo[t] [tY/P™] —— Fp[t] [¢1/P™] /t

Il

Then this works, and extensions of Q, (pl/”oo) correspond to
extensions of F,,((t)) (t/P), unlike in the case with Q, and

Fp((t)-



What is a perfectoid field?

> Qp comes with a norm || - ||, with ||p||, = %.

» Adjoin (p")t roots of p and end up with:

()= 0o ()

» Extend the norm | - ||, to Qp (pl/”oo) with:

el ot
P



What is a perfectoid field?

» The ring of integers of Q, is Zp.
It is characterized by:

Zp={x € Qp:|lxlp <1}

» Similarly, the ring of integers of Q, (pl/”oo) is:

] - O]

» Then Z, [pl/poo] /p is a ring of characteristic p for which the
Frobenius homomorphism x +— xP is surjective (cf. the
definition of perfect fields where the Frobenius homomorphism
is bijective).



Tilting

Recall our situation:

ring of integers

Zp [pl/Poo] RN Zp [pl/Poo] /P

Fp[e] [e777] —— Fple] [¢/°] /2

Qp (p*/P7)

1%

ring of integers

Fp((t)) (£1/P)
where we have completed the fields under the respective norms.

Note that for example the completion of F,[t] [tl//’m] contains:

0
> e
n=0

But the quotients are the same.



Tilting

It turns out that one can “construct” F,[t] [t'/P*] from
Fo[t] [£Y/P7] /t by:
B (7] = m (Fylel [ /e)
XX

not unlike how:
Zp=1im(Z/p"Z)

T

and:

Fp[t] = lim (F,[t]/t")



Tilting

So in some sense Fp((t)) (t1/P™) can be constructed from

Qp ( 1/p>*) by the following procedure:

ring of integers

Qo (p177) Zp [PVP] ——— Z, [p7] Jp

1%

lim ‘

() (€75 i L 075] 2 5, ] [0

We say that F,((t)) (£/7™) is the tilt of @, (p1/P™).



Perfection

Recall:

Foe] [e77<] = tim (Fple] [£/77] /)

X+—>xP

So we say that F,[t] [t1/P™] is the perfection of F,[t] [t}/P7] /t.
We also have:

Fo(0) (2777) = tim @, (o7

X+—>xP

But this is only as monoids, i.e. the isomorphism does not preserve
addition. We say that Fp((t)) (t/P™) is the monoid-perfection of

Qp (p1/77).



Formalization — Ring of Integers

What do we mean by:

Zp ={x€Qp:|xllp <1}

What if we define Z, differently?
How can we still relate Z, and Q,?
Answer: Characteristic predicate.

src/ring_theory/valuation/integers.lean in mathlib
commit a6633eb:

/-- Given a valuation v : R » T, and a ring homomorphism O -+* R, we say that O is the integers of v
if f is injective, and its range is exactly “v.integer . -/

structure integers : Prop :=

(hom_inj : function.injective (algebra_map 0 R))

(map_le_one : V x, v (algebra_map O R x) < 1)

(exists_of_le_one : V {r}, v r <1 - 3 x, algebra_map O R x = r)



Formalization — Ring of Integers

ibid.:

/-- The ring of integers under a given valuation is the subring of elements with valuation < 1. -/

def integer : subring R :=

{ carrier := { x | vx <1},
one_mem' := le_of_eq v.map_one,
mul_mem' := A x y hx hy, trans_rel_right (<) (v.map_mul x y) (mul_le_one' hx hy),
zero_mem' := trans_rel_right (<) v.map_zero zero_le_one',
add_mem' := A x y hx hy, le_trans (v.map_add x y) (max_le hx hy),
neg_mem' := A x hx, trans_rel_right (<) (v.map_neg x) hx }

ibid.:
theorem integer.integers : v.integers v.integer :=
{ hom_inj := subtype.coe_injective,
map_le one := A r, r.2,

exists_of_le one := A r hr, {((r, hr), rfl) }



Formalization — Perfection

src/ring_theory/perfection.lean in mathlib commit
a6633e5:

/-- The perfection of a ring "R* with characteristic "p°,
defined to be the projective limit of “R™ using the Frobenius maps "R - R”
indexed by the natural numbers, implemented as "{ f : N>R | Vn, f(n+1) "p=Ffn}.-/
def ring.perfection (R : Type u;) [comm_semiring R]
(p : 17) [hp : fact p.prime] [char_p R p]
subsemiring (17 » R) :=
{ zero_mem' := A n, zero_pow $ hp.pos,
add_mem' := A f g hf hg n, (frobenius_add R p _ _).trans $ congr_arg2 _ (hf n) (hg n),

. monoid.perfection R p }

ibid.:

/-- A perfection map to a ring of characteristic “p° is a map that is isomorphic
to its perfection. -/
@[nolint has_inhabited_instance] structure perfection_map (p : IN) [fact p.prime]

{R : Type us} [comm_semiring R] [char_p R p]

{P : Type u,} [comm_semiring P] [char_p P p] [perfect_ring P p] (m : P »+* R) : Prop :=
(injective : V {x y : P}, (Vv n, m (pth_root P p ~[n] x) = m (pth_root P p *[n] y)) » x =y)
(surjective : V f : .1 >R, (VY n, f (n+1) *p=+Ffn)->

3 x : P, Vn, nm(pth_root P p ~[n] x) = f n)



