
CertRL : Formalizing Convergence Proofs of Value

and Policy Iteration in Coq

Koundinya Vajjha

University of Pittsburgh

Avi Shinnar

IBM Research

Barry Trager

IBM Research

Vasily Pestun

IBM Research ; IHES

Nathan Fulton

IBM Research

Introduction - Reinforcement Learning

Reinforcement learning (RL) algorithms solve sequential decision making

problems in which the goal is to choose actions that maximize a

quantitative utility function.

Recent high-profile applications of

reinforcement learning include:

• beating the world’s best players at Go

• competing against top professionals in Dota

• improving protein structure prediction

• automatically controlling complex robots

These successes motivate the use of reinforcement learning in

safety-critical and correctness-critical settings.

1

Introduction - Reinforcement Learning

Reinforcement learning (RL) algorithms solve sequential decision making

problems in which the goal is to choose actions that maximize a

quantitative utility function. Recent high-profile applications of

reinforcement learning include:

• beating the world’s best players at Go

• competing against top professionals in Dota

• improving protein structure prediction

• automatically controlling complex robots

These successes motivate the use of reinforcement learning in

safety-critical and correctness-critical settings.

1

Introduction - Reinforcement Learning

Reinforcement learning (RL) algorithms solve sequential decision making

problems in which the goal is to choose actions that maximize a

quantitative utility function. Recent high-profile applications of

reinforcement learning include:

• beating the world’s best players at Go

• competing against top professionals in Dota

• improving protein structure prediction

• automatically controlling complex robots

These successes motivate the use of reinforcement learning in

safety-critical and correctness-critical settings.

1

Reinforcement Learning Theory

Agent

Environment

Action atNew state st+1 Reward rt+1

2

Reinforcement Learning Theory

This generates a trajectory of states, actions and (expected) rewards.

s0 a0 s1 a1 s2 a2 . . . (1)

r1 r2 . . . (2)

A policy π is a map from states to actions. The long-term value of π is

defined as the discounted sum of rewards. For 0 ≤ γ < 1:

r0 + γr1 + γ
2
r2 + γ

3
r3 . . . (3)

Goal: Find a policy mapping states to actions that maximizes the agent’s

long-term reward.

3

Reinforcement Learning Theory

This generates a trajectory of states, actions and (expected) rewards.

s0 a0 s1 a1 s2 a2 . . . (1)

r1 r2 . . . (2)

A policy π is a map from states to actions.

The long-term value of π is

defined as the discounted sum of rewards. For 0 ≤ γ < 1:

r0 + γr1 + γ
2
r2 + γ

3
r3 . . . (3)

Goal: Find a policy mapping states to actions that maximizes the agent’s

long-term reward.

3

Reinforcement Learning Theory

This generates a trajectory of states, actions and (expected) rewards.

s0 a0 s1 a1 s2 a2 . . . (1)

r1 r2 . . . (2)

A policy π is a map from states to actions. The long-term value of π is

defined as the discounted sum of rewards. For 0 ≤ γ < 1:

r0 + γr1 + γ
2
r2 + γ

3
r3 . . . (3)

Goal: Find a policy mapping states to actions that maximizes the agent’s

long-term reward.

3

Reinforcement Learning Theory

This generates a trajectory of states, actions and (expected) rewards.

s0 a0 s1 a1 s2 a2 . . . (1)

r1 r2 . . . (2)

A policy π is a map from states to actions. The long-term value of π is

defined as the discounted sum of rewards. For 0 ≤ γ < 1:

r0 + γr1 + γ
2
r2 + γ

3
r3 . . . (3)

Goal: Find a policy mapping states to actions that maximizes the agent’s

long-term reward.

3

Example

Figure 1: Turtle in a Gridworld _
4

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp_turtle.html#CeRtl_grid_correct

Introduction - Reinforcement Learning

Reinforcement learning algorithms produce, at a minimum, a policy that

specifies which action(s) should be taken in a given state.

The primary correctness property for reinforcement learning algorithms is

convergence: in the limit, a reinforcement learning algorithm should

converge to a policy that optimizes for the long-term value.

5

Introduction - Reinforcement Learning

Reinforcement learning algorithms produce, at a minimum, a policy that

specifies which action(s) should be taken in a given state.

The primary correctness property for reinforcement learning algorithms is

convergence: in the limit, a reinforcement learning algorithm should

converge to a policy that optimizes for the long-term value.

5

CertRL

CertRL contains a Coq formalization of Value iteration and Policy

iteration.
1

• These are canonical RL algorithms, often taught as the first

reinforcement learning methods in machine learning courses.

• Their convergence proofs contain the main ingredients of a typical

convergence argument for an RL algorithm.

• Their convergence is usually assumed implicitly in implementations.

• These algorithms are at the core of the dynamic programming

paradigm.

1
Formalization is available at https://github.com/IBM/FormalML

6

https://github.com/IBM/FormalML

Markov Decision Processes _

Record MDP := mkMDP {

(** State and action spaces. *)

state : Type;

act : forall s: state, Type;

(** The state and action spaces are finite. *)

fs :> Finite (state) ;

fa :> forall s, Finite (act s);

(** The state space and the fibered action spaces are

nonempty. *)

ne : NonEmpty (state) ;

na : forall s, NonEmpty (act s);

7

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#MDP

Markov Decision Processes – continued

(** Probabilistic transition structure. t(s,a,s') is the

probability that the next state is s’

given that you take action a in state s.

One can also consider it to be an act-indexed

collection of Kleisli arrows of Pmf. *)

t : forall s : state, (act s -> Pmf state);

(** Reward when you move to s' from s by taking action a. *)

reward : forall s : state, (act s -> state -> R)

}

The set of time steps may be finite or infinite. That is, the MDP may be

finite-horizon or infinite-horizon.

8

Markov Decision Processes - Policies

A decision rule _ is a mapping from states to actions.

Definition dec_rule (M : MDP) := forall s : M.(state), (M.(act)) s.

In the finite time horizon case, a policy is a list of decision rules. In the

infinite-time horizon case, a policy _ is a stream of decision rules.

Definition policy (M : MDP) := Stream (dec_rule M).

A policy of the form:

π, π, π, . . .

is called a stationary policy.

9

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#dec_rule
https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#policy

Markov Decision Processes - Policies

A decision rule _ is a mapping from states to actions.

Definition dec_rule (M : MDP) := forall s : M.(state), (M.(act)) s.

In the finite time horizon case, a policy is a list of decision rules.

In the

infinite-time horizon case, a policy _ is a stream of decision rules.

Definition policy (M : MDP) := Stream (dec_rule M).

A policy of the form:

π, π, π, . . .

is called a stationary policy.

9

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#dec_rule
https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#policy

Markov Decision Processes - Policies

A decision rule _ is a mapping from states to actions.

Definition dec_rule (M : MDP) := forall s : M.(state), (M.(act)) s.

In the finite time horizon case, a policy is a list of decision rules. In the

infinite-time horizon case, a policy _ is a stream of decision rules.

Definition policy (M : MDP) := Stream (dec_rule M).

A policy of the form:

π, π, π, . . .

is called a stationary policy.

9

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#dec_rule
https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#policy

Markov Decision Processes - Policies

A decision rule _ is a mapping from states to actions.

Definition dec_rule (M : MDP) := forall s : M.(state), (M.(act)) s.

In the finite time horizon case, a policy is a list of decision rules. In the

infinite-time horizon case, a policy _ is a stream of decision rules.

Definition policy (M : MDP) := Stream (dec_rule M).

A policy of the form:

π, π, π, . . .

is called a stationary policy.

9

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#dec_rule
https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#policy

MDP Transition Structure

• The transitions of an MDP are stochastic. If the agent, at state s

performs an action a, the next state can be specified only up to a

probability.

• However, we are interested in the behaviour of the agent n-steps from

the present. For this, we need to compose probabilities.

• Classically, this is done by a state-transition matrix whose powers are

used to calculate the probability that the agent visits a particular

state n-steps from now.

Is there an alternative to formalizing matrices and matrix multiplication?

10

MDP Transition Structure

• The transitions of an MDP are stochastic. If the agent, at state s

performs an action a, the next state can be specified only up to a

probability.

• However, we are interested in the behaviour of the agent n-steps from

the present. For this, we need to compose probabilities.

• Classically, this is done by a state-transition matrix whose powers are

used to calculate the probability that the agent visits a particular

state n-steps from now.

Is there an alternative to formalizing matrices and matrix multiplication?

10

MDP Transition Structure

• The transitions of an MDP are stochastic. If the agent, at state s

performs an action a, the next state can be specified only up to a

probability.

• However, we are interested in the behaviour of the agent n-steps from

the present. For this, we need to compose probabilities.

• Classically, this is done by a state-transition matrix whose powers are

used to calculate the probability that the agent visits a particular

state n-steps from now.

Is there an alternative to formalizing matrices and matrix multiplication?

10

MDP Transition Structure

• The transitions of an MDP are stochastic. If the agent, at state s

performs an action a, the next state can be specified only up to a

probability.

• However, we are interested in the behaviour of the agent n-steps from

the present. For this, we need to compose probabilities.

• Classically, this is done by a state-transition matrix whose powers are

used to calculate the probability that the agent visits a particular

state n-steps from now.

Is there an alternative to formalizing matrices and matrix multiplication?

10

Giry Monad

Key idea: Kleisli composition of the Giry monad recovers the

Chapman-Kolmogorov formula.

We first define the type of discrete probability measures _ on a type as

Record Pmf (A : Type) := mkPmf {

outcomes : list (nonnegreal * A);

sum1 : list_fst_sum outcomes = R1

}.

11

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.pmf_monad.html#Pmf

Giry Monad

Key idea: Kleisli composition of the Giry monad recovers the

Chapman-Kolmogorov formula.

We first define the type of discrete probability measures _ on a type as

Record Pmf (A : Type) := mkPmf {

outcomes : list (nonnegreal * A);

sum1 : list_fst_sum outcomes = R1

}.

11

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.pmf_monad.html#Pmf

Giry Monad

We then define two basic operations:

ret ∶ A→ P(A) _

a ↦ λx ∶ A, δa(x)

and

bind ∶ P(A)→ (A→ P(B))→ P(B) _

bind p f = λb ∶ B, ∑
a∈A

f (a)(b) ∗ p(a)

where δa(x) = 1 if a = x and 0 otherwise. These operations satisfy the

“monad laws” making (P, bind, ret) into a monad called the Giry monad.

12

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.pmf_monad.html#Pmf_pure
https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.pmf_monad.html#Pmf_bind

Giry Monad

We then define two basic operations:

ret ∶ A→ P(A) _

a ↦ λx ∶ A, δa(x)

and

bind ∶ P(A)→ (A→ P(B))→ P(B) _

bind p f = λb ∶ B, ∑
a∈A

f (a)(b) ∗ p(a)

where δa(x) = 1 if a = x and 0 otherwise.

These operations satisfy the

“monad laws” making (P, bind, ret) into a monad called the Giry monad.

12

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.pmf_monad.html#Pmf_pure
https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.pmf_monad.html#Pmf_bind

Giry Monad

We then define two basic operations:

ret ∶ A→ P(A) _

a ↦ λx ∶ A, δa(x)

and

bind ∶ P(A)→ (A→ P(B))→ P(B) _

bind p f = λb ∶ B, ∑
a∈A

f (a)(b) ∗ p(a)

where δa(x) = 1 if a = x and 0 otherwise. These operations satisfy the

“monad laws” making (P, bind, ret) into a monad called the Giry monad.

12

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.pmf_monad.html#Pmf_pure
https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.pmf_monad.html#Pmf_bind

Kleisli Composition

Given f ∶ A→ P(B) and g ∶ B → P(C), Kleisli composition puts f and g

together to give a map (f g) ∶ A→ P(C).

It is defined as:

f g ∶= λx ∶ A, bind (f x) g (4)

= λx ∶ A,(λc ∶ C ,∑
b∶B

g(b)(c) ∗ f (x)(b)) (5)

= λ(x ∶ A) (c ∶ C),∑
b∶B

f (x)(b) ∗ g(b)(c) (6)

which is exactly the Chapman-Kolmogorov formula. So (f g) x c gives

the total probability of transitioning from x to c through an intermediate

state in B.

13

Kleisli Composition

Given f ∶ A→ P(B) and g ∶ B → P(C), Kleisli composition puts f and g

together to give a map (f g) ∶ A→ P(C). It is defined as:

f g ∶= λx ∶ A, bind (f x) g (4)

= λx ∶ A,(λc ∶ C ,∑
b∶B

g(b)(c) ∗ f (x)(b)) (5)

= λ(x ∶ A) (c ∶ C),∑
b∶B

f (x)(b) ∗ g(b)(c) (6)

which is exactly the Chapman-Kolmogorov formula. So (f g) x c gives

the total probability of transitioning from x to c through an intermediate

state in B.

13

Kleisli Composition

Given f ∶ A→ P(B) and g ∶ B → P(C), Kleisli composition puts f and g

together to give a map (f g) ∶ A→ P(C). It is defined as:

f g ∶= λx ∶ A, bind (f x) g (4)

= λx ∶ A,(λc ∶ C ,∑
b∶B

g(b)(c) ∗ f (x)(b)) (5)

= λ(x ∶ A) (c ∶ C),∑
b∶B

f (x)(b) ∗ g(b)(c) (6)

which is exactly the Chapman-Kolmogorov formula.

So (f g) x c gives

the total probability of transitioning from x to c through an intermediate

state in B.

13

Kleisli Composition

Given f ∶ A→ P(B) and g ∶ B → P(C), Kleisli composition puts f and g

together to give a map (f g) ∶ A→ P(C). It is defined as:

f g ∶= λx ∶ A, bind (f x) g (4)

= λx ∶ A,(λc ∶ C ,∑
b∶B

g(b)(c) ∗ f (x)(b)) (5)

= λ(x ∶ A) (c ∶ C),∑
b∶B

f (x)(b) ∗ g(b)(c) (6)

which is exactly the Chapman-Kolmogorov formula. So (f g) x c gives

the total probability of transitioning from x to c through an intermediate

state in B.

13

Kleisli Iterates in an MDP

For a fixed decision rule π, we get a Kleisli arrow Tπ ∶ S → P(S) defined

as Tπ(s) ∶= T (s)(π(s)).

So, starting at an intial state s0, if we follow the

stationary policy induced by π, we recover the entire probability transition

structure after k-steps as k-fold Kleisli iterates of Tπ.

T
k
π (s0) ∶= (ret s0 Tπ . . . TπÍ ÒÒÑ ÒÒ Ï

k times

) ∶ P(S) (7)

Since this is a probability measure, we can find the expected reward at the

k-th step as:

r
π
k (s) ∶= ET k

π(s) [r(s, π(s))] = ∑
s ′∈S

[r(s, π(s), s ′)T k
π (s)(s ′)] _ (8)

14

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#expt_reward

Kleisli Iterates in an MDP

For a fixed decision rule π, we get a Kleisli arrow Tπ ∶ S → P(S) defined

as Tπ(s) ∶= T (s)(π(s)). So, starting at an intial state s0, if we follow the

stationary policy induced by π, we recover the entire probability transition

structure after k-steps as k-fold Kleisli iterates of Tπ.

T
k
π (s0) ∶= (ret s0 Tπ . . . TπÍ ÒÒÑ ÒÒ Ï

k times

) ∶ P(S) (7)

Since this is a probability measure, we can find the expected reward at the

k-th step as:

r
π
k (s) ∶= ET k

π(s) [r(s, π(s))] = ∑
s ′∈S

[r(s, π(s), s ′)T k
π (s)(s ′)] _ (8)

14

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#expt_reward

Kleisli Iterates in an MDP

For a fixed decision rule π, we get a Kleisli arrow Tπ ∶ S → P(S) defined

as Tπ(s) ∶= T (s)(π(s)). So, starting at an intial state s0, if we follow the

stationary policy induced by π, we recover the entire probability transition

structure after k-steps as k-fold Kleisli iterates of Tπ.

T
k
π (s0) ∶= (ret s0 Tπ . . . TπÍ ÒÒÑ ÒÒ Ï

k times

) ∶ P(S) (7)

Since this is a probability measure, we can find the expected reward at the

k-th step as:

r
π
k (s) ∶= ET k

π(s) [r(s, π(s))] = ∑
s ′∈S

[r(s, π(s), s ′)T k
π (s)(s ′)] _ (8)

14

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#expt_reward

Long-Term Value

Let γ ∈ R, 0 ≤ γ < 1 be a discount factor, and π = (π, π, . . .) be a

stationary policy. Then, the long-term value Vπ ∶ S → R is given by

Vπ(s) =
∞

∑
k=0

γ
k
r
π
k (s) _ (9)

We can prove that the long-term value satisfies the Bellman equation:

Vπ(s) = r(s, π(s)) + γET (s,π(s)) [Vπ] _ (10)

Note that the Bellman equation says that Vπ is the fixed point of the

operator

Bπ ∶(S → R)→ (S → R) (11)

W ↦ r(s, π(s)) + γET (s,π(s))W (12)

15

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#ltv
https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#ltv_corec

Long-Term Value

Let γ ∈ R, 0 ≤ γ < 1 be a discount factor, and π = (π, π, . . .) be a

stationary policy. Then, the long-term value Vπ ∶ S → R is given by

Vπ(s) =
∞

∑
k=0

γ
k
r
π
k (s) _ (9)

We can prove that the long-term value satisfies the Bellman equation:

Vπ(s) = r(s, π(s)) + γET (s,π(s)) [Vπ] _ (10)

Note that the Bellman equation says that Vπ is the fixed point of the

operator

Bπ ∶(S → R)→ (S → R) (11)

W ↦ r(s, π(s)) + γET (s,π(s))W (12)

15

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#ltv
https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#ltv_corec

Long-Term Value

Let γ ∈ R, 0 ≤ γ < 1 be a discount factor, and π = (π, π, . . .) be a

stationary policy. Then, the long-term value Vπ ∶ S → R is given by

Vπ(s) =
∞

∑
k=0

γ
k
r
π
k (s) _ (9)

We can prove that the long-term value satisfies the Bellman equation:

Vπ(s) = r(s, π(s)) + γET (s,π(s)) [Vπ] _ (10)

Note that the Bellman equation says that Vπ is the fixed point of the

operator

Bπ ∶(S → R)→ (S → R) (11)

W ↦ r(s, π(s)) + γET (s,π(s))W (12)

15

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#ltv
https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#ltv_corec

Optimal Long-Term Value

The objective of an RL algorithm is to find an optimal policy, which gives

the best long-term value V∗(s) = maxπ{Vπ(s)}.

Principle of Optimality: An optimal policy has the property that

whatever the initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard to the

state resulting from the first decision. (Bellman, 1957)

This suggests that V∗ also satisfies a similar Bellman equation:

V∗(s) = max
a∈A(s)

{r(s, a) + γET (s,a) [V∗]}

So, V∗ is the fixed point of the operator

B̂ ∶(S → R)→ (S → R)
W ↦ λs, max

a∈A(s)
(r(s, a) + γET (s,a)[W]) _

16

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#bellman_max_op

Optimal Long-Term Value

The objective of an RL algorithm is to find an optimal policy, which gives

the best long-term value V∗(s) = maxπ{Vπ(s)}.

Principle of Optimality: An optimal policy has the property that

whatever the initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard to the

state resulting from the first decision. (Bellman, 1957)

This suggests that V∗ also satisfies a similar Bellman equation:

V∗(s) = max
a∈A(s)

{r(s, a) + γET (s,a) [V∗]}

So, V∗ is the fixed point of the operator

B̂ ∶(S → R)→ (S → R)
W ↦ λs, max

a∈A(s)
(r(s, a) + γET (s,a)[W]) _

16

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#bellman_max_op

Optimal Long-Term Value

The objective of an RL algorithm is to find an optimal policy, which gives

the best long-term value V∗(s) = maxπ{Vπ(s)}.

Principle of Optimality: An optimal policy has the property that

whatever the initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard to the

state resulting from the first decision. (Bellman, 1957)

This suggests that V∗ also satisfies a similar Bellman equation:

V∗(s) = max
a∈A(s)

{r(s, a) + γET (s,a) [V∗]}

So, V∗ is the fixed point of the operator

B̂ ∶(S → R)→ (S → R)
W ↦ λs, max

a∈A(s)
(r(s, a) + γET (s,a)[W]) _

16

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#bellman_max_op

Value Iteration

• The operators Bπ and B̂ are contractions wrt the max norm on

S → R.

• The long-term value Vπ and the optimal value V∗ are their respective

fixed points.

• The optimal policy π∗ can be computed once we know V∗.

• The Banach Fixed Point theorem says that the function iterates of a

contractive map converge to its fixed point.

• This gives us a recipe to compute V∗ and hence also the optimal

policy.

17

Value Iteration

• The operators Bπ and B̂ are contractions wrt the max norm on

S → R.

• The long-term value Vπ and the optimal value V∗ are their respective

fixed points.

• The optimal policy π∗ can be computed once we know V∗.

• The Banach Fixed Point theorem says that the function iterates of a

contractive map converge to its fixed point.

• This gives us a recipe to compute V∗ and hence also the optimal

policy.

17

Value Iteration

• The operators Bπ and B̂ are contractions wrt the max norm on

S → R.

• The long-term value Vπ and the optimal value V∗ are their respective

fixed points.

• The optimal policy π∗ can be computed once we know V∗.

• The Banach Fixed Point theorem says that the function iterates of a

contractive map converge to its fixed point.

• This gives us a recipe to compute V∗ and hence also the optimal

policy.

17

Value Iteration

• The operators Bπ and B̂ are contractions wrt the max norm on

S → R.

• The long-term value Vπ and the optimal value V∗ are their respective

fixed points.

• The optimal policy π∗ can be computed once we know V∗.

• The Banach Fixed Point theorem says that the function iterates of a

contractive map converge to its fixed point.

• This gives us a recipe to compute V∗ and hence also the optimal

policy.

17

Value Iteration

Value iteration proceeds by:

1. Initialize a value function V0 ∶ S → R.

2. Define Vn+1 = B̂Vn for n ≥ 0. At each stage, the following policy

(greedy policy) is computed

πn(s) ∈ argmaxa∈A(s) (r(s, a) + γET (s,a)[Vn])

18

Value Iteration – Pseudocode

Data:

Markov decision process (S ,A,T , r)
Initial value function V0 = 0

Threshold θ > 0

Discount factor 0 ≤ γ < 1

Result: V
∗

, the value function for an optimal policy.

for n from 0 to ∞ do

for each s ∈ S do

Vn+1[s] = maxa (r(s, a) + γET (s,a)[Vn])
end

if ∀s∣Vn+1[s] − Vn∣ < θ then
return Vn+1

end

end
19

Policy Iteration

Policy iteration is a similar iterative algorithm that benefits from a more

definite stopping condition. Define the Q function to be:

Qπ(s, a) ∶= r(s, a) + γET (s,a)[Vπ].

The policy iteration algorithm proceeds in the following steps:

1. Initialize the policy to π0.

2. Policy evaluation: For n ≥ 0, given πn, compute Vπn .

3. Policy improvement: From Vπn , compute the greedy policy:

πn+1(s) ∈ argmaxa∈A(s) [Qπn(s, a)]

4. Check if Vπn = Vπn+1 . If yes, stop.

5. If not, repeat (2) and (3).

20

Contraction Coinduction

The convergence proofs rely on the classical Banach fixed point theorem:

Theorem (Banach fixed point theorem on subsets _)

Let (X , d) be a complete metric space and φ a closed nonempty subset

of X . Let F ∶ X → X be a contraction and assume that F preserves φ.

Then F has a unique fixed point in φ; i.e., a point x
∗
∈ X such that

φ(x∗) and F (x∗) = x
∗

. The fixed point of F is given by

x
∗
= limn→∞ F

(n)(x0) where F
(n)

stands for the n-th iterate of the

function F .

21

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.LM.fixed_point.html#FixedPoint

Contraction Coinduction

We can restate this as:

φ ∶ X → Prop φ closed ∃x0, φ(x0) φ(u)→ φ(F (u))
φ(fix F x0)

_

This is called Kozen’s metric coinduction.

• This proof rule helps to streamline and simplify proofs of theorems

about streams and stochastic processes.

• It allows us to automatically infer that a given (closed) property holds

in the limit whenever it holds ab initio.

• Low level ε − δ arguments – typically needed to show that a given

property holds of the limit – are now neatly subsumed by a single

proof rule, allowing reasoning at a higher level of abstraction.

22

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#metric_coinduction

Contraction Coinduction

We can restate this as:

φ ∶ X → Prop φ closed ∃x0, φ(x0) φ(u)→ φ(F (u))
φ(fix F x0)

_

This is called Kozen’s metric coinduction.

• This proof rule helps to streamline and simplify proofs of theorems

about streams and stochastic processes.

• It allows us to automatically infer that a given (closed) property holds

in the limit whenever it holds ab initio.

• Low level ε − δ arguments – typically needed to show that a given

property holds of the limit – are now neatly subsumed by a single

proof rule, allowing reasoning at a higher level of abstraction.

22

https://FormalML.github.io/CPP21/documentation/html/FormalML.converge.mdp.html#metric_coinduction

Contraction Coinduction

Our convergence proofs use a specialized version of metric coinduction

called contraction coinduction (following Feys, Hansen and Moss) to

reason about order statements concerning fixed points of contractive maps.

Theorem (Contraction coinduction)

Let X be a non-empty, partially ordered, complete metric space in which

the sets {x∣x ≤ y} and {x∣x ≥ z} are closed for all y , z ∈ X. If

F ∶ X → X is a contraction and is order-preserving, then:

• ∀x ,F (x) ≤ x ⇒ x
∗
≤ x and

• ∀x , x ≤ F (x)⇒ x ≤ x
∗

where x
∗

is the fixed point of F .

23

Proofs by Contraction Coinduction

24

Proofs by Contraction Coinduction

25

Conclusions & Future Work

• Proved convergence of classical value and policy iteration algorithms

in Coq.

• Also computed optimal value functions (for a possibly non-stationary

policy) for a finite horizon MDP.

• Used the Giry monad and contraction coinduction to streamline and

simplify proofs.

• Stochastic Approximation algorithms for model-free RL algorithms

such as Q-learning etc.

26

