
Leonardo de Moura - Microsoft Research

Sebastian Ullrich - Karlsruhe Institute of Technology

January 4, 2021

Lean 4 - an overview
an extensible programming language and theorem prover

Thanks
Daniel Selsam - type class resolution, feedback, design discussions

Marc Huisinga and Wojciech Nawrocki - Lean Server

Joe Hendrix, Andrew Kent, Rob Dockins, Simon Winwood (Galois Inc) - early adopters,
suggestions, feedback

Daan Leijen, Simon Peyton Jones, Nikhil Swamy, Sebastian Graf, Max Wagner - design
discussions, feedback, suggestions

How did we get here?
Previous project: Z3 SMT solver (aka push-button theorem prover)

The Lean project started in 2013 with very different goals

A library for automating proofs in Dafny, F*, Coq, Isabelle, …

Bridge the gap between interactive and automated theorem proving

Improve the “lost-in-translation” and proof stability issues

Lean 1.0 - learning DTT

Lean 2.0 (2015) - first official release

Lean 3.0 (2017) - users can write tactics in Lean itself

Sebastian and I started Lean 4 in 2018

Lean in Lean

There is no specification!

Extensible programming language and theorem prover

A platform for trying new ideas in programming language and theorem prover design

A workbench for

Developing custom automation and domain-specific languages (DSL)

Software verification

Formalized mathematics

“You can't please everybody, so you've got to please yourself.” George R.R. Martin

begins

How we did it?

Lean is based on the Calculus of Inductive Constructions (CIC)

All functions are total

We want

General recursion

Foreign functions

Unsafe features (e.g., pointer equality)

The unsafe keyword

Unsafe functions may not terminate.

Unsafe functions may use (unsafe) type casting.

Regular (non unsafe) functions cannot call unsafe functions.

Theorems are regular (non unsafe) functions.

A compromise
Make sure you cannot prove False in Lean

Theorems proved in Lean 4 may still be checked by reference checkers

Allow developers to provide an unsafe version for any (opaque) function whose type is inhabited

LOGICAL CONSISTENCY IS PRESERVED

Primitives implemented in C

Sealing unsafe features

Lean 3 is interpreted and far from being a “full featured” programming language

Significant 2018 milestones

Removed all unnecessary features

New runtime and memory manager

New compiler and intermediate representation

Parsing engine prototype in Lean

core.lean in 56 secs, allocated > 200 million objects

two weeks later using code specializer: 5 secs (10x boost)

in

Leijen, Daan; Zorn, Benjamin; de Moura, Leonardo (2019). "Mimalloc: Free List Sharding in Action"

https://www.microsoft.com/en-us/research/uploads/prod/2019/06/mimalloc-tr-v1.pdf

Code specialization, simplification, and many other optimizations (beginning of 2019)

Generates C code

Safe destructive updates in pure code - FBIP idiom

“Counting Immutable Beans: Reference Counting Optimized for Purely Functional
Programming”, Ullrich, Sebastian; de Moura, Leonardo

Compiler

Lean 4 compiler is not a transpiler!

It changes how you write pure functional programs

Hash tables and arrays are back

It is way easier to use than linear type systems. It is not all-or-nothing

Lean 4 persistent arrays are fast

“Counting immutable beans” in the Koka programming language

“Perceus: Garbage Free Reference Counting with Reuse” (2020)

 Reinking, Alex; Xie, Ningning; de Moura, Leonardo; Leijen, Daan

Lean 4 red-black trees outperform non-persistent version at C++ stdlib

Result has been reproduced in Koka

FBIP

beginning 2019: core.lean in 20ms

• Using new compiler

• New design that takes advantage of FBIP

Parser

Type classes provide an elegant and effective way of managing ad-hoc polymorphism

Lean 3 TC limitations: diamonds, cycles, naive indexing

There is no ban on diamonds in Lean 3 or Lean 4

New algorithm based on tabled resolution

“Tabled Type class Resolution”

Selsam, Daniel; Ullrich, Sebastian; de Moura, Leonardo

Addresses the first two issues

More efficient indexing based on (DTT-friendly) “discrimination trees”

Discrimination trees are also used to index: unification hints, and simp lemmas

Type class resolution

Semigroup

Monoid CommSemigroup

CommMonoid

extends

Semigroup

Monoid CommSemigroup

CommMonoid

Lean 3 “old_structure_cmd” generates flat structures that do not scale well
Lean 4 (and Lean 3 new structure) command produce a more efficient representation

You can automate the generation of the last command if you want

Note that is better than naive flattening as it is done in the old_structure_cmd

Elaborator
Elaborator (and auxiliary modules) were developed in 2020

tactic framework, dependent pattern matching, structural recursion

Deleted the old frontend (implemented in C++) last October

Galois Inc finished converting their tool to the new frontend in November 10

We rarely write C/C++ code anymore, all Lean development is done in Lean itself

“Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages”

Ullrich, Sebastian; de Moura, Leonardo

Hygienic macro system

We have many different syntax categories.

Hygienic macro system

You can define your own categories too.

Your macros can be recursive.

Hygienic macro system

Hygiene guarantees that there is no accidental capture here

Many Lean 3 tactics are just macros

Hygienic macro system

There is no builtin begin … end tactic block in Lean 4, is this a problem?

Hygienic macro system

There is no builtin begin … end tactic block in Lean 4, is this a problem?

Hygienic macro system

What about my dangling commas? No problem

I want to use main stream function application notation: f(a, b, c)

Hygienic macro system

String interpolation

…

Started as a Lean example

String interpolation

do notation
Introduced by the Haskell programming language

Lean version is a DSL with many improvements
 Nested actions

 Rust-like reassignments and “return”

 Iterators + “break/continue”

It could have been implemented by users

do notation

do notation

Structured (and hygienic) tactic language

Structured (and hygienic) tactic language

match … with works in tactic mode, and it is just a macro

Structured (and hygienic) tactic language

Multi-target induction

Structured (and hygienic) tactic language
By default tactic generated names are “inaccessible”

You can disable this behavior using the following command

simp
Lean 3 simp is a major bottleneck

Two sources of inefficiency: simp set is reconstructed all the time, poor indexing

Indexing in DTT is complicated because of definitional equality

Lean 3 simp uses keyed matching (Georges Gonthier)

Keyed matching works well for the rewrite tactic because there are few failures

simp
Lean 4 uses discrimination trees to index simp sets

It is the same data structure used to index type class instances

Here is a synthetic benchmark

…

num. lemmas + 1 Lean 3 Lean4
500 0.89s 0.18s
1000 2.97s 0.39s
1500 6.67s 0.61s
2000 11.86s 0.71s
2500 18.25s 0.93s
3000 26.90s 1.15s

match … with
There is no equation compiler

Pattern matching, and termination checking are completely decoupled

Example:

expands into

match … with

We generate an auxiliary “matcher” function for each match … with
The matcher doesn’t depend on the right-hand side of each alternative

match … with

The new representation has many advantages

We can “change” the motive when proving termination

We “hides” all nasty details of dependent pattern matching

pp of the kernel term

match … with
Information about named patterns and inaccessible terms is preserved

pp of the kernel term

match … with
Equality proofs (similar to if-then-else)

match … with
Lean 3 bugs in the dependent pattern matcher have been fixed

Daniel was the first to report the bug, and it was “rediscovered” many times

Recursion
Termination checking is independent of pattern matching

mutual and let rec keywords

We compute blocks of strongly connected components (SCCs)

Each SCC is processed using one of the following strategies

non rec, structural, unsafe, partial, well-founded (todo)

Avoiding auxiliary declarations with let rec

…

let rec in theorems

Haskell-like “where” clause
Expands into let rec

Elaborator: named arguments
Named arguments enable you to specify an argument for a parameter by matching the
argument with its name rather than with its position in the parameter list

Elaborator: postpone and resume

Lean 3 has very limited support for postponing the elaboration of terms

Elaborator: postpone and resume

Same example using named arguments

Same example using anonymous function syntax sugar, and F# style $

Heterogeneous operators
In Lean3, +, *, -, / are all homogeneous polymorphic operators

What about matrix multiplication?

Nasty interactions with coercions.

Rust supports heterogenous operators

Heterogeneous operators: first attempt

Default instances: the missing feature

Heterogeneous operators in action

Scoped attributes
Lean 4 supports scoped instances, notation, unification hints, simp lemmas, …

Implicit lambdas

The Lean 3 curse of @s and _s

New feature: implicit lambdas

Implicit lambdas
The Lean 3 double curly braces workaround

Implicit lambdas
The Lean 4 way: no @s, _s, {{}}s

Implicit lambdas
We can make it nicer:

It is equivalent to

Unification hints

What about the kernel?
Same design philosophy:

Minimalism, no termination checker in the kernel, external type checkers

No inconsistency has ever been reported to a Lean developer

Foundations: the Calculus of Inductive Constructions (CIC)

Lean 4 kernel is actually smaller than Lean 3

You can write your own type checker if you want

Kernel changes
Support for mutual inductive types (Lean 2 supported them) and nested inductives

Mutual inductive types are well understood (Dybjer 1997)

Nested inductives can be mapped into mutual, but very convenient in practice

The kernel checks them by performing the expansion above

Kernel changes
Support for reducing Nat operations efficiently in the kernel

It only impacts performance

It is easy to support them in external type checkers

For additional details https://leanprover.github.io/lean4/doc/nat.html

…

…

https://leanprover.github.io/lean4/doc/nat.html

Kernel changes
No inconsistency has ever been reported to a Lean developer

If an inconsistency is found in the future, it will be tagged as a high priority bug

ITPs are still not widely used, soundness is not the issue

There are roughly two kinds of bugs in ITPs: conceptual and programming mistakes

Programming mistakes are easy to fix

Conceptual bugs are often much harder to fix

Lean minimalism is our defense against conceptual bugs

“During war+me, you don't study the ma+ng rituals of bu9erflies”

Documentation

The Lean manual is available at https://leanprover.github.io/lean4/doc/

It is still working in progress

Focus is “Lean as a programming language”

https://leanprover.github.io/lean4/doc/

Next steps
Well-founded recursion, auto-generated induction principles

UI feature parity with Lean 3: goal view, go to definition, and basic autocompletion

Missing tactics and decision procedures

Diagnostic tools (e.g., user-friendly traces)

Typed syntax quotations

Lean compiler in Lean

Interactive compilation DSL (conv for code generation)

User-defined #lang extensions (Racket)

Cleaning leftovers from old frontend

Testing and leanchecker tool

leanpkg polishing

How can I contribute?
Experiments, experiments, experiments, …

Try Lean 4 and isolate issues

Isolate Lean 3 issues and report to us

Example: Reid1.lean

Experiments
Crafted benchmarks that reflect performance problems in mathlib

Learn to profile

Heterogeneous vs homogeneous operators

Bundled vs unbundled structures

Lean 4 unification hints are much more robust than the ones available in Lean 3

Happy to reserve 1-2 hours per week to discuss issues using Zoom

“I need spiritual warriors” Alejandro Jodorowsky

I want to contribute to the Lean code base
Different cultural backgrounds CS vs Math

Happy to collaborate and listen, but time is finite

Many unsuccessful attempts in the past

Funny

“The inquisitor” asks a bunch of questions but doesn’t do anything

“The dreamer” has big ideas, but never delivers anything

“The socializer” wants to have fun, tell jokes, discuss wild ideas

“The clueless” requires a lot of attention, and can’t figure out anything

“The over confident” knows it all, although never built anything

Lean 4 is very extensible, you can customize it without modifying the main repository

“Programming is only fun, when the program doesn’t have to work” Mafé

Example of successful contribution
Andrew Kent (Galois Inc) wanted a better for .. in, traverse multiple structures in parallel

Approaches used in Rust and Racket create technical difficulties (e.g., termination)

Andrew prototypes a hybrid encoding where we have

Main traversal which guarantees termination

Auxiliary streams a-la Racket

We integrate Andrew’s idea at Do.lean

Thoughts on mathlib conversion
Play with Lean 4 before trying any serious conversion effort

Try feasibility experiments

Will Lean 4 keep changing?

There is no spec for Lean, we are trying new ideas

some features will be modified/removed

Suggestion (take it with a grain of salt)

Modify Lean 3 to export notation, class instances, and other mathlib relevant metadata

Write a tool for importing these data in Lean 4

Setup your build system to allow Lean 3 and Lean 4 files to coexist in the same project

Use Lean 4 for writing new files, and convert old ones on demand

Projects on our radar

Custom automation for the IMO grand challenge (Daniel Selsam)

Optimizing tensor computations and HPC (Olli Saarikivi)

SAT/SMT solver integration

Rust integration

DSLs on top of Lean, example: model checker

Conclusion
We implemented Lean4 in Lean

Very extensible system

Sealing unsafe features. Logical consistency is preserved

Compiler generates C code. Allows users to mix compiled and interpreted code

It is feasible to implement functional languages using RC

We barely scratched the surface of the design space

Source code available online. http://github.com/leanprover/lean4

http://github.com/leanprover/lean4

