\/

L ean 4 - an overview

an extensipble programming language and theorem prover

Leonardo de Moura - Microsoft Research
Sebastian Ullrich - Karlsruhe Institute of Technology

January 4, 2021

1Thanks

Daniel Selsam - type class resolution, feedback, design discussions

Marc Huisinga and Wojciech Nawrocki - Lean Server

Joe Hendrix, Andrew Kent, Rob Dockins, Simon Winwood (Galois Inc) - early adopters,
suggestions, feedback

Daan Leijen, Simon Peyton Jones, Nikhil Swamy, Sebastian Graf, Max Wagner - design
discussions, feedback, suggestions

How did we get here”/

Previous project: Z3 SMT solver (aka push-button theorem prover)
The Lean project started in 2013 with very different goals
A library for automating proofs in Dafny, F*, Coq, Isabelle, ...
Bridge the gap between interactive and automated theorem proving
Improve the “lost-in-translation” and proof stability issues
Lean 1.0 - learning DTT
Lean 2.0 (2015) - first official release

Lean 3.0 (2017) - users can write tactics in Lean itself

VN & DEgINS

Sebastian and | started Lean 4 in 2018
Lean in Lean

There is no specification!

Extensible programming language and theorem prover

A platform for trying new ideas in programming language and theorem prover design

A workbench for

Developing custom automation and domain-specific languages (DSL)
Software verification

Formalized mathematics

“You can't please everybody, so you've got to please yourself.” George R.R. Martin

How we did 1t/

Lean is based on the Calculus of Inductive Constructions (CIC)
All functions are total

We want
General recursion
Foreign functions

Unsafe features (e.qg., pointer equality)

The unsate keyword

Unsafe functions may not terminate.
Unsafe functions may use (unsafe) type casting.
Regular (non unsafe) functions cannot call unsafe functions.

Theorems are regular (non unsafe) functions.

A COMPromise

Make sure you cannot prove False in Lean
Theorems proved in Lean 4 may still be checked by reference checkers
Allow developers to provide an unsafe version for any (opaque) function whose type is inhabited
fé; LOGICAL CONSISTENCY IS PRESERVED
Primitives implemented in C

@lextern "1lean uint64 mix hash"]
constant mixHash64 : UInt64 - UInt64 - UInt64

Sealing unsafe features

@[inline] unsafe def withPtrEqUnsafe {a : Type u} (a b : a) (k : Unit -» Bool) (h : a=b - k () = true) : Bool :=
if ptrAddrUnsafe a == ptrAddrUnsafe b then true else k ()

@[implementedBy withPtrEqUnsafel
der withPtrEg {a = Type 1 (a b = a) (k * Upnit - Beal) (h = a=b = k () = Erie) = Bool == k ()

NG n | VNG

Lean 3 Is interpreted and far from being a “full featured” programming language

Significant 2018 milestones
Removed all unnecessary features
New runtime and memory manager

New compiler and intermediate representation

Parsing engine prototype in Lean
core.lean in 56 secs, allocated > 200 million objects

two weeks later using code specializer: 5 secs (10x boost)

Leijen, Daan; Zorn, Benjamin; de Moura, Leonardo (2019). "Mimalloc: Free List Sharding in Action"

https://www.microsoft.com/en-us/research/uploads/prod/2019/06/mimalloc-tr-v1.pdf

VN4 Compiler

Code specialization, simplification, and many other optimizations (beginning of 2019)

Generates C code
Safe destructive updates in pure code - FBIP idiom

“Counting Immutable Beans: Reference Counting Optimized for Purely Functional
Programming”, Ullrich, Sebastian; de Moura, Leonardo

Benchmark | Lean del cm |GHC gc cm |OCaml gc cm
binarytrees || 1.36s 40% 37 M/s| 4.09 72 120| 1.63 NA NA
deriv 099 24 32 1.87 51 32| 142 76 59
constfold 1.98 11 83 441 64 51 | 922 91 107
qsort 227 9 0 370 1 0 3.1 13 1

rbmap 057 2 6 1.37 39 24 | 057 31 27
rbmap_1 083 15 34 9.32 88 47 1.1 60 59
rbmap_10 29 27 55 041 88 48 | 586 88 89

Lean 4 compiler is not a transpiler!

NN FBIP

It changes how you write pure functional programs

Hash tables and arrays are back

It Is way easier to use than linear type systems. It is not all-or-nothing
Lean 4 persistent arrays are fast

“Counting immutable beans” in the Koka programming language

“Perceus: Garbage Free Reference Counting with Reuse” (2020)
Reinking, Alex; Xie, Ningning; de Moura, Leonardo; Leljen, Daan

Lean 4 red-black trees outperform non-persistent version at C++ stdlib

Result has been reproduced in Koka

/N Parser

beginning 2019: core.lean in 20ms

* Using new compiler

* New design that takes advantage of FBIP

structure ParserState where

stxStack : Array Syntax := #|[|
POS : StRINg.Pos ==
cache : ParserCache

errorMsg : Option Error := none

def pushSyntax (s : ParserState) (n : Syntax) : ParserState :=
{ s wnth stxStack = s.stxStack push n }

def popSyntax (s : ParserState) : ParserState :=
{ s with stxStack := s.stxStack.pop }

def shrinkStack (s : ParserState) (iniStackSz : Nat) : ParserState :=
{ s with stxStack := s.stxStack.shrink iniStackSz }

def next (s : ParserState) (input : String) (pos : Nat) : ParserState
{ s with pos := input.next pos }

/N & Type class resolution

Type classes provide an elegant and effective way of managing ad-hoc polymorphism

Lean 3 TC limitations: diamonds, cycles, naive indexing Semigroup

There i1s no ban on diamonds in Lean 3 or Lean 4 / \

New algorithm based on tabled resolution o pommemigroup
“Tabled Type class Resolution™ \ /

CommMonoid

Selsam, Daniel: Ullrich, Sebastian; de Moura, Leonardo

Addresses the first two issues
More efficient indexing based on (DT T-friendly) “discrimination trees”

Discrimination trees are also used to index: unification hints, and simp lemmas

N\ extends

Lean 3 “old_structure_cmd” generates flat structures that do not scale well
Lean 4 (and Lean 3 new structure) command produce a more efficient representation

class Semigroup (a : Type u) extends Mul a where
mul assec (A b e o) = a kb kc=a% (b k c)

Semigroup

class CommSemigroup (a : Type u) extends Semigroup o where
mul comm (a b = o) = a kb = h % 5 \

class Monoid (a : Type u) extends Semigroup a, One o where Monoid CommSemigroup

pne mul (a : a) = 4 % a = a \ /
a

muill one (@ & a) = & ki
CommMonoid

class CommMonoid (a : Type u) extends Monoid a where
mull eomm (a b : o) = a xb =D % a

instance [CommMonoid a] : CommSemigroup a where
mul_comm := CommMonoid.mul _comm

You can automate the generation of the last command if you want
Note that is better than naive flattening as it is done in the old_structure_cmd

/N4 Elaborator

Elaborator (and auxiliary modules) were developed in 2020
tactic framework, dependent pattern matching, structural recursion
Deleted the old frontend (implemented in C++) last October

Galois Inc finished converting their tool to the new frontend in November 10

& lean4 new frontend performance Nov 10, 2020

; ¥7.. Andrew Kent S:41 PN
h . appears our build times for reopt-vcg have gone from about 19min on the old frontend to under 6min on the new
frontend. Just wanted to say thanks and bravo! (v *i

We rarely write C/C++ code anymore, all Lean development is done in Lean itself

NG Hygienic macro system

“Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages”
Ullrich, Sebastian; de Moura, Leonardo

syntax ' @ ident (& : = term)i % // " Term - }' : term

macro_rules
[(S = Giype i/ S w) == (Subikype (GEun (Sxeiident = Slypel) ==t Gnj))
| ({ $% 7/ $p }) = (Subtype (fun (Saiident =) == o)

NG Hygienic macro system

We have many different syntax categories.

syntax Stx =t ' SEX
syntax SEX ¥ = CEX
syntax SEX it 1 ShX

syntax =2 sbkx = <|> o Styx=1 » SiX

macro_rules

s $p) == (st manyilSp)

“(stx| $p *) => " (stx| many($p))

(sl sp %) == @ (stx] eplional (Spl)

(st $pa <> $nol) == (chydl orelise(Spy. Snb)

You can define your own categories too.

—— Declare a new syntax category for "indexing" big operators
declare_syntax_cat index

syntax term:51 "<" ident "<" term : index

syntax term:51 =< 1dent <= Lenrm == term : Index

syntax ident "<-" term : 1ndex

syntax ident "<-" term " |" term : 1ndex

NG Hygienic macro system

Your macros can be recursive.

syntax "[" term,x "]" : term
syntax =%l kerpm x =l TFerm =1 : term

macro_rules
| (%] SISl ik || Sl ||) =
if x.size < 8 then
. folldrM (inat = l«¢) fun X l¢ ==
E(llisticons S $ki)

else
et m = x.s1ze / 2
let v = »Im:|
let z "= xl'ml

g v HE SIE SIS GES] GG]

%[$l6z] % | v 1) ‘\\\\‘

Hygiene guarantees that there is no accidental capture here

NG Hygienic macro system

Many Lean 3 tactics are just macros

syntax "funext " term:max+ : tactic

macro_rules
| “(tactic| funext $x:term) => " (tactic| apply funext; intro $x)
| (tactye]| Gunext Sxeterm $xsk) == ttactac] apply funext: intre $xEEerm: Funexdt: Sxsx)

theorem ex : (fun (x * Nat x Nat)] (v : Nat x Nat] => x 1 ¥ vi9]
(fiun O« & Nab x Nail) (77 = INak x INai) == 2.9 & x 1) == hy
Funexst (a b (. d)
show a + d =d + a
rw [Nat.addComm]

NG Hygienic macro system

There is no builtin begin .. end tactic block in Lean 4, is this a problem?

macro :hbegin @ ts:tactic % "‘end’%i = term => (by { $|StSlk F%$31)

theorem exl (x : Nat) : x + @ = 0 + x :=
begin
rw Nat.zeroAdd,
rw Nat.addZero
end

NG Hygienic macro system

There is no builtin begin .. end tactic block in Lean 4, is this a problem?

macro 'begin ' ts:tactic k end %i * term => (by { Sl$Eslk }%$7)

theorem exl (x : Nat) : X + 0 =0 + X :=
begin
rw Nat.zeroAdd,
rw Nat.addZero
end

What about my dangling commas®? No problem

macro 'begin - ts:tactic k. 7 “end %1 : term => by { $|Stslk rE$i)

theorem exl (x : Nat) : X + 0 =0 + x :=
begin
rw Nat.zeroAdd,
rw Nat.addZero,
end

NG Hygienic macro system

| want to use main stream function application notation: £ (a, b, c¢)

def £ (v = NaE) == x t 2%y
syntax term noWs " (" term,%x ")" : term

macro_rules
| ($f($args,*)) => " ($f $argsxk)

s#check f(1, 2)

N String interpolation

-- Assume 'y =5

let X =y + 1

L0 .println s!¥x: fix}. vy Lyxl
=t A XGE D VT D

e ¥ a4 FOSTrAng X Rk %, V: ' 4 taString vy

Started as a Lean example

partial def interpolatedStrFn (p : ParserFn) : ParserFn := fun c s =>
let input := C.1lnput
let stackSize := s.stackSize
let rec parse (startPos : Nat) (c : ParserContext) (s : ParserState) : ParserState :=
let i := S.posS

if input.atEnd i then
s.mKEOIError

else
let curr := input.get 1
let s = s.setPos (input.next 1)
if curr == '\"' then

let s := mkNodeToken interpolatedStrLitKind startPos c s
s.mkNode interpolatedStrKind stackSize

N String interpolation

syntax "throwError! " ((interpolatedStr term) <|> term) : term

macro_rules
| “(throwError! $msg) =>
if msg.getKind == interpolatedStrKind then
"(throwError (msg! $msqg))
else
"(throwError $msqg)

syntax:max "msg!" (interpolatedStr term) : term

macro_rules
| " (msg! $interpStr) => do
let chunks := interpStr.getArgs
let r « Lean.Syntax.expandInterpolatedStrChunks chunks (fun a b => "($a ++ $b)) (fun a => " (toMessageData $a))
"(($r : MessageData))

unless targetsNew.size == targets.size do
throwError! "invalid number of targets #{targets.size}, motive expects #{targetsNew.size}"

/N4 do notation

Introduced by the Haskell programming language

do { x1 <- actionl
s X2 <- action2
; mk action3 x1 x2 }

'

actionl >>= (\ x1 -> action2 >>= (\ x2 -> mk action3 x1 x2))

Lean version is a DSL with many improvements

Nested actions
Rust-like reassignments and “return”
lterators + “break/continue”

It could have been implemented by users

/N4 do notation

def sum (xs : Array Nat) : IO Nat := do

let mut s := 0

for x in xs do
O pEinEln siibe {ivi)s
S := S + X

return s

def contains (k : Nat) (pairs : Array (Nat x Nat)) : IO (Option Nat) := do

for (x, y) in pairs do
if k == x then
I0.println s!"found key {k}"
return y
return none

def processResult (alts : Array Syntax) (result : Array Meta.InductionSubgoal) (numToIntro : Nat := @) : TacticM Unit := do

if alts.isEmpty then
setGoals <| result.toList.map fun s => s.mvarld

else

unless alts.size == result.size do
throwError! "mistmatch on the number of subgoals produced ({result.size}) and alternatives provided ({alts.size})"

let mut gs := #[]
for i in [:result.size] do

let subgoal := result[i]
let mut mvarlId := subgoal.mvarld

if numToIntro > @ then
(_, mvarId) « introNP mvarId numToIntro

gs « evalAlt mvarId alts[i] gs
setGoals gs.tolList

/N4 do notation

abbrev M := StateT Nat (ExceptT String Id)

def withdraw (v : Nat) : M Unit := do
let s « get
if v > s then
throw "not enough funds”
modify (fun s => s - v)

def withdraw' (v : Nat) : M Unit := do
if v > (« get) then
throw "not enough funds”
1eelm ({0 o Wi

abbrev N := ReaderT Nat M

def deposit (v : Nat) : N Unit := do
if v + (« get) > (<« read) then
throw s!"exceeded maximum allowed {« read}"
modify (- + v)

del: test (v w = Nat) - N Inant := do
deposit v
withdraw w

\/\| Structured (and hygienic) tactic language

def Nat.ltWf : WellFounded Nat.lt := by
apply WellFounded.intro
I EREG)
induction n with
| zero =>
apply Acc.intro ©
alighEaler)
apply absurd h (Nat.notLtZero _)
[suce n in ==
apply Ace: inktro (Nat:stuec n)
intro m h
have m = n v m < n from Nat.eqOrLtOfLe (Nat.leOfSuccLeSucc h)
match this with
| Or.inl e => subst e; assumption
EOREAnE e == exack Ace: NV Ih e

\/\| Structured (and hygienic) tactic language

match .. with works in tactic mode, and it is just a macro

theoren concatEq (¢ & lkist o) (h = xs # [Bl) » concal (droplast xs) (last xs h) = xs = by
match xs, h with

| 1. h =>
apply False.elim
appllly i Eil
| Il h = il
| Xa2=xp xS, N ==
have x:2::xs # [] by intro h; injection h
have ih "= coneatEg (x>:xs) this
show > " coneat (draplkask \Xxaiixs)) (lasl (xorfxc) This) = G tn Xo XS
rewrite 1h
il

\/\| Structured (and hygienic) tactic language

Multi-target induction

theorem mod.inductionOn
{motive : Nat - Nat - Sort u}
(xy = Nat)
(ind = Y x vy: 0 <
(base : V x vy, —(0
: motive X y :=

X - motive (X — y) y - motive x y)
<

<
Vi = i) ot ivie e wi)

theorem modLt (x : Nat) {y : Nat} (h : y >0) : X%y <y := by
induction x, y using Nat.mod.inductionOn generalizing h with
[ind > Vi s 1 =>
rw [Nat.modEqSubMod hi.2]
exact 1h h
| base x y hi1 =>
match Iff.mp (Decidable.notAndIffOrNot ..) hi with
| Or.inl hi1 => exact absurd h hai
O InE hh ==
have hgt := Nat.gtOfNotLe h:
have heq := Nat.modEqOfLt hgt
rw [« heq] at hgt
assumption

\/\| Structured (and hygienic) tactic language

By default tactic generated names are “inaccessible”
You can disable this behavior using the following command

set_option hygienicIntro false 1in

theorem
INEEO
apply

apply
exact

theorem
NG EO
apply

apply
» exact

theorem
intro
apply
apply

exl {apqr:Prop} :p->(p-q) - (qg-r)->r := by

. Nl h2

h2

hl

a_l —— Bad practice, using name generated by " intro .
exZ ia p ar : Propr = D » (b > @) = (a »>r) > "= by
= hl h?2

h2

hl

a1l —— error "unknown identifier"

ex3 tap ar - Propr " b =~ (b » @) = (d > 1) = "= by

. hl n?
h2
hl

assumption

N simp

Lean 3 simp Is a major bottleneck

Two sources of inefficiency: simp set is reconstructed all the time, poor indexing
Indexing In DTT is complicated because of definitional equality

Lean 3 simp uses keyed matching (Georges Gonthier)

Keyed matching works well for the rewrite tactic because there are few failures

& lean4 mathlib performance issues

- Daniel Selsam (cDiTED)

¢

n_fails | simp lemma name

36845 FAIL: sub_right_inj

36858 FAIL:
36879 FAIL:
36895 FAIL:
36923 FAIL:
37108 FAIL:
37132 FAIL:
37202 FAIL:
37208 FAIL:
37232 FAIL:

mul_eq_zero
prod.mk.inj_iff
inv_eq_one
sub_left_inj
sum.inl.inj_iff
sum.inr.inj_iff
sum.inr_ne_inl
sum.inl_ne_inr
tt_eq_ff_eq_false

There are 15,000,000 simp failures in mathlib (top few in reverse):

@
(

Nov 06, 2019

[simp] lemma sub_right _inj : a - b =a -ce b =c
add FgnE 1Ny) Erans neqg ing

N simp

Lean 4 uses discrimination trees to index simp sets
It Is the same data structure used to index type class instances
Here is a synthetic benchmark

@[simp] axiom s@ (x : Prop) : f (g1l x) = f (g0 x)
@lisamp] axaom sl (x ® Prop) © f (g2 x) = f (gl Xx)
@lsimpl axion s2 (x = Prop) : & (g3 x) = [(g2 x)
@[simp] axiom s498 (x : Prop) : f (g499 x) = f (g498 x)
def test (" Prop) - f (g0 %) = F (499) == By simp

»#check test

num. lemmas + 1 Lean 3 Leand
500 0.89s 0.18s
1000 2.97s 0.39s
1500 6.67S 0.61s
2000 11.86s 0.71s
2500 18.25s 0.93s
3000 26.90s 1.15s

/N match ... with

There Is no equation compiller
Pattern matching, and termination checking are completely decoupled

Example:

def eraseldx : List a » Nat -» List «

L], => []

gi‘as. 0 => as
a::as, n+l => a :: eraseldx as n

expands into

def eraseldx (as ! last @) (1 * Nat) : lLicst a ==
match as, i with

L], => []

arfas. 0 => as
a::as, n+l => a :: eraseldx as n

/N match ... with

def eraseldx (as : lList a) (1 = Nat) = |list a "=
match as, i with

| []r s => |]

 @atsas, @ == a5
| ai=as; nEl == a "X epaseldx as

We generate an auxiliary “matcher” function for each match .. with
The matcher doesn’t depend on the right-hand side of each alternative

{a : Type u} -
(motive : List a - Nat -» Sort v) -

—— discriminants

(s " list o)

(1 = Nat) »

—-— alternatives

((x * Nat) > metive [l x) >

(la = o) » (as = list o) » mokive (a == as) 0) -

((@a * @) ~» (as = [ist o) ~» (n = Nat) - moktive (a *: as) (Nat.succ n))

-» motive as 1

/N match ... with

def eraseldx (as = List @) (1 = Nat) ® lList o "=
match as, i with

| []r s => |]

 @atsas, @ == a5
| ai=as; nEl == a "X epaseldx as

The new representation has many advantages
We can “change” the motive when proving termination pp of the kernel term
We “hides” all nasty details of dependent pattern matching

def lastiFoo. eraselidxc{iul = {g = ifvpe U » Lichk a » Nat o lllasE o ==
fun ta = Type ur (as © list a) (1 * Nat) =>
LS. hrecln as
(fitip (& = list a) \F = list . below E) (i 1 = Nat) =>
(match . i1 with

[e == i (i T st heliow [T ==

a "= as. 1 0 => fun (X ® List below (a == as 1)) => ac 1

a ** as 1 Nat succ n == fun (x " list:below (a *: as 1)) => a = PProd fst x. fSt n)
)

/N E match ... with

Information about named patterns and inaccessible terms is preserved

inductive Imf {a : Type u} {B : Type v} (f : a » B) : B » Type (max u v)
| mkd = ((a = o) > Tmf & (f a)

detf h ta P {f " a > B} * 4b = BF & Inf £ b =» o
. ImEamke a == 3

def h {u 1.-u 2) = ¥a ® Tyvpe u 1; » 1B * Tyne U 2F = {f * a = BF » b = BF o Mk £ b » a ==
fun ta = Type u 1r 48 = fvpe (1 2% {ff = g > BF ((x = B) (> = FmE §f x) ==

Maten X X1 wWith

| (i a);, Emf . mk a == @

def f : List Nat - List Nat
[xS @libEhs) == (s

| => []

geti I * |List Nat > |l 1st Nat '—

f“;‘]ai’éh:x'-vivsiih”at) i <4———— pp of the kernel term
[a ¥° xs@(b =° bs) => xc

| x 1 =>]

/N match ... with

Equality proofs (similar to if-then-else)

theorem ex (a & Bool) (pa : Prop) (h: = a = tElle » p) (h> = a = fallse » @) = DV d "
match h:a with

| true == OF inl (ha h)
| false == (U anE (h> W)

def head fa) (xs " List o) (h = xs = []) = o =
match he:xs with

[1 => absurd he h
| &: => X%

/N E match ... with

Lean 3 bugs in the dependent pattern matcher have been fixed
Daniel was the first to report the bug, and it was “rediscovered” many times

inductive Op : Nat - Nat - Type where inductive Foo : Bool - Type where

| mk : ¥V.n, Op nn | bar : Foo false

| haz @ E00 False
structure Node : Type where

1d1 : Nat defi g b : Bool) (x = Eae b) : Bool :=
diclor Nat | match b, x with
o : Op id: id: | Eeecibag == Crlle

| => false

def h (x " list Node) * Bool =
match x with
| == Nodemlc = (Op.mk @) == « '=> tprie
o => false

/NI Recursion

Termination checking is independent of pattern matching
mutual and let rec keywords

We compute blocks of strongly connected components (SCCs)
Each SCC is processed using one of the following strategies
non rec, structural, unsafe, partial, well-founded (todo)

def eraseldx (as @ ltist a) (i = Nat) = list a =
match as, i1 with

L1, . ==]

a::as, 0 => as
a::as, n+l => a :: eraseldx as n

def lListiEoo. eraselidx. tukr = {a = Type Ur ~ [Last o —» Nat - List a ==
fun ta & Type ufF (as @ List a) (i = Nat] ==
List.brecOn as
(fun. (t 2 [ast a) (f = [ast below £) (1 1 = Nat) ==
(maiEeh kit i ik

f)

[l e == F\in (il = st hellow [1) = [
a "= as 1. @ == fiin (% = list.below (a 22 as 1)) == as 1
d " as 1 Nat:succ n == filin (x * List below (a :: as 1)) == a -

PPEed fskt X Fst n)

/N4 Avoiding auxiliary declarations with et rec

private def addSCC (a : a) : M a Unit := do

let rec add
o newSEE => modify Tun s => { s with stack == [ll. secs = newSEE = s, sccs |

| b::bs, newSCC => do
resetOnStack b;
let newSCC := b::newSCC;
if a '= b then
add bs newSCC
else
mediify fun s == { s waith stack == bs sccs :
add (« get).stack []

NEWSEE =: € lsces ¥

/N let rec in theorems

theorem Tree.acyclic (x t : Tree) : x =t > x ¢ t := by
let Fec rrght (x s @ Tree) (b = TEee) (lh : x £ b) = node s xx# b A hode S X £ b = hy
match b, h with
| leaf, h =>

appily: Amd i inkEe | kEaviak
It EG I 1njection I

| node L r, h =>
have 1hl : X ¢ 1 » node s X
have i1hr : X ¢« r » node s X
have hl : Xx 1 X< | from h. 1
have hr : x I X < r from h 2.1

node s x « L from right x s 1

1
r node s X « r from right x s r

= A
= A
7= A
7 A
HE BN

let rec aux : (x : Tree) » X £ X
| leaf => trivial
| node 1 r => by
have ih: : 1L €« 1 from aux 1
have ih2 : r « r from aux r
show (hode | r = & A node L r &£ 1) A (hode | F = F A hode | F £ £) A Trie
apply And.intro
focus
apply left
assumption
applty. Ahd QhkEREo. | iV Al
focus
apply right
assumption
L ieple) [g
subst h
apply aux

-

Expands into 1et rec

private def toKey (n

de

/\

V

L Haskell-like “where” clause

loep n [
where

Lloop

f h
|G
| x+1

where

g X !

Name.str p s
Name.num p n _, parts
Name.anonymous,

* Nat —> Nat
=>g@
=> (g (h X)

X + 1

—

2 Name] = List NanePark =

parks => loop p (NamePapnpt st s "=
=> loop p (NamePart.num n ::

parts => parts

parts)
parts)

N & Elaborator: named arguments

Named arguments enable you to specify an argument for a parameter by matching the
argument with its name rather than with its position in the parameter list

def sum (s " list Nat) ==

xs fieldt (init ==) Fan s x == 5 4 X
example {a b : Nat} {p : Nat -» Nat -» Nat - Prop} (h: : p a b b) (h2 : b = a)
E P aab "=
Eg.subst (motive := fun x => p a x b) h2 ha

def sumOdd (xs : List Nat) :=
xis foldl (1pnat "= @) fun s x =
1+ X % == 1 then s + x else s

/N & Elaborator: postpone and resume

Lean 3 has very limited support for postponing the elaboration of terms

def ex1l (xs : list (list nat)) : io unit :=
io.print_ln (xs.foldl (fun r x, r.union x) []) —-— dot-notation fails at "r.union x

def ex2 (xs : list (list nat)) : io unit :=
io.print_1ln (xs.foldl (fun (r : list nat) x, r.union x) []) —— fix: provide type

gdef exl (xs ® last (Last Nat)) = 10 linit ==
I0_println (xs foldl (Fun & X == E.Unien xj 1)

* Same example using named arguments

def exl (xs * list (llast Nat)) = 10 Unik "=
10 println $ s foldll (apits == 1) Fun ¢ X == & INion X

+ Same example using anonymous function syntax sugar, and F

def exl (xs ' list ([List Nat)) ¢ 10 lpit =
10 praintin <| xs foldl (inat == [1) (:.unaon :)

/N & Elaborator: postpone and resume

style $

NN\ Heterogeneous operators

*

In Leang, +, *, -, / are all homogeneous polymorphic operators
has add.add : Il {a : Type u 1} [c : has add a], a =» a - «
What about matrix multiplication?
Nasty interactions with coercions.
variables (x : nat) (i : int)

fcheck 1 + X — ok
#check X + 1 — error

Rust supports heterogenous operators

I\ 4 Heterogeneous operators: first attempt

class HAdd (a : Type u) (B : Type v) (y : outParam (Type w)) where
hAdd : aa - B - vy

anfix\ =65 (priority = high) '+ => HAdd hAdd

instance : HAdd Nat Nat Nat where
hAdd := Nat.add

variable (x : Nat)

»#check fun y => x + y — Error: we can't synthesize HAdd instance

I\ & Default instances: the missing feature

@[defaultInstance]

instance [Add a] : HAdd a a a where
hAdd = Add add

variable (x : Nat)

s#check fun y => x + vy

NN Heterogeneous operators In action

instance [Add a] : Add (Matrix m n a) where
add x vy i s i g vl]

instance [Mul al] [Add a] [Zero a] : HMul (Matrix m n a) (Matrix n p a) (Matrix m p a) where
hMuilE x v it a=f dotPredict (xJi- 1) (vii=" §l)

instance [Mul al] : HMul a (Matrix m n a) (Matrix m n a) where
hMul @ x 2 j == ¢ % x[i. 3]

def exl (a b @ Nat) (x : Matrix 10 20 Nat) (v = Matpix 20 10l Nat) (z = Matpix 10 10 Nat) = Matrix 10 10 Nat ==
a kX kv b k 7

def ex2 (a b = Nat) (O« = Matpax m n Nat) (v = Matieixan m Nat) (z = Matprixcm m Nat) = Matpax m m NaE ==
d kxkwy x b % 7

N4 Scoped attributes

Lean 4 supports scoped instances, notation, unification hints, simp lemmas, ...

namespace NatOp

high) "+ => Nat.add
high) =% == Nat mul

scoped infixl:65 (priority :
scoped infix1:70 (priority :

end NatOp

variables (n : Nat) (i : Int)

»#check n + 1

»#check 1 + n

—— We are still using the builtin heterogeneous +

open NatOp —— activate notation in the NatOp namespace
»#check n + n

»#check n + 1 —— Error

N Implicit lambdas

New feature: implicit lambdas

structure state_t (o : Type u) (m : Type u -» Type v) (a : Type u) : Type (max u v) :=
(run : 0 » m (a x o))

def state_t.pure {o} {m} [monad m] {a} (a : a) : state_t o m a :=
(A s, pure (a, s))

def state_t.bind {o} {m} [monad m] {a B} (x : state_t oma) (f : a » state_t o m B) : state_t o m B :=
(As, do (a, s') « x.run s, (f a).run s')

instance {c} {m} [monad m] : monad (state_t o m) :=
{ pure := @state_t.pure _ _ _,
bind := @state_t.bind _ _ _ }

\

The Lean 3 curse of @s and s

(run :

VN

structure state t (o :

o-m(a x o))

The Lean 3 double curly braces workaround

def state_t.pure {o} {m} [monad m] {{a}} (a /£ a)
(A s, pure (a, s))

def state_t.bind {o} {m} [monad m] {{a B}} (x :

(A s, do (a, s') « X.run s,

instance {o} {m} [monad m]
{ pure :
bind :

state_t.pure,
state_t.bind }

(f a).run s')

: monad (state_t o m) :

" Implicit lambdas

Type u) (m : Type u -» Fpefv) (a : Type u)

: state.t om a :

: Type (max u v) :=

state. t om a) (f :

a » state_t o m B)

: state_t om B :=

N Implicit lambdas

The Lean 4 way: no @s, _s, {{}}s

def StateT (o : Type u) (m : Type u -» Type v) (a : Type u) : Type (max u v) :=
o -»m (ax x o)

protected def StateT.pure [Monad m] (a : a) : StateT om a :=
fun s => pure (a, s)

protected def StateT.bind [Monad m] (x : StateT oma) (f : a - StateT o m B) : StateT om B :=
fun s => do let (a, s) ¢« xus®= § a S

instance [Monad m] : Monad (StateT o m) where
pure := StateT.pure
plnd = Statel.pbind

N Implicit lambdas

We can make It nicer:

def StateT (o : Type u) (m : Type u -» Type v) («
o »-m (a x o)

instance [Monad m] : Monad (StateT o m) where
pure a = fun s == pure (a: s)
baind x f "= fun s == do let (@ s) e x s* f 3 <

* It Is equivalent to

def StateT (o : Type u) (m : Type u - Type v) («
g > m (g > o)

instance [Monad m] : Monad (StateT o m) where
pure a s == pure (a, s)
bind x £ s = do let (a. S) & x s* £ a S

: Type u)

: Type u)

: Type (max u v) :=

: Type (max u v)

NN4 Unification hints

structure Magma.{u} where unif_hint (s

a : Type u s =7= Nat.Magma

mull = a > a - a |-

.00 == Nakt

instance : CoeSort Magma (Type u) where

coe m := m.Q unif_hint
def mu} {sb: Magma} (a b : s) : s := N o2
S.Mut a ol =7i=
. . : : : ¢ =¢= Pr
anfaxl =70 (priopity == hagh) e == mil r
def Nat. Magma : Magma where S.a =7=
(0] = Nat
mult a b == Natmult a b def f (x vy

(XI Y y_l) * (XI Y y+1)

def Prod.Magma (m : Magma) (n : Magma) : Magma where

(s
(n
B
0
ro

W

: Magma) (m :
: Magma) (B :

d.Magma m n

X
(@)

: Magma) where

Magma)

Type u) (6 :

. Nat) = Nat x Nat x Nat -

0 =m0 X nea H#eval T 2 10

mul a b -

(a1 £ bl a2 % b.?2) -—— (4, 100, 99)

Type v) where

VWhat about the kermel”?

Same design philosophy:
Minimalism, no termination checker in the kernel, external type checkers

You can write your own type checker if you want

Foundations: the Calculus of Inductive Constructions (CIC)

No inconsistency has ever been reported to a Lean developer

Lean 4 kernel is actually smaller than Lean 3

Kernel changes

Support for mutual inductive types (Lean 2 supported them) and nested inductives

Mutual inductive types are well understood (Dybjer 1997)

Nested inductives can be mapped into mutual, but very convenient in practice

mutual

inductive Expr where
inductive Expr where | Vel = Naile s EXin;
| var : Nat - Expr * | el d Lalenaadslr - (27
[app = List BExXpE — EXDE _ _ .
inductive ListExpr where
[l B TS EEXT:
[cons & BEXpE - ListExplE — 1S tEXpI:

end

The kernel checks them by performing the expansion above

Kernel changes

Support for reducing Nat operations efficiently in the kernel

It only impacts performance
It Is easy to support them in external type checkers

For additional details https://leanprover.github.io/lean4/doc/nat.html

theorem ex

: 1000000000000000 % 2000000000000000000 = 2000000000000000000000000000000000 :=
il

def BV (n : Nat) : Type := ...

def concat (x : BV n) (y : BV m) : BV (n+m) := ...

def f (x : BV 512) (y : BV 1024) : BV 2048 :=
concalt x (concat < v

https://leanprover.github.io/lean4/doc/nat.html

Kernel changes

No inconsistency has ever been reported to a Lean developer

If an inconsistency is found in the future, it will be tagged as a high priority bug

ITPs are still not widely used, soundness is not the issue

There are roughly two kinds of bugs in ITPs: conceptual and programming mistakes

Programming mistakes are easy to fix
Conceptual bugs are often much harder to fix

Lean minimalism is our defense against conceptual bugs

“During wartime, you don't study the mating rituals of butterflies”

—/N\| & Documentation

The Lean manual is available at https.//leanprover.github.io/lean4/doc/

It Is still working In progress

Focus is “Lean as a programming language”

What is Lean

Lean is a functional programming language that makes it easy to write correct and maintainable
code. You can also use Lean as an interactive theorem prover.

Lean programming primarily involves defining types and functions. This allows your focus to remain
on the problem domain and manipulating its data, rather than the details of programming.

-— Defines a function that takes a name and produces a greeting. v
def getGreeting (name : String) := s!"Hello, {name}! Isn't Lean great?"

https://leanprover.github.io/lean4/doc/

Next steps

Well-founded recursion, auto-generated induction principles

Ul feature parity with Lean 3: goal view, go to definition, and basic autocompletion
Missing tactics and decision procedures

Diagnostic tools (e.g., user-friendly traces)

Typed syntax quotations

Lean compiler in Lean

Interactive compilation DSL (conv for code generation)

User-defined #lang extensions (Racket)

Cleaning leftovers from old frontend
Testing and leanchecker tool

leanpkg polishing

HOw can | contribute”/

Experiments, experiments, experiments, ...
Try Lean 4 and isolate issues
|Isolate Lean 3 issues and report to us

Example: Reid1.lean

structure constantFunction (a B : Type) := structure ConstantFunction (o B : Type) where
(f : a-B) fi = a > B
(h : Va1 a2z, far="F az) h : Va1 a2, f ar = f a:
instance {a B : Type} : has_coe_to_fun (constantFunction a B) := instance : CoeFun (ConstantFunction a B) (fun _ => a - B) where
(_, constantFunction.f) COe G = G-I
def g {a : Type} : constantFunction a (option a) := def g {a : Type} : ConstantFunction a (Option a) where
{ f := fun a, none, f a := none
h := fun a1 a2z, rfl } h a1 a2 "= pfil
#check g 3 #check g 3
#check @ nat 3 #check g (a := Nat) 3

#check @g Nat 3

—Xpernments

Crafted benchmarks that reflect performance problems in mathlib

Learn to profile
Heterogeneous vs homogeneous operators

Bundled vs unbundled structures

Lean 4 unification hints are much more robust than the ones available in Lean 3

Happy to reserve 1-2 hours per week to discuss issues using Zoom

“I need spiritual warriors” Alejandro Jodorowsky

| want to contribute 1o the Lean coge pase

Different cultural backgrounds CS vs Math
Happy to collaborate and listen, but time is finite
Many unsuccessful attempts in the past
Funny
“The inquisitor” asks a bunch of questions but doesn’t do anything
“The dreamer” has big ideas, but never delivers anything
“The socializer” wants to have fun, tell jokes, discuss wild ideas
“The clueless” requires a lot of attention, and can’t figure out anything

“The over confident” knows it all, although never built anything

Lean 4 is very extensible, you can customize it without modifying the main repository

“Programming is only fun, when the program doesn’t have to work” Mafe

—xample of successtul contriobution

Andrew Kent (Galois Inc) wanted a better for .. in, traverse multiple structures in parallel

def £ (xs : Anrray Nat) (s : last (Nat x Nat)) = g pat ==
for x in xs, (y1, y2) in ys do
IO prinkln sl 4%} {vy | vol

Approaches used in Rust and Racket create technical difficulties (e.g., termination)
Andrew prototypes a hybrid encoding where we have

Main traversal which guarantees termination

Auxiliary streams a-la Racket

We integrate Andrew’s idea at Do.lean

- ° Andrew Kent

' Coming back after a weekend and seeing it already pushed is a wonderful surprise - it looks great! &% I'm going to
have to go brag to my kids | got one of my presents early this year &=

S
v 3

[houghts on matnlio conversion

Play with Lean 4 before trying any serious conversion effort
Try feasibility experiments
Will Lean 4 keep changing?
There Is no spec for Lean, we are trying new ideas
some features will be modified/removed
Suggestion (take it with a grain of salt)
Modify Lean 3 to export notation, class instances, and other mathlib relevant metadata
Write a tool for importing these data in Lean 4
Setup your build system to allow Lean 3 and Lean 4 files to coexist in the same project

Use Lean 4 for writing new files, and convert old ones on demand

Projects on our radar

Custom automation for the IMO grand challenge (Daniel Selsam)
Optimizing tensor computations and HPC (Olli Saarikivi)
SAT/SMT solver integration

Rust integration

DSLs on top of Lean, example: model checker

Conclusion

We implemented Lean4 in Lean

Very extensible system

Sealing unsafe features. Logical consistency is preserved

Compiler generates C code. Allows users to mix compiled and interpreted code
It is feasible to implement functional languages using RC

We barely scratched the surface of the design space

Source code available online. http://github.com/leanprover/lean4

http://github.com/leanprover/lean4

