
Provably Deductive Assurance Cases
Leveraging Lean for Safety Modelling

Logan Murphy, Marsha Chechik, Torin Viger, Alessio Di Sandro, Ramy
Shahin

University of Toronto

January 2021

Logan Murphy Provably Deductive Assurance Cases January 2021 1 / 32

Contents

Introduction to Assurance Cases & Potential Uses for Lean

Previous Work

MMINT-A / Model Management for Software Assurance

Formality in Assurance Cases

Lean/MMINT-A Integration

Lean/MMINT-A Workflow Example

Contributions & Lessons Learned

Future Work

Logan Murphy Provably Deductive Assurance Cases January 2021 2 / 32

Introduction to Assurance Cases

Problem of evaluating software safety:

How can we know that the software we deploy is safe and won’t
exhibit undesired behaviour?

Different approaches: testing, code review, benchmarks, model
checking, automated theorem provers...

Particularly important for safety-critical domains.

What sort of evidence should a safety engineer or regulator look for?

How does one manage that evidence?

Logan Murphy Provably Deductive Assurance Cases January 2021 3 / 32

Introduction to Assurance Cases

Some industries have embraced the use of goal-based safety cases:

A clear, comprehensive and defensible argument that a system is
acceptably safe to operate in a particular context1.

Author determines what evidence is appropriate

We use the term assurance case (AC) to generalize beyond safety
requirements

Security

Privacy

1Tim Kelly and Rob Weaver (2004). The Goal Structuring Notation–A Safety Argument

Notation.
Logan Murphy Provably Deductive Assurance Cases January 2021 4 / 32

Introduction to Assurance Cases

An AC consists of claims about the
system. A claim can be supported by
documenting context, evidence and
assumptions.

Logan Murphy Provably Deductive Assurance Cases January 2021 5 / 32

Assurance Case Notation

E.g. Goal Structuring Notation (GSN)

Logan Murphy Provably Deductive Assurance Cases January 2021 6 / 32

Assurance Case vs. Proof

An AC is not a formal proof.

Needs to be reviewed and understood by stakeholders with different
backgrounds

An AC is not even an informal proof.

Primarily uses inductive reasoning, e.g. “Evidence suggests that errors
are sufficiently unlikely”.

Full formalization and automation of AC creation and assessment is not
realistic or even desireable.

Logan Murphy Provably Deductive Assurance Cases January 2021 7 / 32

Deductive Reasoning in ACs

However, ACs still rely on deductive reasoning (usually implicitly).

Fallacious reasoning exists in real-world ACs2.

Manual review is an unreliable mitigation strategy3.

We would like to

Identify fragments of ACs where deductive reasoning can be made
explicit

Use a formal (i.e. deductive) framework to validate those fragments.

2William S. Greenwell et al. A taxonomy of fallacies in system safety arguments. 2006.
3John Rushby. The interpretation and evaluation of assurance cases. 2015.

Logan Murphy Provably Deductive Assurance Cases January 2021 8 / 32

Lean for Assurance Cases

We hope to use Lean as:

A framework to formally express and prove properties of AC claims

A tool to assist in generating formal evidence used in ACs

Current work with Lean builds on two threads of previous work.

Logan Murphy Provably Deductive Assurance Cases January 2021 9 / 32

Previous Work: Model Management for Assurance Cases

1. MMINT : Eclipse-based model management framework4.

2. MMINT-A : Extended for assurance case management in the
automotive domain5.

3. MMINT-A 2.0 : Extended to support lifecycle maintenance of system
and safety models6

More information: https://github.com/adisandro/MMINT

4A. Di Sandro et al. “MMINT: A Graphical Tool for Interactive Model Management”. In:

P&D @ MoDELS. 2015.
5Nick L. S. Fung et al. “MMINT-A: A Tool for Automated Change Impact Assessment on

Assurance Cases”. In: Computer Safety, Reliability, and Security. 2018.
6A. Di Sandro et al. MMINT-A 2.0: Tool Support for the Lifecycle of Model-Based Safety

Artifacts. MODELS ’20. 2020.
Logan Murphy Provably Deductive Assurance Cases January 2021 10 / 32

https://github.com/adisandro/MMINT

Previous Work: Formality in Assurance Cases

One possible framework for validating AC fragments focuses on claim
decomposition strategies7.

7Torin Viger et al. Just Enough Formality in Assurance Argument Structures. Computer

Safety, Reliability, and Security (SAFECOMP), 2020.
Logan Murphy Provably Deductive Assurance Cases January 2021 11 / 32

Previous Work: Formality in Assurance Cases

Restrict ourselves to claims of a particular form:

Fix a type α. A claim consists of a set X of elements of type α, and a
property (predicate) P on α.

To a claim C (X ,P) we assign the meaning

∀x ∈ X ,P(x)

Logan Murphy Provably Deductive Assurance Cases January 2021 12 / 32

Previous Work: Formality in Assurance Cases

Given an claim C , a strategy is a map from C to a list of claims
C1,C2, ...Cn.

A strategy S is called deductive iff

(C1 ∧ C2 ∧ ... ∧ Cn) =⇒ C

We can identify two useful classes of decomposition strategies: Domain
Decomposition and Property Decomposition.

Logan Murphy Provably Deductive Assurance Cases January 2021 13 / 32

Previous Work: Formality in Assurance Cases

The purpose of this framework is to provide “templates” for deductive
decomposition strategies.

Logan Murphy Provably Deductive Assurance Cases January 2021 14 / 32

Previous Work: Formality in Assurance Cases

Preferable: use a concrete proof!

Logan Murphy Provably Deductive Assurance Cases January 2021 15 / 32

Formalization

As expected, it was easy enough to formalize the [Viger et al. 2020]
framework in Lean.

theorem deductive_of_justfd (Γ : property.auxiliary α) :
justified Γ → deductive α (property.to_strategy Γ)

theorem deductive_of_justfd_comp (Γ : domain.auxiliary α β) :
justified Γ → complete Γ → deductive α (domain.to_strategy Γ)

Now, we can try to use this formalization in MMINT-A to facilitate AC
verification.

Logan Murphy Provably Deductive Assurance Cases January 2021 16 / 32

Lean/MMINT-A Integration : What models to use?

Needed to experiment with a class of
system models to be the subject of
AC claims.

We chose to start with Labelled
Transition Systems (LTS’s), since
they’re simple, useful and ubiquitous.

Logan Murphy Provably Deductive Assurance Cases January 2021 17 / 32

Lean/MMINT-A Integration : Strategy Specification

We can define LTS’s in Lean and provide a framework to make claims
about their paths using temporal logic properties.

However, we also don’t want to force our users to learn to write Lean
themselves in order to use MMINT-A.

How can users express a decomposition strategy about their LTS in a way
Lean can understand?

Logan Murphy Provably Deductive Assurance Cases January 2021 18 / 32

Logan Murphy Provably Deductive Assurance Cases January 2021 19 / 32

Lean/MMINT-A Integration : Strategy Specification

We provide a Lean-encoded “catalogue” of ∼ 30 temporal logic formula
patterns commonly used in verifying concurrent/reactive systems8 .

8M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for

finite-state verification. Proceedings of the 1999 International Conference on Software

Engineering (IEEE Cat. No.99CB37002), 1999.
Logan Murphy Provably Deductive Assurance Cases January 2021 20 / 32

Lean/MMINT-A Integration : Strategy Specification

MMINT-A UI allows the specification of LTS properties without writing
Lean code manually.

{ property.auxiliary .
Clm := {

Claim .
X := {x : path VM | true},
P := λ (π : path VM), sat (precedes.globally pay restart) π
},

Props := [λ (π : path VM), sat (absent.before pay serve) π,
λ (π : path VM), sat (precedes.globally serve restart) π]

}

Logan Murphy Provably Deductive Assurance Cases January 2021 21 / 32

Lean/MMINT-A Integration : Strategy Specification

MMINT-A UI allows the specification of LTS properties without writing
Lean manually.

{ property.auxiliary .
Clm := {

Claim .
X := {x : path VM | true},
P := λ (π : path VM), sat (precedes.globally pay restart) π

},
Props := [λ (π : path VM), sat (absent.before pay serve) π,

λ (π : path VM), sat (precedes.globally serve restart) π]

}

Logan Murphy Provably Deductive Assurance Cases January 2021 22 / 32

Lean/MMINT-A Integration : Automation

Given a Lean specification of a property decomposition strategy, we want
to use Lean’s metaprogramming framework to (try to) find a proof that it
is deductive.

Logan Murphy Provably Deductive Assurance Cases January 2021 23 / 32

Lean/MMINT-A Integration : Automation

Since we assume Lean-literate users need the least “help”, we’ve focused
on automating strategies using our property catalogue.

Idea : if we assume that all the properties are going to be chosen from our
catalogue, we can build a database of proofs using those particular formula
patterns.

Logan Murphy Provably Deductive Assurance Cases January 2021 24 / 32

Lean/MMINT-A Integration : Automation
Example : Suppose “target” property is of the form

precedes.globally P Q

−− if Q happens, P must happen first

We can prove the following:

variable M : LTS

−− Holds because Q never happens
lemma vacuous (P Q : formula M) (π : path M) :
(sat (absent.globally Q) π) → sat (precedes.globally P Q) π

−− Holds because Q can’t happen before P
lemma by_absent_before (P S : formula M) (π : path M) :
(sat (absent.before S P) π) ∧ (sat (exist.globally P) π)
→ sat (precedes.globally P S) π :=

−− Holds because ‘‘precedes’’ is transitive
lemma by_transitive (P Q R : formula M) (π : path M) :
(sat (precedes.globally P Q) π) ∧ (sat (precedes.globally Q R) π)
→ (sat (precedes.globally P R) π) :=

Logan Murphy Provably Deductive Assurance Cases January 2021 25 / 32

Decision Procedure

Logan Murphy Provably Deductive Assurance Cases January 2021 26 / 32

Decision Procedure

meta def switch (str : string) : tactic string :=
do

tgt � tactic.target, ctx � tactic.local_context,
match tgt with

| ‘(sat (precedes.globally %%tok1 %%tok2) _) :=
precedes.globally.solve tok1 tok2 str ctx

| ‘(sat (absent.globally %%tok1) _) :=
absent.globally.solve tok1 str ctx

| ...
| _ := return string.empty
end

Logan Murphy Provably Deductive Assurance Cases January 2021 27 / 32

Decision Procedure

meta def solve (tok1 tok2 : expr) (str : string) : list expr → tactic string

| [] := return string.empty
| (h::t) :=
do typ � infer_type h,
match typ with

| ‘(sat (precedes.globally _ %%new) _) :=
solve_by_transitive tok1 tok2 new str < | > solve t

| ‘(sat (absent.before _ _) _) :=
solve_by_absent_before tok1 tok2 str < | > solve t

| ...
| _ := solve t

end

Logan Murphy Provably Deductive Assurance Cases January 2021 28 / 32

Decision Procedure

meta def solve_by_absent_before (tok1 tok2 : expr) (str : string) :
tactic string :=
do

tactic.interactive.apply ‘‘(by_absent_before %%tok1 %%tok2),
t1 � tactic_format_expr tok1,
t2 � tactic_format_expr tok2,
new_str str $
"apply precedes.globally.by_absent_before " ++
t1.to_string ++ " " ++
t2.to_string ++ ",\n"

Logan Murphy Provably Deductive Assurance Cases January 2021 29 / 32

Lean/MMINT-A Workflow Example

Suppose we are a MMINT-A user, and we want to verify a claim
decomposition regarding a vending machine.

1. Create a system model in
MMINT-A

2. Perform model-to-Lean
translation

3. Specify a property
decomposition strategy

4. Receive complete (or partial)
tactic script

Logan Murphy Provably Deductive Assurance Cases January 2021 30 / 32

Lean/MMINT-A Workflow Example

1. Create a system model in
MMINT-A

2. Perform model-to-Lean
translation

3. Specify a property
decomposition strategy

4. Receive complete (or partial)
tactic script

Logan Murphy Provably Deductive Assurance Cases January 2021 30 / 32

Lean/MMINT-A Workflow Example

1. Create a system model in
MMINT-A

2. Perform model-to-Lean
translation

3. Specify a property
decomposition strategy

4. Receive complete (or partial)
tactic script

Logan Murphy Provably Deductive Assurance Cases January 2021 30 / 32

Lean/MMINT-A Workflow Example

1. Create a system model in
MMINT-A

2. Perform model-to-Lean
translation

3. Specify a property
decomposition strategy

4. Receive complete (or partial)
tactic script

Logan Murphy Provably Deductive Assurance Cases January 2021 30 / 32

Conclusion: Contributions & Lessons Learned

What have we contributed?

Formalizations (ACs, LTS’s, LTL) - although simple and not
necessarily novel

Methodology for integrating Lean/proof assistants in AC management

Case study in leveraging Lean in a novel domain

What have we learned?

Lean has potential for real contribution in AC domain

Tradeoffs: Usability, integration challenges, expressiveness,
automation...

Lean & Meta-Lean

Logan Murphy Provably Deductive Assurance Cases January 2021 31 / 32

Conclusion: Future Work

Improve MMINT-A UI, improve metaprogramming, generalize beyond
LTS’s

How to use evidence generated by Lean in real-world ACs

New formalizations of AC fragments

Different uses for Lean/similar tools in AC managemet

Lean 4?

Logan Murphy Provably Deductive Assurance Cases January 2021 32 / 32

