Provably Deductive Assurance Cases
Leveraging Lean for Safety Modelling

Logan Murphy, Marsha Chechik, Torin Viger, Alessio Di Sandro, Ramy
Shahin

University of Toronto

January 2021

Logan Murphy Provably Deductive Assurance Cases January 2021 1/32

Contents

Introduction to Assurance Cases & Potential Uses for Lean

Previous Work

o MMINT-A / Model Management for Software Assurance

e Formality in Assurance Cases

Lean/MMINT-A Integration

Lean/MMINT-A Workflow Example

Contributions & Lessons Learned

o Future Work

Logan Murphy Provably Deductive Assurance Cases January 2021 2/32

Introduction to Assurance Cases

Problem of evaluating software safety:

@ How can we know that the software we deploy is safe and won't
exhibit undesired behaviour?

o Different approaches: testing, code review, benchmarks, model
checking, automated theorem provers...

o Particularly important for safety-critical domains.

What sort of evidence should a safety engineer or regulator look for?

How does one manage that evidence?

Logan Murphy Provably Deductive Assurance Cases January 2021 3/32

Introduction to Assurance Cases

Some industries have embraced the use of goal-based safety cases:

@ A clear, comprehensive and defensible argument that a system is
acceptably safe to operate in a particular context?.

@ Author determines what evidence is appropriate
We use the term assurance case (AC) to generalize beyond safety
requirements

@ Security

@ Privacy

Mim Kelly and Rob Weaver (2004). The Goal Structuring Notation-A Safety Argument
Notation.

Logan Murphy Provably Deductive Assurance Cases January 2021 4/32

Introduction to Assurance Cases

An AC consists of claims about the
system. A claim can be supported by
documenting context, evidence and
assumptions.

Claim 1: Control system is acceptably safe.
Context 1: Definition of acceptably safe

Claim 1.1: Al identified hazards have been
eliminated or sufficiently mitigated.
Context 1.1-a: Tolerability largels for hazards
(reference Z).
Context 1.1-b° Hazards identified from functional
hazard analysis (reference Y)

Strategy 1.1: Argument over all identified
hazards (H1, H2, H3)

Claim 1.1.1: H1 has been eliminated.
Evidence 1.1.1: Formal verification

Claim 1.1.2: Probability of H2 occurring
< 1x10° per annum.
Justification 1.1.2: 1x10™ per annum limit for
catastrophic hazards.
Evidence 1.1.2.: Fault Tree analysis

Claim1.1.3: Probability of H3 occurring
< 1x10” per annum.
Justification 1.1.3: 1x10° per annum limit for
major hazards.
Evidence 1.1.3: Fault tree analysis.

Claim 1.2: The software has been developed
to the integrity level appropriate to
the hazards involved.

Context 1.2.a: (same as Context 1.1-b)

Context 1.2-b: Integrity level (IL) process

guidelines defined by reference X.

Claim 1.2.1: Primary protection system
developed to IL 4.
Evidence 1.2.1: Pracess evidence of IL 4

Claim 1.2.2: Secondary protection
system developed to IL 2.
Evidence 1.2.2: Process evidence of IL 2

Provably Deductive Assurance Cases January 2021

5/32

Assurance Case Notation

E.g. Goal Structuring Notation (GSN)

c1 G1
. Control System is
Operaling Role
‘acceptably sale to
and Context operate
T~

G

Software in the Control System
has been developed Io SIL
to hazards

c3 G2

All idertified hazards have
been eliminated or
sufficiently mitigated

Tolerability
targets (Ref Z)

Hazards identified
from FHA [Ref Y)

involved

Al

51

Argument over each
idantified hazard

an

All hazards have
been identified

Argument over allocated
SIL for Primary and
Secondary elements

SIL apportionment is
comect and complete

G4 G5 G6 G7 G8

Hazard H1 has been Probability of Hazard H2 | | Probability of Hazard H3 Primary Protection Secondary Pretection

eliminated occuring < 1x10-6 per occuring < 1x10-3 per System Developed 1o System Development to
year year SL4 siz

sm 2 Sna
Fosmal Process
Verlicaton Fault Tree Evidenca for
Analysis SiL4

Logan Murphy Provably Deductive Assurance Cases

Assurance Case vs. Proof

An AC is not a formal proof.

@ Needs to be reviewed and understood by stakeholders with different
backgrounds

An AC is not even an informal proof.
@ Primarily uses inductive reasoning, e.g. “Evidence suggests that errors

are sufficiently unlikely”.

Full formalization and automation of AC creation and assessment is not
realistic or even desireable.

Logan Murphy Provably Deductive Assurance Cases January 2021 7/32

Deductive Reasoning in ACs

@ However, ACs still rely on deductive reasoning (usually implicitly).
e Fallacious reasoning exists in real-world ACs?.
@ Manual review is an unreliable mitigation strategy>.

We would like to

o Identify fragments of ACs where deductive reasoning can be made
explicit

@ Use a formal (i.e. deductive) framework to validate those fragments.

2William S. Greenwell et al. A taxonomy of fallacies in system safety arguments. 2006.
3John Rushby. The interpretation and evaluation of assurance cases. 2015.

Logan Murphy Provably Deductive Assurance Cases January 2021 8/32

Lean for Assurance Cases

We hope to use Lean as:
@ A framework to formally express and prove properties of AC claims
@ A tool to assist in generating formal evidence used in ACs

Current work with Lean builds on two threads of previous work.

Logan Murphy Provably Deductive Assurance Cases January 2021 9/32

Previous Work: Model Management for Assurance Cases

1. MMINT : Eclipse-based model management framework*.

2. MMINT-A : Extended for assurance case management in the

automotive domain®.

3. MMINT-A 2.0 : Extended to support lifecycle maintenance of system
and safety models®

More information: https://github.com/adisandro/MMINT

“A. Di Sandro et al. “MMINT: A Graphical Tool for Interactive Model Management”. In:

P&D © MoDELS. 2015.

SNick L. S. Fung et al. "MMINT-A: A Tool for Automated Change Impact Assessment on
Assurance Cases”. In: Computer Safety, Reliability, and Security. 2018.

5A. Di Sandro et al. MMINT-A 2.0: Tool Support for the Lifecycle of Model-Based Safety
Artifacts. MODELS '20. 2020.

Logan Murphy Provably Deductive Assurance Cases January 2021 10/32

https://github.com/adisandro/MMINT

Previous Work: Formality in Assurance Cases

One possible framework for validating AC fragments focuses on claim

decomposition strategies’ .

Claim C1
The Lane Management
Systemn (LM3) always

detects system failures

l

Strategy Strl
Argument over
subsystemns
|
Claim C2 Claim C3 Claim C4
LMS always detects LMS abways detects LMS always detects

failures in its Lane
Keeping Subsystem

(LK3)

failures in its Lane
Centering Subsystem
(LCS)

failures in its Lane
Depariure Warning
Subsystem (LDWS)

N

~

"Torin Viger et al. Just Enough Formality in Assurance Argument Structures. Computer

Safety, Reliability, and Security (SAFECOMP), 2020.

Logan Murphy Provably Deductive Assurance Cases

A4

January 2021

11/32

Previous Work: Formality in Assurance Cases

Restrict ourselves to claims of a particular form:

Fix a type . A claim consists of a set X of elements of type «, and a
property (predicate) P on a.

To a claim C(X, P) we assign the meaning

Vx € X, P(x)

Logan Murphy Provably Deductive Assurance Cases January 2021 12/32

Previous Work: Formality in Assurance Cases

Given an claim C, a strategy is a map from C to a list of claims
G, G, ...Cp.

A strategy S is called deductive iff

(Cl/\Cz/\.../\Cn) = C

We can identify two useful classes of decomposition strategies: Domain
Decomposition and Property Decomposition.

Logan Murphy Provably Deductive Assurance Cases January 2021 13/32

Previous Work: Formality in Assurance Cases

The purpose of this framework is to provide “templates” for deductive
decomposition strategies.

Claim CO
Property #holds over every
element of X

Justification 11

| PL{(x) AP2x) A ..PR(X)}={x|P(x)}

Strategy Strl
Property Decompaosition
using [P1, P2, ... Pn]

i . — J

Claim C1 Property 2 halds over Claim Cn
Property £1 holds over ef: b’;lemem of X . 0 Property £n holds over
evary element of X " every element of X'

Context : Sufficient as per
Theorem 2 of [Viger et al. 2020]

Logan Murphy Provably Deductive Assurance Cases January 2021 14 /32

Previous Work: Formality in Assurance Cases

Preferable: use a concrete proof!

Claim CO
Property #holds over every
element of ¥

l

[

Strategy Strl
Property Decompaosition
using [F1, P2, .. Pn]

/

[

=

Claim C1
Property 21 holds over
every elament of X

Claim C2
Proparty £2 holds over
ewery element of X

Justification J1
Formal Proof

—

Claim Cn
Property Pn holds over
every element of X

Logan Murphy Provably Deductive Assurance Cases

Evidence E1
El1.lean

January 2021

15/32

Formalization

As expected, it was easy enough to formalize the [Viger et al. 2020]
framework in Lean.

theorem deductive_of_justfd (I' : property.auxiliary) :
justified I' — deductive « (property.to_strategy I')

theorem deductive_of_justfd_comp (I': domain.auxiliary « f):
justified I' — complete I' — deductive a (domain.to_strategy I')

Now, we can try to use this formalization in MMINT-A to facilitate AC
verification.

Logan Murphy Provably Deductive Assurance Cases January 2021 16 /32

Lean/MMINT-A Integration : What models to use?

start —| Pay

Needed to experiment with a class of

system models to be the subject of T

AC cIaims. restart
o

We chose to start with Labelled m

Transition Systems (LTS’s), since dumse_/ chooseb

they're simple, useful and ubiquitous. @ /.'

get_soda get_beer

Provably Deductive Assurance Cases January 2021 17 /32

Logan Murphy

Lean/MMINT-A Integration : Strategy Specification

We can define LTS's in Lean and provide a framework to make claims
about their paths using temporal logic properties.

However, we also don't want to force our users to learn to write Lean
themselves in order to use MMINT-A.

How can users express a decomposition strategy about their LTS in a way
Lean can understand?

Logan Murphy Provably Deductive Assurance Cases January 2021 18 /32

Formalism
(e.g. LTS's)

instantiated by

MMINT-A
Model

is the subject of

Informal

represented by— — — —» Lean Type
is the type of
translatedto——— | Lean Model

determines the form of

Formal Strategy

Strategy

(Lean Expression)

Logan Murphy Provably Deductive Assurance Cases January 2021

19/32

Lean/MMINT-A Integration : Strategy Specification

We provide a Lean-encoded ‘“catalogue” of ~ 30 temporal logic formula
patterns commonly used in verifying concurrent/reactive systems® .

PI‘OPCIW PK

Ommn //Ol‘dei\
Absence / \ Bounded Precedence Response Chain
Existence Precedence Response

Universality Existence

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for
finite-state verification. Proceedings of the 1999 International Conference on Software
Engineering (IEEE Cat. No.99CB37002), 1999.

Logan Murphy Provably Deductive Assurance Cases January 2021 20/32

Lean/MMINT-A Integration : Strategy Specification

MMINT-A Ul allows the specification of LTS properties without writing
Lean code manually.

{ property.auxiliary .
Clm := {
Claim .
X := {x : path VM | true},
P :=)\ (7 : path VM), sat (precedes.globally pay restart) 7

Props := [A (7 : path VM), sat (absent.before pay serve) T,
A (7 : path VM), sat (precedes.globally serve restart) 7|
}

Logan Murphy Provably Deductive Assurance Cases January 2021 21/32

Lean/MMINT-A Integration : Strategy Specification

MMINT-A Ul allows the specification of LTS properties without writing
Lean manually.

{ property.auxiliary .
Clm := {
Claim .
X := {x : path VM | true},
P :=)\ (7 : path VM), sat (precedes.globally - e -
3
Props := [A (7 : path VM), sat (absent.before - ERE)
A (7 : path VM), sat (precedes.globally |EEHEl NESta) |

Logan Murphy Provably Deductive Assurance Cases January 2021 22/32

Lean/MMINT-A Integration : Automation

Given a Lean specification of a property decomposition strategy, we want
to use Lean’'s metaprogramming framework to (try to) find a proof that it
is deductive.

Decomposition Strategy
(Lean expression)

Tactics for deductive
AC decomposition

Unable to justify
decomposition,

possibly providing
useful feedback

Logan Murphy Provably Deductive Assurance Cases

Lean/MMINT-A Integration : Automation

Since we assume Lean-literate users need the least “help”, we've focused
on automating strategies using our property catalogue.

Idea : if we assume that all the properties are going to be chosen from our

catalogue, we can build a database of proofs using those particular formula
patterns.

Logan Murphy Provably Deductive Assurance Cases January 2021 24 /32

Lean/MMINT-A Integration : Automation
Example : Suppose “target” property is of the form

precedes.globally P Q
—— if Q happens, P must happen first

We can prove the following:
variable M : LTS

—— Holds because Q never happens
lemma vacuous (P Q : formula M) (7 : path M) :
(sat (absent.globally Q) m) — sat (precedes.globally P Q) m

—— Holds because Q can’t happen before P

lemma by_absent_before (P S : formula M) (7 : path M) :
(sat (absent.before S P) 7) A (sat (exist.globally P))
— sat (precedes.globally P §) 7w :=

—— Holds because “‘precedes’’ is transitive

lemma by_transitive (P Q R : formula M) (7 : path M) :

(sat (precedes.globally P Q) 7w) A (sat (precedes.globally Q R) 7)
— (sat (precedes.globally P R)) :=

Logan Murphy Provably Deductive Assurance Cases January 2021 25/32

Decision Procedure

{ Parse input strategy

§

—

{ Pattern match on "Target" property]

Try to resolve using known proofs Fail

l Success

[Resolve goal and return full tactic script

Logan Murphy Provably Deductive Assurance Cases

Decision Procedure

meta def switch (str : string) : tactic string :=

do

tgt < tactic.target, ctx < tactic.local_context,

match tgt with

| ‘(sat (precedes.globally %%tokl %%tok2) _) :=
precedes.globally.solve tokl tok2 str ctx

| ‘(sat (absent.globally %%tokl) _) :=
absent.globally.solve tokl str ctx

| ...

| _ := return string.empty

end

Logan Murphy Provably Deductive Assurance Cases January 2021 27/32

Decision Procedure

meta def solve (tokl tok2 : expr) (str : string) : list expr — tactic string
| []:= return string.empty

| (h::t) =
do typ < infer_type h,
match typ with
| ‘(sat (precedes.globally _ %%new) _) :=
solve_by_transitive tokl tok2 new str < | > solve t
| ‘(sat (absent.before _ _) _) :=
solve_by_absent_before tokl tok2 str < |> solvet

| _:=solvet
end
Logan Murphy Provably Deductive Assurance Cases

January 2021 28/32

Decision Procedure

meta def solve_by_absent_before (tokl tok2 : expr) (str : string) :
tactic string :=
do
tactic.interactive.apply ‘‘(by_absent_before %%tokl %%tok2),
tl < tactic_format_expr tokl,
t2 < tactic_format_expr tok2,
new_str str $
"apply precedes.globally.by_absent_before " ++
tl.to_string ++ " " ++
t2.to_string ++ ",\n"

Logan Murphy Provably Deductive Assurance Cases January 2021 29/32

Lean/MMINT-A Workflow Example

Suppose we are a MMINT-A user, and we want to verify a claim
decomposition regarding a vending machine.

start —’

insert_coin

1. Create a system model in
restart MMINT-A

choose_s choose_b

get_soda zet_beer

Logan Murphy Provably Deductive Assurance Cases January 2021

30/32

Lean/MMINT-A Workflow Example

[demo.midding =

1. Create a system model in
MMINT-A

7 Crome 2. Perform. model-to-Lean
\ translation

-

a

vm.lean : File main.lean : File

Logan Murphy Provably Deductive Assurance Cases

Lean/MMINT-A Workflow Example

1. Create a system model in
MMINT-A

{ property.auxiliary .
Clm = { Claim .

X:={x: h myLTS | truef, - -

P:= f\ (w},:a;a:hymyLT‘S)t‘ s:z (precedes.globally pay restart) m 2 . Perform mOdeI to Lea n
props i= translation
[A (7 : path myLTS), sat (precedes.globally pay serve) , .
A (7 : path myLTS), sat (precedes.globally serve restart) 7] 3 Specrfy a property

}
decomposition strategy

Logan Murphy Provably Deductive Assurance Cases January 2021 30/32

Lean/MMINT-A Workflow Example

example : deductive (path myLTS) 1 Create a System mOdel |n

(property.to_strategy {property.auxiliary ..}):=
begin M M I NT—A

apply property.deductive_of_justfd {property.auxiliary },

T property.Justitiod 2. Perform model-to-Lean

ru set.Inter, H

et translation

simp, .

intro B, 3. Specify a property
deconstruct_hyp 2, ..

apply pEecede§,.globallyhy_transitive pay serve restart, decom posltlon Strategy

repeat {split},

repeat {assunption} 4. Receive complete (or partial)

tactic script

Logan Murphy Provably Deductive Assurance Cases January 2021 30/32

Conclusion: Contributions & Lessons Learned

What have we contributed?
e Formalizations (ACs, LTS's, LTL) - although simple and not
necessarily novel
@ Methodology for integrating Lean/proof assistants in AC management

o Case study in leveraging Lean in a novel domain

What have we learned?
@ Lean has potential for real contribution in AC domain
@ Tradeoffs: Usability, integration challenges, expressiveness,
automation...
o Lean & Meta-Lean

Logan Murphy Provably Deductive Assurance Cases January 2021 31/32

Conclusion: Future Work

@ Improve MMINT-A Ul, improve metaprogramming, generalize beyond
LTS's

@ How to use evidence generated by Lean in real-world ACs

@ New formalizations of AC fragments

o Different uses for Lean/similar tools in AC managemet

o Lean 47

Logan Murphy Provably Deductive Assurance Cases January 2021 32/32

