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The road to Galois theory

Ongoing: Abel-Ruffini

Fall 2020: Galois theory project

Summer 2020:
Berkeley Lean Seminar

December 2018: Starts with
project by students at Imperial
(especially Kenny Lau)



Contributors 5

g
e December 2018—September 2020

e Included several Imperial students, a lot of work done by Kenny Lau

e Set up many basic definitions: Algebra, subalgebra, field extensions, fixed
field of a group action, ...

e Constructed splitting fields and algebraic closure

e Proved several key theorems

Summary: Imperial project

-- Auxiliary construction to a splitting field of a polynomial. Uses induction on the degree. -/

def splitting field_ aux (n : N) : N {a : Type u} [field a], by exactI N (f : polynomial a),
f.nat_degree = n - Type u :=

nat.rec_conn (Aa _ _ _, a) $ A n ih a _ f hf, by exactI

ih f.remove_factor (nat_degree_remove_factor' hf)

/-- The canonical algebraic closure of a field, the direct limit of adding roots to the field for each polynomial over the field. -/

def algebraic_closure : Type u :=
ring.direct_limit (algebraic_closure.step k) (A 1 j h, algebraic_closure.to_step_of_le k i j h)



Summary: Imperial project
Three theorems especially important for the Galois correspondence

e Theorem (linear independence of characters): if E/F is a field extension
and H is a subgroup of Aut(E/F) then [E : EF] < |H|

e Theorem: if E/F is a field extension and K is an intermediate field then
|Aut(E/K)| < [E : K]

e Theorem: if E is a field and G is a group action on E then E/E€ is Galois

lemma dim_le_card : vector_space.dim (fixed_points G F) F £ fintype.card G :

instance separable : is_separable (fixed points G F) F :=

instance normal : normal (fixed points G F) F :=



Summary: Berkeley Lean Seminar

e Natural number game, Patrick Massot tutorial,

small independent projects 2020 Berkeley
e Attendance: 35 (week 1) — 8 (week 12) Lean Seminar
e Places where we lost people: downloading

Lean/VS Code, after the natural number game,

Massot exercise 0080 ° L
e Some projects: De Bruijn—Erdds theorem, Bolzano-Weierstrass theorem,
Chinese remainder theorem
e Atthe end, a few of us decided to work on Galois theory
e \We’d be happy to discuss what we learned running this seminar



Contributors 5

Summary: Galois theory project ®. "0

e Adjoining elements to fields

theorem exists_primitive_element [finite_dimensional F E] (F_sep : is_separable F E) :
da:E, Fa =T :=

e Primitive element theorem

def intermediate_field_equiv_subgroup [finite_dimensional F E] [is_galois F E] :

e Galois correspondence

intermediate_field F E ~o0 order_dual (subgroup (E =~,[F] E)) :=

e E/F is Galois (i.e. normal and separable) «» The fixed field of Aut(E/F) is F
< |Aut(E/F)| = [E : F]
< E is the splitting field of a separable polynomial
theorem tfae [finite_dimensional F E] :
tfae [is_galois F E,

intermediate field.fixed field (T : subgroup (E =~,[F] E)) = 1,

fintype.card (E ~,[F] E) = findim F E,

3 p : polynomial F, p.separable A p.is_splitting field F E] :=



This has been done before

Lemma splitting_galoisField K E :

reflect (exists p, [/\ p \is a polyOver K, separable_poly p

& splittingFieldFor K p E])
(galois K E).

Proof.
apply: (iffP and3P) => [[SKE sepKE nKE]|[p [Kp sep_p [r Dp defE]]]].

rewrite (eq_adjoin_separable_generator sepKE) // in nKE *.

set a := separable_generator K E in nKE *; exists (minPoly K a).

split; first 1 [exact: minPolyOver | exact/separable_generatorP].

have [r /= /allP Er splitKa] := normalFieldP nKE a (memv_adjoin _ _).

exists r; first by rewrite splitKa eqpxx.

apply/eqP; rewrite eqEsubv; apply/andP; split.

by apply/Fadjoin_seqP; split => //; apply: subv_adjoin.

apply/FadjoinP; split; first exact: subv_adjoin_seq.

by rewrite seqv_sub_adjoin // -root_prod_XsubC -splitKa root_minPoly.
have sSKE: (K <= E)%VS by rewrite -defE subv_adjoin_seq.
split=> //; last by apply/splitting_normalField=> //; exists p; last exists r.
rewrite -defE; apply/separable_Fadjoin_seq/allP=> a r_a.
by apply/separable_elementP; exists p; rewrite (egp_root Dp) root_prod_XsubcC.
Qed.
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Galois theory is in CoqQ’s
mathcomp

Proved as part of the odd
order theorem project

Includes primitive element
theorem and Galois
correspondence (and more)



A complete lattice for free

One of the first things we did was define the notion of adjoining a set of elements
(contained in a field extension) to a field

Very useful structure defined by Anne Baanen: intermediate field F E

Seems necessary to prove lots of little lemmas about the partial order on
intermediate fields. But we can actually get a lot of them for free using adjoin

Key trick: adjoin and coe form a Galois insertion of intermediate field F E
into set E. Lattice instance comes for free from lattice on set E



A complete lattice for free

Key trick: adjoin and coe form a Galois insertion of intermediate field F E
into set E. Lattice instance comes for free from lattice on set E

Definition: If E/F is a field extension and S is a subset of E then F(S) is the subfield
of E generated by F and S

Definition: Suppose P and Q are two partial orders. A Galois insertion of Q into P is
a pair of order-preserving functions f: P - Q and g : Q — P such that

o f(p)<qep=glg (galois connection)
e andfog=id

Theorem: If there is a Galois insertion from Q into P and if P is a complete lattice
thensois Q



A complete lattice for free

e adjoinis afunction set E — intermediate field F E
/-- “adjoin F S° extends a field "F by adjoining a set 'S € E'. -/
def adjoin : intermediate_field F E :=

e coeis afunction intermediate field F E — set E
e Together they form a Galois insertion. The main thing required is to prove
the following simple lemma

lemma adjoin_le iff {S : set E} {T : intermediate_field F E} : adjoin F S < Te S T :=
e We can then define the galois insertion and get

instance : complete_lattice (intermediate_field F E) :=
galois_insertion.lift_complete_lattice intermediate_field.gi

e E.g,sup KL = adjoin F (K U L)



Induction scheme for intermediate fields

Two common ways to prove things about a field extension E/F of finite degree

e |nduction on [E : F]
e Picka,a,.,a sothatE=F(,a,..a)and use induction on n

Both of these have downsides in formalization
Solution: Define a custom induction scheme for intermediate fields

lemma induction_on_adjoin_finset (S : finset E) (P : intermediate field F E » Prop) (base : P 1)
(ih : V (K : intermediate_field F E) (x € S), P K » P TK(x)) : P (adjoin F 1S) :=

lemma induction_on_adjoin [fd : finite_dimensional F E] (P : intermediate_field F E - Prop)
(base : P 1) (ih : V (K : intermediate_field F E) (x : E), P K » P TK(x))
(K : intermediate field F E) : P K :=



Proof of the Galois Correspondence

We used the primitive element theorem to prove the Galois correspondence.

Definition: If E/F is a finite degree extension then an element a of E is a primitive
element if E = F(a)

Theorem (Primitive element theorem): Every finite degree separable extension
has a primitive element

Theorem (Galois correspondence): If E/F is a finite degree Galois extension
then there is an order-reversing bijection between intermediate fields of E/F and

subgroups of Aut(E/F)
H ~ EM = elements of E fixed by H

K = Aut(E/K) = elements of Aut(E/F) which fix K pointwise



Proof of the Galois Correspondence

The Galois correspondence follows from two numerical facts:

1. [E:EH]<|H| < Proved by Kenny Lau
2. If E/F is Galois and if K is an intermediate field, then |Aut(E/K)| = [E : K]

\ Can be proved using the

Proof of (2): primitive element theorem

Show that E/F Galois — E/K Galois

Let a be a primitive element for E/K, m(x) the minimal polynomial for a over K
E = K(a) = K[x]/(m)

Replace E by K[x]/(m) in (2) and show that both sides are equal to degree(m)



Abel-Ruffini theorem

There is a quadratic formula, a cubic formula, and a quartic formula ...

No Quintic
Formula!



4. Euler's Summationof 1 + (1/2)22 + (1/3)72 + ....

HOL Light, John Harrison:

Isabelle, Manuel Eberl:

Metamath, Mario Carneiro:

Coq, not in contribs, Jean-Marie Madiot:
Mizar, Karol Pak & Artur Kornilowicz:

. Fundamental Theorem of Integral Calculus
HOL Light, John Harrison:
Isabelle, Jacques D. Fleuriot:
Metamath, Mario Carneiro:
Coq, C-CoRN, Luis Cruz-Filipe:
Mizar, Noboru Endou & Katsumi Wasaki & Yasunari Shidama:

ProofPower, Rob Arthan:
PVS, NASA library, Ricky Butler
ACL2, Matt Kainfmann

6. Insolvability of General Higher Degree Equations

. De Moivre's Theorem
HOL Light, John Harrison:
Isabelle, Jacques D. Fleuriot:
Metamath, Steve Rodriguez:
Coq, contrib, Frédérique Guilhot:
Mizar, Takashi Mitsuishi & Noboru Endou & Keiji Ohkubo:
Lean, Abhimanyu Pallavi Sudhir:
ProofPower, Rob Arthan:

. Liouville's Theorem and the Construction of Transcendental
Numbers
HOL Light, John Harrison:
Isabelle, Manuel Eberi:
Metamath, Stefan O'Rear:
Coq, C-CoRN, Valentin Blot:
Mizar, Artur Kornilowicz, Adam Naumowicz & Adam Grabowski:

Lean, Jujian Zhang:

Abel-Ruffini theorem

e There is no formula using only
radicals and field operations for roots
of polynomials of degree =5

e Can be proved using Galois theory

e One of the five remaining theorems
on Freek’s list

e Not clear why it hasn’t been done yet

e There is currently also a project
underway to formalize it in Coq



Abel-Ruffini overview: main idea
If a complex number is solvable by radicals ... \/\/_—3 + /2

Then adjoining one radical at a time gives a tower of fields ...

Q(V=3,92,V/V=3+32)  Ds

Q(vV=3,V2) 53 > Each step is abelian, so the
Galois group stays solvable
Q (V _3) Co -
So \/\/—3+ V2 has
solvable Galois group

Q 1



Abel-Ruffini overview: more details

A few caveats to the previous slide:

e Need the final field to be a Galois extension so it's not always enough to
adjoin just the radicals appearing in the formula

e Prove that the final field has solvable Galois group by working backwards,
showing its Galois group over each intermediate field is solvable (we will take

a different route)
Proof sketch of Abel-Ruffini theorem:

e Show that if a complex number is solvable by radicals then it is contained in a
Galois field extension with solvable Galois group (idea from previous slide)

e Find an algebraic complex number whose Galois group is S,

e Show S, is not solvable



The plan for Abel-Ruffini

Define “solvable
by radicals”

If E/F is a field extension, an element of E is solvable by radicals if it can be written
as a formula involving elements of F, field operations, and radicals

This is naturally an inductive type with constructors corresponding to elements of F,
each of the field operations, and taking radicals



The plan for Abel-Ruffini

Define “solvable Solvable aroups
by radicals” SO

We defined a solvable group in terms of the derived series.
e |If His a subgroup of G, [H, H] is the subgroup generated by its commutators
g, h] = ghg'h™!
e Derived series of a group: G =G, G =[G?, GO, ... G+ V=[G, GW]
e G is solvable if G = L for some n

Various facts about solvable groups needed: abelian groups are solvable, quotients
of solvable groups are solvable, etc...



The plan for Abel-Ruffini

lois gr f .
celes g oup o Define “solvable
an algebraic S Solvable groups
by radicals
element

def gal (p : polynomial F) := p.splitting field =~,[F] p.splitting field

gal (minimal_polynomial (is_integral a))



The plan for Abel-Ruffini

Galois group of :
group Define “solvable
an algebraic S Solvable groups
by radicals
element %

Solvable by Radicals
implies solvable Galois

group

Proved by induction on the “solvable by radicals” type.

Hardest part is radical case. The key lemma is: If F has all the n' roots of unity and
if a is in F then a'™ has abelian Galois group.



The plan for Abel-Ruffini

Galois group of
an algebraic
element

Define “solvable Solvable aroups
85 not
solvable

Solvable by Radicals
implies solvable Galois

group

Traditionally a consequence of the fact that A_ is simple

But it's possible to give an easier direct proof



The plan for Abel-Ruffini

CED giols e Define “solvable
Generating S an algebraic S Solvable groups
n by radicals
element \i 4 %
Solvable by Radicals
_a : S. not
implies solvable Galois 5
solvable
group

If p is prime then any p cycle and transposition together generate Sp:

e Take a power of the cycle so that the transposition swaps two adjacent
elements of the cycle
e Cycle and adjacent transposition — All adjacent transpositions
— All transpositions — All of S_



The plan for Abel-Ruffini

Polynomial with
Galois group S,

Ex: x°-6x+3
3 real roots
2 conjugate roots

Galois group of
an algebraic
element

Define “solvable Solvable aroups
55 not
solvable

Solvable by Radicals
implies solvable Galois

group




The plan for Abel-Ruffini

Generating S_

Polynomial with
Galois group S,

Galois group of
an algebraic
element

Define “solvable Solvable aroups
85 not
solvable

Solvable by Radicals
implies solvable Galois

group

J

ABEL-RUFFINI



The plan for Abel-Ruffini

Generating S_

Polynomial with
Galois group S,

Galois group of
an algebraic
element

Define “solvable Solvable aroups
85 not
solvable

Solvable by Radicals
implies solvable Galois

group

J

ABEL-RUFFINI

What is the current status of this project?



The plan for Abel-Ruffini

Generating S_

Polynomial with
Galois group S,

Galois group of
an algebraic
element

Define “solvable Solvable aroups
85 not
solvable

Solvable by Radicals
implies solvable Galois

group

J

ABEL-RUFFINI

What is the current status of this project?



The plan for Abel-Ruffini

N ABEL-RUFFINI

What is the current status of this project?




The plan for Abel-Ruffini

.N.%.

What is the current status of this project?




The SBR type

Inductively define “solvable by radicals”

inductive is_SBR : E - Prop

| base (a : F) : is _SBR (algebra map F E a)

| add (ab : E) : is SBR a » is SBR b » is SBR (a + b)
| neg (a : E) : is SBR a » is_SBR (-a)

| mul (a B : E) : is SBR a » is SBR B » is SBR (a * B)
| inv (a : E) : is SBR a » is SBR a~?

|

rad (a : E) (n : N) (hn : n # @) : is SBR (a®n) » is SBR a



The SBR type

Bundle into an intermediate field

def SBR : intermediate_field F E :=

{ carrier := is SBR F,
zero_mem' := by { convert is_SBR.base (© : F), rw ring_hom.map_zero },
add_mem' := is_SBR.add,
neg mem' := is_SBR.neg,
one_mem' := by { convert is SBR.base (1 : F), rw ring_hom.map one },
mul mem' := is SBR.mul,
inv_mem' := is_SBR.inv,

algebra map mem' := is SBR.base }



The SBR type

SBR has an induction scheme (coming from is_SBR.rec)

lemma induction (P : SBR F E -» Prop)

(base
(add :

(neg :
(mul :
(inv :
(rad :

(a :

: Va: F, P (algebra map F (SBR F E) a))
VaB:SBRFE, Pa>PB->P (a+pB))
Va:SBRFE, Pa->P (-a))

Vap :SBRFE; Pa>PBs>P (a¥* B))

Yia s SBRFE, Paspa?)

Va:SBRFE, Vn:1N,n#0>P (a®n) > P a)
SBR EvE) : P @ i=



The SBR type

Recall: Standard proof of Abel-Ruffini theorem is to form a tower of radical
extensions. Have to worry about ending up with something Galois and proving
solvability by backwards induction

Instead: We show by induction that if a is SBR then the splitting field of the minimal
polynomial of a has solvable Galois group. Still need to do induction.

theorem solvable_gal _of_SBR (a : SBR F E) :

is_solvable (gal (minimal_polynomial (is_integral a))) :=



Proving S; is not solvable

Recall:

e We defined a group to be solvable if its derived series is eventually trivial
e Derived series: G? = G, G"*V = [GW G™] = subgroup generated by ghg'h™!
where g and h are in G

e G™ s always a normal subgroup of G
We want to show that . is never the trivial subgroup

e We can just show that it always contains (1 2 3)
e If S_™ contains (1 2 3) then we can conjugate to get (14 3) and (25 3)
(143)(253)(143)1253)1=(143)(253)(134)(235) =(123)



What's next after Abel-Ruffini?

e Constructible numbers and compass-and-straightedge constructions?

e Number fields and algebraic number theory?

Missing theorems from Freek
Wiedijk's list of 100 theorems

These theorems are not yet formalized in Lean. Here is the list of the formalized theorems.
e 5: Prime Number Theorem

e 6: Godel's Incompleteness Theorem

&e_8: The Impossibility of Trisecting the Angle and Doubling the Cube >

e 9: The Area of a Circle



