Generative Tools for Library Building

Yasmine Sharoda, Jacques Carette, William M. Farmer

McMaster University

1/23

A large library of Mathematics is
useful but hard to build

A large library of Mathematics is useful

e QED Manifesto, 1994:

e One library to formalize all of Mathematics

e Universal Digital Math Library, 2004:

e Heterogeneous, Interconnecting libraries.

2/23

A large library of Mathematics is hard to build

Foundation

Organization Structures

Huge amount of knowledge = Labor Intensive

3/23

A large library of Mathematics is hard to build

e Foundation

e Organization Structures

e Huge amount of knowledge = Labor Intensive

Current Libraries of Mathematics are full of redundancy

3/23

Multiple Representations

Lean Haskell Agda
class monoid (M : Type u) class Semiring a => Monoid a data Monoid (A : Set)
extends semigroup M, where (Eq : Equivalence A) : Set where
has_one M nempty a nonoid
(ome_mul : Va : M, 1*a-=a) nappend :: a -> a -> a (z : &) —
(mul_ome : Va : M, a*1=a) mappend = (<>) (4ot A5 A= B -
mconcat :: [al -> a (left_id : LeftlIdentity Eq z _+_)
nconcat = -
MMT foldr mappend mempty (right_id : RightIdentity Eq z
theory Semigroup : ?NatDed = Cog) o
u : sort class Monoid {A : typel} (assoc : Associative Eq _+_) —
comp : tm u — tm u > tmu (dot : A — A — A) Monoid A Eq
1 % 2 prec 40 (ome : A) : Prop := { Alternative Definition:
assoc : F V [x, y, z] dot_assoc : forall x y z : A, record Momoid ¢ £ : Set (suc (c U £))
(x *y) *z=x % (y % 2) (dot x (dot y 2)) = where
assocLeftToRight : dot (dot x y) z infixl 7 _e_
{x,y,z2} b (x * y) * z unit_left : forall x, infix 4 _~_
=x* (y *x 2) dot ome x = x field
= [x,y,2] unit_right : forall x, Carrier : Set ¢
allE (allE (allE assoc x) y) z dot x ome = x _~_ : Rel Carrier {
assocRightToLeft : 3 e_ : Opy Carrier
{x,y,2y Boxox (y *x 2) Alternative Definition: isMonoid : IsMonoid _~_ _e_ ¢
=G *y) *z Record monoid := { where IsMonoid is defined as
= [x,y,z] sym assocLR dom : Type; record IsMonid (e : Op2) (e : A)
theory Momoid : 7NatDed op : dom -> dom -> dom i Set (a U () where
includes ?Semigroup where "x * y op x y; field
unit : tmou # e id : dom where " id; isSemiring : IsSemiring e
unit_axiom : F ¥ [x] = x * e = x assoc : forall x y z, identity : Identity
x k(3 x2) = (x = y) * 25 identity’ : LeftIdentity c o
left_neutral : forall x, identity' : proj; identity
1% x = x5 identity” : Rightdentity c o
right_neutal : forall x, identity” : projp identity
x * 1= x;

4/23

Monoid: Multiple theories, Same Constructions

class monoid (M : Type w)
extends semigroup M, has_one M :=
(one_mul : V a : M, 1*a-=a)
(mul_ome : ¥V a : M, a*1=a)

structure monoid_hom (M : Typex) (N : Type)
[monoid M] [monoid NJ
extends one_hom M N, mul_hom M N

instance [monoid M] [monoid N] : monoid (M x N)

{ one_mul := assume a, prod.rec_on a $
X a b, mk.inj_iff.mpr (one_mul _, one_mul _),
mul_one := assume a, prod.rec_on a $

X a b, mk.inj_iff.mpr (mul_one _, mul_one _),

. prod.semigroup, .. prod.has_one }

class add_monoid (M : Type u)

extends add_semigroup M, has_zero M :=
(zero_add : V a : M, 0 + a = a)
(add_zero : V a : M, a + 0 = a)

structure add_monoid_hom (M : Typex) (N : Typex)
[add_monoid M] [add_monoid NJ
extends zero_hom M N, add_hom M N

Products: 15 definitions.

5/23

Generative Tools

Interpreter
Declarative Library
Description) a — Definitions
Of the library Q

6/23

Generative Tools

Interpreter
Declarative Library
Description) a — Definitions
Of the library ¢

e Inspiration: Haskell
data List a = Nil | Cons a (List a)
deriving (Eq, Show, Ord, Read,
-- by enabling some extensions
Functor, Generic, Data,
Foldable,Traversable, Lift)}

6/23

Generative Tools

Interpreter
Declarative Library
Description) a — Definitions
Of the library Q

e Inspiration: Haskell

data Point = Point { _x :: Double, _y :: Double }
makeLenses ''Point

6/23

Research Questions

e What is the right abstraction for theory presentations of algebraic
structures?

e What pieces of information are needed for the system to generate
particular constructions?

e [s there enough information that can be generated from theory
presentations?

e How would this affect the activity of library building?

7/23

Research Questions

e What is the right abstraction for theory presentations of algebraic
structures?

e What pieces of information are needed for the system to generate
particular constructions?

e [s there enough information that can be generated from theory
presentations?

e How would this affect the activity of library building?

Answers are given by Universal Algebra

7/23

Universal Algebra

A theory:

r=(S,F,E)

A Homomorphism between two -Algebra:

1. hom : Sl — Sz
2. For every op €F.

hom (op; x1 .. xp) = opz (hom x;) .. (hom x,)

8/23

Approach

Interpreter ¥
Prelel &

Declarative Librar
Description) Flattener I d Generator 2 Exporter De fini\t(ions
Of the library Theory Theories

Graph &
Useful Utilities

9/23

1. A small language to represent theories without unnecessary details.
2. A large library of theories.

3. Meta programs to manipulate these theories

4

. A type checker for the theories and constructions

10/23

Tog: uage and TypeChecker

e Dependently typed language
e Martin Lof type theory.

e Experimental language, in the style of Agda

record Monoid (A : Set) : Set where
constructor monoid
field
e : A
op : A->A->A
lunit : {x : A} -> (op e x) == x
runit : {x : A} -> (op x e) == x
assoc : {x y z : A} —>
(op x (op y 2)) == (op (op x y) 2)

11/23

The Flattener

Build library as a theory graph

Carrier ——— Pointed

[>~ |

Magma — > PointedMagma — > RightUnital

[[™

Semigroup LeftUnital «—— > Unital

—

Monoid

12/23

The Flattener

Build library as a theory graph: Combinators

Carrier ——— Pointed

[

Magma
Pointed = extend Carrier {e : A} £
Magma = extend Carrier {op : A -> A -> A} Semi
Semigroup = extend Magma {assoc: ...} emigroup

13/23

The Flattener

Build library as a theory graph: Combinators

Carrier ———— Pointed

[™~ |

Magma < PointedMagma

Pointed = extend Carrier {e : A} £
Magma = extend Carrier {op : A -> A -> A} .

. Semigroup
Semigroup =

extend Magma {assoc: ...}
PointedMagma =

combine Pointed {} Magma {} over Carrier

13/23

The Flattener

Build library as a theory graph: Combinators

Carrier ——— Pointed

[~ 1

Magma < PointedMagma > RightUnital

[[

Pointed = extend Carrier {e : A} Semigroup BEBHNIERL S W)
Magma = extend Carrier {op : A > A > A} \ /
Semigroup = extend Magma {assoc: ...} Monoid

PointedMagma = combine Pointed {} Magma {} over Carrier

LeftUnital = extend PointedMagma { lunit_e : ... }

RightUnital = extend PointedMagma { runit_e : ... }

Unital = combine LeftUnital {} RightUnital {}
over PointedMagma
Monoid = combine Unital {} Semigroup {} over Magma

13/23

The Flatten Combinators

Carrier ——— > Pointed

[77—

Magma ——— > AdditiveMagma=(A,+)

[.

Semigroup=(A,op,assoc) 377

14 /23

The Flattener: Combinators

Carrier ——— > Pointed

[77—

Magma ——— > AdditiveMagma=(A,+)

[.

Semigroup=(A,op,assoc) 377

AdditiveSemigroup =
combine AdditiveMagma {} Semigroup {op to +}
over Magma

14 /23

The Generator

data EqTheory = EqTheory {

name :: Name_ N

sort :: Constr , -- the carrier S
funcTypes :: [Constr], -- function symbols F
axioms :: [Constr], -- equations E

waist :: Int

-- the number of parameters

15/23

Constructions for Free!

Homomorphisms

homomorphism :: Eq.EqTheory -> Decl
homomorphism thry =
let_nm = "Hom"
= Eq.eqInstance thry (Just 1)
i20(n2,b2,e2) = Eq.eqlnstance thry (Just 2)
fnc = homFunc thry i1 i2 (thry ~. Eq.sort)
axioms = map (presAxiom thry il i2 fnc) (thry ~. Eq.funcTypes)
in Record (mkName nm)
(mkParams $

map (\(n,e) -> Bind [mkArg n] e) | [(nl,el), (n2,e2)])
(RecordDeclDef setType (mkName $ nm ++ "C") (mkField $ fnc : axioms))

16 /23

Constructions for Free!

Homomorphisms

homomorphism :: Eq.EqTheory -> Decl
homomorphism thry =
let nm = "Hom"
il@(n1,bl,el) = Eq.eqlnstance thry (Just 1)
i2@(n2,b2,e2) = Eq.eqlnstance thry (Just 2)
= homFunc thry il i2 (thry ~. Eq.sort)

= map (presAxiom thry il i2 fnc) (thry ~. Eq.funcTypes)
in Record (mkName nm)

(mkParams $ bl ++ b2 ++
map (\(n,e) -> Bind [mkArg n] e) [(nl,el),(n2,e2)])

(RecordDeclDef setType (mkName $ nm ++ "C") | (mkField $ fnc : axioms))

16 /23

Constructions for Free!

Signature
Products

\ 1/

Simplifier (EE—. oo o4 mmmmmm) Homomorphisms

4 /\\

Evaluator Induction

Term Languages

Relational Interpretation

Monomorphism, Isomorphism, Endomorphism, Congruence relation, Quotient algebra, Trivial
subtheory, Flipped theory, Monoid action, Monoid Cosets, composition of morphisms, kernel of

homomorphisms, parse trees.

17 /23

The Exporter

class Export a where
export :: Config -> a -> Doc

18/23

The Exporter

class Export a where
export :: Config -> a -> Doc

Useful functions:

® replace :: String -> String

e replacing "Nat" with N

18/23

The Exporter

class Export a where
export :: Config -> a -> Doc

Useful functions:

® replace :: String -> String
e replacing "Nat" with N
® callFunc :: Expr -> Expr

e replacing (lookup x vars) with (ath vars x)

18/23

The Exporter

class Export a where
export :: Config -> a -> Doc

Useful functions:

® replace :: String -> String
e replacing "Nat" with N
® callFunc :: Expr -> Expr
e replacing (lookup x vars) with (ath vars x)

® preprocessDecls :: [Decl] -> [Decl]

inductive ClMonoidTerm (A : Type) : Type
| singleton : A — ClMonoidTerm
| op : ClMonoidTerm — ClMonoidTerm — ClMonoidTerm
| e : ClMonoidTerm

18/23

Starting with theory expressions:
° library definitions.
° lines of code.
e Exported to) (flat and predicate style theories).

19/23

Conclusion

e Support the process of building libraries

e Goal: Eliminate Redundancy.
e Technique: Generative Programming.

e Abstract over design decisions.

e Generate uniform constructions.

20/23

e Generating more definitions

e possibly outside universal algebra
e Enrich the theory graph structure.

e Exporting to more formal systems.

e Studying them as program families.

e Generalizing to higher order logics.

21/23

Future Work

Monoid = combine Unital and Semigroup over Magma
generate Homomorphism, OpenTerms, Simplifier
using (waist=1,eq="=")
export_to lean

22/23

References

1 Jacques Carette, Russell O'Connor, and Yasmine Sharoda. Building on the
diamonds between theories: Theory presentation combinators. arXiv preprint
arXiv:1812.08079, 2019.

2 Jacques Carette, William M. Farmer, and Yasmine Sharoda. Leveraging the
information contained in theory presentations. In Proceedings of the 13th
International Conference on Intelligent Computer Mathematics, CICM 2020.

3 Florian Rabe and Yasmine Sharoda. Diagram Combinators in MMT. In
Proceedings of the 12th International Conference on Intelligent Computer
Mathematics, CICM 2019

4 Musa Al-hassy, Jacques Carette, and Wolfram Kahl. A language feature to
unbundle data at will (short paper). In Proceedings of the 18th ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences, GPCE 2019

23/23

