Generative Tools for Library Building

Yasmine Sharoda, Jacques Carette, William M. Farmer

McMaster University

A large library of Mathematics is

useful but hard to build

A large library of Mathematics is useful

- QED Manifesto, 1994:
 - One library to formalize all of Mathematics
- Universal Digital Math Library, 2004:
 - Heterogeneous, Interconnecting libraries.

A large library of Mathematics is hard to build

- Foundation
- Organization Structures
- ..
- ullet Huge amount of knowledge \Rightarrow Labor Intensive

A large library of Mathematics is hard to build

- Foundation
- Organization Structures
- ..
- Huge amount of knowledge ⇒ Labor Intensive

Current Libraries of Mathematics are full of redundancy

Monoid: One theory, Multiple Representations

```
Lean
class monoid (M : Type u)
 extends semigroup M,
         has one M :=
  (one mul : ∀ a : M. 1 * a = a)
  (mul one : \forall a : M. a * 1 = a)
theory Semigroup : ?NatDed =
  u : sort
  comp : tm u \rightarrow tm u \rightarrow tm u
   # 1 * 2 prec 40
  assoc : \vdash \forall [x, y, z]
   (x * y) * z = x * (y * z)
  assocLeftToRight :
   \{x,y,z\} \vdash (x * y) * z
          = x * (y * z)
   = [x.v.z]
    allE (allE (allE assoc x) v) z
  assocRightToLeft :
   \{x,y,z\} \vdash x * (y * z)
             = (x * y) * z
   = [x,y,z] sym assocLR
theory Monoid : ?NatDed
  includes ?Semigroup
  unit : tm u # e
  unit axiom : \vdash \forall [x] = x * e = x
```

```
Haskell
class Semiring a => Monoid a
where
 mempty :: a
  mappend :: a -> a -> a
  mappend = (<>)
  mconcat :: [a] -> a
  mconcat =
   foldr mappend mempty
class Monoid (A : type)
  (dot : A \rightarrow A \rightarrow A)
  (one : A) : Prop := {
    dot_assoc : forall x y z : A,
    (dot x (dot v z)) =
    dot (dot x v) z
    unit_left : forall x,
    dot one x = x
    unit_right : forall x,
    dot x one = x
Alternative Definition:
Record monoid := {
 dom : Type;
  op : dom -> dom -> dom
    where "x * v" := op x v:
  id : dom where "1" := id;
  assoc : forall x y z,
    x * (y * z) = (x * y) * z;
  left neutral : forall x.
    1 * x = x:
  right_neutal : forall x,
    x * 1 = x;
```

```
data Monoid (A : Set)
   (Eq : Equivalence A) : Set where
   monoid :
    (z : A) \rightarrow
    ( + : A \rightarrow A \rightarrow A) \rightarrow
    (left id : LeftIdentity Eq z + )
     (right_id : RightIdentity Eq z
          + ) →
     (assoc : Associative Eq _- +_- ) \rightarrow
     Monoid A Eq
Alternative Definition:
record Monoid c \ell : Set (suc (c \sqcup \ell))
     where
  infixl 7 •
  infix 4 _{\sim}
  field
   Carrier : Set c
    ≈ : Rel Carrier ℓ
    _. : Op<sub>2</sub> Carrier
     isMonoid : IsMonoid _{\sim} _ •_ _{\varepsilon}
where IsMonoid is defined as
record IsMonid (\bullet : Op<sub>2</sub>) (\varepsilon : A)
    : Set (a ⊔ ℓ) where
    field
      isSemiring : IsSemiring .
      identity : Identity \varepsilon
      identity^{I}: LeftIdentity \varepsilon •
      identity : proi: identity
      identity' : Rightdentity \varepsilon •
      identity' : proj2 identity
```

Monoid: Multiple theories, Same Constructions

```
class monoid (M : Type u)
                                                                    class add_monoid (M : Type u)
      extends semigroup M, has_one M :=
                                                                          extends add_semigroup M, has_zero M :=
  (one_mul : \forall a : M, 1 * a = a)
                                                                     (zero\_add : \forall a : M, 0 + a = a)
  (mul one : \forall a : M, a * 1 = a)
                                                                      (add zero : \forall a : M, a + 0 = a)
structure monoid_hom (M : Type*) (N : Type*)
                                                                    structure add monoid hom (M : Type*) (N : Type*)
          [monoid M] [monoid N]
                                                                               [add monoid M] [add monoid N]
  extends one hom M N. mul hom M N
                                                                     extends zero hom M N. add hom M N
instance [monoid M] [monoid N] : monoid (M × N) :=
                                                                   Products: 15 definitions.
{ one_mul := assume a, prod.rec_on a $
    \lambda a b, mk.inj_iff.mpr \langle one_mul_{-}, one_mul_{-} \rangle,
  mul one := assume a, prod.rec on a $
    \lambda a b. mk.inj iff.mpr (mul one . mul one ).
  .. prod.semigroup. .. prod.has one }
```

Generative Tools

Generative Tools

• Inspiration: Haskell

Generative Tools

• Inspiration: Haskell

```
data Point = Point { _x :: Double, _y :: Double }
makeLenses ''Point
```

Research Questions

- What is the right abstraction for theory presentations of algebraic structures?
- What pieces of information are needed for the system to generate particular constructions?
- Is there enough information that can be generated from theory presentations?
- How would this affect the activity of library building?

Research Questions

- What is the right abstraction for theory presentations of algebraic structures?
- What pieces of information are needed for the system to generate particular constructions?
- Is there enough information that can be generated from theory presentations?
- How would this affect the activity of library building?

Answers are given by Universal Algebra

Universal Algebra

A theory:

$$\Gamma = (\mathbb{S}, \mathbb{F}, \mathbb{E})$$

A Homomorphism between two Γ-Algebra:

- 1. hom : $\mathbb{S}_1 \to \mathbb{S}_2$
- 2. For every op $\in \mathbb{F}$.

```
hom (op_1 x_1 ... x_n) = op_2 (hom x_1) ... (hom x_n)
```

Approach

Requirements

- 1. A small language to represent theories without unnecessary details.
- 2. A large library of theories.
- 3. Meta programs to manipulate these theories
- 4. A type checker for the theories and constructions

Tog: Language and TypeChecker

- Dependently typed language
 - Martin Löf type theory.
- Experimental language, in the style of Agda

Build library as a theory graph

Build library as a theory graph: Combinators

```
\begin{array}{c} \text{Carrier} \longleftarrow \rightarrow \text{Pointed} \\ & \downarrow \\ \text{Magma} \\ \text{Pointed} = \text{extend Carrier } \{\text{e} : \text{A}\} \\ \text{Magma} = \text{extend Carrier } \{\text{op} : \text{A} \rightarrow \text{A} \rightarrow \text{A}\} \\ \text{Semigroup} = \text{extend Magma } \{\text{assoc: } \ldots\} \end{array}
```

Build library as a theory graph: Combinators

```
Carrier Pointed

Magma Pointed extend Carrier {e : A}

Magma = extend Carrier {op : A -> A -> A}

Semigroup =

extend Magma {assoc: ...}

PointedMagma =

combine Pointed {} Magma {} over Carrier
```

Build library as a theory graph: Combinators

```
Carrier Pointed

Magma Pointed

Pointed = extend Carrier {e : A}

Magma = extend Carrier {op : A -> A -> A}

Semigroup = extend Magma {assoc: ...}

PointedMagma = combine Pointed {} Magma {} over Carrier

LeftUnital = extend PointedMagma { lunit_e : ... }

RightUnital = extend PointedMagma { runit_e : ... }

Unital = combine LeftUnital {} RightUnital {}

over PointedMagma

Monoid = combine Unital {} Semigroup {} over Magma
```

The Flattener: Combinators

The Flattener: Combinators

```
Carrier Pointed

Magma AdditiveMagma=(A,+)

Semigroup=(A,op,assoc)

AdditiveSemigroup = combine AdditiveMagma {} Semigroup {op to +} over Magma
```

The Generator

Constructions for Free!

Homomorphisms

Constructions for Free!

Homomorphisms

Constructions for Free!

Monomorphism, Isomorphism, Endomorphism, Congruence relation, Quotient algebra, Trivial subtheory, Flipped theory, Monoid action, Monoid Cosets, composition of morphisms, kernel of homomorphisms, parse trees.

```
class Export a where
  export :: Config -> a -> Doc
```

```
class Export a where
  export :: Config -> a -> Doc
```

Useful functions:

- replace :: String -> String
 - \bullet replacing "Nat" with $\mathbb N$

```
class Export a where
  export :: Config -> a -> Doc
```

Useful functions:

- replace :: String -> String
 - replacing "Nat" with N
- callFunc :: Expr -> Expr
 - replacing (lookup x vars) with (nth vars x)

```
class Export a where
  export :: Config -> a -> Doc
Useful functions:
   • replace :: String -> String

    replacing "Nat" with N

   • callFunc :: Expr -> Expr
         • replacing (lookup x vars) with (nth vars x)
   • preprocessDecls :: [Decl] -> [Decl]
     inductive ClMonoidTerm (A : Type) : Type
        \mid singleton : A \rightarrow ClMonoidTerm
        \mid op : ClMonoidTerm 
ightarrow ClMonoidTerm 
ightarrow ClMonoidTerm
        l e : ClMonoidTerm
```

Results

Starting with 227 theory expressions:

- 5092 library definitions.
- 32,459 lines of code.
- Exported to Lean, Agda (flat and predicate style theories).

Conclusion

- Support the process of building libraries
 - Goal: Eliminate Redundancy.
 - Technique: Generative Programming.
- Abstract over design decisions.
- Generate uniform constructions.

Future Work

- Generating more definitions
 - possibly outside universal algebra
- Enrich the theory graph structure.
- Exporting to more formal systems.
 - Studying them as program families.
- Generalizing to higher order logics.

Future Work

```
Monoid = combine Unital and Semigroup over Magma
generate Homomorphism, OpenTerms, Simplifier
using (waist=1,eq="=")
export_to lean
```

References

- 1 Jacques Carette, Russell O'Connor, and Yasmine Sharoda. Building on the diamonds between theories: Theory presentation combinators. arXiv preprint arXiv:1812.08079, 2019.
- 2 Jacques Carette, William M. Farmer, and Yasmine Sharoda. Leveraging the information contained in theory presentations. In Proceedings of the 13th International Conference on Intelligent Computer Mathematics, CICM 2020.
- 3 Florian Rabe and Yasmine Sharoda. Diagram Combinators in MMT. In Proceedings of the 12th International Conference on Intelligent Computer Mathematics, CICM 2019
- 4 Musa Al-hassy, Jacques Carette, and Wolfram Kahl. A language feature to unbundle data at will (short paper). In Proceedings of the 18th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences, GPCE 2019