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CHAPTER

ONE

INTRODUCTION

1.1 Getting Started

The goal of this book is to teach you to formalize mathematics using the Lean 4 interactive proof assistant. It assumes
that you know some mathematics, but it does not require much. Although we will cover examples ranging from number
theory to measure theory and analysis, we will focus on elementary aspects of those fields, in the hopes that if they are
not familiar to you, you can pick them up as you go. We also don’t presuppose any background with formal methods.
Formalization can be seen as a kind of computer programming: we will write mathematical definitions, theorems, and
proofs in a regimented language, like a programming language, that Lean can understand. In return, Lean provides
feedback and information, interprets expressions and guarantees that they are well-formed, and ultimately certifies the
correctness of our proofs.
You can learn more about Lean from the Lean project page and the Lean community web pages. This tutorial is based on
Lean’s large and ever-growing library,Mathlib. We also strongly recommend joining the Lean Zulip online chat group if
you haven’t already. You’ll find a lively and welcoming community of Lean enthusiasts there, happy to answer questions
and offer moral support.
Although you can read a pdf or html version of this book online, it designed to be read interactively, running Lean from
inside the VS Code editor. To get started:

1. Install Lean 4 and VS Code following these installation instructions.
2. Make sure you have git installed.
3. Follow these instructions to fetch the mathematics_in_lean repository and open it up in VS Code.
4. Each section in this book has an associated Lean file with examples and exercises. You can find them in the folder

MIL, organized by chapter. We strongly recommend making a copy of that folder and experimenting and doing
the exercises in that copy. This leaves the originals intact, and it also makes it easier to update the repository as it
changes (see below). You can call the copy my_files or whatever you want and use it to create your own Lean
files as well.

At that point, you can open the textbook in a side panel in VS Code as follows:
1. Type ctrl-shift-P (command-shift-P in macOS).
2. Type Lean 4: Open Documentation View in the bar that appears, and then press return. (You can press

return to select it as soon as it is highlighted in the menu.)
3. In the window that opens, click on Open documentation of current project.

Alternatively, you can run Lean and VS Code in the cloud, using Gitpod. You can find instructions as to how to do that on
the Mathematics in Lean project page on Github. We still recommend working in a copy of theMIL folder, as described
above.
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This textbook and the associated repository are still a work in progress. You can update the repository by typing git
pull followed by lake exe cache get inside the mathematics_in_lean folder. (This assumes that you
have not changed the contents of the MIL folder, which is why we suggested making a copy.)
We intend for you to work on the exercises in the MIL folder while reading the textbook, which contains explanations,
instructions, and hints. The text will often include examples, like this one:

#eval "Hello, World!"

You should be able to find the corresponding example in the associated Lean file. If you click on the line, VS Code will
show you Lean’s feedback in the Lean Goal window, and if you hover your cursor over the #eval command VS Code
will show you Lean’s response to this command in a pop-up window. You are encouraged to edit the file and try examples
of your own.
This book moreover provides lots of challenging exercises for you to try. Don’t rush past these! Lean is about doing
mathematics interactively, not just reading about it. Working through the exercises is central to the experience. You don’t
have to do all of them; when you feel comfortable that you have mastered the relevant skills, feel free to move on. You
can always compare your solutions to the ones in the solutions folder associated with each section.

1.2 Overview

Put simply, Lean is a tool for building complex expressions in a formal language known as dependent type theory.
Every expression has a type, and you can use the #check command to print it. Some expressions have types like N or N
→ N. These are mathematical objects.

#check 2 + 2

def f (x : N) :=
x + 3

#check f

Some expressions have type Prop. These are mathematical statements.

#check 2 + 2 = 4

def FermatLastTheorem :=
∀ x y z n : N, n > 2 ∧ x * y * z 6= 0 → x ^ n + y ^ n 6= z ^ n

#check FermatLastTheorem

Some expressions have a type, P, where P itself has type Prop. Such an expression is a proof of the proposition P.

theorem easy : 2 + 2 = 4 :=
rfl

#check easy

theorem hard : FermatLastTheorem :=
sorry

#check hard

If you manage to construct an expression of type FermatLastTheorem and Lean accepts it as a term of that type,
you have done something very impressive. (Using sorry is cheating, and Lean knows it.) So now you know the game.
All that is left to learn are the rules.

2 Chapter 1. Introduction



Mathematics in Lean, Release 0.1

This book is complementary to a companion tutorial, Theorem Proving in Lean, which provides a more thorough intro-
duction to the underlying logical framework and core syntax of Lean. Theorem Proving in Lean is for people who prefer
to read a user manual cover to cover before using a new dishwasher. If you are the kind of person who prefers to hit the
start button and figure out how to activate the potscrubber feature later, it makes more sense to start here and refer back
to Theorem Proving in Lean as necessary.
Another thing that distinguishesMathematics in Lean from Theorem Proving in Lean is that here we place a much greater
emphasis on the use of tactics. Given that we are trying to build complex expressions, Lean offers two ways of going about
it: we can write down the expressions themselves (that is, suitable text descriptions thereof), or we can provide Lean with
instructions as to how to construct them. For example, the following expression represents a proof of the fact that if n is
even then so is m * n:

example : ∀ m n : Nat, Even n → Even (m * n) := fun m n 〈k, (hk : n = k + k)〉 7→
have hmn : m * n = m * k + m * k := by rw [hk, mul_add]
show ∃ l, m * n = l + l from 〈_, hmn〉

The proof term can be compressed to a single line:

example : ∀ m n : Nat, Even n → Even (m * n) :=
fun m n 〈k, hk〉 7→ 〈m * k, by rw [hk, mul_add]〉

The following is, instead, a tactic-style proof of the same theorem, where lines starting with -- are comments, hence
ignored by Lean:

example : ∀ m n : Nat, Even n → Even (m * n) := by
-- Say m and n are natural numbers, and assume n=2*k.
rintro m n 〈k, hk〉
-- We need to prove m*n is twice a natural number. Let's show it's twice m*k.
use m * k
-- Substitute for n,
rw [hk]
-- and now it's obvious.
ring

As you enter each line of such a proof in VS Code, Lean displays the proof state in a separate window, telling you what
facts you have already established and what tasks remain to prove your theorem. You can replay the proof by stepping
through the lines, since Lean will continue to show you the state of the proof at the point where the cursor is. In this
example, you will then see that the first line of the proof introduces m and n (we could have renamed them at that point,
if we wanted to), and also decomposes the hypothesis Even n to a k and the assumption that n = 2 * k. The second
line, use m * k, declares that we are going to show that m * n is even by showing m * n = 2 * (m * k). The
next line uses the rewrite tactic to replace n by 2 * k in the goal, and the ring tactic solves the resulting goal m *
(2 * k) = 2 * (m * k).
The ability to build a proof in small steps with incremental feedback is extremely powerful. For that reason, tactic proofs
are often easier and quicker to write than proof terms. There isn’t a sharp distinction between the two: tactic proofs can
be inserted in proof terms, as we did with the phrase by rw [hk, mul_left_comm] in the example above. We
will also see that, conversely, it is often useful to insert a short proof term in the middle of a tactic proof. That said, in
this book, our emphasis will be on the use of tactics.
In our example, the tactic proof can also be reduced to a one-liner:

example : ∀ m n : Nat, Even n → Even (m * n) := by
rintro m n 〈k, hk〉; use m * k; rw [hk]; ring

Here we have used tactics to carry out small proof steps. But they can also provide substantial automation, and justify
longer calculations and bigger inferential steps. For example, we can invoke Lean’s simplifier with specific rules for
simplifying statements about parity to prove our theorem automatically.

1.2. Overview 3
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example : ∀ m n : Nat, Even n → Even (m * n) := by
intros; simp [*, parity_simps]

Another big difference between the two introductions is that Theorem Proving in Lean depends only on core Lean and its
built-in tactics, whereas Mathematics in Lean is built on top of Lean’s powerful and ever-growing library, Mathlib. As a
result, we can show you how to use some of the mathematical objects and theorems in the library, and some of the very
useful tactics. This book is not meant to be used as an complete overview of the library; the community web pages contain
extensive documentation. Rather, our goal is to introduce you to the style of thinking that underlies that formalization,
and point out basic entry points so that you are comfortable browsing the library and finding things on your own.
Interactive theorem proving can be frustrating, and the learning curve is steep. But the Lean community is very welcoming
to newcomers, and people are available on the Lean Zulip chat group round the clock to answer questions. We hope to
see you there, and have no doubt that soon enough you, too, will be able to answer such questions and contribute to the
development of Mathlib.
So here is your mission, should you choose to accept it: dive in, try the exercises, come to Zulip with questions, and have
fun. But be forewarned: interactive theorem proving will challenge you to think about mathematics and mathematical
reasoning in fundamentally new ways. Your life may never be the same.
Acknowledgments. We are grateful to Gabriel Ebner for setting up the infrastructure for running this tutorial in VS
Code, and to Scott Morrison and Mario Carneiro for help porting it from Lean 4. We are also grateful for help and
corrections from Takeshi Abe, Julian Berman, Alex Best, Bulwi Cha, Bryan Gin-ge Chen, Steven Clontz, Mauricio
Collaris, Johan Commelin, Mark Czubin, Alexandru Duca, Denis Gorbachev, Winston de Greef, Mathieu Guay-Paquet,
Julian Külshammer, Martin C. Martin, Giovanni Mascellani, Isaiah Mindich, Hunter Monroe, Pietro Monticone, Oliver
Nash, Bartosz Piotrowski, Nicolas Rolland, Keith Rush, Guilherme Silva, Pedro Sánchez Terraf, Floris van Doorn, and
Eric Wieser. Our work has been partially supported by the Hoskinson Center for Formal Mathematics.
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CHAPTER

TWO

BASICS

This chapter is designed to introduce you to the nuts and bolts of mathematical reasoning in Lean: calculating, applying
lemmas and theorems, and reasoning about generic structures.

2.1 Calculating

We generally learn to carry out mathematical calculations without thinking of them as proofs. But when we justify each
step in a calculation, as Lean requires us to do, the net result is a proof that the left-hand side of the calculation is equal
to the right-hand side.
In Lean, stating a theorem is tantamount to stating a goal, namely, the goal of proving the theorem. Lean provides the
rewriting tactic rw, to replace the left-hand side of an identity by the right-hand side in the goal. If a, b, and c are real
numbers, mul_assoc a b c is the identity a * b * c = a * (b * c) and mul_comm a b is the identity
a * b = b * a. Lean provides automation that generally eliminates the need to refer the facts like these explicitly,
but they are useful for the purposes of illustration. In Lean, multiplication associates to the left, so the left-hand side of
mul_assoc could also be written (a * b) * c. However, it is generally good style to be mindful of Lean’s notational
conventions and leave out parentheses when Lean does as well.
Let’s try out rw.

example (a b c : R) : a * b * c = b * (a * c) := by
rw [mul_comm a b]
rw [mul_assoc b a c]

The import lines at the beginning of the associated examples file import the theory of the real numbers from Mathlib,
as well as useful automation. For the sake of brevity, we generally suppress information like this in the textbook.
You are welcome to make changes to see what happens. You can type the R character as \R or \real in VS Code.
The symbol doesn’t appear until you hit space or the tab key. If you hover over a symbol when reading a Lean file, VS
Code will show you the syntax that can be used to enter it. If you are curious to see all available abbreviations, you can
hit Ctrl-Shift-p and then type abbreviations to get access to the Lean 4: Show all abbreviations command.
If your keyboard does not have an easily accessible backslash, you can change the leading character by changing the
lean4.input.leader setting.
When a cursor is in the middle of a tactic proof, Lean reports on the current proof state in the Lean Infoview window. As
you move your cursor past each step of the proof, you can see the state change. A typical proof state in Lean might look
as follows:

1 goal
x y : N,
h1 : Prime x,
h2 : ¬Even x,

(continues on next page)
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(continued from previous page)
h3 : y > x
` y ≥ 4

The lines before the one that begins with ` denote the context: they are the objects and assumptions currently at play. In
this example, these include two objects, x and y, each a natural number. They also include three assumptions, labelled
h1, h2, and h3. In Lean, everything in a context is labelled with an identifier. You can type these subscripted labels as
h\1, h\2, and h\3, but any legal identifiers would do: you can use h1, h2, h3 instead, or foo, bar, and baz. The
last line represents the goal, that is, the fact to be proved. Sometimes people use target for the fact to be proved, and goal
for the combination of the context and the target. In practice, the intended meaning is usually clear.
Try proving these identities, in each case replacing sorry by a tactic proof. With the rw tactic, you can use a left arrow
(\l) to reverse an identity. For example, rw [← mul_assoc a b c] replaces a * (b * c) by a * b
* c in the current goal. Note that the left-pointing arrow refers to going from right to left in the identity provided by
mul_assoc, it has nothing to do with the left or right side of the goal.

example (a b c : R) : c * b * a = b * (a * c) := by
sorry

example (a b c : R) : a * (b * c) = b * (a * c) := by
sorry

You can also use identities like mul_assoc and mul_comm without arguments. In this case, the rewrite tactic tries to
match the left-hand side with an expression in the goal, using the first pattern it finds.

example (a b c : R) : a * b * c = b * c * a := by
rw [mul_assoc]
rw [mul_comm]

You can also provide partial information. For example, mul_comm a matches any pattern of the form a * ? and
rewrites it to ? * a. Try doing the first of these examples without providing any arguments at all, and the second with
only one argument.

example (a b c : R) : a * (b * c) = b * (c * a) := by
sorry

example (a b c : R) : a * (b * c) = b * (a * c) := by
sorry

You can also use rw with facts from the local context.

example (a b c d e f : R) (h : a * b = c * d) (h' : e = f) : a * (b * e) = c * (d *␣
↪→f) := by
rw [h']
rw [← mul_assoc]
rw [h]
rw [mul_assoc]

Try these, using the theorem sub_self for the second one:

example (a b c d e f : R) (h : b * c = e * f) : a * b * c * d = a * e * f * d := by
sorry

example (a b c d : R) (hyp : c = b * a - d) (hyp' : d = a * b) : c = 0 := by
sorry

Multiple rewrite commands can be carried out with a single command, by listing the relevant identities separated by
commas inside the square brackets.

6 Chapter 2. Basics
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example (a b c d e f : R) (h : a * b = c * d) (h' : e = f) : a * (b * e) = c * (d *␣
↪→f) := by
rw [h', ← mul_assoc, h, mul_assoc]

You still see the incremental progress by placing the cursor after a comma in any list of rewrites.
Another trick is that we can declare variables once and for all outside an example or theorem. Lean then includes them
automatically.

variable (a b c d e f : R)

example (h : a * b = c * d) (h' : e = f) : a * (b * e) = c * (d * f) := by
rw [h', ← mul_assoc, h, mul_assoc]

Inspection of the tactic state at the beginning of the above proof reveals that Lean indeed included all variables. We can
delimit the scope of the declaration by putting it in a section ... end block. Finally, recall from the introduction
that Lean provides us with a command to determine the type of an expression:

section
variable (a b c : R)

#check a
#check a + b
#check (a : R)
#check mul_comm a b
#check (mul_comm a b : a * b = b * a)
#check mul_assoc c a b
#check mul_comm a
#check mul_comm

end

The #check command works for both objects and facts. In response to the command #check a, Lean reports that a
has type R. In response to the command #check mul_comm a b, Lean reports that mul_comm a b is a proof of
the fact a * b = b * a. The command #check (a : R) states our expectation that the type of a is R, and
Lean will raise an error if that is not the case. We will explain the output of the last three #check commands later, but
in the meanwhile, you can take a look at them, and experiment with some #check commands of your own.
Let’s try some more examples. The theorem two_mul a says that 2 * a = a + a. The theorems add_mul
and mul_add express the distributivity of multiplication over addition, and the theorem add_assoc expresses the
associativity of addition. Use the #check command to see the precise statements.

example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b := by
rw [mul_add, add_mul, add_mul]
rw [← add_assoc, add_assoc (a * a)]
rw [mul_comm b a, ← two_mul]

Whereas it is possible to figure out what it going on in this proof by stepping through it in the editor, it is hard to read on
its own. Lean provides a more structured way of writing proofs like this using the calc keyword.

example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
calc
(a + b) * (a + b) = a * a + b * a + (a * b + b * b) := by

rw [mul_add, add_mul, add_mul]
_ = a * a + (b * a + a * b) + b * b := by

rw [← add_assoc, add_assoc (a * a)]

(continues on next page)
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(continued from previous page)
_ = a * a + 2 * (a * b) + b * b := by

rw [mul_comm b a, ← two_mul]

Notice that the proof does not begin with by: an expression that begins with calc is a proof term. A calc expression
can also be used inside a tactic proof, but Lean interprets it as the instruction to use the resulting proof term to solve
the goal. The calc syntax is finicky: the underscores and justification have to be in the format indicated above. Lean
uses indentation to determine things like where a block of tactics or a calc block begins and ends; try changing the
indentation in the proof above to see what happens.
One way to write a calc proof is to outline it first using the sorry tactic for justification, make sure Lean accepts the
expression modulo these, and then justify the individual steps using tactics.

example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
calc
(a + b) * (a + b) = a * a + b * a + (a * b + b * b) := by

sorry
_ = a * a + (b * a + a * b) + b * b := by

sorry
_ = a * a + 2 * (a * b) + b * b := by

sorry

Try proving the following identity using both a pure rw proof and a more structured calc proof:

example : (a + b) * (c + d) = a * c + a * d + b * c + b * d := by
sorry

The following exercise is a little more challenging. You can use the theorems listed underneath.

example (a b : R) : (a + b) * (a - b) = a ^ 2 - b ^ 2 := by
sorry

#check pow_two a
#check mul_sub a b c
#check add_mul a b c
#check add_sub a b c
#check sub_sub a b c
#check add_zero a

We can also perform rewriting in an assumption in the context. For example, rw [mul_comm a b] at hyp replaces
a * b by b * a in the assumption hyp.

example (a b c d : R) (hyp : c = d * a + b) (hyp' : b = a * d) : c = 2 * a * d := by
rw [hyp'] at hyp
rw [mul_comm d a] at hyp
rw [← two_mul (a * d)] at hyp
rw [← mul_assoc 2 a d] at hyp
exact hyp

In the last step, the exact tactic can use hyp to solve the goal because at that point hyp matches the goal exactly.
We close this section by noting that Mathlib provides a useful bit of automation with a ring tactic, which is designed
to prove identities in any commutative ring as long as they follow purely from the ring axioms, without using any local
assumption.

example : c * b * a = b * (a * c) := by
ring

(continues on next page)
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(continued from previous page)

example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b := by
ring

example : (a + b) * (a - b) = a ^ 2 - b ^ 2 := by
ring

example (hyp : c = d * a + b) (hyp' : b = a * d) : c = 2 * a * d := by
rw [hyp, hyp']
ring

The ring tactic is imported indirectly when we import Mathlib.Data.Real.Basic, but we will see in the next
section that it can be used for calculations on structures other than the real numbers. It can be imported explicitly with
the command import Mathlib.Tactic. We will see there are similar tactics for other common kind of algebraic
structures.
There is a variation of rw called nth_rewrite that allows you to replace only particular instances of an expression in
the goal. Possible matches are enumerated starting with 1, so in the following example, nth_rewrite 2 h replaces
the second occurrence of a + b with c.

example (a b c : N) (h : a + b = c) : (a + b) * (a + b) = a * c + b * c := by
nth_rw 2 [h]
rw [add_mul]

2.2 Proving Identities in Algebraic Structures

Mathematically, a ring consists of a collection of objects, R, operations + ×, and constants 0 and 1, and an operation
x 7→ −x such that:

• R with + is an abelian group, with 0 as the additive identity and negation as inverse.
• Multiplication is associative with identity 1, and multiplication distributes over addition.

In Lean, the collection of objects is represented as a type, R. The ring axioms are as follows:

variable (R : Type*) [Ring R]

#check (add_assoc : ∀ a b c : R, a + b + c = a + (b + c))
#check (add_comm : ∀ a b : R, a + b = b + a)
#check (zero_add : ∀ a : R, 0 + a = a)
#check (add_left_neg : ∀ a : R, -a + a = 0)
#check (mul_assoc : ∀ a b c : R, a * b * c = a * (b * c))
#check (mul_one : ∀ a : R, a * 1 = a)
#check (one_mul : ∀ a : R, 1 * a = a)
#check (mul_add : ∀ a b c : R, a * (b + c) = a * b + a * c)
#check (add_mul : ∀ a b c : R, (a + b) * c = a * c + b * c)

You will learn more about the square brackets in the first line later, but for the time being, suffice it to say that the
declaration gives us a type, R, and a ring structure on R. Lean then allows us to use generic ring notation with elements
of R, and to make use of a library of theorems about rings.
The names of some of the theorems should look familiar: they are exactly the ones we used to calculate with the real
numbers in the last section. Lean is good not only for proving things about concrete mathematical structures like the
natural numbers and the integers, but also for proving things about abstract structures, characterized axiomatically, like
rings. Moreover, Lean supports generic reasoning about both abstract and concrete structures, and can be trained to
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recognize appropriate instances. So any theorem about rings can be applied to concrete rings like the integers, Z, the
rational numbers, Q, and the complex numbers C. It can also be applied to any instance of an abstract structure that
extends rings, such as any ordered ring or any field.
Not all important properties of the real numbers hold in an arbitrary ring, however. For example, multiplication on the
real numbers is commutative, but that does not hold in general. If you have taken a course in linear algebra, you will
recognize that, for every n, the n by n matrices of real numbers form a ring in which commutativity usually fails. If we
declare R to be a commutative ring, in fact, all the theorems in the last section continue to hold when we replace R by R.

variable (R : Type*) [CommRing R]
variable (a b c d : R)

example : c * b * a = b * (a * c) := by ring

example : (a + b) * (a + b) = a * a + 2 * (a * b) + b * b := by ring

example : (a + b) * (a - b) = a ^ 2 - b ^ 2 := by ring

example (hyp : c = d * a + b) (hyp' : b = a * d) : c = 2 * a * d := by
rw [hyp, hyp']
ring

We leave it to you to check that all the other proofs go through unchanged. Notice that when a proof is short, like by
ring or by linarith or by sorry, it is common (and permissible) to put it on the same line as the by. Good
proof-writing style should strike a balance between concision and readability.
The goal of this section is to strengthen the skills you have developed in the last section and apply them to reasoning
axiomatically about rings. We will start with the axioms listed above, and use them to derive other facts. Most of the
facts we prove are already in Mathlib. We will give the versions we prove the same names to help you learn the contents
of the library as well as the naming conventions.
Lean provides an organizational mechanism similar to those used in programming languages: when a definition or theorem
foo is introduced in a namespace bar, its full name is bar.foo. The command open bar later opens the namespace,
which allows us to use the shorter name foo. To avoid errors due to name clashes, in the next example we put our versions
of the library theorems in a new namespace called MyRing.
The next example shows that we do not need add_zero or add_right_neg as ring axioms, because they follow
from the other axioms.

namespace MyRing
variable {R : Type*} [Ring R]

theorem add_zero (a : R) : a + 0 = a := by rw [add_comm, zero_add]

theorem add_right_neg (a : R) : a + -a = 0 := by rw [add_comm, add_left_neg]

#check MyRing.add_zero
#check add_zero

end MyRing

The net effect is that we can temporarily reprove a theorem in the library, and then go on using the library version after
that. But don’t cheat! In the exercises that follow, take care to use only the general facts about rings that we have proved
earlier in this section.
(If you are paying careful attention, you may have noticed that we changed the round brackets in (R : Type*) for
curly brackets in {R : Type*}. This declares R to be an implicit argument. We will explain what this means in a
moment, but don’t worry about it in the meanwhile.)
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Here is a useful theorem:

theorem neg_add_cancel_left (a b : R) : -a + (a + b) = b := by
rw [← add_assoc, add_left_neg, zero_add]

Prove the companion version:

theorem add_neg_cancel_right (a b : R) : a + b + -b = a := by
sorry

Use these to prove the following:

theorem add_left_cancel {a b c : R} (h : a + b = a + c) : b = c := by
sorry

theorem add_right_cancel {a b c : R} (h : a + b = c + b) : a = c := by
sorry

With enough planning, you can do each of them with three rewrites.
We will now explain the use of the curly braces. Imagine you are in a situation where you have a, b, and c in your context,
as well as a hypothesis h : a + b = a + c, and you would like to draw the conclusion b = c. In Lean, you
can apply a theorem to hypotheses and facts just the same way that you can apply them to objects, so you might think
that add_left_cancel a b c h is a proof of the fact b = c. But notice that explicitly writing a, b, and c is
redundant, because the hypothesis h makes it clear that those are the objects we have in mind. In this case, typing a few
extra characters is not onerous, but if we wanted to apply add_left_cancel to more complicated expressions, writing
them would be tedious. In cases like these, Lean allows us to mark arguments as implicit, meaning that they are supposed
to be left out and inferred by other means, such as later arguments and hypotheses. The curly brackets in {a b c :
R} do exactly that. So, given the statement of the theorem above, the correct expression is simply add_left_cancel
h.
To illustrate, let us show that a * 0 = 0 follows from the ring axioms.

theorem mul_zero (a : R) : a * 0 = 0 := by
have h : a * 0 + a * 0 = a * 0 + 0 := by
rw [← mul_add, add_zero, add_zero]

rw [add_left_cancel h]

We have used a new trick! If you step through the proof, you can see what is going on. The have tactic introduces a
new goal, a * 0 + a * 0 = a * 0 + 0, with the same context as the original goal. The fact that the next line is
indented indicates that Lean is expecting a block of tactics that serves to prove this new goal. The indentation therefore
promotes a modular style of proof: the indented subproof establishes the goal that was introduced by the have. After
that, we are back to proving the original goal, except a new hypothesis h has been added: having proved it, we are now
free to use it. At this point, the goal is exactly the result of add_left_cancel h.
We could equally well have closed the proof with apply add_left_cancel h or exact add_left_cancel
h. The exact tactic takes as argument a proof term which completely proves the current goal, without creating any new
goal. The apply tactic is a variant whose argument is not necessarily a complete proof. The missing pieces are either
inferred automatically by Lean or become new goals to prove. While the exact tactic is technically redundant since it
is strictly less powerful than apply, it makes proof scripts slightly clearer to human readers and easier to maintain when
the library evolves.
Remember that multiplication is not assumed to be commutative, so the following theorem also requires some work.

theorem zero_mul (a : R) : 0 * a = 0 := by
sorry
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By now, you should also be able replace each sorry in the next exercise with a proof, still using only facts about rings
that we have established in this section.

theorem neg_eq_of_add_eq_zero {a b : R} (h : a + b = 0) : -a = b := by
sorry

theorem eq_neg_of_add_eq_zero {a b : R} (h : a + b = 0) : a = -b := by
sorry

theorem neg_zero : (-0 : R) = 0 := by
apply neg_eq_of_add_eq_zero
rw [add_zero]

theorem neg_neg (a : R) : - -a = a := by
sorry

We had to use the annotation (-0 : R) instead of 0 in the third theorem because without specifying R it is impossible
for Lean to infer which 0 we have in mind, and by default it would be interpreted as a natural number.
In Lean, subtraction in a ring is provably equal to addition of the additive inverse.

example (a b : R) : a - b = a + -b :=
sub_eq_add_neg a b

On the real numbers, it is defined that way:

example (a b : R) : a - b = a + -b :=
rfl

example (a b : R) : a - b = a + -b := by
rfl

The proof term rfl is short for “reflexivity”. Presenting it as a proof of a - b = a + -b forces Lean to unfold the
definition and recognize both sides as being the same. The rfl tactic does the same. This is an instance of what is known
as a definitional equality in Lean’s underlying logic. This means that not only can one rewrite with sub_eq_add_neg
to replace a - b = a + -b, but in some contexts, when dealing with the real numbers, you can use the two sides
of the equation interchangeably. For example, you now have enough information to prove the theorem self_sub from
the last section:

theorem self_sub (a : R) : a - a = 0 := by
sorry

Show that you can prove this using rw, but if you replace the arbitrary ring R by the real numbers, you can also prove it
using either apply or exact.
Lean knows that 1 + 1 = 2 holds in any ring. With a bit of effort, you can use that to prove the theorem two_mul
from the last section:

theorem one_add_one_eq_two : 1 + 1 = (2 : R) := by
norm_num

theorem two_mul (a : R) : 2 * a = a + a := by
sorry

We close this section by noting that some of the facts about addition and negation that we established above do not need
the full strength of the ring axioms, or even commutativity of addition. The weaker notion of a group can be axiomatized
as follows:
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variable (A : Type*) [AddGroup A]

#check (add_assoc : ∀ a b c : A, a + b + c = a + (b + c))
#check (zero_add : ∀ a : A, 0 + a = a)
#check (add_left_neg : ∀ a : A, -a + a = 0)

It is conventional to use additive notation when the group operation is commutative, and multiplicative notation otherwise.
So Lean defines a multiplicative version as well as the additive version (and also their abelian variants, AddCommGroup
and CommGroup).

variable {G : Type*} [Group G]

#check (mul_assoc : ∀ a b c : G, a * b * c = a * (b * c))
#check (one_mul : ∀ a : G, 1 * a = a)
#check (mul_left_inv : ∀ a : G, a ¹ * a = 1)

If you are feeling cocky, try proving the following facts about groups, using only these axioms. You will need to prove a
number of helper lemmas along the way. The proofs we have carried out in this section provide some hints.

theorem mul_right_inv (a : G) : a * a ¹ = 1 := by
sorry

theorem mul_one (a : G) : a * 1 = a := by
sorry

theorem mul_inv_rev (a b : G) : (a * b) ¹ = b ¹ * a ¹ := by
sorry

Explicitly invoking those lemmas is tedious, so Mathlib provides tactics similar to ring in order to cover most uses: group
is for non-commutative multiplicative groups, abel for abelian additive groups, and noncomm_ring for non-commutative
rings. It may seem odd that the algebraic structures are called Ring and CommRing while the tactics are named non-
comm_ring and ring. This is partly for historical reasons, but also for the convenience of using a shorter name for the
tactic that deals with commutative rings, since it is used more often.

2.3 Using Theorems and Lemmas

Rewriting is great for proving equations, but what about other sorts of theorems? For example, how can we prove an
inequality, like the fact that a+ eb ≤ a+ ec holds whenever b ≤ c? We have already seen that theorems can be applied
to arguments and hypotheses, and that the apply and exact tactics can be used to solve goals. In this section, we will
make good use of these tools.
Consider the library theorems le_refl and le_trans:

#check (le_refl : ∀ a : R, a ≤ a)
#check (le_trans : a ≤ b → b ≤ c → a ≤ c)

As we explain in more detail in Section 3.1, the implicit parentheses in the statement of le_trans associate to the right,
so it should be interpreted as a ≤ b → (b ≤ c → a ≤ c). The library designers have set the arguments a,
b and c to le_trans implicit, so that Lean will not let you provide them explicitly (unless you really insist, as we will
discuss later). Rather, it expects to infer them from the context in which they are used. For example, when hypotheses h
: a ≤ b and h' : b ≤ c are in the context, all the following work:

variable (h : a ≤ b) (h' : b ≤ c)

(continues on next page)
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(continued from previous page)
#check (le_refl : ∀ a : Real, a ≤ a)
#check (le_refl a : a ≤ a)
#check (le_trans : a ≤ b → b ≤ c → a ≤ c)
#check (le_trans h : b ≤ c → a ≤ c)
#check (le_trans h h' : a ≤ c)

The apply tactic takes a proof of a general statement or implication, tries to match the conclusion with the current goal,
and leaves the hypotheses, if any, as new goals. If the given proof matches the goal exactly (modulo definitional equality),
you can use the exact tactic instead of apply. So, all of these work:

example (x y z : R) (h0 : x ≤ y) (h1 : y ≤ z) : x ≤ z := by
apply le_trans
· apply h0

. apply h1

example (x y z : R) (h0 : x ≤ y) (h1 : y ≤ z) : x ≤ z := by
apply le_trans h0

apply h1

example (x y z : R) (h0 : x ≤ y) (h1 : y ≤ z) : x ≤ z :=
le_trans h0 h1

example (x : R) : x ≤ x := by
apply le_refl

example (x : R) : x ≤ x :=
le_refl x

In the first example, applying le_trans creates two goals, and we use the dots to indicate where the proof of each
begins. The dots are optional, but they serve to focus the goal: within the block introduced by the dot, only one goal is
visible, and it must be completed before the end of the block. Here we end the first block by starting a new one with
another dot. We could just as well have decreased the indentation. In the fourth example and in the last example, we
avoid going into tactic mode entirely: le_trans h0 h1 and le_refl x are the proof terms we need.
Here are a few more library theorems:

#check (le_refl : ∀ a, a ≤ a)
#check (le_trans : a ≤ b → b ≤ c → a ≤ c)
#check (lt_of_le_of_lt : a ≤ b → b < c → a < c)
#check (lt_of_lt_of_le : a < b → b ≤ c → a < c)
#check (lt_trans : a < b → b < c → a < c)

Use them together with apply and exact to prove the following:

example (h0 : a ≤ b) (h1 : b < c) (h2 : c ≤ d) (h3 : d < e) : a < e := by
sorry

In fact, Lean has a tactic that does this sort of thing automatically:

example (h0 : a ≤ b) (h1 : b < c) (h2 : c ≤ d) (h3 : d < e) : a < e := by
linarith

The linarith tactic is designed to handle linear arithmetic.

example (h : 2 * a ≤ 3 * b) (h' : 1 ≤ a) (h'' : d = 2) : d + a ≤ 5 * b := by
linarith
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In addition to equations and inequalities in the context, linarith will use additional inequalities that you pass as
arguments. In the next example, exp_le_exp.mpr h' is a proof of exp b ≤ exp c, as we will explain in a
moment. Notice that, in Lean, we write f x to denote the application of a function f to the argument x, exactly the same
way we write h x to denote the result of applying a fact or theorem h to the argument x. Parentheses are only needed
for compound arguments, as in f (x + y). Without the parentheses, f x + y would be parsed as (f x) + y.

example (h : 1 ≤ a) (h' : b ≤ c) : 2 + a + exp b ≤ 3 * a + exp c := by
linarith [exp_le_exp.mpr h']

Here are some more theorems in the library that can be used to establish inequalities on the real numbers.

#check (exp_le_exp : exp a ≤ exp b ↔ a ≤ b)
#check (exp_lt_exp : exp a < exp b ↔ a < b)
#check (log_le_log : 0 < a → a ≤ b → log a ≤ log b)
#check (log_lt_log : 0 < a → a < b → log a < log b)
#check (add_le_add : a ≤ b → c ≤ d → a + c ≤ b + d)
#check (add_le_add_left : a ≤ b → ∀ c, c + a ≤ c + b)
#check (add_le_add_right : a ≤ b → ∀ c, a + c ≤ b + c)
#check (add_lt_add_of_le_of_lt : a ≤ b → c < d → a + c < b + d)
#check (add_lt_add_of_lt_of_le : a < b → c ≤ d → a + c < b + d)
#check (add_lt_add_left : a < b → ∀ c, c + a < c + b)
#check (add_lt_add_right : a < b → ∀ c, a + c < b + c)
#check (add_nonneg : 0 ≤ a → 0 ≤ b → 0 ≤ a + b)
#check (add_pos : 0 < a → 0 < b → 0 < a + b)
#check (add_pos_of_pos_of_nonneg : 0 < a → 0 ≤ b → 0 < a + b)
#check (exp_pos : ∀ a, 0 < exp a)
#check add_le_add_left

Some of the theorems, exp_le_exp, exp_lt_exp use a bi-implication, which represents the phrase “if and only if.”
(You can type it in VS Code with \lr of \iff). We will discuss this connective in greater detail in the next chapter.
Such a theorem can be used with rw to rewrite a goal to an equivalent one:

example (h : a ≤ b) : exp a ≤ exp b := by
rw [exp_le_exp]
exact h

In this section, however, we will use the fact that if h : A ↔ B is such an equivalence, then h.mp establishes the
forward direction, A → B, and h.mpr establishes the reverse direction, B → A. Here, mp stands for “modus ponens”
and mpr stands for “modus ponens reverse.” You can also use h.1 and h.2 for h.mp and h.mpr, respectively, if you
prefer. Thus the following proof works:

example (h0 : a ≤ b) (h1 : c < d) : a + exp c + e < b + exp d + e := by
apply add_lt_add_of_lt_of_le
· apply add_lt_add_of_le_of_lt h0

apply exp_lt_exp.mpr h1

apply le_refl

The first line, apply add_lt_add_of_lt_of_le, creates two goals, and once again we use a dot to separate the
proof of the first from the proof of the second.
Try the following examples on your own. The example in the middle shows you that the norm_num tactic can be used
to solve concrete numeric goals.

example (h0 : d ≤ e) : c + exp (a + d) ≤ c + exp (a + e) := by sorry

example : (0 : R) < 1 := by norm_num

(continues on next page)
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(continued from previous page)
example (h : a ≤ b) : log (1 + exp a) ≤ log (1 + exp b) := by

have h0 : 0 < 1 + exp a := by sorry
apply log_le_log h0

sorry

From these examples, it should be clear that being able to find the library theorems you need constitutes an important part
of formalization. There are a number of strategies you can use:

• You can browse Mathlib in its GitHub repository.
• You can use the API documentation on the Mathlib web pages.
• You can rely on Mathlib naming conventions and Ctrl-space completion in the editor to guess a theorem name (or
Cmd-space on a Mac keyboard). In Lean, a theorem named A_of_B_of_C establishes something of the form A
from hypotheses of the form B and C, where A, B, and C approximate the way we might read the goals out loud.
So a theorem establishing something like x + y ≤ ... will probably start with add_le. Typing add_le and
hitting Ctrl-space will give you some helpful choices. Note that hitting Ctrl-space twice displays more information
about the available completions.

• If you right-click on an existing theorem name in VS Code, the editor will show a menu with the option to jump to
the file where the theorem is defined, and you can find similar theorems nearby.

• You can use the apply? tactic, which tries to find the relevant theorem in the library.

example : 0 ≤ a ^ 2 := by
-- apply?
exact sq_nonneg a

To try out apply? in this example, delete the exact command and uncomment the previous line. Using these tricks,
see if you can find what you need to do the next example:

example (h : a ≤ b) : c - exp b ≤ c - exp a := by
sorry

Using the same tricks, confirm that linarith instead of apply? can also finish the job.
Here is another example of an inequality:

example : 2 * a * b ≤ a ^ 2 + b ^ 2 := by
have h : 0 ≤ a ^ 2 - 2 * a * b + b ^ 2
calc
a ^ 2 - 2 * a * b + b ^ 2 = (a - b) ^ 2 := by ring
_ ≥ 0 := by apply pow_two_nonneg

calc
2 * a * b = 2 * a * b + 0 := by ring
_ ≤ 2 * a * b + (a ^ 2 - 2 * a * b + b ^ 2) := add_le_add (le_refl _) h
_ = a ^ 2 + b ^ 2 := by ring

Mathlib tends to put spaces around binary operations like * and ^, but in this example, the more compressed format
increases readability. There are a number of things worth noticing. First, an expression s ≥ t is definitionally equivalent
to t ≤ s. In principle, this means one should be able to use them interchangeably. But some of Lean’s automation does
not recognize the equivalence, so Mathlib tends to favor ≤ over ≥. Second, we have used the ring tactic extensively.
It is a real timesaver! Finally, notice that in the second line of the second calc proof, instead of writing by exact
add_le_add (le_refl _) h, we can simply write the proof term add_le_add (le_refl _) h.
In fact, the only cleverness in the proof above is figuring out the hypothesis h. Once we have it, the second calculation
involves only linear arithmetic, and linarith can handle it:
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example : 2 * a * b ≤ a ^ 2 + b ^ 2 := by
have h : 0 ≤ a ^ 2 - 2 * a * b + b ^ 2
calc
a ^ 2 - 2 * a * b + b ^ 2 = (a - b) ^ 2 := by ring
_ ≥ 0 := by apply pow_two_nonneg

linarith

How nice! We challenge you to use these ideas to prove the following theorem. You can use the theorem abs_le'.mpr.
You will also need the constructor tactic to split a conjunction to two goals; see Section 3.4.

example : |a * b| ≤ (a ^ 2 + b ^ 2) / 2 := by
sorry

#check abs_le'.mpr

If you managed to solve this, congratulations! You are well on your way to becoming a master formalizer.

2.4 More examples using apply and rw

The min function on the real numbers is uniquely characterized by the following three facts:

#check (min_le_left a b : min a b ≤ a)
#check (min_le_right a b : min a b ≤ b)
#check (le_min : c ≤ a → c ≤ b → c ≤ min a b)

Can you guess the names of the theorems that characterize max in a similar way?
Notice that we have to apply min to a pair of arguments a and b by writing min a b rather than min (a, b).
Formally, min is a function of type R → R → R. When we write a type like this with multiple arrows, the convention
is that the implicit parentheses associate to the right, so the type is interpreted as R → (R → R). The net effect is
that if a and b have type R then min a has type R → R and min a b has type R, so min acts like a function of two
arguments, as we expect. Handling multiple arguments in this way is known as currying, after the logician Haskell Curry.
The order of operations in Lean can also take some getting used to. Function application binds tighter than infix operations,
so the expression min a b + c is interpreted as (min a b) + c. With time, these conventions will become second
nature.
Using the theorem le_antisymm, we can show that two real numbers are equal if each is less than or equal to the other.
Using this and the facts above, we can show that min is commutative:

example : min a b = min b a := by
apply le_antisymm
· show min a b ≤ min b a
apply le_min
· apply min_le_right
apply min_le_left

· show min b a ≤ min a b
apply le_min
· apply min_le_right
apply min_le_left

Here we have used dots to separate proofs of different goals. Our usage is inconsistent: at the outer level, we use dots and
indentation for both goals, whereas for the nested proofs, we use dots only until a single goal remains. Both conventions
are reasonable and useful. We also use the show tactic to structure the proof and indicate what is being proved in each
block. The proof still works without the show commands, but using them makes the proof easier to read and maintain.
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It may bother you that the proof is repetitive. To foreshadow skills you will learn later on, we note that one way to avoid
the repetition is to state a local lemma and then use it:

example : min a b = min b a := by
have h : ∀ x y : R, min x y ≤ min y x := by
intro x y
apply le_min
apply min_le_right
apply min_le_left

apply le_antisymm
apply h
apply h

We will say more about the universal quantifier in Section 3.1, but suffice it to say here that the hypothesis h says that the
desired inequality holds for any x and y, and the intro tactic introduces an arbitrary x and y to establish the conclusion.
The first apply after le_antisymm implicitly uses h a b, whereas the second one uses h b a.
Another solution is to use the repeat tactic, which applies a tactic (or a block) as many times as it can.

example : min a b = min b a := by
apply le_antisymm
repeat
apply le_min
apply min_le_right
apply min_le_left

We encourage you to prove the following as exercises. You can use either of the tricks just described to shorten the first.

example : max a b = max b a := by
sorry

example : min (min a b) c = min a (min b c) := by
sorry

Of course, you are welcome to prove the associativity of max as well.
It is an interesting fact that min distributes over max the way that multiplication distributes over addition, and vice-versa.
In other words, on the real numbers, we have the identity min a (max b c) ≤ max (min a b) (min a
c) as well as the corresponding version with max and min switched. But in the next section we will see that this does
not follow from the transitivity and reflexivity of≤ and the characterizing properties of min and max enumerated above.
We need to use the fact that≤ on the real numbers is a total order, which is to say, it satisfies ∀ x y, x ≤ y ∨ y ≤
x. Here the disjunction symbol, ∨, represents “or”. In the first case, we have min x y = x, and in the second case,
we have min x y = y. We will learn how to reason by cases in Section 3.5, but for now we will stick to examples that
don’t require the case split.
Here is one such example:

theorem aux : min a b + c ≤ min (a + c) (b + c) := by
sorry

example : min a b + c = min (a + c) (b + c) := by
sorry

It is clear that aux provides one of the two inequalities needed to prove the equality, but applying it to suitable values
yields the other direction as well. As a hint, you can use the theorem add_neg_cancel_right and the linarith
tactic.
Lean’s naming convention is made manifest in the library’s name for the triangle inequality:

#check (abs_add : ∀ a b : R, |a + b| ≤ |a| + |b|)
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Use it to prove the following variant:

example : |a| - |b| ≤ |a - b| :=
sorry

end

See if you can do this in three lines or less. You can use the theorem sub_add_cancel.
Another important relation that we will make use of in the sections to come is the divisibility relation on the natural
numbers, x | y. Be careful: the divisibility symbol is not the ordinary bar on your keyboard. Rather, it is a unicode
character obtained by typing \| in VS Code. By convention, Mathlib uses dvd to refer to it in theorem names.

example (h0 : x | y) (h1 : y | z) : x | z :=
dvd_trans h0 h1

example : x | y * x * z := by
apply dvd_mul_of_dvd_left
apply dvd_mul_left

example : x | x ^ 2 := by
apply dvd_mul_left

In the last example, the exponent is a natural number, and applying dvd_mul_left forces Lean to expand the definition
of x^2 to x^1 * x. See if you can guess the names of the theorems you need to prove the following:

example (h : x | w) : x | y * (x * z) + x ^ 2 + w ^ 2 := by
sorry

end

With respect to divisibility, the greatest common divisor, gcd, and least common multiple, lcm, are analogous to min
and max. Since every number divides 0, 0 is really the greatest element with respect to divisibility:

variable (m n : N)

#check (Nat.gcd_zero_right n : Nat.gcd n 0 = n)
#check (Nat.gcd_zero_left n : Nat.gcd 0 n = n)
#check (Nat.lcm_zero_right n : Nat.lcm n 0 = 0)
#check (Nat.lcm_zero_left n : Nat.lcm 0 n = 0)

See if you can guess the names of the theorems you will need to prove the following:

example : Nat.gcd m n = Nat.gcd n m := by
sorry

Hint: you can use dvd_antisymm, but if you do, Lean will complain that the expression is ambiguous between the
generic theorem and the version Nat.dvd_antisymm, the one specifically for the natural numbers. You can use
_root_.dvd_antisymm to specify the generic one; either one will work.

2.4. More examples using apply and rw 19



Mathematics in Lean, Release 0.1

2.5 Proving Facts about Algebraic Structures

In Section 2.2, we saw that many common identities governing the real numbers hold in more general classes of algebraic
structures, such as commutative rings. We can use any axioms we want to describe an algebraic structure, not just equa-
tions. For example, a partial order consists of a set with a binary relation that is reflexive, transitive, and antisymmetric.
like ≤ on the real numbers. Lean knows about partial orders:

variable {α : Type*} [PartialOrder α]
variable (x y z : α)

#check x ≤ y
#check (le_refl x : x ≤ x)
#check (le_trans : x ≤ y → y ≤ z → x ≤ z)
#check (le_antisymm : x ≤ y → y ≤ x → x = y)

Here we are adopting the Mathlib convention of using letters like α, β, and γ (entered as \a, \b, and \g) for arbitrary
types. The library often uses letters like R and G for the carries of algebraic structures like rings and groups, respectively,
but in general Greek letters are used for types, especially when there is little or no structure associated with them.
Associated to any partial order, ≤, there is also a strict partial order, <, which acts somewhat like < on the real numbers.
Saying that x is less than y in this order is equivalent to saying that it is less-than-or-equal to y and not equal to y.

#check x < y
#check (lt_irrefl x : ¬x < x)
#check (lt_trans : x < y → y < z → x < z)
#check (lt_of_le_of_lt : x ≤ y → y < z → x < z)
#check (lt_of_lt_of_le : x < y → y ≤ z → x < z)

example : x < y ↔ x ≤ y ∧ x 6= y :=
lt_iff_le_and_ne

In this example, the symbol ∧ stands for “and,” the symbol ¬ stands for “not,” and x 6= y abbreviates ¬ (x = y). In
Chapter 3, you will learn how to use these logical connectives to prove that < has the properties indicated.
A lattice is a structure that extends a partial order with operations ⊓ and ⊔ that are analogous to min and max on the real
numbers:

variable {α : Type*} [Lattice α]
variable (x y z : α)

#check x ⊓ y
#check (inf_le_left : x ⊓ y ≤ x)
#check (inf_le_right : x ⊓ y ≤ y)
#check (le_inf : z ≤ x → z ≤ y → z ≤ x ⊓ y)
#check x ⊔ y
#check (le_sup_left : x ≤ x ⊔ y)
#check (le_sup_right : y ≤ x ⊔ y)
#check (sup_le : x ≤ z → y ≤ z → x ⊔ y ≤ z)

The characterizations of ⊓ and ⊔ justify calling them the greatest lower bound and least upper bound, respectively. You
can type them in VS code using \glb and \lub. The symbols are also often called then infimum and the supremum,
and Mathlib refers to them as inf and sup in theorem names. To further complicate matters, they are also often called
meet and join. Therefore, if you work with lattices, you have to keep the following dictionary in mind:

• ⊓ is the greatest lower bound, infimum, or meet.
• ⊔ is the least upper bound, supremum, or join.

Some instances of lattices include:
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• min and max on any total order, such as the integers or real numbers with ≤
• ∩ and ∪ on the collection of subsets of some domain, with the ordering ⊆
• ∧ and ∨ on boolean truth values, with ordering x ≤ y if either x is false or y is true
• gcd and lcm on the natural numbers (or positive natural numbers), with the divisibility ordering, |
• the collection of linear subspaces of a vector space, where the greatest lower bound is given by the intersection, the
least upper bound is given by the sum of the two spaces, and the ordering is inclusion

• the collection of topologies on a set (or, in Lean, a type), where the greatest lower bound of two topologies consists
of the topology that is generated by their union, the least upper bound is their intersection, and the ordering is
reverse inclusion

You can check that, as with min / max and gcd / lcm, you can prove the commutativity and associativity of the infimum
and supremum using only their characterizing axioms, together with le_refl and le_trans.

example : x ⊓ y = y ⊓ x := by
sorry

example : x ⊓ y ⊓ z = x ⊓ (y ⊓ z) := by
sorry

example : x ⊔ y = y ⊔ x := by
sorry

example : x ⊔ y ⊔ z = x ⊔ (y ⊔ z) := by
sorry

You can find these theorems in the Mathlib as inf_comm, inf_assoc, sup_comm, and sup_assoc, respectively.
Another good exercise is to prove the absorption laws using only those axioms:

theorem absorb1 : x ⊓ (x ⊔ y) = x := by
sorry

theorem absorb2 : x ⊔ x ⊓ y = x := by
sorry

These can be found in Mathlib with the names inf_sup_self and sup_inf_self.
A lattice that satisfies the additional identities x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z) and x ⊔ (y ⊓ z) =
(x ⊔ y) ⊓ (x ⊔ z) is called a distributive lattice. Lean knows about these too:

variable {α : Type*} [DistribLattice α]
variable (x y z : α)

#check (inf_sup_left : x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z)
#check (inf_sup_right : (x ⊔ y) ⊓ z = x ⊓ z ⊔ y ⊓ z)
#check (sup_inf_left : x ⊔ y ⊓ z = (x ⊔ y) ⊓ (x ⊔ z))
#check (sup_inf_right : x ⊓ y ⊔ z = (x ⊔ z) ⊓ (y ⊔ z))

The left and right versions are easily shown to be equivalent, given the commutativity of ⊓ and ⊔. It is a good exercise
to show that not every lattice is distributive by providing an explicit description of a nondistributive lattice with finitely
many elements. It is also a good exercise to show that in any lattice, either distributivity law implies the other:

variable {α : Type*} [Lattice α]
variable (a b c : α)

(continues on next page)
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(continued from previous page)
example (h : ∀ x y z : α, x ⊓ (y ⊔ z) = x ⊓ y ⊔ x ⊓ z) : a ⊔ b ⊓ c = (a ⊔ b) ⊓ (a ⊔␣
↪→c) := by
sorry

example (h : ∀ x y z : α, x ⊔ y ⊓ z = (x ⊔ y) ⊓ (x ⊔ z)) : a ⊓ (b ⊔ c) = a ⊓ b ⊔ a ⊓␣
↪→c := by
sorry

It is possible to combine axiomatic structures into larger ones. For example, a strict ordered ring consists of a commutative
ring together with a partial order on the carrier satisfying additional axioms that say that the ring operations are compatible
with the order:

variable {R : Type*} [StrictOrderedRing R]
variable (a b c : R)

#check (add_le_add_left : a ≤ b → ∀ c, c + a ≤ c + b)
#check (mul_pos : 0 < a → 0 < b → 0 < a * b)

Chapter 3 will provide the means to derive the following from mul_pos and the definition of <:

#check (mul_nonneg : 0 ≤ a → 0 ≤ b → 0 ≤ a * b)

It is then an extended exercise to show that many common facts used to reason about arithmetic and the ordering on the
real numbers hold generically for any ordered ring. Here are a couple of examples you can try, using only properties of
rings, partial orders, and the facts enumerated in the last two examples:

example (h : a ≤ b) : 0 ≤ b - a := by
sorry

example (h: 0 ≤ b - a) : a ≤ b := by
sorry

example (h : a ≤ b) (h' : 0 ≤ c) : a * c ≤ b * c := by
sorry

Finally, here is one last example. Ametric space consists of a set equipped with a notion of distance, dist x y, mapping
any pair of elements to a real number. The distance function is assumed to satisfy the following axioms:

variable {X : Type*} [MetricSpace X]
variable (x y z : X)

#check (dist_self x : dist x x = 0)
#check (dist_comm x y : dist x y = dist y x)
#check (dist_triangle x y z : dist x z ≤ dist x y + dist y z)

Having mastered this section, you can show that it follows from these axioms that distances are always nonnegative:

example (x y : X) : 0 ≤ dist x y := by
sorry

We recommend making use of the theorem nonneg_of_mul_nonneg_left. As you may have guessed, this theo-
rem is called dist_nonneg in Mathlib.
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CHAPTER

THREE

LOGIC

In the last chapter, we dealt with equations, inequalities, and basic mathematical statements like “x divides y.” Complex
mathematical statements are built up from simple ones like these using logical terms like “and,” “or,” “not,” and “if …
then,” “every,” and “some.” In this chapter, we show you how to work with statements that are built up in this way.

3.1 Implication and the Universal Quantifier

Consider the statement after the #check:

#check ∀ x : R, 0 ≤ x → |x| = x

In words, we would say “for every real number x, if 0 ≤ x then the absolute value of x equals x”. We can also have
more complicated statements like:

#check ∀ x y ε : R, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε

In words, we would say “for every x, y, and ε, if 0 < ε ≤ 1, the absolute value of x is less than ε, and the absolute
value of y is less than ε, then the absolute value of x * y is less than ε.” In Lean, in a sequence of implications there
are implicit parentheses grouped to the right. So the expression above means “if 0 < ε then if ε ≤ 1 then if |x| <
ε…” As a result, the expression says that all the assumptions together imply the conclusion.
You have already seen that even though the universal quantifier in this statement ranges over objects and the implication
arrows introduce hypotheses, Lean treats the two in very similar ways. In particular, if you have proved a theorem of that
form, you can apply it to objects and hypotheses in the same way. We will use as an example the following statement that
we will help you to prove a bit later:

theorem my_lemma : ∀ x y ε : R, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε :=
sorry

section
variable (a b δ : R)
variable (h0 : 0 < δ) (h1 : δ ≤ 1)
variable (ha : |a| < δ) (hb : |b| < δ)

#check my_lemma a b δ
#check my_lemma a b δ h0 h1

#check my_lemma a b δ h0 h1 ha hb

end

You have also already seen that it is common in Lean to use curly brackets to make quantified variables implicit when
they can be inferred from subsequent hypotheses. When we do that, we can just apply a lemma to the hypotheses without
mentioning the objects.
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theorem my_lemma2 : ∀ {x y ε : R}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε␣
↪→:=
sorry

section
variable (a b δ : R)
variable (h0 : 0 < δ) (h1 : δ ≤ 1)
variable (ha : |a| < δ) (hb : |b| < δ)

#check my_lemma2 h0 h1 ha hb

end

At this stage, you also know that if you use the apply tactic to apply my_lemma to a goal of the form |a * b| < δ,
you are left with new goals that require you to prove each of the hypotheses.
To prove a statement like this, use the intro tactic. Take a look at what it does in this example:

theorem my_lemma3 :
∀ {x y ε : R}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε := by

intro x y ε epos ele1 xlt ylt
sorry

We can use any names we want for the universally quantified variables; they do not have to be x, y, and ε. Notice that we
have to introduce the variables even though they are marked implicit: making them implicit means that we leave them out
when we write an expression using my_lemma, but they are still an essential part of the statement that we are proving.
After the intro command, the goal is what it would have been at the start if we listed all the variables and hypotheses
before the colon, as we did in the last section. In a moment, we will see why it is sometimes necessary to introduce
variables and hypotheses after the proof begins.
To help you prove the lemma, we will start you off:

theorem my_lemma4 :
∀ {x y ε : R}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε := by

intro x y ε epos ele1 xlt ylt
calc
|x * y| = |x| * |y| := sorry
_ ≤ |x| * ε := sorry
_ < 1 * ε := sorry
_ = ε := sorry

Finish the proof using the theorems abs_mul, mul_le_mul, abs_nonneg, mul_lt_mul_right, and
one_mul. Remember that you can find theorems like these using Ctrl-space completion (or Cmd-space completion
on a Mac). Remember also that you can use .mp and .mpr or .1 and .2 to extract the two directions of an if-and-
only-if statement.
Universal quantifiers are often hidden in definitions, and Lean will unfold definitions to expose them when necessary. For
example, let’s define two predicates, FnUb f a and FnLb f a, where f is a function from the real numbers to the
real numbers and a is a real number. The first says that a is an upper bound on the values of f, and the second says that
a is a lower bound on the values of f.

def FnUb (f : R → R) (a : R) : Prop :=
∀ x, f x ≤ a

def FnLb (f : R → R) (a : R) : Prop :=
∀ x, a ≤ f x
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In the next example, fun x 7→ f x + g x is the function that maps x to f x + g x. Going from the expression
f x + g x to this function is called a lambda abstraction in type theory.

example (hfa : FnUb f a) (hgb : FnUb g b) : FnUb (fun x 7→ f x + g x) (a + b) := by
intro x
dsimp
apply add_le_add
apply hfa
apply hgb

Applying intro to the goal FnUb (fun x 7→ f x + g x) (a + b) forces Lean to unfold the definition of
FnUb and introduce x for the universal quantifier. The goal is then (fun (x : R) 7→ f x + g x) x ≤
a + b. But applying (fun x 7→ f x + g x) to x should result in f x + g x, and the dsimp command
performs that simplification. (The “d” stands for “definitional.”) You can delete that command and the proof still works;
Lean would have to perform that contraction anyhow to make sense of the next apply. The dsimp command simply
makes the goal more readable and helps us figure out what to do next. Another option is to use the change tactic by
writing change f x + g x ≤ a + b. This helps make the proof more readable, and gives you more control over
how the goal is transformed.
The rest of the proof is routine. The last two apply commands force Lean to unfold the definitions of FnUb in the
hypotheses. Try carrying out similar proofs of these:

example (hfa : FnLb f a) (hgb : FnLb g b) : FnLb (fun x 7→ f x + g x) (a + b) :=
sorry

example (nnf : FnLb f 0) (nng : FnLb g 0) : FnLb (fun x 7→ f x * g x) 0 :=
sorry

example (hfa : FnUb f a) (hgb : FnUb g b) (nng : FnLb g 0) (nna : 0 ≤ a) :
FnUb (fun x 7→ f x * g x) (a * b) :=

sorry

Even though we have defined FnUb and FnLb for functions from the reals to the reals, you should recognize that the
definitions and proofs are much more general. The definitions make sense for functions between any two types for which
there is a notion of order on the codomain. Checking the type of the theorem add_le_add shows that it holds of
any structure that is an “ordered additive commutative monoid”; the details of what that means don’t matter now, but
it is worth knowing that the natural numbers, integers, rationals, and real numbers are all instances. So if we prove the
theorem fnUb_add at that level of generality, it will apply in all these instances.

variable {α : Type*} {R : Type*} [OrderedCancelAddCommMonoid R]

#check add_le_add

def FnUb' (f : α → R) (a : R) : Prop :=
∀ x, f x ≤ a

theorem fnUb_add {f g : α → R} {a b : R} (hfa : FnUb' f a) (hgb : FnUb' g b) :
FnUb' (fun x 7→ f x + g x) (a + b) := fun x 7→ add_le_add (hfa x) (hgb x)

You have already seen square brackets like these in Section Section 2.2, though we still haven’t explained what they mean.
For concreteness, we will stick to the real numbers for most of our examples, but it is worth knowing that Mathlib contains
definitions and theorems that work at a high level of generality.
For another example of a hidden universal quantifier, Mathlib defines a predicate Monotone, which says that a function
is nondecreasing in its arguments:

example (f : R → R) (h : Monotone f) : ∀ {a b}, a ≤ b → f a ≤ f b :=
@h
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The property Monotone f is defined to be exactly the expression after the colon. We need to put the @ symbol before
h because if we don’t, Lean expands the implicit arguments to h and inserts placeholders.
Proving statements about monotonicity involves using intro to introduce two variables, say, a and b, and the hypothesis
a ≤ b. To use a monotonicity hypothesis, you can apply it to suitable arguments and hypotheses, and then apply the
resulting expression to the goal. Or you can apply it to the goal and let Lean help you work backwards by displaying the
remaining hypotheses as new subgoals.

example (mf : Monotone f) (mg : Monotone g) : Monotone fun x 7→ f x + g x := by
intro a b aleb
apply add_le_add
apply mf aleb
apply mg aleb

When a proof is this short, it is often convenient to give a proof term instead. To describe a proof that temporarily
introduces objects a and b and a hypothesis aleb, Lean uses the notation fun a b aleb 7→ .... This is analogous
to the way that an expression like fun x 7→ x^2 describes a function by temporarily naming an object, x, and then
using it to describe a value. So the intro command in the previous proof corresponds to the lambda abstraction in the
next proof term. The apply commands then correspond to building the application of the theorem to its arguments.

example (mf : Monotone f) (mg : Monotone g) : Monotone fun x 7→ f x + g x :=
fun a b aleb 7→ add_le_add (mf aleb) (mg aleb)

Here is a useful trick: if you start writing the proof term fun a b aleb 7→ _ using an underscore where the rest of
the expression should go, Lean will flag an error, indicating that it can’t guess the value of that expression. If you check the
Lean Goal window in VS Code or hover over the squiggly error marker, Lean will show you the goal that the remaining
expression has to solve.
Try proving these, with either tactics or proof terms:

example {c : R} (mf : Monotone f) (nnc : 0 ≤ c) : Monotone fun x 7→ c * f x :=
sorry

example (mf : Monotone f) (mg : Monotone g) : Monotone fun x 7→ f (g x) :=
sorry

Here are some more examples. A function f from R to R is said to be even if f(−x) = f(x) for every x, and odd if
f(−x) = −f(x) for every x. The following example defines these two notions formally and establishes one fact about
them. You can complete the proofs of the others.

def FnEven (f : R → R) : Prop :=
∀ x, f x = f (-x)

def FnOdd (f : R → R) : Prop :=
∀ x, f x = -f (-x)

example (ef : FnEven f) (eg : FnEven g) : FnEven fun x 7→ f x + g x := by
intro x
calc
(fun x 7→ f x + g x) x = f x + g x := rfl
_ = f (-x) + g (-x) := by rw [ef, eg]

example (of : FnOdd f) (og : FnOdd g) : FnEven fun x 7→ f x * g x := by
sorry

example (ef : FnEven f) (og : FnOdd g) : FnOdd fun x 7→ f x * g x := by

(continues on next page)
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(continued from previous page)
sorry

example (ef : FnEven f) (og : FnOdd g) : FnEven fun x 7→ f (g x) := by
sorry

The first proof can be shortened using dsimp or change to get rid of the lambda abstraction. But you can check that
the subsequent rw won’t work unless we get rid of the lambda abstraction explicitly, because otherwise it cannot find the
patterns f x and g x in the expression. Contrary to some other tactics, rw operates on the syntactic level, it won’t unfold
definitions or apply reductions for you (it has a variant called erw that tries a little harder in this direction, but not much
harder).
You can find implicit universal quantifiers all over the place, once you know how to spot them.
Mathlib includes a good library for manipulating sets. Recall that Lean does not use foundations based on set theory, so
here the word set has its mundane meaning of a collection of mathematical objects of some given type α. If x has type
α and s has type Set α, then x ∈ s is a proposition that asserts that x is an element of s. If y has some different
type β then the expression y ∈ s makes no sense. Here “makes no sense” means “has no type hence Lean does not
accept it as a well-formed statement”. This contrasts with Zermelo-Fraenkel set theory for instance where a ∈ b is a
well-formed statement for every mathematical objects a and b. For instance sin ∈ cos is a well-formed statement in
ZF. This defect of set theoretic foundations is an important motivation for not using it in a proof assistant which is meant
to assist us by detecting meaningless expressions. In Lean sin has type R → R and cos has type R → R which is
not equal to Set (R → R), even after unfolding definitions, so the statement sin ∈ cosmakes no sense. One can
also use Lean to work on set theory itself. For instance the independence of the continuum hypothesis from the axioms
of Zermelo-Fraenkel has been formalized in Lean. But such a meta-theory of set theory is completely beyond the scope
of this book.
If s and t are of type Set α, then the subset relation s ⊆ t is defined to mean ∀ {x : α}, x ∈ s → x ∈
t. The variable in the quantifier is marked implicit so that given h : s ⊆ t and h' : x ∈ s, we can write h h'
as justification for x ∈ t. The following example provides a tactic proof and a proof term justifying the reflexivity of
the subset relation, and asks you to do the same for transitivity.

variable {α : Type*} (r s t : Set α)

example : s ⊆ s := by
intro x xs
exact xs

theorem Subset.refl : s ⊆ s := fun x xs 7→ xs

theorem Subset.trans : r ⊆ s → s ⊆ t → r ⊆ t := by
sorry

Just as we defined FnUb for functions, we can define SetUb s a to mean that a is an upper bound on the set s,
assuming s is a set of elements of some type that has an order associated with it. In the next example, we ask you to
prove that if a is a bound on s and a ≤ b, then b is a bound on s as well.

variable {α : Type*} [PartialOrder α]
variable (s : Set α) (a b : α)

def SetUb (s : Set α) (a : α) :=
∀ x, x ∈ s → x ≤ a

example (h : SetUb s a) (h' : a ≤ b) : SetUb s b :=
sorry

We close this section with one last important example. A function f is said to be injective if for every x1 and x2, if
f(x1) = f(x2) then x1 = x2. Mathlib defines Function.Injective f with x1 and x2 implicit. The next
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example shows that, on the real numbers, any function that adds a constant is injective. We then ask you to show that
multiplication by a nonzero constant is also injective, using the lemma name in the example as a source of inspiration.
Recall you should use Ctrl-space completion after guessing the beginning of a lemma name.

open Function

example (c : R) : Injective fun x 7→ x + c := by
intro x1 x2 h'
exact (add_left_inj c).mp h'

example {c : R} (h : c 6= 0) : Injective fun x 7→ c * x := by
sorry

Finally, show that the composition of two injective functions is injective:

variable {α : Type*} {β : Type*} {γ : Type*}
variable {g : β → γ} {f : α → β}

example (injg : Injective g) (injf : Injective f) : Injective fun x 7→ g (f x) := by
sorry

3.2 The Existential Quantifier

The existential quantifier, which can be entered as \ex in VS Code, is used to represent the phrase “there exists.” The
formal expression ∃ x : R, 2 < x ∧ x < 3 in Lean says that there is a real number between 2 and 3. (We
will discuss the conjunction symbol, ∧, in Section 3.4.) The canonical way to prove such a statement is to exhibit a real
number and show that it has the stated property. The number 2.5, which we can enter as 5 / 2 or (5 : R) / 2 when
Lean cannot infer from context that we have the real numbers in mind, has the required property, and the norm_num
tactic can prove that it meets the description.
There are a few ways we can put the information together. Given a goal that begins with an existential quantifier, the use
tactic is used to provide the object, leaving the goal of proving the property.

example : ∃ x : R, 2 < x ∧ x < 3 := by
use 5 / 2
norm_num

You can give the use tactic proofs as well as data:

example : ∃ x : R, 2 < x ∧ x < 3 := by
have h1 : 2 < (5 : R) / 2 := by norm_num
have h2 : (5 : R) / 2 < 3 := by norm_num
use 5 / 2, h1, h2

In fact, the use tactic automatically tries to use available assumptions as well.

example : ∃ x : R, 2 < x ∧ x < 3 := by
have h : 2 < (5 : R) / 2 ∧ (5 : R) / 2 < 3 := by norm_num
use 5 / 2

Alternatively, we can use Lean’s anonymous constructor notation to construct a proof of an existential quantifier.

example : ∃ x : R, 2 < x ∧ x < 3 :=
have h : 2 < (5 : R) / 2 ∧ (5 : R) / 2 < 3 := by norm_num
〈5 / 2, h〉
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Notice that there is no by; here we are giving an explicit proof term. The left and right angle brackets, which can be
entered as \< and \> respectively, tell Lean to put together the given data using whatever construction is appropriate for
the current goal. We can use the notation without going first into tactic mode:

example : ∃ x : R, 2 < x ∧ x < 3 :=
〈5 / 2, by norm_num〉

So now we know how to prove an exists statement. But how do we use one? If we know that there exists an object with
a certain property, we should be able to give a name to an arbitrary one and reason about it. For example, remember the
predicates FnUb f a and FnLb f a from the last section, which say that a is an upper bound or lower bound on f,
respectively. We can use the existential quantifier to say that “f is bounded” without specifying the bound:

def FnUb (f : R → R) (a : R) : Prop :=
∀ x, f x ≤ a

def FnLb (f : R → R) (a : R) : Prop :=
∀ x, a ≤ f x

def FnHasUb (f : R → R) :=
∃ a, FnUb f a

def FnHasLb (f : R → R) :=
∃ a, FnLb f a

We can use the theorem FnUb_add from the last section to prove that if f and g have upper bounds, then so does fun
x 7→ f x + g x.

variable {f g : R → R}

example (ubf : FnHasUb f) (ubg : FnHasUb g) : FnHasUb fun x 7→ f x + g x := by
rcases ubf with 〈a, ubfa〉
rcases ubg with 〈b, ubgb〉
use a + b
apply fnUb_add ubfa ubgb

The rcases tactic unpacks the information in the existential quantifier. The annotations like 〈a, ubfa〉, written with
the same angle brackets as the anonymous constructors, are known as patterns, and they describe the information that we
expect to find when we unpack the main argument. Given the hypothesis ubf that there is an upper bound for f, rcases
ubf with 〈a, ubfa〉 adds a new variable a for an upper bound to the context, together with the hypothesis ubfa
that it has the given property. The goal is left unchanged; what has changed is that we can now use the new object and
the new hypothesis to prove the goal. This is a common method of reasoning in mathematics: we unpack objects whose
existence is asserted or implied by some hypothesis, and then use it to establish the existence of something else.
Try using this method to establish the following. You might find it useful to turn some of the examples from the last
section into named theorems, as we did with fn_ub_add, or you can insert the arguments directly into the proofs.

example (lbf : FnHasLb f) (lbg : FnHasLb g) : FnHasLb fun x 7→ f x + g x := by
sorry

example {c : R} (ubf : FnHasUb f) (h : c ≥ 0) : FnHasUb fun x 7→ c * f x := by
sorry

The “r” in rcases stands for “recursive,” because it allows us to use arbitrarily complex patterns to unpack nested data.
The rintro tactic is a combination of intro and rcases:

example : FnHasUb f → FnHasUb g → FnHasUb fun x 7→ f x + g x := by
rintro 〈a, ubfa〉 〈b, ubgb〉

(continues on next page)
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exact 〈a + b, fnUb_add ubfa ubgb〉

In fact, Lean also supports a pattern-matching fun in expressions and proof terms:

example : FnHasUb f → FnHasUb g → FnHasUb fun x 7→ f x + g x :=
fun 〈a, ubfa〉 〈b, ubgb〉 7→ 〈a + b, fnUb_add ubfa ubgb〉

The task of unpacking information in a hypothesis is so important that Lean and Mathlib provide a number of ways to do
it. For example, the obtain tactic provides suggestive syntax:

example (ubf : FnHasUb f) (ubg : FnHasUb g) : FnHasUb fun x 7→ f x + g x := by
obtain 〈a, ubfa〉 := ubf
obtain 〈b, ubgb〉 := ubg
exact 〈a + b, fnUb_add ubfa ubgb〉

Think of the first obtain instruction as matching the “contents” of ubf with the given pattern and assigning the com-
ponents to the named variables. rcases and obtain are said to destruct their arguments, though there is a small
difference in that rcases clears ubf from the context when it is done, whereas it is still present after obtain.
Lean also supports syntax that is similar to that used in other functional programming languages:

example (ubf : FnHasUb f) (ubg : FnHasUb g) : FnHasUb fun x 7→ f x + g x := by
cases ubf
case intro a ubfa =>
cases ubg
case intro b ubgb =>

exact 〈a + b, fnUb_add ubfa ubgb〉

example (ubf : FnHasUb f) (ubg : FnHasUb g) : FnHasUb fun x 7→ f x + g x := by
cases ubf
next a ubfa =>
cases ubg
next b ubgb =>

exact 〈a + b, fnUb_add ubfa ubgb〉

example (ubf : FnHasUb f) (ubg : FnHasUb g) : FnHasUb fun x 7→ f x + g x := by
match ubf, ubg with
| 〈a, ubfa〉, 〈b, ubgb〉 =>

exact 〈a + b, fnUb_add ubfa ubgb〉

example (ubf : FnHasUb f) (ubg : FnHasUb g) : FnHasUb fun x 7→ f x + g x :=
match ubf, ubg with
| 〈a, ubfa〉, 〈b, ubgb〉 =>

〈a + b, fnUb_add ubfa ubgb〉

In the first example, if you put your cursor after cases ubf, you will see that the tactic produces a single goal, which
Lean has tagged intro. (The particular name chosen comes from the internal name for the axiomatic primitive that
builds a proof of an existential statement.) The case tactic then names the components. The second example is similar,
except using next instead of case means that you can avoid mentioning intro. The word match in the last two
examples highlights that what we are doing here is what computer scientists call “pattern matching.” Notice that the third
proof begins by by, after which the tactic version of match expects a tactic proof on the right side of the arrow. The
last example is a proof term: there are no tactics in sight.
For the rest of this book, we will stick to rcases, rintros, and obtain, as the preferred ways of using an existential
quantifier. But it can’t hurt to see the alternative syntax, especially if there is a chance you will find yourself in the company
of computer scientists.
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To illustrate one way that rcases can be used, we prove an old mathematical chestnut: if two integers x and y can each
be written as a sum of two squares, then so can their product, x * y. In fact, the statement is true for any commutative
ring, not just the integers. In the next example, rcases unpacks two existential quantifiers at once. We then provide
the magic values needed to express x * y as a sum of squares as a list to the use statement, and we use ring to verify
that they work.

variable {α : Type*} [CommRing α]

def SumOfSquares (x : α) :=
∃ a b, x = a ^ 2 + b ^ 2

theorem sumOfSquares_mul {x y : α} (sosx : SumOfSquares x) (sosy : SumOfSquares y) :
SumOfSquares (x * y) := by

rcases sosx with 〈a, b, xeq〉
rcases sosy with 〈c, d, yeq〉
rw [xeq, yeq]
use a * c - b * d, a * d + b * c
ring

This proof doesn’t provide much insight, but here is one way to motivate it. A Gaussian integer is a number of the form
a+ bi where a and b are integers and i =

√
−1. The norm of the Gaussian integer a+ bi is, by definition, a2 + b2. So

the norm of a Gaussian integer is a sum of squares, and any sum of squares can be expressed in this way. The theorem
above reflects the fact that norm of a product of Gaussian integers is the product of their norms: if x is the norm of a+ bi
and y in the norm of c+ di, then xy is the norm of (a+ bi)(c+ di). Our cryptic proof illustrates the fact that the proof
that is easiest to formalize isn’t always the most perspicuous one. In Section 6.3, we will provide you with the means to
define the Gaussian integers and use them to provide an alternative proof.
The pattern of unpacking an equation inside an existential quantifier and then using it to rewrite an expression in the goal
comes up often, so much so that the rcases tactic provides an abbreviation: if you use the keyword rfl in place of a
new identifier, rcases does the rewriting automatically (this trick doesn’t work with pattern-matching lambdas).

theorem sumOfSquares_mul' {x y : α} (sosx : SumOfSquares x) (sosy : SumOfSquares y) :
SumOfSquares (x * y) := by

rcases sosx with 〈a, b, rfl〉
rcases sosy with 〈c, d, rfl〉
use a * c - b * d, a * d + b * c
ring

As with the universal quantifier, you can find existential quantifiers hidden all over if you know how to spot them. For
example, divisibility is implicitly an “exists” statement.

example (divab : a | b) (divbc : b | c) : a | c := by
rcases divab with 〈d, beq〉
rcases divbc with 〈e, ceq〉
rw [ceq, beq]
use d * e; ring

And once again, this provides a nice setting for using rcases with rfl. Try it out in the proof above. It feels pretty
good!
Then try proving the following:

example (divab : a | b) (divac : a | c) : a | b + c := by
sorry

For another important example, a function f : α → β is said to be surjective if for every y in the codomain, β, there is an
x in the domain, α, such that f(x) = y. Notice that this statement includes both a universal and an existential quantifier,
which explains why the next example makes use of both intro and use.
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example {c : R} : Surjective fun x 7→ x + c := by
intro x
use x - c
dsimp; ring

Try this example yourself using the theorem mul_div_cancel'.:

example {c : R} (h : c 6= 0) : Surjective fun x 7→ c * x := by
sorry

At this point, it is worth mentioning that there is a tactic, field_simp, that will often clear denominators in a useful
way. It can be used in conjunction with the ring tactic.

example (x y : R) (h : x - y 6= 0) : (x ^ 2 - y ^ 2) / (x - y) = x + y := by
field_simp [h]
ring

The next example uses a surjectivity hypothesis by applying it to a suitable value. Note that you can use rcases with
any expression, not just a hypothesis.

example {f : R → R} (h : Surjective f) : ∃ x, f x ^ 2 = 4 := by
rcases h 2 with 〈x, hx〉
use x
rw [hx]
norm_num

See if you can use these methods to show that the composition of surjective functions is surjective.

variable {α : Type*} {β : Type*} {γ : Type*}
variable {g : β → γ} {f : α → β}

example (surjg : Surjective g) (surjf : Surjective f) : Surjective fun x 7→ g (f x) :=␣
↪→by
sorry

3.3 Negation

The symbol ¬ is meant to express negation, so ¬ x < y says that x is not less than y, ¬ x = y (or, equivalently, x 6=
y) says that x is not equal to y, and ¬ ∃ z, x < z ∧ z < y says that there does not exist a z strictly between x and
y. In Lean, the notation ¬ A abbreviates A → False, which you can think of as saying that A implies a contradiction.
Practically speaking, this means that you already know something about how to work with negations: you can prove ¬ A
by introducing a hypothesis h : A and proving False, and if you have h : ¬ A and h' : A, then applying h to
h' yields False.
To illustrate, consider the irreflexivity principle lt_irrefl for a strict order, which says that we have ¬ a < a for
every a. The asymmetry principle lt_asymm says that we have a < b → ¬ b < a. Let’s show that lt_asymm
follows from lt_irrefl.

example (h : a < b) : ¬b < a := by
intro h'
have : a < a := lt_trans h h'
apply lt_irrefl a this

This example introduces a couple of new tricks. First, when you use have without providing a label, Lean uses the name
this, providing a convenient way to refer back to it. Because the proof is so short, we provide an explicit proof term.
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But what you should really be paying attention to in this proof is the result of the intro tactic, which leaves a goal of
False, and the fact that we eventually prove False by applying lt_irrefl to a proof of a < a.
Here is another example, which uses the predicate FnHasUb defined in the last section, which says that a function has
an upper bound.

example (h : ∀ a, ∃ x, f x > a) : ¬FnHasUb f := by
intro fnub
rcases fnub with 〈a, fnuba〉
rcases h a with 〈x, hx〉
have : f x ≤ a := fnuba x
linarith

Remember that it is often convenient to use linarith when a goal follows from linear equations and inequalities that
in the context.
See if you can prove these in a similar way:

example (h : ∀ a, ∃ x, f x < a) : ¬FnHasLb f :=
sorry

example : ¬FnHasUb fun x 7→ x :=
sorry

Mathlib offers a number of useful theorems for relating orders and negations:

#check (not_le_of_gt : a > b → ¬a ≤ b)
#check (not_lt_of_ge : a ≥ b → ¬a < b)
#check (lt_of_not_ge : ¬a ≥ b → a < b)
#check (le_of_not_gt : ¬a > b → a ≤ b)

Recall the predicate Monotone f, which says that f is nondecreasing. Use some of the theorems just enumerated to
prove the following:

example (h : Monotone f) (h' : f a < f b) : a < b := by
sorry

example (h : a ≤ b) (h' : f b < f a) : ¬Monotone f := by
sorry

We can show that the first example in the last snippet cannot be proved if we replace < by ≤. Notice that we can prove
the negation of a universally quantified statement by giving a counterexample. Complete the proof.

example : ¬∀ {f : R → R}, Monotone f → ∀ {a b}, f a ≤ f b → a ≤ b := by
intro h
let f := fun x : R 7→ (0 : R)
have monof : Monotone f := by sorry
have h' : f 1 ≤ f 0 := le_refl _
sorry

This example introduces the let tactic, which adds a local definition to the context. If you put the cursor after the let
command, in the goal window you will see that the definition f : R → R := fun x 7→ 0 has been added to the
context. Lean will unfold the definition of f when it has to. In particular, when we prove f 1 ≤ f 0 with le_refl,
Lean reduces f 1 and f 0 to 0.
Use le_of_not_gt to prove the following:

example (x : R) (h : ∀ ε > 0, x < ε) : x ≤ 0 := by
sorry
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Implicit in many of the proofs we have just done is the fact that if P is any property, saying that there is nothing with
property P is the same as saying that everything fails to have property P, and saying that not everything has property P
is equivalent to saying that something fails to have property P. In other words, all four of the following implications are
valid (but one of them cannot be proved with what we explained so far):

variable {α : Type*} (P : α → Prop) (Q : Prop)

example (h : ¬∃ x, P x) : ∀ x, ¬P x := by
sorry

example (h : ∀ x, ¬P x) : ¬∃ x, P x := by
sorry

example (h : ¬∀ x, P x) : ∃ x, ¬P x := by
sorry

example (h : ∃ x, ¬P x) : ¬∀ x, P x := by
sorry

The first, second, and fourth are straightforward to prove using the methods you have already seen. We encourage you to
try it. The third is more difficult, however, because it concludes that an object exists from the fact that its nonexistence
is contradictory. This is an instance of classical mathematical reasoning. We can use proof by contradiction to prove the
third implication as follows.

example (h : ¬∀ x, P x) : ∃ x, ¬P x := by
by_contra h'
apply h
intro x
show P x
by_contra h''
exact h' 〈x, h''〉

Make sure you understand how this works. The by_contra tactic allows us to prove a goal Q by assuming ¬ Q and
deriving a contradiction. In fact, it is equivalent to using the equivalence not_not : ¬ ¬ Q ↔ Q. Confirm that
you can prove the forward direction of this equivalence using by_contra, while the reverse direction follows from the
ordinary rules for negation.

example (h : ¬¬Q) : Q := by
sorry

example (h : Q) : ¬¬Q := by
sorry

Use proof by contradiction to establish the following, which is the converse of one of the implications we proved above.
(Hint: use intro first.)

example (h : ¬FnHasUb f) : ∀ a, ∃ x, f x > a := by
sorry

It is often tedious to work with compound statements with a negation in front, and it is a common mathematical pattern to
replace such statements with equivalent forms in which the negation has been pushed inward. To facilitate this, Mathlib
offers a push_neg tactic, which restates the goal in this way. The command push_neg at h restates the hypothesis
h.

example (h : ¬∀ a, ∃ x, f x > a) : FnHasUb f := by
push_neg at h
exact h

(continues on next page)
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example (h : ¬FnHasUb f) : ∀ a, ∃ x, f x > a := by
dsimp only [FnHasUb, FnUb] at h
push_neg at h
exact h

In the second example, we use dsimp to expand the definitions of FnHasUb and FnUb. (We need to use dsimp rather
than rw to expand FnUb, because it appears in the scope of a quantifier.) You can verify that in the examples above with
¬∃ x, P x and ¬∀ x, P x, the push_neg tactic does the expected thing. Without even knowing how to use the
conjunction symbol, you should be able to use push_neg to prove the following:

example (h : ¬Monotone f) : ∃ x y, x ≤ y ∧ f y < f x := by
sorry

Mathlib also has a tactic, contrapose, which transforms a goal A → B to ¬B → ¬A. Similarly, given a goal of
proving B from hypothesis h : A, contrapose h leaves you with a goal of proving ¬A from hypothesis ¬B. Using
contrapose! instead of contrapose applies push_neg to the goal and the relevant hypothesis as well.

example (h : ¬FnHasUb f) : ∀ a, ∃ x, f x > a := by
contrapose! h
exact h

example (x : R) (h : ∀ ε > 0, x ≤ ε) : x ≤ 0 := by
contrapose! h
use x / 2
constructor <;> linarith

We have not yet explained the constructor command or the use of the semicolon after it, but we will do that in the
next section.
We close this section with the principle of ex falso, which says that anything follows from a contradiction. In Lean, this
is represented by False.elim, which establishes False → P for any proposition P. This may seem like a strange
principle, but it comes up fairly often. We often prove a theorem by splitting on cases, and sometimes we can show that
one of the cases is contradictory. In that case, we need to assert that the contradiction establishes the goal so we can move
on to the next one. (We will see instances of reasoning by cases in Section 3.5.)
Lean provides a number of ways of closing a goal once a contradiction has been reached.

example (h : 0 < 0) : a > 37 := by
exfalso
apply lt_irrefl 0 h

example (h : 0 < 0) : a > 37 :=
absurd h (lt_irrefl 0)

example (h : 0 < 0) : a > 37 := by
have h' : ¬0 < 0 := lt_irrefl 0
contradiction

The exfalso tactic replaces the current goal with the goal of proving False. Given h : P and h' : ¬ P, the
term absurd h h' establishes any proposition. Finally, the contradiction tactic tries to close a goal by finding
a contradiction in the hypotheses, such as a pair of the form h : P and h' : ¬ P. Of course, in this example,
linarith also works.
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3.4 Conjunction and Iff

You have already seen that the conjunction symbol, ∧, is used to express “and.” The constructor tactic allows you
to prove a statement of the form A ∧ B by proving A and then proving B.

example {x y : R} (h0 : x ≤ y) (h1 : ¬y ≤ x) : x ≤ y ∧ x 6= y := by
constructor
· assumption
intro h
apply h1

rw [h]

In this example, the assumption tactic tells Lean to find an assumption that will solve the goal. Notice that the final
rw finishes the goal by applying the reflexivity of ≤. The following are alternative ways of carrying out the previous
examples using the anonymous constructor angle brackets. The first is a slick proof-term version of the previous proof,
which drops into tactic mode at the keyword by.

example {x y : R} (h0 : x ≤ y) (h1 : ¬y ≤ x) : x ≤ y ∧ x 6= y :=
〈h0, fun h 7→ h1 (by rw [h])〉

example {x y : R} (h0 : x ≤ y) (h1 : ¬y ≤ x) : x ≤ y ∧ x 6= y :=
have h : x 6= y := by
contrapose! h1

rw [h1]
〈h0, h〉

Using a conjunction instead of proving one involves unpacking the proofs of the two parts. You can use the rcases
tactic for that, as well as rintro or a pattern-matching fun, all in a manner similar to the way they are used with the
existential quantifier.

example {x y : R} (h : x ≤ y ∧ x 6= y) : ¬y ≤ x := by
rcases h with 〈h0, h1〉
contrapose! h1

exact le_antisymm h0 h1

example {x y : R} : x ≤ y ∧ x 6= y → ¬y ≤ x := by
rintro 〈h0, h1〉 h'
exact h1 (le_antisymm h0 h')

example {x y : R} : x ≤ y ∧ x 6= y → ¬y ≤ x :=
fun 〈h0, h1〉 h' 7→ h1 (le_antisymm h0 h')

In analogy to the obtain tactic, there is also a pattern-matching have:

example {x y : R} (h : x ≤ y ∧ x 6= y) : ¬y ≤ x := by
have 〈h0, h1〉 := h
contrapose! h1

exact le_antisymm h0 h1

In contrast to rcases, here the have tactic leaves h in the context. And even though we won’t use them, once again
we have the computer scientists’ pattern-matching syntax:

example {x y : R} (h : x ≤ y ∧ x 6= y) : ¬y ≤ x := by
cases h
case intro h0 h1 =>
contrapose! h1

(continues on next page)
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exact le_antisymm h0 h1

example {x y : R} (h : x ≤ y ∧ x 6= y) : ¬y ≤ x := by
cases h
next h0 h1 =>
contrapose! h1

exact le_antisymm h0 h1

example {x y : R} (h : x ≤ y ∧ x 6= y) : ¬y ≤ x := by
match h with
| 〈h0, h1〉 =>

contrapose! h1

exact le_antisymm h0 h1

In contrast to using an existential quantifier, you can also extract proofs of the two components of a hypothesis h : A
∧ B by writing h.left and h.right, or, equivalently, h.1 and h.2.

example {x y : R} (h : x ≤ y ∧ x 6= y) : ¬y ≤ x := by
intro h'
apply h.right
exact le_antisymm h.left h'

example {x y : R} (h : x ≤ y ∧ x 6= y) : ¬y ≤ x :=
fun h' 7→ h.right (le_antisymm h.left h')

Try using these techniques to come up with various ways of proving of the following:

example {m n : N} (h : m | n ∧ m 6= n) : m | n ∧ ¬n | m :=
sorry

You can nest uses of ∃ and ∧ with anonymous constructors, rintro, and rcases.

example : ∃ x : R, 2 < x ∧ x < 4 :=
〈5 / 2, by norm_num, by norm_num〉

example (x y : R) : (∃ z : R, x < z ∧ z < y) → x < y := by
rintro 〈z, xltz, zlty〉
exact lt_trans xltz zlty

example (x y : R) : (∃ z : R, x < z ∧ z < y) → x < y :=
fun 〈z, xltz, zlty〉 7→ lt_trans xltz zlty

You can also use the use tactic:

example : ∃ x : R, 2 < x ∧ x < 4 := by
use 5 / 2
constructor <;> norm_num

example : ∃ m n : N, 4 < m ∧ m < n ∧ n < 10 ∧ Nat.Prime m ∧ Nat.Prime n := by
use 5
use 7
norm_num

example {x y : R} : x ≤ y ∧ x 6= y → x ≤ y ∧ ¬y ≤ x := by
rintro 〈h0, h1〉
use h0

exact fun h' 7→ h1 (le_antisymm h0 h')
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In the first example, the semicolon after the constructor command tells Lean to use the norm_num tactic on both
of the goals that result.
In Lean, A ↔ B is not defined to be (A → B) ∧ (B → A), but it could have been, and it behaves roughly the
same way. You have already seen that you can write h.mp and h.mpr or h.1 and h.2 for the two directions of h :
A ↔ B. You can also use cases and friends. To prove an if-and-only-if statement, you can uses constructor or
angle brackets, just as you would if you were proving a conjunction.

example {x y : R} (h : x ≤ y) : ¬y ≤ x ↔ x 6= y := by
constructor
· contrapose!
rintro rfl
rfl

contrapose!
exact le_antisymm h

example {x y : R} (h : x ≤ y) : ¬y ≤ x ↔ x 6= y :=
〈fun h0 h1 7→ h0 (by rw [h1]), fun h0 h1 7→ h0 (le_antisymm h h1)〉

The last proof term is inscrutable. Remember that you can use underscores while writing an expression like that to see
what Lean expects.
Try out the various techniques and gadgets you have just seen in order to prove the following:

example {x y : R} : x ≤ y ∧ ¬y ≤ x ↔ x ≤ y ∧ x 6= y :=
sorry

For a more interesting exercise, show that for any two real numbers x and y, x^2 + y^2 = 0 if and only if x = 0
and y = 0. We suggest proving an auxiliary lemma using linarith, pow_two_nonneg, and pow_eq_zero.

theorem aux {x y : R} (h : x ^ 2 + y ^ 2 = 0) : x = 0 :=
have h' : x ^ 2 = 0 := by sorry
pow_eq_zero h'

example (x y : R) : x ^ 2 + y ^ 2 = 0 ↔ x = 0 ∧ y = 0 :=
sorry

In Lean, bi-implication leads a double-life. You can treat it like a conjunction and use its two parts separately. But Lean
also knows that it is a reflexive, symmetric, and transitive relation between propositions, and you can also use it with calc
and rw. It is often convenient to rewrite a statement to an equivalent one. In the next example, we use abs_lt to replace
an expression of the form |x| < y by the equivalent expression - y < x ∧ x < y, and in the one after that we
use Nat.dvd_gcd_iff to replace an expression of the form m | Nat.gcd n k by the equivalent expression m |
n ∧ m | k.

example (x : R) : |x + 3| < 5 → -8 < x ∧ x < 2 := by
rw [abs_lt]
intro h
constructor <;> linarith

example : 3 | Nat.gcd 6 15 := by
rw [Nat.dvd_gcd_iff]
constructor <;> norm_num

See if you can use rwwith the theorem below to provide a short proof that negation is not a nondecreasing function. (Note
that push_neg won’t unfold definitions for you, so the rw [Monotone] in the proof of the theorem is needed.)

theorem not_monotone_iff {f : R → R} : ¬Monotone f ↔ ∃ x y, x ≤ y ∧ f x > f y := by
rw [Monotone]

(continues on next page)
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push_neg
rfl

example : ¬Monotone fun x : R 7→ -x := by
sorry

The remaining exercises in this section are designed to give you some more practice with conjunction and bi-implication.
Remember that a partial order is a binary relation that is transitive, reflexive, and antisymmetric. An even weaker notion
sometimes arises: a preorder is just a reflexive, transitive relation. For any pre-order ≤, Lean axiomatizes the associated
strict pre-order by a < b ↔ a ≤ b ∧ ¬ b ≤ a. Show that if ≤ is a partial order, then a < b is equivalent to a
≤ b ∧ a 6= b:

variable {α : Type*} [PartialOrder α]
variable (a b : α)

example : a < b ↔ a ≤ b ∧ a 6= b := by
rw [lt_iff_le_not_le]
sorry

Beyond logical operations, you do not need anything more than le_refl and le_trans. Show that even in the case
where ≤ is only assumed to be a preorder, we can prove that the strict order is irreflexive and transitive. In the second
example, for convenience, we use the simplifier rather than rw to express < in terms of ≤ and ¬. We will come back
to the simplifier later, but here we are only relying on the fact that it will use the indicated lemma repeatedly, even if it
needs to be instantiated to different values.

variable {α : Type*} [Preorder α]
variable (a b c : α)

example : ¬a < a := by
rw [lt_iff_le_not_le]
sorry

example : a < b → b < c → a < c := by
simp only [lt_iff_le_not_le]
sorry

3.5 Disjunction

The canonical way to prove a disjunction A ∨ B is to prove A or to prove B. The left tactic chooses A, and the right
tactic chooses B.

variable {x y : R}

example (h : y > x ^ 2) : y > 0 ∨ y < -1 := by
left
linarith [pow_two_nonneg x]

example (h : -y > x ^ 2 + 1) : y > 0 ∨ y < -1 := by
right
linarith [pow_two_nonneg x]

We cannot use an anonymous constructor to construct a proof of an “or” because Lean would have to guess which disjunct
we are trying to prove. Whenwewrite proof termswe can useOr.inl andOr.inr instead tomake the choice explicitly.
Here, inl is short for “introduction left” and inr is short for “introduction right.”
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example (h : y > 0) : y > 0 ∨ y < -1 :=
Or.inl h

example (h : y < -1) : y > 0 ∨ y < -1 :=
Or.inr h

It may seem strange to prove a disjunction by proving one side or the other. In practice, which case holds usually depends
on a case distinction that is implicit or explicit in the assumptions and the data. The rcases tactic allows us to make use
of a hypothesis of the form A ∨ B. In contrast to the use of rcases with conjunction or an existential quantifier, here
the rcases tactic produces two goals. Both have the same conclusion, but in the first case, A is assumed to be true, and
in the second case, B is assumed to be true. In other words, as the name suggests, the rcases tactic carries out a proof
by cases. As usual, we can tell Lean what names to use for the hypotheses. In the next example, we tell Lean to use the
name h on each branch.

example : x < |y| → x < y ∨ x < -y := by
rcases le_or_gt 0 y with h | h
· rw [abs_of_nonneg h]
intro h; left; exact h

. rw [abs_of_neg h]
intro h; right; exact h

Notice that the pattern changes from 〈h0, h1〉 in the case of a conjunction to h0 | h1 in the case of a disjunction.
Think of the first pattern as matching against data the contains both an h0 and a h1, whereas second pattern, with the bar,
matches against data that contains either an h0 or h1. In this case, because the two goals are separate, we have chosen to
use the same name, h, in each case.
The absolute value function is defined in such a way that we can immediately prove that x ≥ 0 implies |x| = x (this is
the theorem abs_of_nonneg) and x < 0 implies |x| = -x (this is abs_of_neg). The expression le_or_gt
0 x establishes 0 ≤ x ∨ x < 0, allowing us to split on those two cases.
Lean also supports the computer scientists’ pattern-matching syntax for disjunction. Now the cases tactic is more
attractive, because it allows us to name each case, and name the hypothesis that is introduced closer to where it is used.

example : x < |y| → x < y ∨ x < -y := by
cases le_or_gt 0 y
case inl h =>
rw [abs_of_nonneg h]
intro h; left; exact h

case inr h =>
rw [abs_of_neg h]
intro h; right; exact h

The names inl and inr are short for “intro left” and “intro right,” respectively. Using case has the advantage is that
you can prove the cases in either order; Lean uses the tag to find the relevant goal. If you don’t care about that, you can
use next, or match, or even a pattern-matching have.

example : x < |y| → x < y ∨ x < -y := by
cases le_or_gt 0 y
next h =>
rw [abs_of_nonneg h]
intro h; left; exact h

next h =>
rw [abs_of_neg h]
intro h; right; exact h

example : x < |y| → x < y ∨ x < -y := by

(continues on next page)
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match le_or_gt 0 y with
| Or.inl h =>

rw [abs_of_nonneg h]
intro h; left; exact h

| Or.inr h =>
rw [abs_of_neg h]
intro h; right; exact h

In the case of the match, we need to use the full names Or.inl and Or.inr of the canonical ways to prove a
disjunction. In this textbook, we will generally use rcases to split on the cases of a disjunction.
Try proving the triangle inequality using the two first two theorems in the next snippet. They are given the same names
they have in Mathlib.

namespace MyAbs

theorem le_abs_self (x : R) : x ≤ |x| := by
sorry

theorem neg_le_abs_self (x : R) : -x ≤ |x| := by
sorry

theorem abs_add (x y : R) : |x + y| ≤ |x| + |y| := by
sorry

In case you enjoyed these (pun intended) and you want more practice with disjunction, try these.

theorem lt_abs : x < |y| ↔ x < y ∨ x < -y := by
sorry

theorem abs_lt : |x| < y ↔ -y < x ∧ x < y := by
sorry

You can also use rcases and rintro with nested disjunctions. When these result in a genuine case split with multiple
goals, the patterns for each new goal are separated by a vertical bar.

example {x : R} (h : x 6= 0) : x < 0 ∨ x > 0 := by
rcases lt_trichotomy x 0 with xlt | xeq | xgt
· left
exact xlt

· contradiction
. right; exact xgt

You can still nest patterns and use the rfl keyword to substitute equations:

example {m n k : N} (h : m | n ∨ m | k) : m | n * k := by
rcases h with 〈a, rfl〉 | 〈b, rfl〉
· rw [mul_assoc]
apply dvd_mul_right

. rw [mul_comm, mul_assoc]
apply dvd_mul_right

See if you can prove the following with a single (long) line. Use rcases to unpack the hypotheses and split on cases,
and use a semicolon and linarith to solve each branch.

example {z : R} (h : ∃ x y, z = x ^ 2 + y ^ 2 ∨ z = x ^ 2 + y ^ 2 + 1) : z ≥ 0 := by
sorry
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On the real numbers, an equation x * y = 0 tells us that x = 0 or y = 0. In Mathlib, this fact is known as
eq_zero_or_eq_zero_of_mul_eq_zero, and it is another nice example of how a disjunction can arise. See if
you can use it to prove the following:

example {x : R} (h : x ^ 2 = 1) : x = 1 ∨ x = -1 := by
sorry

example {x y : R} (h : x ^ 2 = y ^ 2) : x = y ∨ x = -y := by
sorry

Remember that you can use the ring tactic to help with calculations.
In an arbitrary ring R, an element x such that xy = 0 for some nonzero y is called a left zero divisor, an element x such
that yx = 0 for some nonzero y is called a right zero divisor, and an element that is either a left or right zero divisor is
called simply a zero divisor. The theorem eq_zero_or_eq_zero_of_mul_eq_zero says that the real numbers
have no nontrivial zero divisors. A commutative ring with this property is called an integral domain. Your proofs of the
two theorems above should work equally well in any integral domain:

variable {R : Type*} [CommRing R] [IsDomain R]
variable (x y : R)

example (h : x ^ 2 = 1) : x = 1 ∨ x = -1 := by
sorry

example (h : x ^ 2 = y ^ 2) : x = y ∨ x = -y := by
sorry

In fact, if you are careful, you can prove the first theorem without using commutativity of multiplication. In that case, it
suffices to assume that R is a Ring instead of an CommRing.
Sometimes in a proof we want to split on cases depending on whether some statement is true or not. For any proposition
P, we can use em P : P ∨ ¬ P. The name em is short for “excluded middle.”

example (P : Prop) : ¬¬P → P := by
intro h
cases em P
· assumption
. contradiction

Alternatively, you can use the by_cases tactic.

example (P : Prop) : ¬¬P → P := by
intro h
by_cases h' : P
· assumption
contradiction

Notice that the by_cases tactic lets you specify a label for the hypothesis that is introduced in each branch, in this case,
h' : P in one and h' : ¬ P in the other. If you leave out the label, Lean uses h by default. Try proving the
following equivalence, using by_cases to establish one direction.

example (P Q : Prop) : P → Q ↔ ¬P ∨ Q := by
sorry
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3.6 Sequences and Convergence

We now have enough skills at our disposal to do some real mathematics. In Lean, we can represent a sequence
s0, s1, s2, . . . of real numbers as a function s : N → R. Such a sequence is said to converge to a number a if
for every ε > 0 there is a point beyond which the sequence remains within ε of a, that is, there is a number N such that
for every n ≥ N , |sn − a| < ε. In Lean, we can render this as follows:

def ConvergesTo (s : N → R) (a : R) :=
∀ ε > 0, ∃ N, ∀ n ≥ N, |s n - a| < ε

The notation ∀ ε > 0, ... is a convenient abbreviation for ∀ ε, ε > 0 → ..., and, similarly, ∀ n ≥ N,
... abbreviates ∀ n, n ≥ N → .... And remember that ε > 0, in turn, is defined as 0 < ε, and n ≥ N is
defined as N ≤ n.
In this section, we’ll establish some properties of convergence. But first, we will discuss three tactics for working with
equality that will prove useful. The first, the ext tactic, gives us a way of proving that two functions are equal. Let
f(x) = x+ 1 and g(x) = 1 + x be functions from reals to reals. Then, of course, f = g, because they return the same
value for every x. The ext tactic enables us to prove an equation between functions by proving that their values are the
same at all the values of their arguments.

example : (fun x y : R 7→ (x + y) ^ 2) = fun x y : R 7→ x ^ 2 + 2 * x * y + y ^ 2 := by
ext
ring

We’ll see later that ext is actually more general, and also one can specify the name of the variables that appear. For
instance you can try to replace ext with ext u v in the above proof. The second tactic, the congr tactic, allows us
to prove an equation between two expressions by reconciling the parts that are different:

example (a b : R) : |a| = |a - b + b| := by
congr
ring

Here the congr tactic peels off the abs on each side, leaving us to prove a = a - b + b.
Finally, the convert tactic is used to apply a theorem to a goal when the conclusion of the theorem doesn’t quite match.
For example, suppose we want to prove a < a * a from 1 < a. A theorem in the library, mul_lt_mul_right,
will let us prove 1 * a < a * a. One possibility is to work backwards and rewrite the goal so that it has that form.
Instead, the convert tactic lets us apply the theorem as it is, and leaves us with the task of proving the equations that
are needed to make the goal match.

example {a : R} (h : 1 < a) : a < a * a := by
convert (mul_lt_mul_right _).2 h
· rw [one_mul]
exact lt_trans zero_lt_one h

This example illustrates another useful trick: when we apply an expression with an underscore and Lean can’t fill it in for
us automatically, it simply leaves it for us as another goal.
The following shows that any constant sequence a, a, a, . . . converges.

theorem convergesTo_const (a : R) : ConvergesTo (fun x : N 7→ a) a := by
intro ε εpos
use 0
intro n nge
rw [sub_self, abs_zero]
apply εpos
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Lean has a tactic, simp, which can often save you the trouble of carrying out steps like rw [sub_self, abs_zero]
by hand. We will tell you more about it soon.
For a more interesting theorem, let’s show that if s converges to a and t converges to b, then fun n 7→ s n + t
n converges to a + b. It is helpful to have a clear pen-and-paper proof in mind before you start writing a formal one.
Given ε greater than 0, the idea is to use the hypotheses to obtain an Ns such that beyond that point, s is within ε / 2
of a, and an Nt such that beyond that point, t is within ε / 2 of b. Then, whenever n is greater than or equal to the
maximum of Ns and Nt, the sequence fun n 7→ s n + t n should be within ε of a + b. The following example
begins to implement this strategy. See if you can finish it off.

theorem convergesTo_add {s t : N → R} {a b : R}
(cs : ConvergesTo s a) (ct : ConvergesTo t b) :

ConvergesTo (fun n 7→ s n + t n) (a + b) := by
intro ε εpos
dsimp -- this line is not needed but cleans up the goal a bit.
have ε2pos : 0 < ε / 2 := by linarith
rcases cs (ε / 2) ε2pos with 〈Ns, hs〉
rcases ct (ε / 2) ε2pos with 〈Nt, ht〉
use max Ns Nt
sorry

As hints, you can use le_of_max_le_left and le_of_max_le_right, and norm_num can prove ε / 2 +
ε / 2 = ε. Also, it is helpful to use the congr tactic to show that |s n + t n - (a + b)| is equal to |(s n
- a) + (t n - b)|, since then you can use the triangle inequality. Notice that we marked all the variables s, t,
a, and b implicit because they can be inferred from the hypotheses.
Proving the same theorem with multiplication in place of addition is tricky. We will get there by proving some auxiliary
statements first. See if you can also finish off the next proof, which shows that if s converges to a, then fun n 7→ c
* s n converges to c * a. It is helpful to split into cases depending on whether c is equal to zero or not. We have
taken care of the zero case, and we have left you to prove the result with the extra assumption that c is nonzero.

theorem convergesTo_mul_const {s : N → R} {a : R} (c : R) (cs : ConvergesTo s a) :
ConvergesTo (fun n 7→ c * s n) (c * a) := by

by_cases h : c = 0
· convert convergesTo_const 0
· rw [h]

ring
rw [h]
ring

have acpos : 0 < |c| := abs_pos.mpr h
sorry

The next theorem is also independently interesting: it shows that a convergent sequence is eventually bounded in absolute
value. We have started you off; see if you can finish it.

theorem exists_abs_le_of_convergesTo {s : N → R} {a : R} (cs : ConvergesTo s a) :
∃ N b, ∀ n, N ≤ n → |s n| < b := by

rcases cs 1 zero_lt_one with 〈N, h〉
use N, |a| + 1
sorry

In fact, the theorem could be strengthened to assert that there is a bound b that holds for all values of n. But this version
is strong enough for our purposes, and we will see at the end of this section that it holds more generally.
The next lemma is auxiliary: we prove that if s converges to a and t converges to 0, then fun n 7→ s n * t n
converges to 0. To do so, we use the previous theorem to find a B that bounds s beyond some point N0. See if you can
understand the strategy we have outlined and finish the proof.
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theorem aux {s t : N → R} {a : R} (cs : ConvergesTo s a) (ct : ConvergesTo t 0) :
ConvergesTo (fun n 7→ s n * t n) 0 := by

intro ε εpos
dsimp
rcases exists_abs_le_of_convergesTo cs with 〈N0, B, h0〉
have Bpos : 0 < B := lt_of_le_of_lt (abs_nonneg _) (h0 N0 (le_refl _))
have pos0 : ε / B > 0 := div_pos εpos Bpos
rcases ct _ pos0 with 〈N1, h1〉
sorry

If you have made it this far, congratulations! We are now within striking distance of our theorem. The following proof
finishes it off.

theorem convergesTo_mul {s t : N → R} {a b : R}
(cs : ConvergesTo s a) (ct : ConvergesTo t b) :

ConvergesTo (fun n 7→ s n * t n) (a * b) := by
have h1 : ConvergesTo (fun n 7→ s n * (t n + -b)) 0 := by
apply aux cs
convert convergesTo_add ct (convergesTo_const (-b))
ring

have := convergesTo_add h1 (convergesTo_mul_const b cs)
convert convergesTo_add h1 (convergesTo_mul_const b cs) using 1
· ext; ring
ring

For another challenging exercise, try filling out the following sketch of a proof that limits are unique. (If you are feeling
bold, you can delete the proof sketch and try proving it from scratch.)

theorem convergesTo_unique {s : N → R} {a b : R}
(sa : ConvergesTo s a) (sb : ConvergesTo s b) :

a = b := by
by_contra abne
have : |a - b| > 0 := by sorry
let ε := |a - b| / 2
have εpos : ε > 0 := by
change |a - b| / 2 > 0
linarith

rcases sa ε εpos with 〈Na, hNa〉
rcases sb ε εpos with 〈Nb, hNb〉
let N := max Na Nb
have absa : |s N - a| < ε := by sorry
have absb : |s N - b| < ε := by sorry
have : |a - b| < |a - b| := by sorry
exact lt_irrefl _ this

We close the section with the observation that our proofs can be generalized. For example, the only properties that we
have used of the natural numbers is that their structure carries a partial order with min and max. You can check that
everything still works if you replace N everywhere by any linear order α:

variable {α : Type*} [LinearOrder α]

def ConvergesTo' (s : α → R) (a : R) :=
∀ ε > 0, ∃ N, ∀ n ≥ N, |s n - a| < ε

In Section 9.1, we will see that Mathlib has mechanisms for dealing with convergence in vastly more general terms,
not only abstracting away particular features of the domain and codomain, but also abstracting over different types of
convergence.
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CHAPTER

FOUR

SETS AND FUNCTIONS

The vocabulary of sets, relations, and functions provides a uniform language for carrying out constructions in all the
branches of mathematics. Since functions and relations can be defined in terms of sets, axiomatic set theory can be used
as a foundation for mathematics.
Lean’s foundation is based instead on the primitive notion of a type, and it includes ways of defining functions between
types. Every expression in Lean has a type: there are natural numbers, real numbers, functions from reals to reals, groups,
vector spaces, and so on. Some expressions are types, which is to say, their type is Type. Lean and Mathlib provide
ways of defining new types, and ways of defining objects of those types.
Conceptually, you can think of a type as just a set of objects. Requiring every object to have a type has some advantages.
For example, it makes it possible to overload notation like +, and it sometimes makes input less verbose because Lean
can infer a lot of information from an object’s type. The type system also enables Lean to flag errors when you apply a
function to the wrong number of arguments, or apply a function to arguments of the wrong type.
Lean’s library does define elementary set-theoretic notions. In contrast to set theory, in Lean a set is always a set of objects
of some type, such as a set of natural numbers or a set of functions from real numbers to real numbers. The distinction
between types and sets takes some getting used to, but this chapter will take you through the essentials.

4.1 Sets

If α is any type, the type Set α consists of sets of elements of α. This type supports the usual set-theoretic operations
and relations. For example, s ⊆ t says that s is a subset of t, s ∩ t denotes the intersection of s and t, and s ∪
t denotes their union. The subset relation can be typed with \ss or \sub, intersection can be typed with \i or \cap,
and union can be typed with \un or \cup. The library also defines the set univ, which consists of all the elements of
type α, and the empty set, ∅, which can be typed as \empty. Given x : α and s : Set α, the expression x ∈ s
says that x is a member of s. Theorems that mention set membership often include mem in their name. The expression
x /∈ s abbreviates ¬ x ∈ s. You can type ∈ as \in or \mem and /∈ as \notin.
One way to prove things about sets is to use rw or the simplifier to expand the definitions. In the second example below,
we use simp only to tell the simplifier to use only the list of identities we give it, and not its full database of identities.
Unlike rw, simp can perform simplifications inside a universal or existential quantifier. If you step through the proof,
you can see the effects of these commands.

variable {α : Type*}
variable (s t u : Set α)
open Set

example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := by
rw [subset_def, inter_def, inter_def]
rw [subset_def] at h
simp only [mem_setOf]

(continues on next page)
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rintro x 〈xs, xu〉
exact 〈h _ xs, xu〉

example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := by
simp only [subset_def, mem_inter_iff] at *
rintro x 〈xs, xu〉
exact 〈h _ xs, xu〉

In this example, we open the set namespace to have access to the shorter names for the theorems. But, in fact, we can
delete the calls to rw and simp entirely:

example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := by
intro x xsu
exact 〈h xsu.1, xsu.2〉

What is going on here is known as definitional reduction: to make sense of the intro command and the anonymous
constructors Lean is forced to expand the definitions. The following example also illustrate the phenomenon:

example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
fun x 〈xs, xu〉 7→ 〈h xs, xu〉

To deal with unions, we can use Set.union_def and Set.mem_union. Since x ∈ s ∪ t unfolds to x ∈ s ∨
x ∈ t, we can also use the cases tactic to force a definitional reduction.

example : s ∩ (t ∪ u) ⊆ s ∩ t ∪ s ∩ u := by
intro x hx
have xs : x ∈ s := hx.1
have xtu : x ∈ t ∪ u := hx.2
rcases xtu with xt | xu
· left
show x ∈ s ∩ t
exact 〈xs, xt〉

. right
show x ∈ s ∩ u
exact 〈xs, xu〉

Since intersection binds tighter than union, the use of parentheses in the expression (s ∩ t) ∪ (s ∩ u) is
unnecessary, but they make the meaning of the expression clearer. The following is a shorter proof of the same fact:

example : s ∩ (t ∪ u) ⊆ s ∩ t ∪ s ∩ u := by
rintro x 〈xs, xt | xu〉
· left; exact 〈xs, xt〉
. right; exact 〈xs, xu〉

As an exercise, try proving the other inclusion:

example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by
sorry

It might help to know that when using rintro, sometimes we need to use parentheses around a disjunctive pattern h1
| h2 to get Lean to parse it correctly.
The library also defines set difference, s \ t, where the backslash is a special unicode character entered as \\. The
expression x ∈ s \ t expands to x ∈ s ∧ x /∈ t. (The /∈ can be entered as \notin.) It can be rewritten
manually using Set.diff_eq and dsimp or Set.mem_diff, but the following two proofs of the same inclusion
show how to avoid using them.
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example : (s \ t) \ u ⊆ s \ (t ∪ u) := by
intro x xstu
have xs : x ∈ s := xstu.1.1
have xnt : x /∈ t := xstu.1.2
have xnu : x /∈ u := xstu.2
constructor
· exact xs
intro xtu
-- x ∈ t ∨ x ∈ u
rcases xtu with xt | xu
· show False; exact xnt xt
. show False; exact xnu xu

example : (s \ t) \ u ⊆ s \ (t ∪ u) := by
rintro x 〈〈xs, xnt〉, xnu〉
use xs
rintro (xt | xu) <;> contradiction

As an exercise, prove the reverse inclusion:

example : s \ (t ∪ u) ⊆ (s \ t) \ u := by
sorry

To prove that two sets are equal, it suffices to show that every element of one is an element of the other. This principle is
known as “extensionality,” and, unsurprisingly, the ext tactic is equipped to handle it.

example : s ∩ t = t ∩ s := by
ext x
simp only [mem_inter_iff]
constructor
· rintro 〈xs, xt〉; exact 〈xt, xs〉
. rintro 〈xt, xs〉; exact 〈xs, xt〉

Once again, deleting the line simp only [mem_inter_iff] does not harm the proof. In fact, if you like inscrutable
proof terms, the following one-line proof is for you:

example : s ∩ t = t ∩ s :=
Set.ext fun x 7→ 〈fun 〈xs, xt〉 7→ 〈xt, xs〉, fun 〈xt, xs〉 7→ 〈xs, xt〉〉

Here is an even shorter proof, using the simplifier:

example : s ∩ t = t ∩ s := by ext x; simp [and_comm]

An alternative to using ext is to use the theorem Subset.antisymm which allows us to prove an equation s = t
between sets by proving s ⊆ t and t ⊆ s.

example : s ∩ t = t ∩ s := by
apply Subset.antisymm
· rintro x 〈xs, xt〉; exact 〈xt, xs〉
. rintro x 〈xt, xs〉; exact 〈xs, xt〉

Try finishing this proof term:

example : s ∩ t = t ∩ s :=
Subset.antisymm sorry sorry

Remember that you can replace sorry by an underscore, and when you hover over it, Lean will show you what it expects
at that point.
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Here are some set-theoretic identities you might enjoy proving:

example : s ∩ (s ∪ t) = s := by
sorry

example : s ∪ s ∩ t = s := by
sorry

example : s \ t ∪ t = s ∪ t := by
sorry

example : s \ t ∪ t \ s = (s ∪ t) \ (s ∩ t) := by
sorry

When it comes to representing sets, here is what is going on underneath the hood. In type theory, a property or predicate
on a type α is just a function P : α → Prop. This makes sense: given a : α, P a is just the proposition that P
holds of a. In the library, Set α is defined to be α → Prop and x ∈ s is defined to be s x. In other words, sets
are really properties, treated as objects.
The library also defines set-builder notation. The expression { y | P y } unfolds to (fun y 7→ P y), so x ∈
{ y | P y } reduces to P x. So we can turn the property of being even into the set of even numbers:

def evens : Set N :=
{ n | Even n }

def odds : Set N :=
{ n | ¬Even n }

example : evens ∪ odds = univ := by
rw [evens, odds]
ext n
simp
apply Classical.em

You should step through this proof and make sure you understand what is going on. Try deleting the line rw [evens,
odds] and confirm that the proof still works.
In fact, set-builder notation is used to define

• s ∩ t as {x | x ∈ s ∧ x ∈ t},
• s ∪ t as {x | x ∈ s ∨ x ∈ t},
• ∅ as {x | False}, and
• univ as {x | True}.

We often need to indicate the type of ∅ and univ explicitly, because Lean has trouble guessing which ones we mean.
The following examples show how Lean unfolds the last two definitions when needed. In the second one, trivial is
the canonical proof of True in the library.

example (x : N) (h : x ∈ (∅ : Set N)) : False :=
h

example (x : N) : x ∈ (univ : Set N) :=
trivial

As an exercise, prove the following inclusion. Use intro n to unfold the definition of subset, and use the simplifier to re-
duce the set-theoretic constructions to logic. We also recommend using the theorems Nat.Prime.eq_two_or_odd
and Nat.even_iff.
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example : { n | Nat.Prime n } ∩ { n | n > 2 } ⊆ { n | ¬Even n } := by
sorry

Be careful: it is somewhat confusing that the library has multiple versions of the predicate Prime. The most general
one makes sense in any commutative monoid with a zero element. The predicate Nat.Prime is specific to the natural
numbers. Fortunately, there is a theorem that says that in the specific case, the two notions agree, so you can always
rewrite one to the other.

#print Prime

#print Nat.Prime

example (n : N) : Prime n ↔ Nat.Prime n :=
Nat.prime_iff.symm

example (n : N) (h : Prime n) : Nat.Prime n := by
rw [Nat.prime_iff]
exact h

The rwa tactic follows a rewrite with the assumption tactic.

example (n : N) (h : Prime n) : Nat.Prime n := by
rwa [Nat.prime_iff]

Lean introduces the notation ∀ x ∈ s, ..., “for every x in s .,” as an abbreviation for ∀ x, x ∈ s → ....
It also introduces the notation ∃ x ∈ s, ..., “there exists an x in s such that ..” These are sometimes known as
bounded quantifiers, because the construction serves to restrict their significance to the set s. As a result, theorems in the
library that make use of them often contain ball or bex in the name. The theorem bex_def asserts that ∃ x ∈ s,
... is equivalent to ∃ x, x ∈ s ∧ ..., but when they are used with rintro, use, and anonymous constructors,
these two expressions behave roughly the same. As a result, we usually don’t need to use bex_def to transform them
explicitly. Here is are some examples of how they are used:

variable (s t : Set N)

example (h0 : ∀ x ∈ s, ¬Even x) (h1 : ∀ x ∈ s, Prime x) : ∀ x ∈ s, ¬Even x ∧ Prime x␣
↪→:= by
intro x xs
constructor
· apply h0 x xs
apply h1 x xs

example (h : ∃ x ∈ s, ¬Even x ∧ Prime x) : ∃ x ∈ s, Prime x := by
rcases h with 〈x, xs, _, prime_x〉
use x, xs

See if you can prove these slight variations:

section
variable (ssubt : s ⊆ t)

example (h0 : ∀ x ∈ t, ¬Even x) (h1 : ∀ x ∈ t, Prime x) : ∀ x ∈ s, ¬Even x ∧ Prime x␣
↪→:= by
sorry

example (h : ∃ x ∈ s, ¬Even x ∧ Prime x) : ∃ x ∈ t, Prime x := by
sorry

(continues on next page)
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end

Indexed unions and intersections are another important set-theoretic construction. We can model a sequence
A0, A1, A2, . . . of sets of elements of α as a function A : N → Set α, in which case ⋃ i, A i denotes
their union, and ⋂ i, A i denotes their intersection. There is nothing special about the natural numbers here, so N
can be replaced by any type I used to index the sets. The following illustrates their use.

variable {α I : Type*}
variable (A B : I → Set α)
variable (s : Set α)

open Set

example : (s ∩ ⋃ i, A i) = ⋃ i, A i ∩ s := by
ext x
simp only [mem_inter_iff, mem_iUnion]
constructor
· rintro 〈xs, 〈i, xAi〉〉
exact 〈i, xAi, xs〉

rintro 〈i, xAi, xs〉
exact 〈xs, 〈i, xAi〉〉

example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ ⋂ i, B i := by
ext x
simp only [mem_inter_iff, mem_iInter]
constructor
· intro h
constructor
· intro i

exact (h i).1
intro i
exact (h i).2

rintro 〈h1, h2〉 i
constructor
· exact h1 i
exact h2 i

Parentheses are often needed with an indexed union or intersection because, as with the quantifiers, the scope of the
bound variable extends as far as it can.
Try proving the following identity. One direction requires classical logic! We recommend using by_cases xs : x
∈ s at an appropriate point in the proof.

example : (s ∪ ⋂ i, A i) = ⋂ i, A i ∪ s := by
sorry

Mathlib also has bounded unions and intersections, which are analogous to the bounded quantifiers. You can unpack their
meaning with mem_iUnion2 and mem_iInter2. As the following examples show, Lean’s simplifier carries out these
replacements as well.

def primes : Set N :=
{ x | Nat.Prime x }

example : (⋃ p ∈ primes, { x | p ^ 2 | x }) = { x | ∃ p ∈ primes, p ^ 2 | x } :=by
ext

(continues on next page)
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rw [mem_iUnion2]
simp

example : (⋃ p ∈ primes, { x | p ^ 2 | x }) = { x | ∃ p ∈ primes, p ^ 2 | x } := by
ext
simp

example : (⋂ p ∈ primes, { x | ¬p | x }) ⊆ { x | x = 1 } := by
intro x
contrapose!
simp
apply Nat.exists_prime_and_dvd

Try solving the following example, which is similar. If you start typing eq_univ, tab completion will tell you that
apply eq_univ_of_forall is a good way to start the proof. We also recommend using the theorem Nat.
exists_infinite_primes.

example : (⋃ p ∈ primes, { x | x ≤ p }) = univ := by
sorry

Give a collection of sets, s : Set (Set α), their union, ⋃0 s, has type Set α and is defined as {x | ∃ t ∈
s, x ∈ t}. Similarly, their intersection, ⋂0 s, is defined as {x | ∀ t ∈ s, x ∈ t}. These operations are called
sUnion and sInter, respectively. The following examples show their relationship to bounded union and intersection.

variable {α : Type*} (s : Set (Set α))

example : ⋃0 s = ⋃ t ∈ s, t := by
ext x
rw [mem_iUnion2]
simp

example : ⋂0 s = ⋂ t ∈ s, t := by
ext x
rw [mem_iInter2]
rfl

In the library, these identities are called sUnion_eq_biUnion and sInter_eq_biInter.

4.2 Functions

If f : α → β is a function and p is a set of elements of type β, the library defines preimage f p, written f ¹'
p, to be {x | f x ∈ p}. The expression x ∈ f ¹' p reduces to f x ∈ p. This is often convenient, as in the
following example:

variable {α β : Type*}
variable (f : α → β)
variable (s t : Set α)
variable (u v : Set β)

open Function
open Set

example : f ¹' (u ∩ v) = f ¹' u ∩ f ¹' v := by

(continues on next page)
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ext
rfl

If s is a set of elements of type α, the library also defines image f s, written f '' s, to be {y | ∃ x, x ∈ s
∧ f x = y}. So a hypothesis y ∈ f '' s decomposes to a triple 〈x, xs, xeq〉 with x : α satisfying the
hypotheses xs : x ∈ s and xeq : f x = y. The rfl tag in the rintro tactic (see Section 3.2) was made
precisely for this sort of situation.

example : f '' (s ∪ t) = f '' s ∪ f '' t := by
ext y; constructor
· rintro 〈x, xs | xt, rfl〉
· left

use x, xs
right
use x, xt

rintro (〈x, xs, rfl〉 | 〈x, xt, rfl〉)
· use x, Or.inl xs
use x, Or.inr xt

Notice also that the use tactic applies rfl to close goals when it can.
Here is another example:

example : s ⊆ f ¹' (f '' s) := by
intro x xs
show f x ∈ f '' s
use x, xs

We can replace the line use x, xs by apply mem_image_of_mem f xs if we want to use a theorem specifically
designed for that purpose. But knowing that the image is defined in terms of an existential quantifier is often convenient.
The following equivalence is a good exercise:

example : f '' s ⊆ v ↔ s ⊆ f ¹' v := by
sorry

It shows that image f and preimage f are an instance of what is known as a Galois connection between Set α and
Set β, each partially ordered by the subset relation. In the library, this equivalence is named image_subset_iff.
In practice, the right-hand side is often the more useful representation, because y ∈ f ¹' t unfolds to f y ∈ t
whereas working with x ∈ f '' s requires decomposing an existential quantifier.
Here is a long list of set-theoretic identities for you to enjoy. You don’t have to do all of them at once; do a few of them,
and set the rest aside for a rainy day.

example (h : Injective f) : f ¹' (f '' s) ⊆ s := by
sorry

example : f '' (f ¹' u) ⊆ u := by
sorry

example (h : Surjective f) : u ⊆ f '' (f ¹' u) := by
sorry

example (h : s ⊆ t) : f '' s ⊆ f '' t := by
sorry

example (h : u ⊆ v) : f ¹' u ⊆ f ¹' v := by

(continues on next page)
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sorry

example : f ¹' (u ∪ v) = f ¹' u ∪ f ¹' v := by
sorry

example : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := by
sorry

example (h : Injective f) : f '' s ∩ f '' t ⊆ f '' (s ∩ t) := by
sorry

example : f '' s \ f '' t ⊆ f '' (s \ t) := by
sorry

example : f ¹' u \ f ¹' v ⊆ f ¹' (u \ v) := by
sorry

example : f '' s ∩ v = f '' (s ∩ f ¹' v) := by
sorry

example : f '' (s ∩ f ¹' u) ⊆ f '' s ∩ u := by
sorry

example : s ∩ f ¹' u ⊆ f ¹' (f '' s ∩ u) := by
sorry

example : s ∪ f ¹' u ⊆ f ¹' (f '' s ∪ u) := by
sorry

You can also try your hand at the next group of exercises, which characterize the behavior of images and preimages with
respect to indexed unions and intersections. In the third exercise, the argument i : I is needed to guarantee that the
index set is nonempty. To prove any of these, we recommend using ext or intro to unfold the meaning of an equation
or inclusion between sets, and then calling simp to unpack the conditions for membership.

variable {I : Type*} (A : I → Set α) (B : I → Set β)

example : (f '' ⋃ i, A i) = ⋃ i, f '' A i := by
sorry

example : (f '' ⋂ i, A i) ⊆ ⋂ i, f '' A i := by
sorry

example (i : I) (injf : Injective f) : (⋂ i, f '' A i) ⊆ f '' ⋂ i, A i := by
sorry

example : (f ¹' ⋃ i, B i) = ⋃ i, f ¹' B i := by
sorry

example : (f ¹' ⋂ i, B i) = ⋂ i, f ¹' B i := by
sorry

The library defines a predicate InjOn f s to say that f is injective on s. It is defined as follows:

example : InjOn f s ↔ ∀ x1 ∈ s, ∀ x2 ∈ s, f x1 = f x2 → x1 = x2 :=
Iff.refl _

The statement Injective f is provably equivalent to InjOn f univ. Similarly, the library defines range f to
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be {x | ∃y, f y = x}, so range f is provably equal to f '' univ. This is a common theme in Mathlib:
although many properties of functions are defined relative to their full domain, there are often relativized versions that
restrict the statements to a subset of the domain type.
Here is are some examples of InjOn and range in use:

open Set Real

example : InjOn log { x | x > 0 } := by
intro x xpos y ypos
intro e
-- log x = log y
calc
x = exp (log x) := by rw [exp_log xpos]
_ = exp (log y) := by rw [e]
_ = y := by rw [exp_log ypos]

example : range exp = { y | y > 0 } := by
ext y; constructor
· rintro 〈x, rfl〉
apply exp_pos

intro ypos
use log y
rw [exp_log ypos]

Try proving these:

example : InjOn sqrt { x | x ≥ 0 } := by
sorry

example : InjOn (fun x 7→ x ^ 2) { x : R | x ≥ 0 } := by
sorry

example : sqrt '' { x | x ≥ 0 } = { y | y ≥ 0 } := by
sorry

example : (range fun x 7→ x ^ 2) = { y : R | y ≥ 0 } := by
sorry

To define the inverse of a function f : α → β, we will use two new ingredients. First, we need to deal with the fact
that an arbitrary type in Lean may be empty. To define the inverse to f at y when there is no x satisfying f x = y, we
want to assign a default value in α. Adding the annotation [Inhabited α] as a variable is tantamount to assuming
that α has a preferred element, which is denoted default. Second, in the case where there is more than one x such
that f x = y, the inverse function needs to choose one of them. This requires an appeal to the axiom of choice. Lean
allows various ways of accessing it; one convenient method is to use the classical choose operator, illustrated below.

variable {α β : Type*} [Inhabited α]

#check (default : α)

variable (P : α → Prop) (h : ∃ x, P x)

#check Classical.choose h

example : P (Classical.choose h) :=
Classical.choose_spec h
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Given h : ∃ x, P x, the value of Classical.choose h is some x satisfying P x. The theorem Classical.
choose_spec h says that Classical.choose h meets this specification.
With these in hand, we can define the inverse function as follows:

noncomputable section

open Classical

def inverse (f : α → β) : β → α := fun y : β 7→
if h : ∃ x, f x = y then Classical.choose h else default

theorem inverse_spec {f : α → β} (y : β) (h : ∃ x, f x = y) : f (inverse f y) = y :=␣
↪→by
rw [inverse, dif_pos h]
exact Classical.choose_spec h

The lines noncomputable section and open Classical are needed because we are using classical logic in
an essential way. On input y, the function inverse f returns some value of x satisfying f x = y if there is one, and
a default element of α otherwise. This is an instance of a dependent if construction, since in the positive case, the value
returned, Classical.choose h, depends on the assumption h. The identity dif_pos h rewrites if h : e
then a else b to a given h : e, and, similarly, dif_neg h rewrites it to b given h : ¬ e. The theorem
inverse_spec says that inverse f meets the first part of this specification.
Don’t worry if you do not fully understand how these work. The theorem inverse_spec alone should be enough to
show that inverse f is a left inverse if and only if f is injective and a right inverse if and only if f is surjective. Look
up the definition of LeftInverse and RightInverse by double-clicking or right-clicking on them in VS Code, or
using the commands #print LeftInverse and #print RightInverse. Then try to prove the two theorems.
They are tricky! It helps to do the proofs on paper before you start hacking through the details. You should be able to
prove each of them with about a half-dozen short lines. If you are looking for an extra challenge, try to condense each
proof to a single-line proof term.

variable (f : α → β)

open Function

example : Injective f ↔ LeftInverse (inverse f) f :=
sorry

example : Surjective f ↔ RightInverse (inverse f) f :=
sorry

We close this section with a type-theoretic statement of Cantor’s famous theorem that there is no surjective function from
a set to its power set. See if you can understand the proof, and then fill in the two lines that are missing.

theorem Cantor : ∀ f : α → Set α, ¬Surjective f := by
intro f surjf
let S := { i | i /∈ f i }
rcases surjf S with 〈j, h〉
have h1 : j /∈ f j := by
intro h'
have : j /∈ f j := by rwa [h] at h'
contradiction

have h2 : j ∈ S
sorry
have h3 : j /∈ S
sorry
contradiction

4.2. Functions 57



Mathematics in Lean, Release 0.1

4.3 The Schröder-Bernstein Theorem

We close this chapter with an elementary but nontrivial theorem of set theory. Let α and β be sets. (In our formalization,
they will actually be types.) Suppose f : α → β and g : β → α are both injective. Intuitively, this means that α is no
bigger than β and vice-versa. If α and β are finite, this implies that they have the same cardinality, which is equivalent to
saying that there is a bijection between them. In the nineteenth century, Cantor stated that same result holds even in the
case where α and β are infinite. This was eventually established by Dedekind, Schröder, and Bernstein independently.
Our formalization will introduce some newmethods that we will explain in greater detail in chapters to come. Don’t worry
if they go by too quickly here. Our goal is to show you that you already have the skills to contribute to the formal proof
of a real mathematical result.
To understand the idea behind the proof, consider the image of the map g in α. On that image, the inverse of g is defined
and is a bijection with β.

α β

g−1

The problem is that the bijection does not include the shaded region in the diagram, which is nonempty if g is not surjective.
Alternatively, we can use f to map all of α to β, but in that case the problem is that if f is not surjective, it will miss
some elements of β.

α β

f

But now consider the composition g◦f from α to itself. Because the composition is injective, it forms a bijection between
α and its image, yielding a scaled-down copy of α inside itself.

α β

This composition maps the inner shaded ring to yet another such set, which we can think of as an even smaller concentric
shaded ring, and so on. This yields a concentric sequence of shaded rings, each of which is in bijective correspondence
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with the next. If we map each ring to the next and leave the unshaded parts of α alone, we have a bijection of α with the
image of g. Composing with g−1, this yields the desired bijection between α and β.
We can describe this bijection more simply. LetA be the union of the sequence of shaded regions, and define h : α → β
as follows:

h(x) =

{
f(x) if x ∈ A

g−1(x) otherwise.

In other words, we use f on the shaded parts, and we use the inverse of g everywhere else. The resulting map h is injective
because each component is injective and the images of the two components are disjoint. To see that it is surjective, suppose
we are given a y in β, and consider g(y). If g(y) is in one of the shaded regions, it cannot be in the first ring, so we have
g(y) = g(f(x)) for some x is in the previous ring. By the injectivity of g, we have h(x) = f(x) = y. If g(y) is not in
the shaded region, then by the definition of h, we have h(g(y)) = y. Either way, y is in the image of h.
This argument should sound plausible, but the details are delicate. Formalizing the proof will not only improve our
confidence in the result, but also help us understand it better. Because the proof uses classical logic, we tell Lean that our
definitions will generally not be computable.

noncomputable section
open Classical
variable {α β : Type*} [Nonempty β]

The annotation [Nonempty β] specifies that β is nonempty. We use it because the Mathlib primitive that we will
use to construct g−1 requires it. The case of the theorem where β is empty is trivial, and even though it would not be
hard to generalize the formalization to cover that case as well, we will not bother. Specifically, we need the hypothesis
[Nonempty β] for the operation invFun that is defined in Mathlib. Given x : α, invFun g x chooses a
preimage of x in β if there is one, and returns an arbitrary element of β otherwise. The function invFun g is always a
left inverse if g is injective and a right inverse if g is surjective.

#check (invFun g : α → β)
#check (leftInverse_invFun : Injective g → LeftInverse (invFun g) g)
#check (leftInverse_invFun : Injective g → ∀ y, invFun g (g y) = y)
#check (invFun_eq : (∃ y, g y = x) → g (invFun g x) = x)

We define the set corresponding to the union of the shaded regions as follows.

variable (f : α → β) (g : β → α)

def sbAux : N → Set α
| 0 => univ \ g '' univ
| n + 1 => g '' (f '' sbAux n)

def sbSet :=
⋃ n, sbAux f g n

The definition sbAux is an example of a recursive definition, which we will explain in the next chapter. It defines a
sequence of sets

S0 = α \ g(β)
Sn+1 = g(f(Sn)).

The definition sbSet corresponds to the set A =
∪

n∈N Sn in our proof sketch. The function h described above is now
defined as follows:

def sbFun (x : α) : β :=
if x ∈ sbSet f g then f x else invFun g x
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We will need the fact that our definition of g−1 is a right inverse on the complement of A, which is to say, on the non-
shaded regions of α. This is so because the outermost ring, S0, is equal to α \ g(β), so the complement ofA is contained
in g(β). As a result, for every x in the complement of A, there is a y such that g(y) = x. (By the injectivity of g, this y
is unique, but next theorem says only that invFun g x returns some y such that g y = x.)
Step through the proof below, make sure you understand what is going on, and fill in the remaining parts. You will need
to use invFun_eq at the end. Notice that rewriting with sbAux here replaces sbAux f g 0 with the right-hand
side of the corresponding defining equation.

theorem sb_right_inv {x : α} (hx : x /∈ sbSet f g) : g (invFun g x) = x := by
have : x ∈ g '' univ := by
contrapose! hx
rw [sbSet, mem_iUnion]
use 0
rw [sbAux, mem_diff]
sorry

have : ∃ y, g y = x := by
sorry

sorry

We now turn to the proof that h is injective. Informally, the proof goes as follows. First, suppose h(x1) = h(x2). If x1

is in A, then h(x1) = f(x1), and we can show that x2 is in A as follows. If it isn’t, then we have h(x2) = g−1(x2).
From f(x1) = h(x1) = h(x2) we have g(f(x1)) = x2. From the definition of A, since x1 is in A, x2 is in A as well, a
contradiction. Hence, if x1 is inA, so is x2, in which case we have f(x1) = h(x1) = h(x2) = f(x2). The injectivity of
f then implies x1 = x2. The symmetric argument shows that if x2 is in A, then so is x1, which again implies x1 = x2.
The only remaining possibility is that neither x1 nor x2 is in A. In that case, we have g−1(x1) = h(x1) = h(x2) =
g−1(x2). Applying g to both sides yields x1 = x2.
Once again, we encourage you to step through the following proof to see how the argument plays out in Lean. See if you
can finish off the proof using sb_right_inv.

theorem sb_injective (hf : Injective f) : Injective (sbFun f g) := by
set A := sbSet f g with A_def
set h := sbFun f g with h_def
intro x1 x2

intro (hxeq : h x1 = h x2)
show x1 = x2

simp only [h_def, sbFun, ← A_def] at hxeq
by_cases xA : x1 ∈ A ∨ x2 ∈ A
· wlog x1A : x1 ∈ A generalizing x1 x2 hxeq xA
· symm

apply this hxeq.symm xA.symm (xA.resolve_left x1A)
have x2A : x2 ∈ A := by

apply not_imp_self.mp
intro (x2nA : x2 /∈ A)
rw [if_pos x1A, if_neg x2nA] at hxeq
rw [A_def, sbSet, mem_iUnion] at x1A
have x2eq : x2 = g (f x1) := by

sorry
rcases x1A with 〈n, hn〉
rw [A_def, sbSet, mem_iUnion]
use n + 1
simp [sbAux]
exact 〈x1, hn, x2eq.symm〉

sorry
push_neg at xA
sorry
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The proof introduces some new tactics. To start with, notice the set tactic, which introduces abbreviations A and h for
sbSet f g and sb_fun f g respectively. We name the corresponding defining equations A_def and h_def.
The abbreviations are definitional, which is to say, Lean will sometimes unfold them automatically when needed. But not
always; for example, when using rw, we generally need to use A_def and h_def explicitly. So the definitions bring a
tradeoff: they can make expressions shorter and more readable, but they sometimes require us to do more work.
A more interesting tactic is the wlog tactic, which encapsulates the symmetry argument in the informal proof above. We
will not dwell on it now, but notice that it does exactly what we want. If you hover over the tactic you can take a look at
its documentation.
The argument for surjectivity is even easier. Given y in β, we consider two cases, depending on whether g(y) is inA. If it
is, it can’t be in S0, the outermost ring, because by definition that is disjoint from the image of g. Thus it is an element of
Sn+1 for some n. This means that it is of the form g(f(x)) for some x in Sn. By the injectivity of g, we have f(x) = y.
In the case where g(y) is in the complement of A, we immediately have h(g(y)) = y, and we are done.
Once again, we encourage you to step through the proof and fill in the missing parts. The tactic cases n with n
splits on the cases g y ∈ sbAux f g 0 and g y ∈ sbAux f g n.succ. In both cases, calling the simplifier
with simp [sbAux] applies the corresponding defining equation of sbAux.

theorem sb_surjective (hf : Injective f) (hg : Injective g) : Surjective (sbFun f g)␣
↪→:= by
set A := sbSet f g with A_def
set h := sbFun f g with h_def
intro y
by_cases gyA : g y ∈ A
· rw [A_def, sbSet, mem_iUnion] at gyA
rcases gyA with 〈n, hn〉
rcases n with _ | n
· simp [sbAux] at hn
simp [sbAux] at hn
rcases hn with 〈x, xmem, hx〉
use x
have : x ∈ A := by

rw [A_def, sbSet, mem_iUnion]
exact 〈n, xmem〉

simp only [h_def, sbFun, if_pos this]
exact hg hx

sorry

We can now put it all together. The final statement is short and sweet, and the proof uses the fact that Bijective h
unfolds to Injective h ∧ Surjective h.

theorem schroeder_bernstein {f : α → β} {g : β → α} (hf : Injective f) (hg :␣
↪→Injective g) :

∃ h : α → β, Bijective h :=
〈sbFun f g, sb_injective f g hf, sb_surjective f g hf hg〉
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CHAPTER

FIVE

ELEMENTARY NUMBER THEORY

In this chapter, we show you how to formalize some elementary results in number theory. As we deal withmore substantive
mathematical content, the proofs will get longer and more involved, building on the skills you have already mastered.

5.1 Irrational Roots

Let’s start with a fact known to the ancient Greeks, namely, that the square root of 2 is irrational. If we suppose otherwise,
we can write

√
2 = a/b as a fraction in lowest terms. Squaring both sides yields a2 = 2b2, which implies that a is even.

If we write a = 2c, then we get 4c2 = 2b2 and hence b2 = 2c2. This implies that b is also even, contradicting the fact
that we have assumed that a/b has been reduced to lowest terms.
Saying that a/b is a fraction in lowest terms means that a and b do not have any factors in common, which is to say, they
are coprime. Mathlib defines the predicate Nat.Coprime m n to be Nat.gcd m n = 1. Using Lean’s anonymous
projection notation, if s and t are expressions of type Nat, we can write s.Coprime t instead of Nat.Coprime
s t, and similarly for Nat.gcd. As usual, Lean will often unfold the definition of Nat.Coprime automatically
when necessary, but we can also do it manually by rewriting or simplifying with the identifier Nat.Coprime. The
norm_num tactic is smart enough to compute concrete values.

#print Nat.Coprime

example (m n : Nat) (h : m.Coprime n) : m.gcd n = 1 :=
h

example (m n : Nat) (h : m.Coprime n) : m.gcd n = 1 := by
rw [Nat.Coprime] at h
exact h

example : Nat.Coprime 12 7 := by norm_num

example : Nat.gcd 12 8 = 4 := by norm_num

We have already encountered the gcd function in Section 2.4. There is also a version of gcd for the integers; we will
return to a discussion of the relationship between different number systems below. There are even a generic gcd function
and generic notions of Prime and Coprime that make sense in general classes of algebraic structures. We will come
to understand how Lean manages this generality in the next chapter. In the meanwhile, in this section, we will restrict
attention to the natural numbers.
We also need the notion of a prime number, Nat.Prime. The theorem Nat.prime_def_lt provides one familiar
characterization, and Nat.Prime.eq_one_or_self_of_dvd provides another.

#check Nat.prime_def_lt

(continues on next page)
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(continued from previous page)
example (p : N) (prime_p : Nat.Prime p) : 2 ≤ p ∧ ∀ m : N, m < p → m | p → m = 1 :=␣
↪→by
rwa [Nat.prime_def_lt] at prime_p

#check Nat.Prime.eq_one_or_self_of_dvd

example (p : N) (prime_p : Nat.Prime p) : ∀ m : N, m | p → m = 1 ∨ m = p :=
prime_p.eq_one_or_self_of_dvd

example : Nat.Prime 17 := by norm_num

-- commonly used
example : Nat.Prime 2 :=

Nat.prime_two

example : Nat.Prime 3 :=
Nat.prime_three

In the natural numbers, a prime number has the property that it cannot be written as a product of nontrivial factors. In a
broader mathematical context, an element of a ring that has this property is said to be irreducible. An element of a ring
is said to be prime if whenever it divides a product, it divides one of the factors. It is an important property of the natural
numbers that in that setting the two notions coincide, giving rise to the theorem Nat.Prime.dvd_mul.
We can use this fact to establish a key property in the argument above: if the square of a number is even, then that
number is even as well. Mathlib defines the predicate Even in Data.Nat.Parity, but for reasons that will become
clear below, we will simply use 2 | m to express that m is even.

#check Nat.Prime.dvd_mul
#check Nat.Prime.dvd_mul Nat.prime_two
#check Nat.prime_two.dvd_mul

theorem even_of_even_sqr {m : N} (h : 2 | m ^ 2) : 2 | m := by
rw [pow_two, Nat.prime_two.dvd_mul] at h
cases h <;> assumption

example {m : N} (h : 2 | m ^ 2) : 2 | m :=
Nat.Prime.dvd_of_dvd_pow Nat.prime_two h

As we proceed, you will need to become proficient at finding the facts you need. Remember that if you can guess the
prefix of the name and you have imported the relevant library, you can use tab completion (sometimes with ctrl-tab)
to find what you are looking for. You can use ctrl-click on any identifier to jump to the file where it is defined,
which enables you to browse definitions and theorems nearby. You can also use the search engine on the Lean community
web pages, and if all else fails, don’t hesitate to ask on Zulip.

example (a b c : Nat) (h : a * b = a * c) (h' : a 6= 0) : b = c :=
-- apply? suggests the following:
(mul_right_inj' h').mp h

The heart of our proof of the irrationality of the square root of two is contained in the following theorem. See if you can
fill out the proof sketch, using even_of_even_sqr and the theorem Nat.dvd_gcd.

example {m n : N} (coprime_mn : m.Coprime n) : m ^ 2 6= 2 * n ^ 2 := by
intro sqr_eq
have : 2 | m := by
sorry

obtain 〈k, meq〉 := dvd_iff_exists_eq_mul_left.mp this

(continues on next page)
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(continued from previous page)
have : 2 * (2 * k ^ 2) = 2 * n ^ 2 := by
rw [← sqr_eq, meq]
ring

have : 2 * k ^ 2 = n ^ 2 :=
sorry

have : 2 | n := by
sorry

have : 2 | m.gcd n := by
sorry

have : 2 | 1 := by
sorry

norm_num at this

In fact, with very few changes, we can replace 2 by an arbitrary prime. Give it a try in the next example. At the end of
the proof, you’ll need to derive a contradiction from p | 1. You can use Nat.Prime.two_le, which says that any
prime number is greater than or equal to two, and Nat.le_of_dvd.

example {m n p : N} (coprime_mn : m.Coprime n) (prime_p : p.Prime) : m ^ 2 6= p * n ^␣
↪→2 := by
sorry

Let us consider another approach. Here is a quick proof that if p is prime, thenm2 6= pn2: if we assumem2 = pn2 and
consider the factorization ofm and n into primes, then p occurs an even number of times on the left side of the equation
and an odd number of times on the right, a contradiction. Note that this argument requires that n and hence m are not
equal to zero. The formalization below confirms that this assumption is sufficient.
The unique factorization theorem says that any natural number other than zero can be written as the product of primes in
a unique way. Mathlib contains a formal version of this, expressed in terms of a function Nat.factors, which returns
the list of prime factors of a number in nondecreasing order. The library proves that all the elements of Nat.factors
n are prime, that any n greater than zero is equal to the product of its factors, and that if n is equal to the product of
another list of prime numbers, then that list is a permutation of Nat.factors n.

#check Nat.factors
#check Nat.prime_of_mem_factors
#check Nat.prod_factors
#check Nat.factors_unique

You can browse these theorems and others nearby, even though we have not talked about list membership, products, or
permutations yet. We won’t need any of that for the task at hand. We will instead use the fact that Mathlib has a function
Nat.factorization, that represents the same data as a function. Specifically, Nat.factorization n p,
which we can also write n.factorization p, returns the multiplicity of p in the prime factorization of n. We will
use the following three facts.

theorem factorization_mul' {m n : N} (mnez : m 6= 0) (nnez : n 6= 0) (p : N) :
(m * n).factorization p = m.factorization p + n.factorization p := by

rw [Nat.factorization_mul mnez nnez]
rfl

theorem factorization_pow' (n k p : N) :
(n ^ k).factorization p = k * n.factorization p := by

rw [Nat.factorization_pow]
rfl

theorem Nat.Prime.factorization' {p : N} (prime_p : p.Prime) :
p.factorization p = 1 := by

(continues on next page)
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rw [prime_p.factorization]
simp

In fact, n.factorization is defined in Lean as a function of finite support, which explains the strange notation you
will see as you step through the proofs above. Don’t worry about this now. For our purposes here, we can use the three
theorems above as a black box.
The next example shows that the simplifier is smart enough to replace n^2 6= 0 by n 6= 0. The tactic simpa just
calls simp followed by assumption.
See if you can use the identities above to fill in the missing parts of the proof.

example {m n p : N} (nnz : n 6= 0) (prime_p : p.Prime) : m ^ 2 6= p * n ^ 2 := by
intro sqr_eq
have nsqr_nez : n ^ 2 6= 0 := by simpa
have eq1 : Nat.factorization (m ^ 2) p = 2 * m.factorization p := by
sorry

have eq2 : (p * n ^ 2).factorization p = 2 * n.factorization p + 1 := by
sorry

have : 2 * m.factorization p % 2 = (2 * n.factorization p + 1) % 2 := by
rw [← eq1, sqr_eq, eq2]

rw [add_comm, Nat.add_mul_mod_self_left, Nat.mul_mod_right] at this
norm_num at this

A nice thing about this proof is that it also generalizes. There is nothing special about 2; with small changes, the proof
shows that whenever we write m^k = r * n^k, the multiplicity of any prime p in r has to be a multiple of k.
To use Nat.count_factors_mul_of_pos with r * n^k, we need to know that r is positive. But when r is
zero, the theorem below is trivial, and easily proved by the simplifier. So the proof is carried out in cases. The line cases
r with r replaces the goal with two versions: one in which r is replaced by 0, and the other in which r is replaces
by r.succ, the successor of r. In the second case, we can use the theorem r.succ_ne_zero, which establishes
r.succ 6= 0.
Notice also that the line that begins have : npow_nz provides a short proof-term proof of n^k 6= 0. To understand
how it works, try replacing it with a tactic proof, and then think about how the tactics describe the proof term.
See if you can fill in the missing parts of the proof below. At the very end, you can use Nat.dvd_sub' and Nat.
dvd_mul_right to finish it off.

example {m n k r : N} (nnz : n 6= 0) (pow_eq : m ^ k = r * n ^ k) {p : N} (prime_p : p.
↪→Prime) :

k | r.factorization p := by
rcases r with _ | r
· simp
have npow_nz : n ^ k 6= 0 := fun npowz 7→ nnz (pow_eq_zero npowz)
have eq1 : (m ^ k).factorization p = k * m.factorization p := by
sorry

have eq2 : (r.succ * n ^ k).factorization p =
k * n.factorization p + r.succ.factorization p := by

sorry
have : r.succ.factorization p = k * m.factorization p - k * n.factorization p := by
rw [← eq1, pow_eq, eq2, add_comm, Nat.add_sub_cancel]

rw [this]
sorry

There are a number of ways in which we might want to improve on these results. To start with, a proof that the square
root of two is irrational should say something about the square root of two, which can be understood as an element of the
real or complex numbers. And stating that it is irrational should say something about the rational numbers, namely, that
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no rational number is equal to it. Moreover, we should extend the theorems in this section to the integers. Although it is
mathematically obvious that if we could write the square root of two as a quotient of two integers then we could write it
as a quotient of two natural numbers, proving this formally requires some effort.
InMathlib, the natural numbers, the integers, the rationals, the reals, and the complex numbers are represented by separate
data types. Restricting attention to the separate domains is often helpful: we will see that it is easy to do induction on the
natural numbers, and it is easiest to reason about divisibility of integers when the real numbers are not part of the picture.
But having to mediate between the different domains is a headache, one we will have to contend with. We will return to
this issue later in this chapter.
We should also expect to be able to strengthen the conclusion of the last theorem to say that the number r is a k-th power,
since its k-th root is just the product of each prime dividing r raised to its multiplicity in r divided by k. To be able to
do that we will need better means for reasoning about products and sums over a finite set, which is also a topic we will
return to.
In fact, the results in this section are all established in much greater generality in Mathlib, in Data.Real.
Irrational. The notion of multiplicity is defined for an arbitrary commutative monoid, and that it takes
values in the extended natural numbers enat, which adds the value infinity to the natural numbers. In the next chapter,
we will begin to develop the means to appreciate the way that Lean supports this sort of generality.

5.2 Induction and Recursion

The set of natural numbers N = {0, 1, 2, . . .} is not only fundamentally important in its own right, but also a plays a
central role in the construction of new mathematical objects. Lean’s foundation allows us to declare inductive types, which
are types generated inductively by a given list of constructors. In Lean, the natural numbers are declared as follows.

inductive Nat
| zero : Nat
| succ (n : Nat) : Nat

You can find this in the library by writing #check Nat and then using ctrl-click on the identifier Nat. The
command specifies that Nat is the datatype generated freely and inductively by the two constructors zero : Nat and
succ : Nat → Nat. Of course, the library introduces notationN and 0 for nat and zero respectively. (Numerals
are translated to binary representations, but we don’t have to worry about the details of that now.)
What “freely” means for the working mathematician is that the type Nat has an element zero and an injective successor
function succ whose image does not include zero.

example (n : Nat) : n.succ 6= Nat.zero :=
Nat.succ_ne_zero n

example (m n : Nat) (h : m.succ = n.succ) : m = n :=
Nat.succ.inj h

What the word “inductively” means for the working mathematician is that the natural numbers comes with a principle of
proof by induction and a principle of definition by recursion. This section will show you how to use these.
Here is an example of a recursive definition of the factorial function.

def fac : N → N
| 0 => 1
| n + 1 => (n + 1) * fac n

The syntax takes some getting used to. Notice that there is no := on the first line. The next two lines provide the base
case and inductive step for a recursive definition. These equations hold definitionally, but they can also be used manually
by giving the name fac to simp or rw.
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example : fac 0 = 1 :=
rfl

example : fac 0 = 1 := by
rw [fac]

example : fac 0 = 1 := by
simp [fac]

example (n : N) : fac (n + 1) = (n + 1) * fac n :=
rfl

example (n : N) : fac (n + 1) = (n + 1) * fac n := by
rw [fac]

example (n : N) : fac (n + 1) = (n + 1) * fac n := by
simp [fac]

The factorial function is actually already defined in Mathlib as Nat.factorial. Once again, you can jump to it by
typing #check Nat.factorial and using ctrl-click. For illustrative purposes, we will continue using fac in
the examples. The annotation @[simp] before the definition of Nat.factorial specifies that the defining equation
should be added to the database of identities that the simplifier uses by default.
The principle of induction says that we can prove a general statement about the natural numbers by proving that the
statement holds of 0 and that whenever it holds of a natural number n, it also holds of n+1. The line induction' n
with n ih in the proof below therefore results in two goals: in the first we need to prove 0 < fac 0, and in the
second we have the added assumption ih : 0 < fac n and a required to prove 0 < fac (n + 1). The phrase
with n ih serves to name the variable and the assumption for the inductive hypothesis, and you can choose whatever
names you want for them.

theorem fac_pos (n : N) : 0 < fac n := by
induction' n with n ih
· rw [fac]
exact zero_lt_one

rw [fac]
exact mul_pos n.succ_pos ih

The induction tactic is smart enough to include hypotheses that depend on the induction variable as part of the
induction hypothesis. Step through the next example to see what is going on.

theorem dvd_fac {i n : N} (ipos : 0 < i) (ile : i ≤ n) : i | fac n := by
induction' n with n ih
· exact absurd ipos (not_lt_of_ge ile)
rw [fac]
rcases Nat.of_le_succ ile with h | h
· apply dvd_mul_of_dvd_right (ih h)
rw [h]
apply dvd_mul_right

The following example provides a crude lower bound for the factorial function. It turns out to be easier to start with a
proof by cases, so that the remainder of the proof starts with the case n = 1. See if you can complete the argument with
a proof by induction.

theorem pow_two_le_fac (n : N) : 2 ^ (n - 1) ≤ fac n := by
rcases n with _ | n
· simp [fac]
sorry
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Induction is often used to prove identities involving finite sums and products. Mathlib defines the expressions Finset.
sum s f where s : Finset α if a finite set of elements of the type α and f is a function defined on α. The
codomain of f can be any type that supports a commutative, associative addition operation with a zero element. If you
import Algebra.BigOperators.Basic and issue the command open BigOperators, you can use the more
suggestive notation Σ x in s, f x. Of course, there is are an analogous operation and notation for finite products.
We will talk about the Finset type and the operations it supports in the next section, and again in a later chapter. For
now, we will only make use of Finset.range n, which is the finite set of natural numbers less than n.

variable {α : Type*} (s : Finset N) (f : N → N) (n : N)

#check Finset.sum s f
#check Finset.prod s f

open BigOperators
open Finset

example : s.sum f = Σ x in s, f x :=
rfl

example : s.prod f = Π x in s, f x :=
rfl

example : (range n).sum f = Σ x in range n, f x :=
rfl

example : (range n).prod f = Π x in range n, f x :=
rfl

The facts Finset.sum_range_zero and Finset.sum_range_succ provide a recursive description summa-
tion up to n, and similarly for products.

example (f : N → N) : Σ x in range 0, f x = 0 :=
Finset.sum_range_zero f

example (f : N → N) (n : N) : Σ x in range n.succ, f x = Σ x in range n, f x + f n :=
Finset.sum_range_succ f n

example (f : N → N) : Π x in range 0, f x = 1 :=
Finset.prod_range_zero f

example (f : N → N) (n : N) : Π x in range n.succ, f x = (Π x in range n, f x) * f n␣
↪→:=
Finset.prod_range_succ f n

The first identity in each pair holds definitionally, which is to say, you can replace the proofs by rfl.
The following expresses the factorial function that we defined as a product.

example (n : N) : fac n = Π i in range n, (i + 1) := by
induction' n with n ih
· rw [fac, prod_range_zero]
rw [fac, ih, prod_range_succ, mul_comm]

The fact that we include mul_comm as a simplification rule deserves comment. It should seem dangerous to simplify
with the identity x * y = y * x, which would ordinarily loop indefinitely. Lean’s simplifier is smart enough to
recognize that, and applies the rule only in the case where the resulting term has a smaller value in some fixed but arbitrary
ordering of the terms. The following example shows that simplifying using the three rules mul_assoc, mul_comm,
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and mul_left_comm manages to identify products that are the same up to the placement of parentheses and ordering
of variables.

example (a b c d e f : N) : a * (b * c * f * (d * e)) = d * (a * f * e) * (c * b) :=␣
↪→by
simp [mul_assoc, mul_comm, mul_left_comm]

Roughly, the rules work by pushing parentheses to the right and then re-ordering the expressions on both sides until they
both follow the same canonical order. Simplifying with these rules, and the corresponding rules for addition, is a handy
trick.
Returning to summation identities, we suggest stepping through the following proof that the sum of the natural numbers
up to an including n is n(n + 1)/2. The first step of the proof clears the denominator. This is generally useful when
formalizing identities, because calculations with division generally have side conditions. (It is similarly useful to avoid
using subtraction on the natural numbers when possible.)

theorem sum_id (n : N) : Σ i in range (n + 1), i = n * (n + 1) / 2 := by
symm; apply Nat.div_eq_of_eq_mul_right (by norm_num : 0 < 2)
induction' n with n ih
· simp
rw [Finset.sum_range_succ, mul_add 2, ← ih, Nat.succ_eq_add_one]
ring

We encourage you to prove the analogous identity for sums of squares, and other identities you can find on the web.

theorem sum_sqr (n : N) : Σ i in range (n + 1), i ^ 2 = n * (n + 1) * (2 * n + 1) / 6␣
↪→:= by
sorry

In Lean’s core library, addition andmultiplication are themselves defined using recursive definitions, and their fundamental
properties are established using induction. If you like thinking about foundational topics like that, youmight enjoy working
through proofs of the commutativity and associativity of multiplication and addition and the distributivity of multiplication
over addition. You can do this on a copy of the natural numbers following the outline below. Notice that we can use the
induction tactic with MyNat; Lean is smart enough to know to use the relevant induction principle (which is, of
course, the same as that for Nat).
We start you off with the commutativity of addition. A good rule of thumb is that because addition and multiplication
are defined by recursion on the second argument, it is generally advantageous to do proofs by induction on a variable that
occurs in that position. It is a bit tricky to decide which variable to use in the proof of associativity.
It can be confusing to write things without the usual notation for zero, one, addition, and multiplication. We will learn how
to define such notation later. Working in the namespace MyNat means that we can write zero and succ rather than
MyNat.zero and MyNat.succ, and that these interpretations of the names take precedence over others. Outside the
namespace, the full name of the add defined below, for example, is MyNat.add.
If you find that you really enjoy this sort of thing, try defining truncated subtraction and exponentiation and proving some
of their properties as well. Remember that truncated subtraction cuts off at zero. To define that, it is useful to define
a predecessor function, pred, that subtracts one from any nonzero number and fixes zero. The function pred can be
defined by a simple instance of recursion.

inductive MyNat
| zero : MyNat
| succ : MyNat → MyNat

namespace MyNat

def add : MyNat → MyNat → MyNat
| x, zero => x

(continues on next page)
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| x, succ y => succ (add x y)

def mul : MyNat → MyNat → MyNat
| x, zero => zero
| x, succ y => add (mul x y) x

theorem zero_add (n : MyNat) : add zero n = n := by
induction' n with n ih
· rfl
rw [add, ih]

theorem succ_add (m n : MyNat) : add (succ m) n = succ (add m n) := by
induction' n with n ih
· rfl
rw [add, ih]
rfl

theorem add_comm (m n : MyNat) : add m n = add n m := by
induction' n with n ih
· rw [zero_add]
rfl

rw [add, succ_add, ih]

theorem add_assoc (m n k : MyNat) : add (add m n) k = add m (add n k) := by
sorry

theorem mul_add (m n k : MyNat) : mul m (add n k) = add (mul m n) (mul m k) := by
sorry

theorem zero_mul (n : MyNat) : mul zero n = zero := by
sorry

theorem succ_mul (m n : MyNat) : mul (succ m) n = add (mul m n) n := by
sorry

theorem mul_comm (m n : MyNat) : mul m n = mul n m := by
sorry

end MyNat

5.3 Infinitely Many Primes

Let us continue our exploration of induction and recursion with another mathematical standard: a proof that there are
infinitely many primes. One way to formulate this is as the statement that for every natural number n, there is a prime
number greater than n. To prove this, let p be any prime factor of n! + 1. If p is less than n, it divides n!. Since it also
divides n! + 1, it divides 1, a contradiction. Hence p is greater than n.
To formalize that proof, we need to show that any number greater than or equal to 2 has a prime factor. To do that, we
will need to show that any natural number that is not equal to 0 or 1 is greater-than or equal to 2. And this brings us to
a quirky feature of formalization: it is often trivial statements like this that are among the most annoying to formalize.
Here we consider a few ways to do it.
To start with, we can use the cases tactic and the fact that the successor function respects the ordering on the natural
numbers.

theorem two_le {m : N} (h0 : m 6= 0) (h1 : m 6= 1) : 2 ≤ m := by
cases m; contradiction
case succ m =>
cases m; contradiction

(continues on next page)
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repeat' apply Nat.succ_le_succ
apply zero_le

Another strategy is to use the tactic interval_cases, which automatically splits the goal into cases when the variable
in question is contained in an interval of natural numbers or integers. Remember that you can hover over it to see its
documentation.

example {m : N} (h0 : m 6= 0) (h1 : m 6= 1) : 2 ≤ m := by
by_contra h
push_neg at h
interval_cases m <;> contradiction

Recall that the semicolon after interval_cases m means that the next tactic is applied to each of the cases that it
generates. Yet another option is to use the tactic, decide, which tries to find a decision procedure to solve the problem.
Lean knows that you can decide the truth value of a statement that begins with a bounded quantifier ∀ x, x < n →
... or ∃ x, x < n ∧ ... by deciding each of the finitely many instances.

example {m : N} (h0 : m 6= 0) (h1 : m 6= 1) : 2 ≤ m := by
by_contra h
push_neg at h
revert h0 h1
revert h m
decide

With the theorem two_le in hand, let’s start by showing that every natural number greater than two has a prime divisor.
Mathlib contains a function Nat.minFac that returns the smallest prime divisor, but for the sake of learning new parts
of the library, we’ll avoid using it and prove the theorem directly.
Here, ordinary induction isn’t enough. We want to use strong induction, which allows us to prove that every natural number
n has a property P by showing that for every number n, if P holds of all values less than n, it holds at n as well. In Lean,
this principle is called Nat.strong_induction_on, and we can use the using keyword to tell the induction tactic
to use it. Notice that when we do that, there is no base case; it is subsumed by the general induction step.
The argument is simply as follows. Assuming n ≥ 2, if n is prime, we’re done. If it isn’t, then by one of the character-
izations of what it means to be a prime number, it has a nontrivial factor, m, and we can apply the inductive hypothesis
to that. Step through the next proof to see how that plays out. The line dsimp at ih simplifies the expression of the
inductive hypothesis to make it more readable. The proof still works if you delete that line.

theorem exists_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ p : Nat, p.Prime ∧ p | n := by
by_cases np : n.Prime
· use n, np
induction' n using Nat.strong_induction_on with n ih
rw [Nat.prime_def_lt] at np
push_neg at np
rcases np h with 〈m, mltn, mdvdn, mne1〉
have : m 6= 0 := by
intro mz
rw [mz, zero_dvd_iff] at mdvdn
linarith

have mgt2 : 2 ≤ m := two_le this mne1
by_cases mp : m.Prime
· use m, mp
. rcases ih m mltn mgt2 mp with 〈p, pp, pdvd〉
use p, pp
apply pdvd.trans mdvdn
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We can now prove the following formulation of our theorem. See if you can fill out the sketch. You can use Nat.
factorial_pos, Nat.dvd_factorial, and Nat.dvd_sub.

theorem primes_infinite : ∀ n, ∃ p > n, Nat.Prime p := by
intro n
have : 2 ≤ Nat.factorial (n + 1) + 1 := by
sorry

rcases exists_prime_factor this with 〈p, pp, pdvd〉
refine' 〈p, _, pp〉
show p > n
by_contra ple
push_neg at ple
have : p | Nat.factorial (n + 1) := by
sorry

have : p | 1 := by
sorry

show False
sorry

Let’s consider a variation of the proof above, where instead of using the factorial function, we suppose that we are given
by a finite set {p1, . . . , pn} and we consider a prime factor of

∏n
i=1 pi + 1. That prime factor has to be distinct from

each pi, showing that there is no finite set that contains all the prime numbers.
Formalizing this argument requires us to reason about finite sets. In Lean, for any type α, the type Finset α represents
finite sets of elements of type α. Reasoning about finite sets computationally requires having a procedure to test equality
on α, which is why the snippet below includes the assumption [DecidableEq α]. For concrete data types like N,
Z, and Q, the assumption is satisfied automatically. When reasoning about the real numbers, it can be satisfied using
classical logic and abandoning the computational interpretation.
We use the command open Finset to avail ourselves of shorter names for the relevant theorems. Unlike the case with
sets, most equivalences involving finsets do not hold definitionally, so they need to be expanded manually using equiva-
lences like Finset.subset_iff, Finset.mem_union, Finset.mem_inter, and Finset.mem_sdiff.
The ext tactic can still be used to reduce show that two finite sets are equal by showing that every element of one is an
element of the other.

open Finset

section
variable {α : Type*} [DecidableEq α] (r s t : Finset α)

example : r ∩ (s ∪ t) ⊆ r ∩ s ∪ r ∩ t := by
rw [subset_iff]
intro x
rw [mem_inter, mem_union, mem_union, mem_inter, mem_inter]
tauto

example : r ∩ (s ∪ t) ⊆ r ∩ s ∪ r ∩ t := by
simp [subset_iff]
intro x
tauto

example : r ∩ s ∪ r ∩ t ⊆ r ∩ (s ∪ t) := by
simp [subset_iff]
intro x
tauto

example : r ∩ s ∪ r ∩ t = r ∩ (s ∪ t) := by
ext x

(continues on next page)
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simp
tauto

end

We have used a new trick: the tauto tactic (and a strengthened version, tauto!, which uses classical logic) can be
used to dispense with propositional tautologies. See if you can use these methods to prove the two examples below.

example : (r ∪ s) ∩ (r ∪ t) = r ∪ s ∩ t := by
sorry

example : (r \ s) \ t = r \ (s ∪ t) := by
sorry

The theorem Finset.dvd_prod_of_mem tells us that if an n is an element of a finite set s, then n dividesΠ i in
s, i.

example (s : Finset N) (n : N) (h : n ∈ s) : n | Π i in s, i :=
Finset.dvd_prod_of_mem _ h

We also need to know that the converse holds in the case where n is prime and s is a set of primes. To
show that, we need the following lemma, which you should be able to prove using the theorem Nat.Prime.
eq_one_or_self_of_dvd.

theorem _root_.Nat.Prime.eq_of_dvd_of_prime {p q : N}
(prime_p : Nat.Prime p) (prime_q : Nat.Prime q) (h : p | q) :

p = q := by
sorry

We can use this lemma to show that if a prime p divides a product of a finite set of primes, then it divides one of them.
Mathlib provides a useful principle of induction on finite sets: to show that a property holds of an arbitrary finite set s,
show that it holds of the empty set, and show that it is preserved when we add a single new element a /∈ s. The principle
is known as Finset.induction_on. When we tell the induction tactic to use it, we can also specify the names a and
s, the name for the assumption a /∈ s in the inductive step, and the name of the inductive hypothesis. The expression
Finset.insert a s denotes the union of s with the singleton a. The identities Finset.prod_empty and
Finset.prod_insert then provide the relevant rewrite rules for the product. In the proof below, the first simp
applies Finset.prod_empty. Step through the beginning of the proof to see the induction unfold, and then finish it
off.

theorem mem_of_dvd_prod_primes {s : Finset N} {p : N} (prime_p : p.Prime) :
(∀ n ∈ s, Nat.Prime n) → (p | Π n in s, n) → p ∈ s := by

intro h0 h1

induction' s using Finset.induction_on with a s ans ih
· simp at h1

linarith [prime_p.two_le]
simp [Finset.prod_insert ans, prime_p.dvd_mul] at h0 h1

rw [mem_insert]
sorry

We need one last property of finite sets. Given an element s : Set α and a predicate P on α, in Chapter 4 we wrote
{ x ∈ s | P x } for the set of elements of s that satisfy P. Given s : Finset α, the analogous notion is
written s.filter P.

example (s : Finset N) (x : N) : x ∈ s.filter Nat.Prime ↔ x ∈ s ∧ x.Prime :=
mem_filter

We now prove an alternative formulation of the statement that there are infinitely many primes, namely, that given any s
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: Finset N, there is a prime p that is not an element of s. Aiming for a contradiction, we assume that all the primes
are in s, and then cut down to a set s' that contains all and only the primes. Taking the product of that set, adding one,
and finding a prime factor of the result leads to the contradiction we are looking for. See if you can complete the sketch
below. You can use Finset.prod_pos in the proof of the first have.

theorem primes_infinite' : ∀ s : Finset Nat, ∃ p, Nat.Prime p ∧ p /∈ s := by
intro s
by_contra h
push_neg at h
set s' := s.filter Nat.Prime with s'_def
have mem_s' : ∀ {n : N}, n ∈ s' ↔ n.Prime := by
intro n
simp [s'_def]
apply h

have : 2 ≤ (Π i in s', i) + 1 := by
sorry

rcases exists_prime_factor this with 〈p, pp, pdvd〉
have : p | Π i in s', i := by
sorry

have : p | 1 := by
convert Nat.dvd_sub' pdvd this
simp

show False
sorry

We have thus seen two ways of saying that there are infinitely many primes: saying that they are not bounded by any n, and
saying that they are not contained in any finite set s. The two proofs below show that these formulations are equivalent.
In the second, in order to form s.filter Q, we have to assume that there is a procedure for deciding whether or not
Q holds. Lean knows that there is a procedure for Nat.Prime. In general, if we use classical logic by writing open
Classical, we can dispense with the assumption.
In Mathlib, Finset.sup s f denotes the supremum of the values of f x as x ranges over s, returning 0 in the case
where s is empty and the codomain of f is N. In the first proof, we use s.sup id, where id is the identity function,
to refer to the maximum value in s.

theorem bounded_of_ex_finset (Q : N → Prop) :
(∃ s : Finset N, ∀ k, Q k → k ∈ s) → ∃ n, ∀ k, Q k → k < n := by

rintro 〈s, hs〉
use s.sup id + 1
intro k Qk
apply Nat.lt_succ_of_le
show id k ≤ s.sup id
apply le_sup (hs k Qk)

theorem ex_finset_of_bounded (Q : N → Prop) [DecidablePred Q] :
(∃ n, ∀ k, Q k → k ≤ n) → ∃ s : Finset N, ∀ k, Q k ↔ k ∈ s := by

rintro 〈n, hn〉
use (range (n + 1)).filter Q
intro k
simp [Nat.lt_succ_iff]
exact hn k

A small variation on our second proof that there are infinitely many primes shows that there are infinitely many primes
congruent to 3 modulo 4. The argument goes as follows. First, notice that if the product of two numbersm and n is equal
to 3 modulo 4, then one of the two numbers is congruent to three modulo 4. After all, both have to be odd, and if they
are both congruent to 1 modulo 4, so is their product. We can use this observation to show that if some number greater
than 2 is congruent to 3 modulo 4, then that number has a prime divisor that is also congruent to 3 modulo 4.
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Now suppose there are only finitely many prime numbers congruent to 3 modulo 4, say, p1, . . . , pk. Without loss of
generality, we can assume that p1 = 3. Consider the product 4

∏k
i=2 pi + 3. It is easy to see that this is congruent to 3

modulo 4, so it has a prime factor p congruent to 3 modulo 4. It can’t be the case that p = 3; since p divides 4
∏k

i=2 pi+3,
if p were equal to 3 then it would also divide

∏k
i=2 pi, which implies that p is equal to one of the pi for i = 2, . . . , k; and

we have excluded 3 from this list. So p has to be one of the other elements pi. But in that case, p divides 4
∏k

i=2 pi and
hence 3, which contradicts the fact that it is not 3.
In Lean, the notation n % m, read “n modulo m,” denotes the remainder of the division of n by m.

example : 27 % 4 = 3 := by norm_num

We can then render the statement “n is congruent to 3 modulo 4” as n % 4 = 3. The following example and theorems
sum up the facts about this function that we will need to use below. The first named theorem is another illustration
of reasoning by a small number of cases. In the second named theorem, remember that the semicolon means that the
subsequent tactic block is applied to both of the goals that result from the application of two_le.

example (n : N) : (4 * n + 3) % 4 = 3 := by
rw [add_comm, Nat.add_mul_mod_self_left]
norm_num

theorem mod_4_eq_3_or_mod_4_eq_3 {m n : N} (h : m * n % 4 = 3) : m % 4 = 3 ∨ n % 4 =␣
↪→3 := by
revert h
rw [Nat.mul_mod]
have : m % 4 < 4 := Nat.mod_lt m (by norm_num)
interval_cases hm : m % 4 <;> simp [hm]
have : n % 4 < 4 := Nat.mod_lt n (by norm_num)
interval_cases hn : n % 4 <;> simp [hn]

theorem two_le_of_mod_4_eq_3 {n : N} (h : n % 4 = 3) : 2 ≤ n := by
apply two_le <;>
· intro neq

rw [neq] at h
norm_num at h

We will also need the following fact, which says that if m is a nontrivial divisor of n, then so is n / m. See if you can
complete the proof using Nat.div_dvd_of_dvd and Nat.div_lt_self.

theorem aux {m n : N} (h0 : m | n) (h1 : 2 ≤ m) (h2 : m < n) : n / m | n ∧ n / m < n :=␣
↪→by
sorry

Now put all the pieces together to prove that any number congruent to 3 modulo 4 has a prime divisor with that same
property.

theorem exists_prime_factor_mod_4_eq_3 {n : Nat} (h : n % 4 = 3) :
∃ p : Nat, p.Prime ∧ p | n ∧ p % 4 = 3 := by

by_cases np : n.Prime
· use n
induction' n using Nat.strong_induction_on with n ih
rw [Nat.prime_def_lt] at np
push_neg at np
rcases np (two_le_of_mod_4_eq_3 h) with 〈m, mltn, mdvdn, mne1〉
have mge2 : 2 ≤ m := by
apply two_le _ mne1
intro mz
rw [mz, zero_dvd_iff] at mdvdn

(continues on next page)
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linarith

have neq : m * (n / m) = n := Nat.mul_div_cancel' mdvdn
have : m % 4 = 3 ∨ n / m % 4 = 3 := by
apply mod_4_eq_3_or_mod_4_eq_3
rw [neq, h]

rcases this with h1 | h1
. sorry
. sorry

We are in the home stretch. Given a set s of prime numbers, we need to talk about the result of removing 3 from that
set, if it is present. The function Finset.erase handles that.

example (m n : N) (s : Finset N) (h : m ∈ erase s n) : m 6= n ∧ m ∈ s := by
rwa [mem_erase] at h

example (m n : N) (s : Finset N) (h : m ∈ erase s n) : m 6= n ∧ m ∈ s := by
simp at h
assumption

We are now ready to prove that there are infinitely many primes congruent to 3 modulo 4. Fill in the missing parts below.
Our solution uses Nat.dvd_add_iff_left and Nat.dvd_sub' along the way.

theorem primes_mod_4_eq_3_infinite : ∀ n, ∃ p > n, Nat.Prime p ∧ p % 4 = 3 := by
by_contra h
push_neg at h
rcases h with 〈n, hn〉
have : ∃ s : Finset Nat, ∀ p : N, p.Prime ∧ p % 4 = 3 ↔ p ∈ s := by
apply ex_finset_of_bounded
use n
contrapose! hn
rcases hn with 〈p, 〈pp, p4〉, pltn〉
exact 〈p, pltn, pp, p4〉

rcases this with 〈s, hs〉
have h1 : ((4 * Π i in erase s 3, i) + 3) % 4 = 3 := by
sorry

rcases exists_prime_factor_mod_4_eq_3 h1 with 〈p, pp, pdvd, p4eq〉
have ps : p ∈ s := by
sorry

have pne3 : p 6= 3 := by
sorry

have : p | 4 * Π i in erase s 3, i := by
sorry

have : p | 3 := by
sorry

have : p = 3 := by
sorry

contradiction

If you managed to complete the proof, congratulations! This has been a serious feat of formalization.
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CHAPTER

SIX

STRUCTURES

Modern mathematics makes essential use of algebraic structures, which encapsulate patterns that can be instantiated in
multiple settings. The subject provides various ways of defining such structures and constructing particular instances.
Lean therefore provides corresponding ways of defining structures formally and working with them. You have already
seen examples of algebraic structures in Lean, such as rings and lattices, which were discussed in Chapter 2. This chapter
will explain the mysterious square bracket annotations that you saw there, [Ring α] and [Lattice α]. It will also
show you how to define and use algebraic structures on your own.
For more technical detail, you can consult Theorem Proving in Lean, and a paper by Anne Baanen, Use and abuse of
instance parameters in the Lean mathematical library.

6.1 Defining structures

In the broadest sense of the term, a structure is a specification of a collection of data, possibly with constraints that the data
is required to satisfy. An instance of the structure is a particular bundle of data satisfying the constraints. For example,
we can specify that a point is a tuple of three real numbers:

@[ext]
structure Point where

x : R
y : R
z : R

The @[ext] annotation tells Lean to automatically generate theorems that can be used to prove that two instances of a
structure are equal when their components are equal, a property known as extensionality.

#check Point.ext

example (a b : Point) (hx : a.x = b.x) (hy : a.y = b.y) (hz : a.z = b.z) : a = b := by
ext
repeat' assumption

We can then define particular instances of the Point structure. Lean provides multiple ways of doing that.

def myPoint1 : Point where
x := 2
y := -1
z := 4

def myPoint2 : Point :=
〈2, -1, 4〉

(continues on next page)
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def myPoint3 :=

Point.mk 2 (-1) 4

In the first example, the fields of the structure are named explicitly. The function Point.mk referred to in the definition
of myPoint3 is known as the constructor for the Point structure, because it serves to construct elements. You can
specify a different name if you want, like build.

structure Point' where build ::
x : R
y : R
z : R

#check Point'.build 2 (-1) 4

The next two examples show how to define functions on structures. Whereas the second example makes the Point.mk
constructor explicit, the first example uses an anonymous constructor for brevity. Lean can infer the relevant constructor
from the indicated type of add. It is conventional to put definitions and theorems associated with a structure like Point
in a namespace with the same name. In the example below, because we have opened the Point namespace, the full
name of add is Point.add. When the namespace is not open, we have to use the full name. But remember that it is
often convenient to use anonymous projection notation, which allows us to write a.add b instead of Point.add a
b. Lean interprets the former as the latter because a has type Point.

namespace Point

def add (a b : Point) : Point :=
〈a.x + b.x, a.y + b.y, a.z + b.z〉

def add' (a b : Point) : Point where
x := a.x + b.x
y := a.y + b.y
z := a.z + b.z

#check add myPoint1 myPoint2
#check myPoint1.add myPoint2

end Point

#check Point.add myPoint1 myPoint2
#check myPoint1.add myPoint2

Below we will continue to put definitions in the relevant namespace, but we will leave the namespacing commands out
of the quoted snippets. To prove properties of the addition function, we can use rw to expand the definition and ext
to reduce an equation between two elements of the structure to equations between the components. Below we use the
protected keyword so that the name of the theorem is Point.add_comm, even when the namespace is open. This
is helpful when we want to avoid ambiguity with a generic theorem like add_comm.

protected theorem add_comm (a b : Point) : add a b = add b a := by
rw [add, add]
ext <;> dsimp
repeat' apply add_comm

example (a b : Point) : add a b = add b a := by simp [add, add_comm]

Because Lean can unfold definitions and simplify projections internally, sometimes the equations we want hold defini-
tionally.
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theorem add_x (a b : Point) : (a.add b).x = a.x + b.x :=
rfl

It is also possible to define functions on structures using pattern matching, in a manner similar to the way we defined
recursive functions in Section 5.2. The definitions addAlt and addAlt' below are essentially the same; the only
difference is that we use anonymous constructor notation in the second. Although it is sometimes convenient to define
functions this way, and structural eta-reduction makes this alternative definitionally equivalent, it can make things less
convenient in later proofs. In particular, rw [addAlt] leaves us with a messier goal view containing a match statement.

def addAlt : Point → Point → Point
| Point.mk x1 y1 z1, Point.mk x2 y2 z2 => 〈x1 + x2, y1 + y2, z1 + z2〉

def addAlt' : Point → Point → Point
| 〈x1, y1, z1〉, 〈x2, y2, z2〉 => 〈x1 + x2, y1 + y2, z1 + z2〉

theorem addAlt_x (a b : Point) : (a.addAlt b).x = a.x + b.x := by
rfl

theorem addAlt_comm (a b : Point) : addAlt a b = addAlt b a := by
rw [addAlt, addAlt]
-- the same proof still works, but the goal view here is harder to read
ext <;> dsimp
repeat' apply add_comm

Mathematical constructions often involve taking apart bundled information and putting it together again in different ways.
It therefore makes sense that Lean and Mathlib offer so many ways of doing this efficiently. As an exercise, try proving
that Point.add is associative. Then define scalar multiplication for a point and show that it distributes over addition.

protected theorem add_assoc (a b c : Point) : (a.add b).add c = a.add (b.add c) := by
sorry

def smul (r : R) (a : Point) : Point :=
sorry

theorem smul_distrib (r : R) (a b : Point) :
(smul r a).add (smul r b) = smul r (a.add b) := by

sorry

Using structures is only the first step on the road to algebraic abstraction. We don’t yet have a way to link Point.add
to the generic + symbol, or to connect Point.add_comm and Point.add_assoc to the generic add_comm and
add_assoc theorems. These tasks belong to the algebraic aspect of using structures, and we will explain how to carry
them out in the next section. For now, just think of a structure as a way of bundling together objects and information.
It is especially useful that a structure can specify not only data types but also constraints that the data must satisfy. In
Lean, the latter are represented as fields of type Prop. For example, the standard 2-simplex is defined to be the set of
points (x, y, z) satisfying x ≥ 0, y ≥ 0, z ≥ 0, and x + y + z = 1. If you are not familiar with the notion, you should
draw a picture, and convince yourself that this set is the equilateral triangle in three-space with vertices (1, 0, 0), (0, 1, 0),
and (0, 0, 1), together with its interior. We can represent it in Lean as follows:

structure StandardTwoSimplex where
x : R
y : R
z : R
x_nonneg : 0 ≤ x
y_nonneg : 0 ≤ y
z_nonneg : 0 ≤ z
sum_eq : x + y + z = 1
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Notice that the last four fields refer to x, y, and z, that is, the first three fields. We can define a map from the two-simplex
to itself that swaps x and y:

def swapXy (a : StandardTwoSimplex) : StandardTwoSimplex
where

x := a.y
y := a.x
z := a.z
x_nonneg := a.y_nonneg
y_nonneg := a.x_nonneg
z_nonneg := a.z_nonneg
sum_eq := by rw [add_comm a.y a.x, a.sum_eq]

More interestingly, we can compute the midpoint of two points on the simplex. We have added the phrase noncom-
putable section at the beginning of this file in order to use division on the real numbers.

noncomputable section

def midpoint (a b : StandardTwoSimplex) : StandardTwoSimplex
where

x := (a.x + b.x) / 2
y := (a.y + b.y) / 2
z := (a.z + b.z) / 2
x_nonneg := div_nonneg (add_nonneg a.x_nonneg b.x_nonneg) (by norm_num)
y_nonneg := div_nonneg (add_nonneg a.y_nonneg b.y_nonneg) (by norm_num)
z_nonneg := div_nonneg (add_nonneg a.z_nonneg b.z_nonneg) (by norm_num)
sum_eq := by field_simp; linarith [a.sum_eq, b.sum_eq]

Here we have established x_nonneg, y_nonneg, and z_nonneg with concise proof terms, but establish sum_eq
in tactic mode, using by.
Given a parameter λ satisfying 0 ≤ λ ≤ 1, we can take the weighted average λa+ (1− λ)b of two points a and b in the
standard 2-simplex. We challenge you to define that function, in analogy to the midpoint function above.

def weightedAverage (lambda : Real) (lambda_nonneg : 0 ≤ lambda) (lambda_le : lambda␣
↪→≤ 1)

(a b : StandardTwoSimplex) : StandardTwoSimplex :=
sorry

Structures can depend on parameters. For example, we can generalize the standard 2-simplex to the standard n-simplex
for any n. At this stage, you don’t have to know anything about the type Fin n except that it has n elements, and that
Lean knows how to sum over it.

open BigOperators

structure StandardSimplex (n : N) where
V : Fin n → R
NonNeg : ∀ i : Fin n, 0 ≤ V i
sum_eq_one : (Σ i, V i) = 1

namespace StandardSimplex

def midpoint (n : N) (a b : StandardSimplex n) : StandardSimplex n
where

V i := (a.V i + b.V i) / 2
NonNeg := by
intro i
apply div_nonneg

(continues on next page)
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· linarith [a.NonNeg i, b.NonNeg i]
norm_num

sum_eq_one := by
simp [div_eq_mul_inv, ← Finset.sum_mul, Finset.sum_add_distrib,

a.sum_eq_one, b.sum_eq_one]
field_simp

end StandardSimplex

As an exercise, see if you can define the weighted average of two points in the standard n-simplex. You can use Finset.
sum_add_distrib and Finset.mul_sum to manipulate the relevant sums. We have seen that structures can be
used to bundle together data and properties. Interestingly, they can also be used to bundle together properties without the
data. For example, the next structure, IsLinear, bundles together the two components of linearity.

structure IsLinear (f : R → R) where
is_additive : ∀ x y, f (x + y) = f x + f y
preserves_mul : ∀ x c, f (c * x) = c * f x

section
variable (f : R → R) (linf : IsLinear f)

#check linf.is_additive
#check linf.preserves_mul

end

It is worth pointing out that structures are not the only way to bundle together data. The Point data structure can be
defined using the generic type product, and IsLinear can be defined with a simple and.

def Point'' :=
R × R × R

def IsLinear' (f : R → R) :=
(∀ x y, f (x + y) = f x + f y) ∧ ∀ x c, f (c * x) = c * f x

Generic type constructions can even be used in place of structures with dependencies between their components. For
example, the subtype construction combines a piece of data with a property. You can think of the type PReal in the next
example as being the type of positive real numbers. Any x : PReal has two components: the value, and the property
of being positive. You can access these components as x.val, which has type R, and x.property, which represents
the fact 0 < x.val.

def PReal :=
{ y : R // 0 < y }

section
variable (x : PReal)

#check x.val
#check x.property
#check x.1
#check x.2

end

We could have used subtypes to define the standard 2-simplex, as well as the standard n-simplex for an arbitrary n.
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def StandardTwoSimplex' :=
{ p : R × R × R // 0 ≤ p.1 ∧ 0 ≤ p.2.1 ∧ 0 ≤ p.2.2 ∧ p.1 + p.2.1 + p.2.2 = 1 }

def StandardSimplex' (n : N) :=
{ v : Fin n → R // (∀ i : Fin n, 0 ≤ v i) ∧ (Σ i, v i) = 1 }

Similarly, Sigma types are generalizations of ordered pairs, whereby the type of the second component depends on the
type of the first.

def StdSimplex := Σ n : N, StandardSimplex n

section
variable (s : StdSimplex)

#check s.fst
#check s.snd

#check s.1
#check s.2

end

Given s : StdSimplex, the first component s.fst is a natural number, and the second component is an element of
the corresponding simplex StandardSimplex s.fst. The difference between a Sigma type and a subtype is that
the second component of a Sigma type is data rather than a proposition.
But even though we can use products, subtypes, and Sigma types instead of structures, using structures has a number
of advantages. Defining a structure abstracts away the underlying representation and provides custom names for the
functions that access the components. This makes proofs more robust: proofs that rely only on the interface to a structure
will generally continue to work when we change the definition, as long as we redefine the old accessors in terms of the
new definition. Moreover, as we are about to see, Lean provides support for weaving structures together into a rich,
interconnected hierarchy, and for managing the interactions between them.

6.2 Algebraic Structures

To clarify what we mean by the phrase algebraic structure, it will help to consider some examples.
1. A partially ordered set consists of a set P and a binary relation ≤ on P that is transitive and antireflexive.
2. A group consists of a set G with an associative binary operation, an identity element 1, and a function g 7→ g−1

that returns an inverse for each g in G. A group is abelian or commutative if the operation is commutative.
3. A lattice is a partially ordered set with meets and joins.
4. A ring consists of an (additively written) abelian group (R,+, 0, x 7→ −x) together with an associative multipli-

cation operation · and an identity 1, such that multiplication distributes over addition. A ring is commutative if the
multiplication is commutative.

5. An ordered ring (R,+, 0,−, ·, 1,≤) consists of a ring together with a partial order on its elements, such that a ≤ b
implies a+ c ≤ b+ c for every a, b, and c in R, and 0 ≤ a and 0 ≤ b implies 0 ≤ ab for every a and b in R.

6. A metric space consists of a set X and a function d : X ×X → R such that the following hold:
• d(x, y) ≥ 0 for every x and y in X .
• d(x, y) = 0 if and only if x = y.
• d(x, y) = d(y, x) for every x and y in X .
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• d(x, z) ≤ d(x, y) + d(y, z) for every x, y, and z in X .
7. A topological space consists of a setX and a collection T of subsets ofX , called the open subsets of X , such that

the following hold:
• The empty set and X are open.
• The intersection of two open sets is open.
• An arbitrary union of open sets is open.

In each of these examples, the elements of the structure belong to a set, the carrier set, that sometimes stands proxy for
the entire structure. For example, when we say “letG be a group” and then “let g ∈ G,” we are usingG to stand for both
the structure and its carrier. Not every algebraic structure is associated with a single carrier set in this way. For example,
a bipartite graph involves a relation between two sets, as does a Galois connection, A category also involves two sets of
interest, commonly called the objects and the morphisms.
The examples indicate some of the things that a proof assistant has to do in order to support algebraic reasoning. First,
it needs to recognize concrete instances of structures. The number systems Z, Q, and R are all ordered rings, and we
should be able to apply a generic theorem about ordered rings in any of these instances. Sometimes a concrete set may
be an instance of a structure in more than one way. For example, in addition to the usual topology on R, which forms the
basis for real analysis, we can also consider the discrete topology on R, in which every set is open.
Second, a proof assistant needs to support generic notation on structures. In Lean, the notation * is used for multiplication
in all the usual number systems, as well as for multiplication in generic groups and rings. When we use an expression like
f x * y, Lean has to use information about the types of f, x, and y to determine which multiplication we have in
mind.
Third, it needs to deal with the fact that structures can inherit definitions, theorems, and notation from other structures in
various ways. Some structures extend others by adding more axioms. A commutative ring is still a ring, so any definition
that makes sense in a ring also makes sense in a commutative ring, and any theorem that holds in a ring also holds in a
commutative ring. Some structures extend others by adding more data. For example, the additive part of any ring is an
additive group. The ring structure adds a multiplication and an identity, as well as axioms that govern them and relate
them to the additive part. Sometimes we can define one structure in terms of another. Any metric space has a canonical
topology associated with it, the metric space topology, and there are various topologies that can be associated with any
linear ordering.
Finally, it is important to keep in mind that mathematics allows us to use functions and operations to define structures in
the same way we use functions and operations to define numbers. Products and powers of groups are again groups. For
every n, the integers modulo n form a ring, and for every k > 0, the k × k matrices of polynomials with coefficients in
that ring again form a ring. Thus we can calculate with structures just as easily as we can calculate with their elements.
This means that algebraic structures lead dual lives in mathematics, as containers for collections of objects and as objects
in their own right. A proof assistant has to accommodate this dual role.
When dealing with elements of a type that has an algebraic structure associated with it, a proof assistant needs to recognize
the structure and find the relevant definitions, theorems, and notation. All this should sound like a lot of work, and it is.
But Lean uses a small collection of fundamental mechanisms to carry out these tasks. The goal of this section is to explain
these mechanisms and show you how to use them.
The first ingredient is almost too obvious to mention: formally speaking, algebraic structures are structures in the sense
of Section 6.1. An algebraic structure is a specification of a bundle of data satisfying some axiomatic hypotheses, and
we saw in Section 6.1 that this is exactly what the structure command is designed to accommodate. It’s a marriage
made in heaven!
Given a data type α, we can define the group structure on α as follows.

structure Group1 (α : Type*) where
mul : α → α → α
one : α
inv : α → α

(continues on next page)
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mul_assoc : ∀ x y z : α, mul (mul x y) z = mul x (mul y z)
mul_one : ∀ x : α, mul x one = x
one_mul : ∀ x : α, mul one x = x
mul_left_inv : ∀ x : α, mul (inv x) x = one

Notice that the type α is a parameter in the definition of group1. So you should think of an object struc : Group1

α as being a group structure on α. We saw in Section 2.2 that the counterpart mul_right_inv to mul_left_inv
follows from the other group axioms, so there is no need to add it to the definition.
This definition of a group is similar to the definition of Group in Mathlib, and we have chosen the name Group1 to
distinguish our version. If you write #check Group and ctrl-click on the definition, you will see that the Mathlib
version of Group is defined to extend another structure; we will explain how to do that later. If you type #print
Group you will also see that the Mathlib version of Group has a number of extra fields. For reasons we will explain
later, sometimes it is useful to add redundant information to a structure, so that there are additional fields for objects and
functions that can be defined from the core data. Don’t worry about that for now. Rest assured that our simplified version
Group1 is morally the same as the definition of a group that Mathlib uses.
It is sometimes useful to bundle the type together with the structure, andMathlib also contains a definition of aGroupCat
structure that is equivalent to the following:

structure Group1Cat where
α : Type*
str : Group1 α

The Mathlib version is found in Mathlib.Algebra.Category.GroupCat.Basic, and you can #check it if
you add this to the imports at the beginning of the examples file.
For reasons that will become clearer below, it is more often useful to keep the type α separate from the structure Group
α. We refer to the two objects together as a partially bundled structure, since the representation combines most, but not
all, of the components into one structure. It is common in Mathlib to use capital roman letters like G for a type when it
is used as the carrier type for a group.
Let’s construct a group, which is to say, an element of the Group1 type. For any pair of types α and β, Mathlib defines
the type Equiv α β of equivalences between α and β. Mathlib also defines the suggestive notation α ' β for this
type. An element f : α ' β is a bijection between α and β represented by four components: a function f.toFun
from α to β, the inverse function f.invFun from β to α, and two properties that specify these functions are indeed
inverse to one another.

variable (α β γ : Type*)
variable (f : α ' β) (g : β ' γ)

#check Equiv α β
#check (f.toFun : α → β)
#check (f.invFun : β → α)
#check (f.right_inv : ∀ x : β, f (f.invFun x) = x)
#check (f.left_inv : ∀ x : α, f.invFun (f x) = x)
#check (Equiv.refl α : α ' α)
#check (f.symm : β ' α)
#check (f.trans g : α ' γ)

Notice the creative naming of the last three constructions. We think of the identity function Equiv.refl, the inverse
operation Equiv.symm, and the composition operation Equiv.trans as explicit evidence that the property of being
in bijective correspondence is an equivalence relation.
Notice also that f.trans g requires composing the forward functions in reverse order. Mathlib has declared a coercion
from Equiv α β to the function type α → β, so we can omit writing .toFun and have Lean insert it for us.
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example (x : α) : (f.trans g).toFun x = g.toFun (f.toFun x) :=
rfl

example (x : α) : (f.trans g) x = g (f x) :=
rfl

example : (f.trans g : α → γ) = g ◦ f :=
rfl

Mathlib also defines the type perm α of equivalences between α and itself.

example (α : Type*) : Equiv.Perm α = (α ' α) :=
rfl

It should be clear that Equiv.Perm α forms a group under composition of equivalences. We orient things so that mul
f g is equal to g.trans f, whose forward function is f ◦ g. In other words, multiplication is what we ordinarily
think of as composition of the bijections. Here we define this group:

def permGroup {α : Type*} : Group1 (Equiv.Perm α)
where

mul f g := Equiv.trans g f
one := Equiv.refl α
inv := Equiv.symm
mul_assoc f g h := (Equiv.trans_assoc _ _ _).symm
one_mul := Equiv.trans_refl
mul_one := Equiv.refl_trans
mul_left_inv := Equiv.self_trans_symm

In fact, Mathlib defines exactly this Group structure on Equiv.Perm α in the file GroupTheory.Perm.Basic.
As always, you can hover over the theorems used in the definition of permGroup to see their statements, and you can
jump to their definitions in the original file to learn more about how they are implemented.
In ordinary mathematics, we generally think of notation as independent of structure. For example, we can consider groups
(G1, ·, 1, ·−1), (G2, ◦, e, i(·)), and (G3,+, 0,−). In the first case, we write the binary operation as ·, the identity at 1,
and the inverse function as x 7→ x−1. In the second and third cases, we use the notational alternatives shown. When
we formalize the notion of a group in Lean, however, the notation is more tightly linked to the structure. In Lean, the
components of any Group are named mul, one, and inv, and in a moment we will see how multiplicative notation
is set up to refer to them. If we want to use additive notation, we instead use an isomorphic structure AddGroup (the
structure underlying additive groups). Its components are named add, zero, and neg, and the associated notation is
what you would expect it to be.
Recall the type Point that we defined in Section 6.1, and the addition function that we defined there. These definitions
are reproduced in the examples file that accompanies this section. As an exercise, define an AddGroup1 structure that is
similar to the Group1 structure we defined above, except that it uses the additive naming scheme just described. Define
negation and a zero on the Point data type, and define the AddGroup1 structure on Point.

structure AddGroup1 (α : Type*) where
(add : α → α → α)
-- fill in the rest

@[ext]
structure Point where

x : R
y : R
z : R

namespace Point

(continues on next page)
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def add (a b : Point) : Point :=

〈a.x + b.x, a.y + b.y, a.z + b.z〉

def neg (a : Point) : Point := sorry

def zero : Point := sorry

def addGroupPoint : AddGroup1 Point := sorry

end Point

We aremaking progress. Nowwe know how to define algebraic structures in Lean, and we know how to define instances of
those structures. But we also want to associate notation with structures so that we can use it with each instance. Moreover,
we want to arrange it so that we can define an operation on a structure and use it with any particular instance, and we want
to arrange it so that we can prove a theorem about a structure and use it with any instance.
In fact, Mathlib is already set up to use generic group notation, definitions, and theorems for Equiv.Perm α.

variable {α : Type*} (f g : Equiv.Perm α) (n : N)

#check f * g
#check mul_assoc f g g ¹

-- group power, defined for any group
#check g ^ n

example : f * g * g ¹ = f := by rw [mul_assoc, mul_right_inv, mul_one]

example : f * g * g ¹ = f :=
mul_inv_cancel_right f g

example {α : Type*} (f g : Equiv.Perm α) : g.symm.trans (g.trans f) = f :=
mul_inv_cancel_right f g

You can check that this is not the case for the additive group structure on Point that we asked you to define above. Our
task now is to understand that magic that goes on under the hood in order to make the examples for Equiv.Perm α
work the way they do.
The issue is that Lean needs to be able to find the relevant notation and the implicit group structure, using the information
that is found in the expressions that we type. Similarly, when we write x + y with expressions x and y that have type
R, Lean needs to interpret the + symbol as the relevant addition function on the reals. It also has to recognize the type R
as an instance of a commutative ring, so that all the definitions and theorems for a commutative ring are available. For
another example, continuity is defined in Lean relative to any two topological spaces. When we have f : R → C and
we write Continuous f, Lean has to find the relevant topologies on R and C.
The magic is achieved with a combination of three things.

1. Logic. A definition that should be interpreted in any group takes, as arguments, the type of the group and the
group structure as arguments. Similarly, a theorem about the elements of an arbitrary group begins with universal
quantifiers over the type of the group and the group structure.

2. Implicit arguments. The arguments for the type and the structure are generally left implicit, so that we do not have
to write them or see them in the Lean information window. Lean fills the information in for us silently.

3. Type class inference. Also known as class inference, this is a simple but powerful mechanism that enables us to
register information for Lean to use later on. When Lean is called on to fill in implicit arguments to a definition,
theorem, or piece of notation, it can make use of information that has been registered.
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Whereas an annotation (grp : Group G) tells Lean that it should expect to be given that argument explicitly and
the annotation {grp : Group G} tells Lean that it should try to figure it out from contextual cues in the expression,
the annotation [grp : Group G] tells Lean that the corresponding argument should be synthesized using type
class inference. Since the whole point to the use of such arguments is that we generally do not need to refer to them
explicitly, Lean allows us to write [Group G] and leave the name anonymous. You have probably already noticed
that Lean chooses names like _inst_1 automatically. When we use the anonymous square-bracket annotation with the
variables command, then as long as the variables are still in scope, Lean automatically adds the argument [Group
G] to any definition or theorem that mentions G.
How do we register the information that Lean needs to use to carry out the search? Returning to our group example, we
need only make two changes. First, instead of using the structure command to define the group structure, we use the
keyword class to indicate that it is a candidate for class inference. Second, instead of defining particular instances with
def, we use the keyword instance to register the particular instance with Lean. As with the names of class variables,
we are allowed to leave the name of an instance definition anonymous, since in general we intend Lean to find it and put
it to use without troubling us with the details.

class Group2 (α : Type*) where
mul : α → α → α
one : α
inv : α → α
mul_assoc : ∀ x y z : α, mul (mul x y) z = mul x (mul y z)
mul_one : ∀ x : α, mul x one = x
one_mul : ∀ x : α, mul one x = x
mul_left_inv : ∀ x : α, mul (inv x) x = one

instance {α : Type*} : Group2 (Equiv.Perm α) where
mul f g := Equiv.trans g f
one := Equiv.refl α
inv := Equiv.symm
mul_assoc f g h := (Equiv.trans_assoc _ _ _).symm
one_mul := Equiv.trans_refl
mul_one := Equiv.refl_trans
mul_left_inv := Equiv.self_trans_symm

The following illustrates their use.

#check Group2.mul

def mySquare {α : Type*} [Group2 α] (x : α) :=
Group2.mul x x

#check mySquare

section
variable {β : Type*} (f g : Equiv.Perm β)

example : Group2.mul f g = g.trans f :=
rfl

example : mySquare f = f.trans f :=
rfl

end

The #check command shows that Group2.mul has an implicit argument [Group2 α] that we expect to be found by
class inference, where α is the type of the arguments to Group2.mul. In other words, {α : Type*} is the implicit
argument for the type of the group elements and [Group2 α] is the implicit argument for the group structure on α.
Similarly, when we define a generic squaring function my_square for Group2, we use an implicit argument {α :
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Type*} for the type of the elements and an implicit argument [Group2 α] for the Group2 structure.
In the first example, when we write Group2.mul f g, the type of f and g tells Lean that in the argument α to
Group2.mul has to be instantiated to Equiv.Perm β. That means that Lean has to find an element of Group2

(Equiv.Perm β). The previous instance declaration tells Lean exactly how to do that. Problem solved!
This simple mechanism for registering information so that Lean can find it when it needs it is remarkably useful. Here
is one way it comes up. In Lean’s foundation, a data type α may be empty. In a number of applications, however, it is
useful to know that a type has at least one element. For example, the function List.headI, which returns the first
element of a list, can return the default value when the list is empty. To make that work, the Lean library defines a class
Inhabited α, which does nothing more than store a default value. We can show that the Point type is an instance:

instance : Inhabited Point where default := 〈0, 0, 0〉

#check (default : Point)

example : ([] : List Point).headI = default :=
rfl

The class inference mechanism is also used for generic notation. The expression x + y is an abbreviation for Add.add
x y where—you guessed it—Add α is a class that stores a binary function on α. Writing x + y tells Lean to find a
registered instance of [Add.add α] and use the corresponding function. Below, we register the addition function for
Point.

instance : Add Point where add := Point.add

section
variable (x y : Point)

#check x + y

example : x + y = Point.add x y :=
rfl

end

In this way, we can assign the notation + to binary operations on other types as well.
But we can do even better. We have seen that * can be used in any group, + can be used in any additive group, and
both can be used in any ring. When we define a new instance of a ring in Lean, we don’t have to define + and * for that
instance, because Lean knows that these are defined for every ring. We can use this method to specify notation for our
Group2 class:

instance hasMulGroup2 {α : Type*} [Group2 α] : Mul α :=
〈Group2.mul〉

instance hasOneGroup2 {α : Type*} [Group2 α] : One α :=
〈Group2.one〉

instance hasInvGroup2 {α : Type*} [Group2 α] : Inv α :=
〈Group2.inv〉

section
variable {α : Type*} (f g : Equiv.Perm α)

#check f * 1 * g ¹

def foo : f * 1 * g ¹ = g.symm.trans ((Equiv.refl α).trans f) :=

(continues on next page)
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rfl

end

In this case, we have to supply names for the instances, because Lean has a hard time coming up with good defaults. What
makes this approach work is that Lean carries out a recursive search. According to the instances we have declared, Lean
can find an instance of Mul (Equiv.Perm α) by finding an instance of Group2 (Equiv.Perm α), and it can
find an instance of Group2 (Equiv.Perm α) because we have provided one. Lean is capable of finding these two
facts and chaining them together.
The example we have just given is dangerous, because Lean’s library also has an instance of Group (Equiv.Perm
α), and multiplication is defined on any group. So it is ambiguous as to which instance is found. In fact, Lean favors
more recent declarations unless you explicitly specify a different priority. Also, there is another way to tell Lean that one
structure is an instance of another, using the extends keyword. This is how Mathlib specifies that, for example, every
commutative ring is a ring. You can find more information in Section 7 and in a section on class inference in Theorem
Proving in Lean.
In general, it is a bad idea to specify a value of * for an instance of an algebraic structure that already has the notation
defined. Redefining the notion of Group in Lean is an artificial example. In this case, however, both interpretations of
the group notation unfold to Equiv.trans, Equiv.refl, and Equiv.symm, in the same way.
As a similarly artificial exercise, define a class AddGroup2 in analogy to Group2. Define the usual notation for addition,
negation, and zero on any AddGroup2 using the classes Add, Neg, and Zero. Then show Point is an instance of
AddGroup2. Try it out and make sure that the additive group notation works for elements of Point.

class AddGroup2 (α : Type*) where
add : α → α → α
-- fill in the rest

It is not a big problem that we have already declared instances Add, Neg, and Zero for Point above. Once again, the
two ways of synthesizing the notation should come up with the same answer.
Class inference is subtle, and you have to be careful when using it, because it configures automation that invisibly governs
the interpretation of the expressions we type. When used wisely, however, class inference is a powerful tool. It is what
makes algebraic reasoning possible in Lean.

6.3 Building the Gaussian Integers

We will now illustrate the use of the algebraic hierarchy in Lean by building an important mathematical object, the
Gaussian integers, and showing that it is a Euclidean domain. In other words, according to the terminology we have been
using, we will define the Gaussian integers and show that they are an instance of the Euclidean domain structure.
In ordinary mathematical terms, the set of Gaussian integers Z[i] is the set of complex numbers {a+ bi | a, b ∈ Z}. But
rather than define them as a subset of the complex numbers, our goal here is to define them as a data type in their own
right. We do this by representing a Gaussian integer as a pair of integers, which we think of as the real and imaginary
parts.

@[ext]
structure gaussInt where

re : Z
im : Z

We first show that the Gaussian integers have the structure of a ring, with 0 defined to be 〈0, 0〉, 1 defined to be 〈1,
0〉, and addition defined pointwise. To work out the definition of multiplication, remember that we want the element i,
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represented by 〈0, 1〉, to be a square root of −1. Thus we want

(a+ bi)(c+ di) = ac+ bci+ adi+ bdi2

= (ac− bd) + (bc+ ad)i.

This explains the definition of Mul below.

instance : Zero gaussInt :=
〈〈0, 0〉〉

instance : One gaussInt :=
〈〈1, 0〉〉

instance : Add gaussInt :=
〈fun x y 7→ 〈x.re + y.re, x.im + y.im〉〉

instance : Neg gaussInt :=
〈fun x 7→ 〈-x.re, -x.im〉〉

instance : Mul gaussInt :=
〈fun x y 7→ 〈x.re * y.re - x.im * y.im, x.re * y.im + x.im * y.re〉〉

As noted in Section 6.1, it is a good idea to put all the definitions related to a data type in a namespace with the same
name. Thus in the Lean files associated with this chapter, these definitions are made in the GaussInt namespace.
Notice that here we are defining the interpretations of the notation 0, 1, +, -, and * directly, rather than naming them
GaussInt.zero and the like and assigning the notation to those. It is often useful to have an explicit name for the
definitions, for example, to use with simp and rewrite.

theorem zero_def : (0 : gaussInt) = 〈0, 0〉 :=
rfl

theorem one_def : (1 : gaussInt) = 〈1, 0〉 :=
rfl

theorem add_def (x y : gaussInt) : x + y = 〈x.re + y.re, x.im + y.im〉 :=
rfl

theorem neg_def (x : gaussInt) : -x = 〈-x.re, -x.im〉 :=
rfl

theorem mul_def (x y : gaussInt) :
x * y = 〈x.re * y.re - x.im * y.im, x.re * y.im + x.im * y.re〉 :=

rfl

It is also useful to name the rules that compute the real and imaginary parts, and to declare them to the simplifier.

@[simp]
theorem zero_re : (0 : gaussInt).re = 0 :=

rfl

@[simp]
theorem zero_im : (0 : gaussInt).im = 0 :=

rfl

@[simp]
theorem one_re : (1 : gaussInt).re = 1 :=

rfl

(continues on next page)
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@[simp]
theorem one_im : (1 : gaussInt).im = 0 :=

rfl

@[simp]
theorem add_re (x y : gaussInt) : (x + y).re = x.re + y.re :=

rfl

@[simp]
theorem add_im (x y : gaussInt) : (x + y).im = x.im + y.im :=

rfl

@[simp]
theorem neg_re (x : gaussInt) : (-x).re = -x.re :=

rfl

@[simp]
theorem neg_im (x : gaussInt) : (-x).im = -x.im :=

rfl

@[simp]
theorem mul_re (x y : gaussInt) : (x * y).re = x.re * y.re - x.im * y.im :=

rfl

@[simp]
theorem mul_im (x y : gaussInt) : (x * y).im = x.re * y.im + x.im * y.re :=

rfl

It is now surprisingly easy to show that the Gaussian integers are an instance of a commutative ring. We are putting the
structure concept to good use. Each particular Gaussian integer is an instance of the gaussInt structure, whereas the
type gaussInt itself, together with the relevant operations, is an instance of the CommRing structure. The CommRing
structure, in turn, extends the notational structures Zero, One, Add, Neg, and Mul.
If you type instance : CommRing gaussInt := _, click on the light bulb that appears in VS Code, and
then ask Lean to fill in a skeleton for the structure definition, you will see a scary number of entries. Jumping to the
definition of the structure, however, shows that many of the fields have default definitions that Lean will fill in for you
automatically. The essential ones appear in the definition below. In each case, the relevant identity is proved by unfolding
definitions, using the ext tactic to reduce the identities to their real and imaginary components, simplifying, and, if
necessary, carrying out the relevant ring calculation in the integers.

instance instCommRing : CommRing gaussInt where
zero := 0
one := 1
add := (· + ·)
neg x := -x
mul := (· * ·)
add_assoc := by
intros
ext <;> simp <;> ring

zero_add := by
intro
ext <;> simp

add_zero := by
intro
ext <;> simp

(continues on next page)
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add_left_neg := by
intro
ext <;> simp

add_comm := by
intros
ext <;> simp <;> ring

mul_assoc := by
intros
ext <;> simp <;> ring

one_mul := by
intro
ext <;> simp

mul_one := by
intro
ext <;> simp

left_distrib := by
intros
ext <;> simp <;> ring

right_distrib := by
intros
ext <;> simp <;> ring

mul_comm := by
intros
ext <;> simp <;> ring

zero_mul := sorry
mul_zero := sorry

Lean’s library defines the class of nontrivial types to be types with at least two distinct elements. In the context of a ring,
this is equivalent to saying that the zero is not equal to the one. Since some common theorems depend on that fact, we
may as well establish it now.

instance : Nontrivial gaussInt := by
use 0, 1
rw [Ne, gaussInt.ext_iff]
simp

We will now show that the Gaussian integers have an important additional property. A Euclidean domain is a ring R
equipped with a norm function N : R → N with the following two properties:

• For every a and b 6= 0 in R, there are q and r in R such that a = bq + r and either r = 0 or N(r) < N(b).
• For every a and b 6= 0, N(a) ≤ N(ab).

The ring of integers Z withN(a) = |a| is an archetypal example of a Euclidean domain. In that case, we can take q to be
the result of integer division of a by b and r to be the remainder. These functions are defined in Lean so that the satisfy
the following:

example (a b : Z) : a = b * (a / b) + a % b :=
Eq.symm (Int.ediv_add_emod a b)

example (a b : Z) : b 6= 0 → 0 ≤ a % b :=
Int.emod_nonneg a

example (a b : Z) : b 6= 0 → a % b < |b| :=
Int.emod_lt a

In an arbitrary ring, an element a is said to be a unit if it divides 1. A nonzero element a is said to be irreducible if it
cannot be written in the form a = bc where neither b nor c is a unit. In the integers, every irreducible element a is prime,
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which is to say, whenever a divides a product bc, it divides either b or c. But in other rings this property can fail. In the
ring Z[

√
−5], we have

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5),

and the elements 2, 3, 1 +
√
−5, and 1 −

√
−5 are all irreducible, but they are not prime. For example, 2 divides the

product (1+
√
−5)(1−

√
−5), but it does not divide either factor. In particular, we no longer have unique factorization:

the number 6 can be factored into irreducible elements in more than one way.
In contrast, every Euclidean domain is a unique factorization domain, which implies that every irreducible element is
prime. The axioms for a Euclidean domain imply that one can write any nonzero element as a finite product of irreducible
elements. They also imply that one can use the Euclidean algorithm to find a greatest common divisor of any two nonzero
elements a and b, i.e.~an element that is divisible by any other common divisor. This, in turn, implies that factorization
into irreducible elements is unique up to multiplication by units.
We now show that the Gaussian integers are a Euclidean domain with the norm defined byN(a+bi) = (a+bi)(a−bi) =
a2+b2. The Gaussian integer a−bi is called the conjugate of a+bi. It is not hard to check that for any complex numbers
x and y, we have N(xy) = N(x)N(y).
To see that this definition of the norm makes the complex numbers a Euclidean domain, only the first property is chal-
lenging. Suppose we want to write a+ bi = (c+ di)q + r for suitable q and r. Treating a+ bi and c+ di are complex
numbers, carry out the division

a+ bi

c+ di
=

(a+ bi)(c− di)

(c+ di)(c− di)
=

ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i.

The real and imaginary parts might not be integers, but we can round them to the nearest integers u and v. We can then
express the right-hand size as (u + vi) + (u′ + v′i), where u′ + v′i is the part left over. Note that we have |u′| ≤ 1/2
and |v′| ≤ 1/2, and hence

N(u′ + v′i) = (u′)2 + (v′)2 ≤ 1/4 + 1/4 ≤ 1/2.

Multiplying through by c+ di, we have

a+ bi = (c+ di)(u+ vi) + (c+ di)(u′ + v′i).

Setting q = u+ vi and r = (c+ di)(u′ + v′i), we have a+ bi = (c+ di)q + r, and we only need to bound N(r):

N(r) = N(c+ di)N(u′ + v′i) ≤ N(c+ di) · 1/2 < N(c+ di).

The argument we just carried out requires viewing the Gaussian integers as a subset of the complex numbers. One option
for formalizing it in Lean is therefore to embed the Gaussian integers in the complex numbers, embed the integers in the
Gaussian integers, define the rounding function from the real numbers to the integers, and take great care to pass back
and forth between these number systems appropriately. In fact, this is exactly the approach that is followed in Mathlib,
where the Gaussian integers themselves are constructed as a special case of a ring of quadratic integers. See the file
GaussianInt.lean.
Here we will instead carry out an argument that stays in the integers. This illustrates an choice one commonly faces when
formalizing mathematics. Given an argument that requires concepts or machinery that is not already in the library, one
has two choices: either formalizes the concepts or machinery needed, or adapt the argument to make use of concepts and
machinery you already have. The first choice is generally a good investment of time when the results can be used in other
contexts. Pragmatically speaking, however, sometimes seeking a more elementary proof is more efficient.
The usual quotient-remainder theorem for the integers says that for every a and nonzero b, there are q and r such that
a = bq + r and 0 ≤ r < b. Here we will make use of the following variation, which says that there are q′ and r′ such
that a = bq′ + r′ and |r′| ≤ b/2. You can check that if the value of r in the first statement satisfies r ≤ b/2, we can
take q′ = q and r′ = r, and otherwise we can take q′ = q + 1 and r′ = r − b. We are grateful to Heather Macbeth
for suggesting the following more elegant approach, which avoids definition by cases. We simply add b / 2 to a before
dividing and then subtract it from the remainder.
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def div' (a b : Z) :=
(a + b / 2) / b

def mod' (a b : Z) :=
(a + b / 2) % b - b / 2

theorem div'_add_mod' (a b : Z) : b * div' a b + mod' a b = a := by
rw [div', mod']
linarith [Int.ediv_add_emod (a + b / 2) b]

theorem abs_mod'_le (a b : Z) (h : 0 < b) : |mod' a b| ≤ b / 2 := by
rw [mod', abs_le]
constructor
· linarith [Int.emod_nonneg (a + b / 2) h.ne']
have := Int.emod_lt_of_pos (a + b / 2) h
have := Int.ediv_add_emod b 2
have := Int.emod_lt_of_pos b zero_lt_two
revert this; intro this -- FIXME, this should not be needed
linarith

Note the use of our old friend, linarith. We will also need to express mod' in terms of div'.

theorem mod'_eq (a b : Z) : mod' a b = a - b * div' a b := by linarith [div'_add_mod'␣
↪→a b]

We will use the fact that x2+ y2 is equal to zero if and only if x and y are both zero. As an exercise, we ask you to prove
that this holds in any ordered ring.

theorem sq_add_sq_eq_zero {α : Type*} [LinearOrderedRing α] (x y : α) :
x ^ 2 + y ^ 2 = 0 ↔ x = 0 ∧ y = 0 := by

sorry

We will put all the remaining definitions and theorems in this section in the gaussInt namespace. First, we define the
norm function and ask you to establish some of its properties. The proofs are all short.

def norm (x : gaussInt) :=
x.re ^ 2 + x.im ^ 2

@[simp]
theorem norm_nonneg (x : gaussInt) : 0 ≤ norm x := by

sorry
theorem norm_eq_zero (x : gaussInt) : norm x = 0 ↔ x = 0 := by

sorry
theorem norm_pos (x : gaussInt) : 0 < norm x ↔ x 6= 0 := by

sorry
theorem norm_mul (x y : gaussInt) : norm (x * y) = norm x * norm y := by

sorry

Next we define the conjugate function:

def conj (x : gaussInt) : gaussInt :=
〈x.re, -x.im〉

@[simp]
theorem conj_re (x : gaussInt) : (conj x).re = x.re :=

rfl

(continues on next page)
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@[simp]
theorem conj_im (x : gaussInt) : (conj x).im = -x.im :=

rfl

theorem norm_conj (x : gaussInt) : norm (conj x) = norm x := by simp [norm]

Finally, we define division for the Gaussian integers with the notation x / y, that rounds the complex quotient to the
nearest Gaussian integer. We use our bespoke Int.div' for that purpose. As we calculated above, if x is a + bi and
y is c+ di, then the real and imaginary parts of x / y are the nearest integers to

ac+ bd

c2 + d2
and bc− ad

c2 + d2
,

respectively. Here the numerators are the real and imaginary parts of (a + bi)(c − di), and the denominators are both
equal to the norm of c+ di.

instance : Div gaussInt :=
〈fun x y 7→ 〈Int.div' (x * conj y).re (norm y), Int.div' (x * conj y).im (norm y)〉〉

Having defined x / y, We define x % y to be the remainder, x - (x / y) * y. As above, we record the definitions
in the theorems div_def and mod_def so that we can use them with simp and rewrite.

instance : Mod gaussInt :=
〈fun x y 7→ x - y * (x / y)〉

theorem div_def (x y : gaussInt) :
x / y = 〈Int.div' (x * conj y).re (norm y), Int.div' (x * conj y).im (norm y)〉 :=

rfl

theorem mod_def (x y : gaussInt) : x % y = x - y * (x / y) :=
rfl

These definitions immediately yield x = y * (x / y) + x % y for every x and y, so all we need to do is show
that the norm of x % y is less than the norm of y when y is not zero.
We just defined the real and imaginary parts of x / y to be div' (x * conj y).re (norm y) and div' (x
* conj y).im (norm y), respectively. Calculating, we have

(x % y) * conj y = (x - x / y * y) * conj y = x * conj y - x * (y * conj
j)

The real and imaginary parts of the right-hand side are exactly mod' (x * conj y).re (norm y) and mod'
(x * conj y).im (norm y). By the properties of div' and mod', these are guaranteed to be less than or equal
to norm y / 2. So we have

norm ((x % y) * conj y) ≤ (norm y / 2)^2 + (norm y / 2)^2 ≤ (norm y /
2) * norm y.

On the other hand, we have
norm ((x % y) * conj y) = norm (x % y) * norm (conj y) = norm (x % y) *
norm y.

Dividing through by norm y we have norm (x % y) ≤ (norm y) / 2 < norm y, as required.
This messy calculation is carried out in the next proof. We encourage you to step through the details and see if you can
find a nicer argument.
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theorem norm_mod_lt (x : gaussInt) {y : gaussInt} (hy : y 6= 0) :
(x % y).norm < y.norm := by

have norm_y_pos : 0 < norm y := by rwa [norm_pos]
have H1 : x % y * conj y = 〈Int.mod' (x * conj y).re (norm y), Int.mod' (x * conj y).

↪→im (norm y)〉
· ext <;> simp [Int.mod'_eq, mod_def, div_def, norm] <;> ring
have H2 : norm (x % y) * norm y ≤ norm y / 2 * norm y
· calc

norm (x % y) * norm y = norm (x % y * conj y) := by simp only [norm_mul, norm_
↪→conj]

_ = |Int.mod' (x.re * y.re + x.im * y.im) (norm y)| ^ 2
+ |Int.mod' (-(x.re * y.im) + x.im * y.re) (norm y)| ^ 2 := by simp [H1,␣

↪→norm, sq_abs]
_ ≤ (y.norm / 2) ^ 2 + (y.norm / 2) ^ 2 := by gcongr <;> apply Int.abs_mod'_le _

↪→ _ norm_y_pos
_ = norm y / 2 * (norm y / 2 * 2) := by ring
_ ≤ norm y / 2 * norm y := by gcongr; apply Int.ediv_mul_le; norm_num

calc norm (x % y) ≤ norm y / 2 := le_of_mul_le_mul_right H2 norm_y_pos
_ < norm y := by

apply Int.ediv_lt_of_lt_mul
· norm_num
· linarith

We are in the home stretch. Our norm function maps Gaussian integers to nonnegative integers. We need a function that
maps Gaussian integers to natural numbers, and we obtain that by composing norm with the function Int.natAbs,
which maps integers to the natural numbers. The first of the next two lemmas establishes that mapping the norm to the
natural numbers and back to the integers does not change the value. The second one re-expresses the fact that the norm
is decreasing.

theorem coe_natAbs_norm (x : gaussInt) : (x.norm.natAbs : Z) = x.norm :=
Int.natAbs_of_nonneg (norm_nonneg _)

theorem natAbs_norm_mod_lt (x y : gaussInt) (hy : y 6= 0) :
(x % y).norm.natAbs < y.norm.natAbs := by

apply Int.ofNat_lt.1
simp only [Int.coe_natAbs, abs_of_nonneg, norm_nonneg]
apply norm_mod_lt x hy

We also need to establish the second key property of the norm function on a Euclidean domain.

theorem not_norm_mul_left_lt_norm (x : gaussInt) {y : gaussInt} (hy : y 6= 0) :
¬(norm (x * y)).natAbs < (norm x).natAbs := by

apply not_lt_of_ge
rw [norm_mul, Int.natAbs_mul]
apply le_mul_of_one_le_right (Nat.zero_le _)
apply Int.ofNat_le.1
rw [coe_natAbs_norm]
exact Int.add_one_le_of_lt ((norm_pos _).mpr hy)

We can now put it together to show that the Gaussian integers are an instance of a Euclidean domain. We use the quotient
and remainder function we have defined. TheMathlib definition of a Euclidean domain is more general than the one above
in that it allows us to show that remainder decreases with respect to any well-founded measure. Comparing the values
of a norm function that returns natural numbers is just one instance of such a measure, and in that case, the required
properties are the theorems natAbs_norm_mod_lt and not_norm_mul_left_lt_norm.

instance : EuclideanDomain gaussInt :=
{ gaussInt.instCommRing with

(continues on next page)
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quotient := (· / ·)
remainder := (· % ·)
quotient_mul_add_remainder_eq :=

fun x y 7→ by simp only; rw [mod_def, add_comm, sub_add_cancel]
quotient_zero := fun x 7→ by

simp [div_def, norm, Int.div']
rfl

r := (measure (Int.natAbs ◦ norm)).1
r_wellFounded := (measure (Int.natAbs ◦ norm)).2
remainder_lt := natAbs_norm_mod_lt
mul_left_not_lt := not_norm_mul_left_lt_norm }

An immediate payoff is that we now know that, in the Gaussian integers, the notions of being prime and being irreducible
coincide.

example (x : gaussInt) : Irreducible x ↔ Prime x :=
PrincipalIdealRing.irreducible_iff_prime

6.3. Building the Gaussian Integers 99



Mathematics in Lean, Release 0.1

100 Chapter 6. Structures



CHAPTER

SEVEN

HIERARCHIES

We have seen in Chapter 6 how to define the class of groups and build instances of this class, and then how to build an
instance of the commutative ring class. But of course there is a hierarchy here: a commutative ring is in particular an
additive group. In this chapter we will study how to build such hierarchies. They appear in all branches of mathematics
but in this chapter the emphasis will be on algebraic examples.
It may seem premature to discuss how to build hierarchies before more discussions about using existing hierarchies. But
some understanding of the technology underlying hierarchies is required to use them. So you should probably still read
this chapter, but without trying too hard to remember everything on your first read, then read the following chapters and
come back here for a second reading.
In this chapter, we will redefine (simpler versions of) many things that appear in Mathlib so we will used indices to
distinguish our version. For instance we will have Ring1 as our version of Ring. Since we will gradually explain more
powerful ways of formalizing structures, those indices will sometimes grow beyond one.

7.1 Basics

At the very bottom of all hierarchies in Lean, we find data-carrying classes. The following class records that the given
type α is endowed with a distinguished element called one. At this stage, it has no property at all.

class One1 (α : Type) where
/-- The element one -/
one : α

Since we’ll make a much heavier use of classes in this chapter, we need to understand some more details about what the
class command is doing. First, the class command above defines a structure One1 with parameter α : Type
and a single field one. It also mark this structure as a class so that arguments of type One1 α for some type α will
be inferrable using the instance resolution procedure, as long as they are marked as instance-implicit, ie appear between
square brackets. Those two effects could also have been achieved using thestructure commandwithclass attribute,
ie writing @[class] structure instance of class. But the class command also ensures that One1 α appears as
an instance-implicit argument in its own fields. Compare:

#check One1.one -- One1.one {α : Type} [self : One1 α] : α

@[class] structure One2 (α : Type) where
/-- The element one -/
one : α

#check One2.one

In the second check, we can see that self : One2 α is an explicit argument. Let us make sure the first version is
indeed usable without any explicit argument.
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example (α : Type) [One1 α] : α := One1.one

Remark: in the above example, the argument One1 α is marked as instance-implicit, which is a bit silly since this affects
only uses of the declaration and declaration created by the example command cannot be used. However it allows us
to avoid giving a name to that argument and, more importantly, it starts installing the good habit of marking One1 α
arguments as instance-implicit.
Another remark is that all this will work only when Lean knows what is α. In the above example, leaving out the type
ascription : α would generate an error message like: typeclass instance problem is stuck, it is
often due to metavariables One1 (?m.263 α) where ?m.263 α means “some type depending on α”
(and 263 is simply an auto-generated index that would be useful to distinguish between several unknown things). Another
way to avoid this issue would be to use a type annotation, as in:

example (α : Type) [One1 α] := (One1.one : α)

You may have already encountered that issue when playing with limits of sequences in Section 3.6 if you tried to state for
instance that 0 < 1 without telling Lean whether you meant this inequality to be about natural numbers or real numbers.
Our next task is to assign a notation to One1.one. Since we don’t want collisions with the builtin notation for 1, we will
use 1. This is achieved by the following command where the first line tells Lean to use the documentation of One1.one
as documentation for the symbol 1.

@[inherit_doc]
notation "1" => One1.one

example {α : Type} [One1 α] : α := 1

example {α : Type} [One1 α] : (1 : α) = 1 := rfl

We now want a data-carrying class recording a binary operation. We don’t want to choose between addition and multi-
plication for now so we’ll use diamond.

class Dia1 (α : Type) where
dia : α → α → α

infixl:70 " � " => Dia1.dia

As in the One1 example, the operation has no property at all at this stage. Let us now define the class of semigroup
structures where the operation is denoted by �. For now, we define it by hand as a structure with two fields, a Dia1

instance and some Prop-valued field dia_assoc asserting associativity of �.

class Semigroup1 (α : Type) where
toDia1 : Dia1 α
/-- Diamond is associative -/
dia_assoc : ∀ a b c : α, a � b � c = a � (b � c)

Note that while stating dia_assoc, the previously defined field toDia1 is in the local context hence can be used when Lean
searches for an instance of Dia1 α to make sense of a � b. However this toDia1 field does not become part of the type
class instances database. Hence doing example {α : Type} [Semigroup1 α] (a b : α) : α := a
� b would fail with error message failed to synthesize instance Dia1 α.
We can fix this by adding the instance attribute later.

attribute [instance] Semigroup1.toDia1

example {α : Type} [Semigroup1 α] (a b : α) : α := a � b
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Before building up, we need a more convenient way to extend structures than explicitly writing fields like toDia1 and
adding the instance attribute by hand. The class supports this using the extends syntax as in:

class Semigroup2 (α : Type) extends Dia1 α where
/-- Diamond is associative -/
dia_assoc : ∀ a b c : α, a � b � c = a � (b � c)

example {α : Type} [Semigroup2 α] (a b : α) : α := a � b

Note this syntax is also available in the structure command, although it that case it fixes only the hurdle of writing
fields such as toDia1 since there is no instance to define in that case.
Let us now try to combine a diamond operation and a distinguished one with axioms saying this element is neutral on
both sides.

class DiaOneClass1 (α : Type) extends One1 α, Dia1 α where
/-- One is a left neutral element for diamond. -/
one_dia : ∀ a : α, 1 � a = a
/-- One is a right neutral element for diamond -/
dia_one : ∀ a : α, a � 1 = a

In the next example, we tell Lean that α has a DiaOneClass1 structure and state a property that uses both a Dia1
instance and a One1 instance. In order to see how Lean finds those instances we set a tracing option whose result can be
seen in the Infoview. This result is rather terse by default but it can be expanded by clicking on lines ending with black
arrows. It includes failed attempts where Lean tried to find instances before having enough type information to succeed.
The successful attempts do involve the instances generated by the extends syntax.

set_option trace.Meta.synthInstance true in
example {α : Type} [DiaOneClass1 α] (a b : α) : Prop := a � b = 1

Note that we don’t need to include extra fields where combining existing classes. Hence we can define monoids as:

class Monoid1 (α : Type) extends Semigroup1 α, DiaOneClass1 α

While the above definition seems straightforward, it hides an important subtlety. Both Semigroup1 α and
DiaOneClass1 α extend Dia1 α, so one could fear that having a Monoid1 α instance gives two unrelated di-
amond operations on α, one coming from a field Monoid1.toSemigroup1 and one coming from a field Monoid1.
toDiaOneClass1.
Indeed if we try to build a monoid class by hand using:

class Monoid2 (α : Type) where
toSemigroup1 : Semigroup1 α
toDiaOneClass1 : DiaOneClass1 α

then we get two completely unrelated diamond operations Monoid2.toSemigroup1.toDia1.dia and Monoid2.
toDiaOneClass1.toDia1.dia.
The version generated using the extends syntax does not have this defect.

example {α : Type} [Monoid1 α] :
(Monoid1.toSemigroup1.toDia1.dia : α → α → α) = Monoid1.toDiaOneClass1.toDia1.dia␣

↪→:= rfl

So the class command did some magic for us (and the structure command would have done it too). An easy way
to see what are the fields of our classes is to check their constructor. Compare:
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/- Monoid2.mk {α : Type} (toSemigroup1 : Semigroup1 α) (toDiaOneClass1 : DiaOneClass1␣
↪→α) : Monoid2 α -/
#check Monoid2.mk

/- Monoid1.mk {α : Type} [toSemigroup1 : Semigroup1 α] [toOne1 : One1 α] (one_dia : ∀␣
↪→(a : α), 1 � a = a) (dia_one : ∀ (a : α), a � 1 = a) : Monoid1 α -/
#check Monoid1.mk

So we see that Monoid1 takes Semigroup1 α argument as expected but then it won’t take a would-be overlapping
DiaOneClass1 α argument but instead tears it apart and includes only the non-overlapping parts. And it also auto-
generated an instance Monoid1.toDiaOneClass1 which is not a field but has the expected signature which, from the
end-user point of view, restores the symmetry between the two extended classes Semigroup1 and DiaOneClass1.

#check Monoid1.toSemigroup1

#check Monoid1.toDiaOneClass1

We are now very close to defining groups. We could add to the monoid structure a field asserting the existence of an
inverse for every element. But then we would need to work to access these inverses. In practice it is more convenient to
add it as data. To optimize reusability, we define a new data-carrying class, and then give it some notation.

class Inv1 (α : Type) where
/-- The inversion function -/
inv : α → α

@[inherit_doc]
postfix:max " ¹" => Inv1.inv

class Group1 (G : Type) extends Monoid1 G, Inv1 G where
inv_dia : ∀ a : G, a ¹ � a = 1

The above definition may seem too weak, we only ask that a ¹ is a left-inverse of a. But the other side is automatic. In
order to prove that, we need a preliminary lemma.

lemma left_inv_eq_right_inv1 {M : Type} [Monoid1 M] {a b c : M} (hba : b � a = 1) (hac␣
↪→: a � c = 1) : b = c := by
rw [← DiaOneClass1.one_dia c, ← hba, Semigroup1.dia_assoc, hac, DiaOneClass1.dia_one␣

↪→b]

In this lemma, it is pretty annoying to give full names, especially since it requires knowing which part of the hierarchy
provides those facts. One way to fix this is to use the export command to copy those facts as lemmas in the root name
space.

export DiaOneClass1 (one_dia dia_one)
export Semigroup1 (dia_assoc)
export Group1 (inv_dia)

We can then rewrite the above proof as:

example {M : Type} [Monoid1 M] {a b c : M} (hba : b � a = 1) (hac : a � c = 1) : b = c␣
↪→:= by
rw [← one_dia c, ← hba, dia_assoc, hac, dia_one b]

It is now your turn to prove things about our algebraic structures.

lemma inv_eq_of_dia [Group1 G] {a b : G} (h : a � b = 1) : a ¹ = b :=
sorry

(continues on next page)
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lemma dia_inv [Group1 G] (a : G) : a � a ¹ = 1 :=
sorry

At this stage we would like to move on to define rings, but there is a serious issue. A ring structure on a type con-
tains both an additive group structure and a multiplicative monoid structure, and some properties about their inter-
action. But so far we hard-coded a notation � for all our operations. More fundamentally, the type class system
assumes every type has only one instance of each type class. There are various ways to solve this issue. Surpris-
ingly Mathlib uses the naive idea to duplicate everything for additive and multiplicative theories with the help of
some code-generating attribute. Structures and classes are defined in both additive and multiplicative notation with
an attribute to_additive linking them. In case of multiple inheritance like for semi-groups, the auto-generated
“symmetry-restoring” instances need also to be marked. This is a bit technical; you don’t need to understand de-
tails. The important point is that lemmas are then only stated in multiplicative notation and marked with the attribute
to_additive to generate the additive version as left_inv_eq_right_inv' with its auto-generated additive
version left_neg_eq_right_neg'. In order to check the name of this additive version we used the whatsnew
in command on top of left_inv_eq_right_inv'.

class AddSemigroup3 (α : Type) extends Add α where
/-- Addition is associative -/

add_assoc3 : ∀ a b c : α, a + b + c = a + (b + c)

@[to_additive AddSemigroup3]
class Semigroup3 (α : Type) extends Mul α where
/-- Multiplication is associative -/

mul_assoc3 : ∀ a b c : α, a * b * c = a * (b * c)

class AddMonoid3 (α : Type) extends AddSemigroup3 α, AddZeroClass α

@[to_additive AddMonoid3]
class Monoid3 (α : Type) extends Semigroup3 α, MulOneClass α

attribute [to_additive existing] Monoid3.toMulOneClass

export Semigroup3 (mul_assoc3)
export AddSemigroup3 (add_assoc3)

whatsnew in
@[to_additive]
lemma left_inv_eq_right_inv' {M : Type} [Monoid3 M] {a b c : M} (hba : b * a = 1) (hac␣
↪→: a * c = 1) : b = c := by
rw [← one_mul c, ← hba, mul_assoc3, hac, mul_one b]

#check left_neg_eq_right_neg'

Equipped with this technology, we can easily define also commutative semigroups, monoids and groups, and then define
rings.

class AddCommSemigroup3 (α : Type) extends AddSemigroup3 α where
add_comm : ∀ a b : α, a + b = b + a

@[to_additive AddCommSemigroup3]
class CommSemigroup3 (α : Type) extends Semigroup3 α where
mul_comm : ∀ a b : α, a * b = b * a

class AddCommMonoid3 (α : Type) extends AddMonoid3 α, AddCommSemigroup3 α

(continues on next page)
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@[to_additive AddCommMonoid3]
class CommMonoid3 (α : Type) extends Monoid3 α, CommSemigroup3 α

class AddGroup3 (G : Type) extends AddMonoid3 G, Neg G where
neg_add : ∀ a : G, -a + a = 0

@[to_additive AddGroup3]
class Group3 (G : Type) extends Monoid3 G, Inv G where
inv_mul : ∀ a : G, a ¹ * a = 1

We should remember to tag lemmas with simp when appropriate.

attribute [simp] Group3.inv_mul AddGroup3.neg_add

Then we need to repeat ourselves a bit since we switch to standard notations, but at least to_additive does the work
of translating from the multiplicative notation to the additive one.

@[to_additive]
lemma inv_eq_of_mul [Group3 G] {a b : G} (h : a * b = 1) : a ¹ = b :=

sorry

Note that to_additive can be asked to tag a lemma with simp and propagate that attribute to the additive version
as follows.

@[to_additive (attr := simp)]
lemma Group3.mul_inv {G : Type} [Group3 G] {a : G} : a * a ¹ = 1 := by

sorry

@[to_additive]
lemma mul_left_cancel3 {G : Type} [Group3 G] {a b c : G} (h : a * b = a * c) : b = c␣
↪→:= by
sorry

@[to_additive]
lemma mul_right_cancel3 {G : Type} [Group3 G] {a b c : G} (h : b*a = c*a) : b = c := by

sorry

class AddCommGroup3 (G : Type) extends AddGroup3 G, AddCommMonoid3 G

@[to_additive AddCommGroup3]
class CommGroup3 (G : Type) extends Group3 G, CommMonoid3 G

We are now ready for rings. For demonstration purposes we won’t assume that addition is commutative, and then imme-
diately provide an instance of AddCommGroup3. Mathlib does not play this game, first because in practice this does
not make any ring instance easier and also because Mathlib’s algebraic hierarchy goes through semirings which are like
rings but without opposites so that the proof below does not work for them. What we gain here, besides a nice exercise
if you have never seen it, is an example of building an instance using the syntax that allows to provide a parent structure
and some extra fields.

class Ring3 (R : Type) extends AddGroup3 R, Monoid3 R, MulZeroClass R where
/-- Multiplication is left distributive over addition -/
left_distrib : ∀ a b c : R, a * (b + c) = a * b + a * c
/-- Multiplication is right distributive over addition -/
right_distrib : ∀ a b c : R, (a + b) * c = a * c + b * c

instance {R : Type} [Ring3 R] : AddCommGroup3 R :=

(continues on next page)
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{ Ring3.toAddGroup3 with

add_comm := by
sorry }

Of course we can also build concrete instances, such as a ring structure on integers (of course the instance below uses that
all the work is already done in Mathlib).

instance : Ring3 Z where
add := (· + ·)
add_assoc3 := add_assoc
zero := 0
zero_add := by simp
add_zero := by simp
neg := (- ·)
neg_add := by simp
mul := (· * ·)
mul_assoc3 := mul_assoc
one := 1
one_mul := by simp
mul_one := by simp
zero_mul := by simp
mul_zero := by simp
left_distrib := Int.mul_add
right_distrib := Int.add_mul

As an exercise you can now set up a simple hierarchy for order relations, including a class for ordered commutative
monoids, which have both a partial order and a commutative monoid structure such that ∀ a b : α, a ≤ b → ∀
c : α, c * a ≤ c * b. Of course you need to add fields and maybe extends clauses to the following classes.

class LE1 (α : Type) where
/-- The Less-or-Equal relation. -/
le : α → α → Prop

@[inherit_doc] infix:50 " ≤1 " => LE1.le

class Preorder1 (α : Type)

class PartialOrder1 (α : Type)

class OrderedCommMonoid1 (α : Type)

instance : OrderedCommMonoid1 N where

We now want to discuss algebraic structures involving several types. The prime example is modules over rings. If you
don’t know what is a module, you can pretend it means vector space and think that all our rings are fields. Those structures
are commutative additive groups equipped with a scalar multiplication by elements of some ring.
We first define the data-carrying type class of scalar multiplication by some type α on some type β, and give it a right
associative notation.

class SMul3 (α : Type) (β : Type) where
/-- Scalar multiplication -/
smul : α → β → β

infixr:73 " · " => SMul3.smul

Then we can define modules (again think about vector spaces if you don’t know what is a module).
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class Module1 (R : Type) [Ring3 R] (M : Type) [AddCommGroup3 M] extends SMul3 R M where
zero_smul : ∀ m : M, (0 : R) · m = 0
one_smul : ∀ m : M, (1 : R) · m = m
mul_smul : ∀ (a b : R) (m : M), (a * b) · m = a · b · m
add_smul : ∀ (a b : R) (m : M), (a + b) · m = a · m + b · m
smul_add : ∀ (a : R) (m n : M), a · (m + n) = a · m + a · n

There is something interesting going on here. While it isn’t too surprising that the ring structure on R is a parameter in
this definition, you probably expected AddCommGroup3 M to be part of the extends clause just as SMul3 R M is.
Trying to do that would lead to a mysterious sounding error message: cannot find synthesization order
for instance Module1.toAddCommGroup3 with type (R : Type) → [inst : Ring3 R] →
{M : Type} → [self : Module1 R M] → AddCommGroup3 M all remaining arguments
have metavariables: Ring3 ?R @Module1 ?R ?inst M. In order to understand this message, you
need to remember that such an extends clause would lead to a field Module3.toAddCommGroup3 marked as an
instance. This instance would have the signature appearing in the error message: (R : Type) → [inst : Ring3

R] → {M : Type} → [self : Module1 R M] → AddCommGroup3 M. With such an instance in the type
class database, each time Lean would look for a AddCommGroup3 M instance for some M, it would need to go hunting
for a completely unspecified type R and a Ring3 R instance before embarking on the main quest of finding a Module1

R M instance. Those two side-quests are represented by the meta-variables mentioned in the error message and denoted
by ?R and ?inst there. Such a Module3.toAddCommGroup3 instance would then be a huge trap for the instance
resolution procedure and then class command refuses to set it up.
What about extends SMul3 R M then? That one creates a field Module1.toSMul3 : {R : Type} →
[inst : Ring3 R] → {M : Type} → [inst_1 : AddCommGroup3 M] → [self : Module1 R
M] → SMul3 R M whose end result SMul3 R Mmentions both R and M so this field can safely be used as an instance.
The rule is easy to remember: each class appearing in the extends clause should mention every type appearing in the
parameters.
Let us create our first module instance: a ring is a module over itself using its multiplication as a scalar multiplication.

instance selfModule (R : Type) [Ring3 R] : Module1 R R where
smul := fun r s 7→ r*s
zero_smul := zero_mul
one_smul := one_mul
mul_smul := mul_assoc3

add_smul := Ring3.right_distrib
smul_add := Ring3.left_distrib

As a second example, every abelian group is a module over Z (this is one of the reason to generalize the theory of vector
spaces by allowing non-invertible scalars). First one can define scalar multiplication by a natural number for any type
equipped with a zero and an addition: n · a is defined as a + ⋯ + a where a appears n times. Then this is extended
to scalar multiplication by an integer by ensuring (-1) · a = -a.

def nsmul1 [Zero M] [Add M] : N → M → M
| 0, _ => 0
| n + 1, a => a + nsmul1 n a

def zsmul1 {M : Type*} [Zero M] [Add M] [Neg M] : Z → M → M
| Int.ofNat n, a => nsmul1 n a
| Int.negSucc n, a => -nsmul1 n.succ a

Proving this gives rise to a module structure is a bit tedious and not interesting for the current discussion, so we will sorry
all axioms. You are not asked to replace those sorries with proofs. If you insist on doing it then you will probably want to
state and prove several intermediate lemmas about nsmul1 and zsmul1.
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instance abGrpModule (A : Type) [AddCommGroup3 A] : Module1 Z A where
smul := zsmul1

zero_smul := sorry
one_smul := sorry
mul_smul := sorry
add_smul := sorry
smul_add := sorry

Amuch more important issue is that we now have two module structures over the ring Z for Z itself: abGrpModule Z
since Z is a abelian group, and selfModule Z since Z is a ring. Those two module structure correspond to the same
abelian group structure, but it is not obvious that they have the same scalar multiplication. They actually do, but this isn’t
true by definition, it requires a proof. This is very bad news for the type class instance resolution procedure and will lead
to very frustrating failures for users of this hierarchy. When directly asked to find an instance, Lean will pick one, and
we can see which one using:

#synth Module1 Z Z -- abGrpModule Z

But in a more indirect context it can happen that Lean infers the one and then gets confused. This situation is known as
a bad diamond. This has nothing to do with the diamond operation we used above, it refers to the way one can draw the
paths from Z to its Module1 Z going through either AddCommGroup3 Z or Ring3 Z.
It is important to understand that not all diamonds are bad. In fact there are diamonds everywhere in Mathlib, and also in
this chapter. Already at the very beginning we saw one can go fromMonoid1 α toDia1 α through eitherSemigroup1

α or DiaOneClass1 α and thanks to the work done by the class command, the resulting two Dia1 α instances
are definitionally equal. In particular a diamond having a Prop-valued class at the bottom cannot be bad since any too
proofs of the same statement are definitionally equal.
But the diamond we created with modules is definitely bad. The offending piece is the smul field which is data, not a
proof, and we have two constructions that are not definitionally equal. The robust way of fixing this issue is to make sure
that going from a rich structure to a poor structure is always done by forgetting data, not by defining data. This well-known
pattern as been named “forgetful inheritance” and extensively discussed in https://inria.hal.science/hal-02463336.
In our concrete case, we canmodify the definition of AddMonoid3 to include a nsmul data field and some Prop-valued
fields ensuring this operation is provably the one we constructed above. Those fields are given default values using :=
after their type in the definition below. Thanks to these default values, most instances would be constructed exactly as
with our previous definitions. But in the special case of Z we will be able to provide specific values.

class AddMonoid4 (M : Type) extends AddSemigroup3 M, AddZeroClass M where
/-- Multiplication by a natural number. -/
nsmul : N → M → M := nsmul1

/-- Multiplication by `(0 : N)` gives `0`. -/
nsmul_zero : ∀ x, nsmul 0 x = 0 := by intros; rfl
/-- Multiplication by `(n + 1 : N)` behaves as expected. -/
nsmul_succ : ∀ (n : N) (x), nsmul (n + 1) x = x + nsmul n x := by intros; rfl

instance mySMul {M : Type} [AddMonoid4 M] : SMul N M := 〈AddMonoid4.nsmul〉

Let us check we can still construct a product monoid instance without providing the nsmul related fields.

instance (M N : Type) [AddMonoid4 M] [AddMonoid4 N] : AddMonoid4 (M × N) where
add := fun p q 7→ (p.1 + q.1, p.2 + q.2)
add_assoc3 := fun a b c 7→ by ext <;> apply add_assoc3

zero := (0, 0)
zero_add := fun a 7→ by ext <;> apply zero_add
add_zero := fun a 7→ by ext <;> apply add_zero

And now let us handle the special case of Z where we want to build nsmul using the coercion of N to Z and the
multiplication on Z. Note in particular how the proof fields contain more work than in the default value above.
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instance : AddMonoid4 Z where
add := (· + ·)
add_assoc3 := Int.add_assoc
zero := 0
zero_add := Int.zero_add
add_zero := Int.add_zero
nsmul := fun n m 7→ (n : Z) * m
nsmul_zero := Int.zero_mul
nsmul_succ := fun n m 7→ show (n + 1 : Z) * m = m + n * m
by rw [Int.add_mul, Int.add_comm, Int.one_mul]

Let us check we solved our issue. Because Lean already has a definition of scalar multiplication of a natural number and
an integer, and we want to make sure our instance is used, we won’t use the · notation but call SMul.mul and explicitly
provide our instance defined above.

example (n : N) (m : Z) : SMul.smul (self := mySMul) n m = n * m := rfl

This story then continues with incorporating a zsmul field into the definition of groups and similar tricks. You are now
ready to read the definition of monoids, groups, rings and modules in Mathlib. There are more complicated than what we
have seen here, because they are part of a huge hierarchy, but all principles have been explained above.
As an exercise, you can come back to the order relation hierarchy you built above and try to incorporate a type class LT1

carrying the Less-Than notation <1 and make sure that every preorder comes with a <1 which has a default value built
from ≤1 and a Prop-valued field asserting the natural relation between those two comparison operators. -/

7.2 Morphisms

So far in this chapter, we discussed how to create a hierarchy of mathematical structures. But defining structures is not
really completed until we have morphisms. There are two main approaches here. The most obvious one is to define a
predicate on functions.

def isMonoidHom1 [Monoid G] [Monoid H] (f : G → H) : Prop :=
f 1 = 1 ∧ ∀ g g', f (g * g') = f g * f g'

In this definition, it is a bit unpleasant to use a conjunction. In particular users will need to remember the ordering we
chose when they want to access the two conditions. So we could use a structure instead.

structure isMonoidHom2 [Monoid G] [Monoid H] (f : G → H) : Prop where
map_one : f 1 = 1
map_mul : ∀ g g', f (g * g') = f g * f g'

Once we are here, it is even tempting tomake it a class and use the type class instance resolution procedure to automatically
infer isMonoidHom2 for complicated functions out of instances for simpler functions. For instance a composition of
monoid morphisms is a monoid morphism and this seems like a useful instance. However such an instance would be very
tricky for the resolution procedure since it would need to hunt down g ◦ f everywhere. Seeing it failing in g (f x)
would be very frustrating. More generally one must always keep in mind that recognizing which function is applied in a
given expression is a very difficult problem, called the “higher-order unification problem”. So Mathlib does not use this
class approach.
A more fundamental question is whether we use predicates as above (using either a def or a structure) or use
structures bundling a function and predicates. This is partly a psychological issue. It is extremely rare to consider a
function between monoids that is not a morphism. It really feels like “monoid morphism” is not an adjective you can
assign to a bare function, it is a noun. On the other hand one can argue that a continuous function between topological
spaces is really a function that happens to be continuous. This is one reason why Mathlib has a Continuous predicate.
For instance you can write:
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example : Continuous (id : R → R) := continuous_id

We still have bundles continuous functions, which are convenient for instance to put a topology on a space of continuous
functions, but they are not the primary tool to work with continuity.
By contrast, morphisms between monoids (or other algebraic structures) are bundled as in:

@[ext]
structure MonoidHom1 (G H : Type) [Monoid G] [Monoid H] where
toFun : G → H
map_one : toFun 1 = 1
map_mul : ∀ g g', toFun (g * g') = toFun g * toFun g'

Of course we don’t want to type toFun everywhere so we register a coercion using the CoeFun type class. Its first
argument is the type we want to coerce to a function. The second argument describes the target function type. In our case
it is always G → H for every f : MonoidHom1 G H. We also tag MonoidHom1.toFun with the coe attribute
to make sure it is displayed almost invisibly in the tactic state, simply by a ↑ prefix.

instance [Monoid G] [Monoid H] : CoeFun (MonoidHom1 G H) (fun _ 7→ G → H) where
coe := MonoidHom1.toFun

attribute [coe] MonoidHom1.toFun

Let us check we can indeed apply a bundled monoid morphism to an element.

example [Monoid G] [Monoid H] (f : MonoidHom1 G H) : f 1 = 1 := f.map_one

We can do the same with other kind of morphisms until we reach ring morphisms.

@[ext]
structure AddMonoidHom1 (G H : Type) [AddMonoid G] [AddMonoid H] where

toFun : G → H
map_zero : toFun 0 = 0
map_add : ∀ g g', toFun (g + g') = toFun g + toFun g'

instance [AddMonoid G] [AddMonoid H] : CoeFun (AddMonoidHom1 G H) (fun _ 7→ G → H)␣
↪→where
coe := AddMonoidHom1.toFun

attribute [coe] AddMonoidHom1.toFun

@[ext]
structure RingHom1 (R S : Type) [Ring R] [Ring S] extends MonoidHom1 R S,␣
↪→AddMonoidHom1 R S

There are a couple of issues about this approach. A minor one is we don’t quite know where to put the coe at-
tribute since the RingHom1.toFun does not exist, the relevant function is MonoidHom1.toFun ◦ RingHom1.
toMonoidHom1 which is not a declaration that can be tagged with an attribute (but we could still define a CoeFun
(RingHom1 R S) (fun _ 7→ R → S) instance). A much more important one is that lemmas about monoid
morphisms won’t directly apply to ring morphisms. This leaves the alternative of either juggling with RingHom1.
toMonoidHom1 each time we want to apply a monoid morphism lemma or restate every such lemmas for ring mor-
phisms. Neither option is appealing so Mathlib uses a new hierarchy trick here. The idea is to define a type class for
objects that are at least monoid morphisms, instantiate that class with both monoid morphisms and ring morphisms and
use it to state every lemma. In the definition below, F could be MonoidHom1 M N, or RingHom1 M N if M and N
have a ring structure.
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class MonoidHomClass1 (F : Type) (M N : Type) [Monoid M] [Monoid N] where
toFun : F → M → N
map_one : ∀ f : F, toFun f 1 = 1
map_mul : ∀ f g g', toFun f (g * g') = toFun f g * toFun f g'

However there is a problem with the above implementation. We haven’t registered a coercion to function instance yet.
Let us try to do it now.

def badInst [Monoid M] [Monoid N] [MonoidHomClass1 F M N] : CoeFun F (fun _ 7→ M → N)␣
↪→where
coe := MonoidHomClass1.toFun

Making this an instance would be bad. When faced with something like f x where the type of f is not a function type,
Lean will try to find a CoeFun instance to coerce f into a function. The above function has type: {M N F : Type}
→ [Monoid M] → [Monoid N] → [MonoidHomClass1 F M N] → CoeFun F (fun x 7→ M
→ N) so, when it trying to apply it, it wouldn’t be a priori clear to Lean in which order the unknown types M, N and
F should be inferred. This is a kind of bad instance that is slightly different from the one we saw already, but it boils
down to the same issue: without knowing M, Lean would have to search for a monoid instance on an unknown type, hence
hopelessly try every monoid instance in the database. If you are curious to see the effect of such an instance you can type
set_option synthInstance.checkSynthOrder false in on top of the above declaration, replace def
badInst with instance, and look for random failures in this file.
Here the solution is easy, we need to tell Lean to first search what is F and then deduce M and N. This is done using the
outParam function. This function is defined as the identity function, but is still recognized by the type class machinery
and triggers the desired behavior. Hence we can retry defining our class, paying attention to the outParam function:

class MonoidHomClass2 (F : Type) (M N : outParam Type) [Monoid M] [Monoid N] where
toFun : F → M → N
map_one : ∀ f : F, toFun f 1 = 1
map_mul : ∀ f g g', toFun f (g * g') = toFun f g * toFun f g'

instance [Monoid M] [Monoid N] [MonoidHomClass2 F M N] : CoeFun F (fun _ 7→ M → N)␣
↪→where
coe := MonoidHomClass2.toFun

attribute [coe] MonoidHomClass2.toFun

Now we can proceed with our plan to instantiate this class.

instance (M N : Type) [Monoid M] [Monoid N] : MonoidHomClass2 (MonoidHom1 M N) M N␣
↪→where
toFun := MonoidHom1.toFun
map_one := fun f 7→ f.map_one
map_mul := fun f 7→ f.map_mul

instance (R S : Type) [Ring R] [Ring S] : MonoidHomClass2 (RingHom1 R S) R S where
toFun := fun f 7→ f.toMonoidHom1.toFun
map_one := fun f 7→ f.toMonoidHom1.map_one
map_mul := fun f 7→ f.toMonoidHom1.map_mul

As promised every lemma we prove about f : F assuming an instance of MonoidHomClass1 F will apply both to
monoid morphisms and ring morphisms. Let us see an example lemma and check it applies to both situations.

lemma map_inv_of_inv [Monoid M] [Monoid N] [MonoidHomClass2 F M N] (f : F) {m m' : M}␣
↪→(h : m*m' = 1) :

f m * f m' = 1 := by

(continues on next page)
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rw [← MonoidHomClass2.map_mul, h, MonoidHomClass2.map_one]

example [Monoid M] [Monoid N] (f : MonoidHom1 M N) {m m' : M} (h : m*m' = 1) : f m * f␣
↪→m' = 1 :=
map_inv_of_inv f h

example [Ring R] [Ring S] (f : RingHom1 R S) {r r' : R} (h : r*r' = 1) : f r * f r' =␣
↪→1 :=
map_inv_of_inv f h

At first sight, it may look like we got back to our old bad idea of making MonoidHom1 a class. But we haven’t. Everything
is shifted one level of abstraction up. The type class resolution procedure won’t be looking for functions, it will be looking
for either MonoidHom1 or RingHom1.
One remaining issue with our approach is the presence of repetitive code around the toFun field and the corresponding
CoeFun instance and coe attribute. It would also be better to record that this pattern is used only for functions with
extra properties, meaning that the coercion to functions should be injective. SoMathlib adds one more layer of abstraction
with the base class DFunLike (where “DFun” stands for dependent function). Let us redefine our MonoidHomClass
on top of this base layer.

class MonoidHomClass3 (F : Type) (M N : outParam Type) [Monoid M] [Monoid N] extends
DFunLike F M (fun _ 7→ N) where

map_one : ∀ f : F, f 1 = 1
map_mul : ∀ (f : F) g g', f (g * g') = f g * f g'

instance (M N : Type) [Monoid M] [Monoid N] : MonoidHomClass3 (MonoidHom1 M N) M N␣
↪→where
coe := MonoidHom1.toFun
coe_injective' := MonoidHom1.ext
map_one := MonoidHom1.map_one
map_mul := MonoidHom1.map_mul

Of course the hierarchy of morphisms does not stop here. We could go on and define a class RingHomClass3 extending
MonoidHomClass3 and instantiate it onRingHom and then later onAlgebraHom (algebras are rings with some extra
structure). But we’ve covered the main formalization ideas used in Mathlib for morphisms and you should be ready to
understand how morphisms are defined in Mathlib.
As an exercise, you should try to define your class of bundled order-preserving function between ordered types, and then
order preserving monoid morphisms. This is for training purposes only. Like continuous functions, order preserving
functions are primarily unbundled in Mathlib where they are defined by the Monotone predicate. Of course you need
to complete the class definitions below.

@[ext]
structure OrderPresHom (α β : Type) [LE α] [LE β] where

toFun : α → β
le_of_le : ∀ a a', a ≤ a' → toFun a ≤ toFun a'

@[ext]
structure OrderPresMonoidHom (M N : Type) [Monoid M] [LE M] [Monoid N] [LE N] extends
MonoidHom1 M N, OrderPresHom M N

class OrderPresHomClass (F : Type) (α β : outParam Type) [LE α] [LE β]

instance (α β : Type) [LE α] [LE β] : OrderPresHomClass (OrderPresHom α β) α β where

instance (α β : Type) [LE α] [Monoid α] [LE β] [Monoid β] :

(continues on next page)
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OrderPresHomClass (OrderPresMonoidHom α β) α β where

instance (α β : Type) [LE α] [Monoid α] [LE β] [Monoid β] :
MonoidHomClass3 (OrderPresMonoidHom α β) α β

:= sorry

7.3 Sub-objects

After defining some algebraic structure and its morphisms, the next step is to consider sets that inherit this algebraic struc-
ture, for instance subgroups or subrings. This largely overlaps with our previous topic. Indeed a set in X is implemented
as a function from X to Prop so sub-objects are function satisfying a certain predicate. Hence we can reuse of lot of
the ideas that led to the DFunLike class and its descendants. We won’t reuse DFunLike itself because this would
break the abstraction barrier from Set X to X → Prop. Instead there is a SetLike class. Instead of wrapping an
injection into a function type, that class wraps an injection into a Set type and defines the corresponding coercion and
Membership instance.

@[ext]
structure Submonoid1 (M : Type) [Monoid M] where

/-- The carrier of a submonoid. -/
carrier : Set M
/-- The product of two elements of a submonoid belongs to the submonoid. -/
mul_mem {a b} : a ∈ carrier → b ∈ carrier → a * b ∈ carrier
/-- The unit element belongs to the submonoid. -/
one_mem : 1 ∈ carrier

/-- Submonoids in `M` can be seen as sets in `M`. -/
instance [Monoid M] : SetLike (Submonoid1 M) M where

coe := Submonoid1.carrier
coe_injective' := Submonoid1.ext

Equipped with the above SetLike instance, we can already state naturally that a submonoid N contains 1 without using
N.carrier. We can also silently treat N as a set in M as take its direct image under a map.

example [Monoid M] (N : Submonoid1 M) : 1 ∈ N := N.one_mem

example [Monoid M] (N : Submonoid1 M) (α : Type) (f : M → α) := f '' N

We also have a coercion to Type which uses Subtype so, given a submonoid N we can write a parameter (x : N)
which can be coerced to an element of M belonging to N.

example [Monoid M] (N : Submonoid1 M) (x : N) : (x : M) ∈ N := x.property

Using this coercion to Type we can also tackle the task of equipping a submonoid with a monoid structure. We will use
the coercion from the type associated to N as above, and the lemma SetCoe.ext asserting this coercion is injective.
Both are provided by the SetLike instance.

instance SubMonoid1Monoid [Monoid M] (N : Submonoid1 M) : Monoid N where
mul := fun x y 7→ 〈x*y, N.mul_mem x.property y.property〉
mul_assoc := fun x y z 7→ SetCoe.ext (mul_assoc (x : M) y z)
one := 〈1, N.one_mem〉
one_mul := fun x 7→ SetCoe.ext (one_mul (x : M))
mul_one := fun x 7→ SetCoe.ext (mul_one (x : M))
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Note that, in the above instance, instead of using the coercion to M and calling the property field, we could have used
destructuring binders as follows.

example [Monoid M] (N : Submonoid1 M) : Monoid N where
mul := fun 〈x, hx〉 〈y, hy〉 7→ 〈x*y, N.mul_mem hx hy〉
mul_assoc := fun 〈x, _〉 〈y, _〉 〈z, _〉 7→ SetCoe.ext (mul_assoc x y z)
one := 〈1, N.one_mem〉
one_mul := fun 〈x, _〉 7→ SetCoe.ext (one_mul x)
mul_one := fun 〈x, _〉 7→ SetCoe.ext (mul_one x)

In order to apply lemmas about submonoids to subgroups or subrings, we need a class, just like for morphisms. Note this
class take a SetLike instance as a parameter so it does not need a carrier field and can use the membership notation in
its fields.

class SubmonoidClass1 (S : Type) (M : Type) [Monoid M] [SetLike S M] : Prop where
mul_mem : ∀ (s : S) {a b : M}, a ∈ s → b ∈ s → a * b ∈ s
one_mem : ∀ s : S, 1 ∈ s

instance [Monoid M] : SubmonoidClass1 (Submonoid1 M) M where
mul_mem := Submonoid1.mul_mem
one_mem := Submonoid1.one_mem

As an exercise you should define a Subgroup1 structure, endow it with a SetLike instance and a
SubmonoidClass1 instance, put a Group instance on the subtype associated to a Subgroup1 and define a
SubgroupClass1 class.
Another very important thing to know about subobjects of a given algebraic object in Mathlib always form a complete
lattice, and this structure is used a lot. For instance you may look for the lemma saying that an intersection of submonoids
is a submonoid. But this won’t be a lemma, this will be an infimum construction. Let us do the case of two submonoids.

instance [Monoid M] : Inf (Submonoid1 M) :=
〈fun S1 S2 7→
{ carrier := S1 ∩ S2

one_mem := 〈S1.one_mem, S2.one_mem〉
mul_mem := fun 〈hx, hx'〉 〈hy, hy'〉 7→ 〈S1.mul_mem hx hy, S2.mul_mem hx' hy'〉 }〉

This allows to get the intersections of two submonoids as a submonoid.

example [Monoid M] (N P : Submonoid1 M) : Submonoid1 M := N ⊓ P

You may think it’s a shame that we had to use the inf symbol ⊓ in the above example instead of the intersection symbol
∩. But think about the supremum. The union of two submonoids is not a submonoid. However submonoids still form
a lattice (even a complete one). Actually N ⊔ P is the submonoid generated by the union of N and P and of course it
would be very confusing to denote it by N ∪ P. So you can see the use of N ⊓ P as much more consistent. It is also a
lot more consistent across various kind of algebraic structures. It may look a bit weird at first to see the sum of two vector
subspace E and F denoted by E ⊔ F instead of E + F. But you will get used to it. And soon you will consider the
E + F notation as a distraction emphasizing the anecdotal fact that elements of E ⊔ F can be written as a sum of an
element of E and an element of F instead of emphasizing the fundamental fact that E ⊔ F is the smallest vector subspace
containing both E and F.
Our last topic for this chapter is that of quotients. Again we want to explain how convenient notation are built and code
duplication is avoided in Mathlib. Here the main device is the HasQuotient class which allows notations like M N.
Beware the quotient symbol is a special unicode character, not a regular ASCII division symbol.
As an example, we will build the quotient of a commutative monoid by a submonoid, leave proofs to you. In the last
example, you can use Setoid.refl but it won’t automatically pick up the relevant Setoid structure. You can fix this
issue by providing all arguments using the @ syntax, as in @Setoid.refl M N.Setoid.
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def Submonoid.Setoid [CommMonoid M] (N : Submonoid M) : Setoid M where
r := fun x y 7→ ∃ w ∈ N, ∃ z ∈ N, x*w = y*z
iseqv := {
refl := fun x 7→ 〈1, N.one_mem, 1, N.one_mem, rfl〉
symm := fun 〈w, hw, z, hz, h〉 7→ 〈z, hz, w, hw, h.symm〉
trans := by

sorry
}

instance [CommMonoid M] : HasQuotient M (Submonoid M) where
quotient' := fun N 7→ Quotient N.Setoid

def QuotientMonoid.mk [CommMonoid M] (N : Submonoid M) : M → M N := Quotient.mk N.
↪→Setoid

instance [CommMonoid M] (N : Submonoid M) : Monoid (M N) where
mul := Quotient.map2' (· * ·) (by

sorry
)

mul_assoc := by
sorry

one := QuotientMonoid.mk N 1
one_mul := by

sorry
mul_one := by

sorry
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EIGHT

GROUPS AND RINGS

We saw in Section 2.2 how to reason about operations in groups and rings. Later, in Section 6.2, we saw how to define
abstract algebraic structures, such as group structures, as well as concrete instances such as the ring structure on the
Gaussian integers. Chapter 7 explained how hierarchies of abstract structures are handled in Mathlib.
In this chapter we work with groups and rings in more detail. We won’t be able to cover every aspect of the treatment of
these topics in Mathlib, especially since Mathlib is constantly growing. But we will provide entry points to the library and
show how the essential concepts are used. There is some overlap with the discussion of Chapter 7, but here we will focus
on how to use Mathlib instead of the design decisions behind the way the topics are treated. So making sense of some of
the examples may require reviewing the background from Chapter 7.

8.1 Monoids and Groups

8.1.1 Monoids and their morphisms

Courses in abstract algebra often start with groups and then progress to rings, fields, and vector spaces. This involves
some contortions when discussing multiplication on rings since the multiplication operation does not come from a group
structure but many of the proofs carry over verbatim from group theory to this new setting. The most common fix,
when doing mathematics with pen and paper, is to leave those proofs as exercises. A less efficient but safer and more
formalization-friendly way of proceeding is to use monoids. A monoid structure on a type M is an internal composition
law that is associative and has a neutral element. Monoids are used primarily to accommodate both groups and the
multiplicative structure of rings. But there are also a number of natural examples; for instance, the set of natural numbers
equipped with addition forms a monoid.
From a practical point of view, you can mostly ignore monoids when using Mathlib. But you need to know they exist
when you are looking for a lemma by browsing Mathlib files. Otherwise, you might end up looking for a statement in the
group theory files when it is actually in the found with monoids because it does not require elements to be invertible.
The type of monoid structures on a type M is written Monoid M. The function Monoid is a type class so it will
almost always appear as an instance implicit argument (in other words, in square brackets). By default, Monoid uses
multiplicative notation for the operation; for additive notation use AddMonoid instead. The commutative versions of
these structures add the prefix Comm before Monoid.

example {M : Type*} [Monoid M] (x : M) : x * 1 = x := mul_one x

example {M : Type*} [AddCommMonoid M] (x y : M) : x + y = y + x := add_comm x y

Note that although AddMonoid is found in the library, it is generally confusing to use additive notation with a non-
commutative operation.
The type of morphisms between monoids M and N is called MonoidHom M N and written M →* N. Lean will
automatically see such a morphism as a function from M to N when we apply it to elements of M. The additive version is
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called AddMonoidHom and written M →+ N.

example {M N : Type*} [Monoid M] [Monoid N] (x y : M) (f : M →* N) : f (x * y) = f x␣
↪→* f y :=
f.map_mul x y

example {M N : Type*} [AddMonoid M] [AddMonoid N] (f : M →+ N) : f 0 = 0 :=
f.map_zero

These morphisms are bundled maps, i.e. they package together a map and some of its properties. Remember that Section
7.2 explains bundled maps; here we simply note the slightly unfortunate consequence that we cannot use ordinary function
composition to compose maps. Instead, we need to use MonoidHom.comp and AddMonoidHom.comp.

example {M N P : Type*} [AddMonoid M] [AddMonoid N] [AddMonoid P]
(f : M →+ N) (g : N →+ P) : M →+ P := g.comp f

8.1.2 Groups and their morphisms

Wewill have much more to say about groups, which are monoids with the extra property that every element has an inverse.

example {G : Type*} [Group G] (x : G) : x * x ¹ = 1 := mul_inv_self x

Similar to the ring tactic that we saw earlier, there is a group tactic that proves any identity that holds in any group.
(Equivalently, it proves the identities that hold in free groups.)

example {G : Type*} [Group G] (x y z : G) : x * (y * z) * (x * z) ¹ * (x * y * x ¹) ¹ =␣
↪→1 := by
group

There is also a tactic for identities in commutative additive groups called abel.

example {G : Type*} [AddCommGroup G] (x y z : G) : z + x + (y - z - x) = y := by
abel

Interestingly, a group morphism is nothing more than a monoid morphism between groups. So we can copy and paste
one of our earlier examples, replacing Monoid with Group.

example {G H : Type*} [Group G] [Group H] (x y : G) (f : G →* H) : f (x * y) = f x *␣
↪→f y :=
f.map_mul x y

Of course we do get some new properties, such as this one:

example {G H : Type*} [Group G] [Group H] (x : G) (f : G →* H) : f (x ¹) = (f x) ¹ :=
f.map_inv x

You may be worried that constructing group morphisms will require us to do unnecessary work since the definition of
monoid morphism enforces that neutral elements are sent to neutral elements while this is automatic in the case of group
morphisms. In practice the extra work is not hard, but, to avoid it, there is a function building a group morphism from a
function between groups that is compatible with the composition laws.

example {G H : Type*} [Group G] [Group H] (f : G → H) (h : ∀ x y, f (x * y) = f x * f␣
↪→y) :

G →* H :=
MonoidHom.mk' f h
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There is also a type MulEquiv of group (or monoid) isomorphisms denoted by '* (and AddEquiv denoted by '+
in additive notation). The inverse of f : G '* H is MulEquiv.symm f : H '* G, composition of f and g
is MulEquiv.trans f g, and the identity isomorphism of G is MùlEquiv.refl G. Using anonymous projector
notation, the first two can be written f.symm and f.trans g respectively. Elements of this type are automatically
coerced to morphisms and functions when necessary.

example {G H : Type*} [Group G] [Group H] (f : G '* H) :
f.trans f.symm = MulEquiv.refl G :=

f.self_trans_symm

One can use MulEquiv.ofBijective to build an isomorphism from a bijective morphism. Doing so makes the
inverse function noncomputable.

noncomputable example {G H : Type*} [Group G] [Group H]
(f : G →* H) (h : Function.Bijective f) :
G '* H :=

MulEquiv.ofBijective f h

8.1.3 Subgroups

Just as group morphisms are bundled, a subgroup of G is also a bundled structure consisting of a set in G with the relevant
closure properties.

example {G : Type*} [Group G] (H : Subgroup G) {x y : G} (hx : x ∈ H) (hy : y ∈ H) :
x * y ∈ H :=

H.mul_mem hx hy

example {G : Type*} [Group G] (H : Subgroup G) {x : G} (hx : x ∈ H) :
x ¹ ∈ H :=

H.inv_mem hx

In the example above, it is important to understand that Subgroup G is the type of subgroups of G, rather than a
predicate IsSubgroup H where H is an element of Set G. Subgroup G is endowed with a coercion to Set G and
a membership predicate on G. See Section 7.3 for an explanation of how and why this is done.
Of course, two subgroups are the same if and only if they have the same elements. This fact is registered for use with
the ext tactic, which can be used to prove two subgroups are equal in the same way it is used to prove that two sets are
equal.
To state and prove, for example, that Z is an additive subgroup of Q, what we really want is to construct a term of type
AddSubgroup Q whose projection to Set Q is Z, or, more precisely, the image of Z in Q.

example : AddSubgroup Q where
carrier := Set.range ((↑) : Z → Q)
add_mem' := by
rintro _ _ 〈n, rfl〉 〈m, rfl〉
use n + m
simp

zero_mem' := by
use 0
simp

neg_mem' := by
rintro _ 〈n, rfl〉
use -n
simp

Using type classes, Mathlib knows that a subgroup of a group inherits a group structure.
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example {G : Type*} [Group G] (H : Subgroup G) : Group H := inferInstance

This example is subtle. The object H is not a type, but Lean automatically coerces it to a type by interpreting it as a
subtype of G. So the above example can be restated more explicitly as:

example {G : Type*} [Group G] (H : Subgroup G) : Group {x : G // x ∈ H} :=␣
↪→inferInstance

An important benefit of having a type Subgroup G instead of a predicate IsSubgroup : Set G → Prop is
that one can easily endow Subgroup G with additional structure. Importantly, it has the structure of a complete lattice
structure with respect to inclusion. For instance, instead of having a lemma stating that an intersection of two subgroups
of G is again a subgroup, we have used the lattice operation ⊓ to construct the intersection. We can then apply arbitrary
lemmas about lattices to the construction.
Let us check that the set underlying the infimum of two subgroups is indeed, by definition, their intersection.

example {G : Type*} [Group G] (H H' : Subgroup G) :
((H ⊓ H' : Subgroup G) : Set G) = (H : Set G) ∩ (H' : Set G) := rfl

It may look strange to have a different notation for what amounts to the intersection of the underlying sets, but the
correspondence does not carry over to the supremum operation and set union, since a union of subgroups is not, in general,
a subgroup. Instead one needs to use the subgroup generated by the union, which is done using Subgroup.closure.

example {G : Type*} [Group G] (H H' : Subgroup G) :
((H ⊔ H' : Subgroup G) : Set G) = Subgroup.closure ((H : Set G) ∪ (H' : Set G))␣

↪→:= by
rw [Subgroup.sup_eq_closure]

Another subtlety is that G itself does not have type Subgroup G, so we need a way to talk about G seen as a subgroup
of G. This is also provided by the lattice structure: the full subgroup is the top element of this lattice.

example {G : Type*} [Group G] (x : G) : x ∈ (⊤ : Subgroup G) := trivial

Similarly the bottom element of this lattice is the subgroup whose only element is the neutral element.

example {G : Type*} [Group G] (x : G) : x ∈ (⊥ : Subgroup G) ↔ x = 1 := Subgroup.mem_
↪→bot

As an exercise in manipulating groups and subgroups, you can define the conjugate of a subgroup by an element of the
ambient group.

def conjugate {G : Type*} [Group G] (x : G) (H : Subgroup G) : Subgroup G where
carrier := {a : G | ∃ h, h ∈ H ∧ a = x * h * x ¹}
one_mem' := by
dsimp
sorry

inv_mem' := by
dsimp
sorry

mul_mem' := by
dsimp
sorry

Tying the previous two topics together, one can push forward and pull back subgroups using group morphisms. The
naming convention in Mathlib is to call those operations map and comap. These are not the common mathematical
terms, but they have the advantage of being shorter than “pushforward” and “direct image.”
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example {G H : Type*} [Group G] [Group H] (G' : Subgroup G) (f : G →* H) : Subgroup H␣
↪→:=
Subgroup.map f G'

example {G H : Type*} [Group G] [Group H] (H' : Subgroup H) (f : G →* H) : Subgroup G␣
↪→:=
Subgroup.comap f H'

#check Subgroup.mem_map
#check Subgroup.mem_comap

In particular, the preimage of the bottom subgroup under a morphism f is a subgroup called the kernel of f, and the range
of f is also a subgroup.

example {G H : Type*} [Group G] [Group H] (f : G →* H) (g : G) :
g ∈ MonoidHom.ker f ↔ f g = 1 :=

f.mem_ker

example {G H : Type*} [Group G] [Group H] (f : G →* H) (h : H) :
h ∈ MonoidHom.range f ↔ ∃ g : G, f g = h :=

f.mem_range

As exercises in manipulating group morphisms and subgroups, let us prove some elementary properties. They are already
proved in Mathlib, so do not use exact? too quickly if you want to benefit from these exercises.

section exercises
variable {G H : Type*} [Group G] [Group H]

open Subgroup

example (φ : G →* H) (S T : Subgroup H) (hST : S ≤ T) : comap φ S ≤ comap φ T := by
sorry

example (φ : G →* H) (S T : Subgroup G) (hST : S ≤ T) : map φ S ≤ map φ T := by
sorry

variable {K : Type*} [Group K]

-- Remember you can use the `ext` tactic to prove an equality of subgroups.
example (φ : G →* H) (ψ : H →* K) (U : Subgroup K) :

comap (ψ.comp φ) U = comap φ (comap ψ U) := by
sorry

-- Pushing a subgroup along one homomorphism and then another is equal to
-- pushing it forward along the composite of the homomorphisms.
example (φ : G →* H) (ψ : H →* K) (S : Subgroup G) :

map (ψ.comp φ) S = map ψ (S.map φ) := by
sorry

end exercises

Let us finish this introduction to subgroups in Mathlib with two very classical results. Lagrange theorem states the car-
dinality of a subgroup of a finite group divides the cardinality of the group. Sylow’s first theorem is a famous partial
converse to Lagrange’s theorem.
While this corner of Mathlib is partly set up to allow computation, we can tell Lean to use nonconstructive logic anyway
using the following open scoped command.
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open scoped Classical

open Fintype

example {G : Type*} [Group G] [Fintype G] (G' : Subgroup G) : card G' | card G :=
〈G'.index, mul_comm G'.index _ ▶ G'.index_mul_card.symm〉

open Subgroup

example {G : Type*} [Group G] [Fintype G] (p : N) {n : N} [Fact p.Prime]
(hdvd : p ^ n | card G) : ∃ K : Subgroup G, card K = p ^ n :=

Sylow.exists_subgroup_card_pow_prime p hdvd

The next two exercises derive a corollary of Lagrange’s lemma. (This is also already in Mathlib, so do not use exact?
too quickly.)

lemma eq_bot_iff_card {G : Type*} [Group G] {H : Subgroup G} [Fintype H] :
H = ⊥ ↔ card H = 1 := by

suffices (∀ x ∈ H, x = 1) ↔ ∃ x ∈ H, ∀ a ∈ H, a = x by
simpa [eq_bot_iff_forall, card_eq_one_iff]

sorry

#check card_dvd_of_le

lemma inf_bot_of_coprime {G : Type*} [Group G] (H K : Subgroup G) [Fintype H]␣
↪→[Fintype K]

(h : (card H).Coprime (card K)) : H ⊓ K = ⊥ := by
sorry

8.1.4 Concrete groups

One can also manipulate concrete groups in Mathlib, although this is typically more complicated than working with the
abstract theory. For instance, given any type X, the group of permutations of X is Equiv.Perm X. In particular the
symmetric group Sn is Equiv.Perm (Fin n). One can state abstract results about this group, for instance saying
that Equiv.Perm X is generated by cycles if X is finite.

open Equiv

example {X : Type*} [Finite X] : Subgroup.closure {σ : Perm X | Perm.IsCycle σ} = ⊤ :=
Perm.closure_isCycle

One can be fully concrete and compute actual products of cycles. Below we use the #simp command, which calls the
simp tactic on a given expression. The notation c[] is used to define a cyclic permutation. In the example, the result is
a permutation of N. One could use a type ascription such as (1 : Fin 5) on the first number appearing to make it a
computation in Perm (Fin 5).

#simp [mul_assoc] c[1, 2, 3] * c[2, 3, 4]

Another way to work with concrete groups is to use free groups and group presentations. The free group on a type α is
FreeGroup α and the inclusion map is FreeGroup.of : α → FreeGroup α. For instance let us define a
type S with three elements denoted by a, b and c, and the element ab ¹ of the corresponding free group.

section FreeGroup

inductive S | a | b | c

(continues on next page)
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(continued from previous page)

open S

def myElement : FreeGroup S := (.of a) * (.of b) ¹

Note that we gave the expected type of the definition so that Lean knows that .of means FreeGroup.of.
The universal property of free groups is embodied as the equivalence FreeGroup.lift. For example, let us define
the group morphism from FreeGroup S to Perm (Fin 5) that sends a to c[1, 2, 3], b to c[2, 3, 1],
and c to c[2, 3],

def myMorphism : FreeGroup S →* Perm (Fin 5) :=
FreeGroup.lift fun | .a => c[1, 2, 3]

| .b => c[2, 3, 1]
| .c => c[2, 3]

As a last concrete example, let us see how to define a group generated by a single element whose cube is one (so that
group will be isomorphic to Z/3) and build a morphism from that group to Perm (Fin 5).
As a type with exactly one element, we will use Unit whose only element is denoted by (). The function Present-
edGroup takes a set of relations, i.e. a set of elements of some free group, and returns a group that is this free group
quotiented by a normal subgroup generated by relations. (We will see how to handle more general quotients in Section
8.1.6.) Since we somehow hide this behind a definition, we use deriving Group to force creation of a group instance
on myGroup.

def myGroup := PresentedGroup {.of () ^ 3} deriving Group

The universal property of presented groups ensures that morphisms out of this group can be built from functions that send
the relations to the neutral element of the target group. So we need such a function and a proof that the condition holds.
Then we can feed this proof to PresentedGroup.toGroup to get the desired group morphism.

def myMap : Unit → Perm (Fin 5)
| () => c[1, 2, 3]

lemma compat_myMap :
∀ r ∈ ({.of () ^ 3} : Set (FreeGroup Unit)), FreeGroup.lift myMap r = 1 := by

rintro _ rfl
simp
decide

def myNewMorphism : myGroup →* Perm (Fin 5) := PresentedGroup.toGroup compat_myMap

end FreeGroup

8.1.5 Group actions

One important way that group theory interacts with the rest of mathematics is through the use of group actions. An action
of a group G on some type X is nothing more than a morphism from G to Equiv.Perm X. So in a sense group actions
are already covered by the previous discussion. But we don’t want to carry this morphism around; instead, we want it to
be inferred automatically by Lean as much as possible. So we have a type class for this, which is MulAction G X.
The downside of this setup is that having multiple actions of the same group on the same type requires some contortions,
such as defining type synonyms, each of which carries different type class instances.
This allows us in particular to use g · x to denote the action of a group element g on a point x.
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noncomputable section GroupActions

example {G X : Type*} [Group G] [MulAction G X] (g g': G) (x : X) :
g · (g' · x) = (g * g') · x :=

(mul_smul g g' x).symm

There is also a version for additive group called AddAction, where the action is denoted by + . This is used for instance
in the definition of affine spaces.

example {G X : Type*} [AddGroup G] [AddAction G X] (g g' : G) (x : X) :
g + (g' + x) = (g + g') + x :=

(add_vadd g g' x).symm

The underlying group morphism is called MulAction.toPermHom.

open MulAction

example {G X : Type*} [Group G] [MulAction G X] : G →* Equiv.Perm X :=
toPermHom G X

As an illustration let us see how to define the Cayley isomorphism embedding of any group G into a permutation group,
namely Perm G.

def CayleyIsoMorphism (G : Type*) [Group G] : G '* (toPermHom G G).range :=
Equiv.Perm.subgroupOfMulAction G G

Note that nothing before the above definition required having a group rather than a monoid (or any type endowed with a
multiplication operation really).
The group condition really enters the picture when we will want to partition X into orbits. The corresponding equivalence
relation on X is called MulAction.orbitRel. It is not declared as a global instance.

example {G X : Type*} [Group G] [MulAction G X] : Setoid X := orbitRel G X

Using this we can state that X is partitioned into orbits under the action of G. More precisely, we get a bijection between X
and the dependent product (ω : orbitRel.Quotient G X) × (orbit G (Quotient.out' ω)) where
Quotient.out' ω simply chooses an element that projects to ω. Recall that elements of this dependent product are
pairs 〈ω, x〉 where the type orbit G (Quotient.out' ω) of x depends on ω.

example {G X : Type*} [Group G] [MulAction G X] :
X ' (ω : orbitRel.Quotient G X) × (orbit G (Quotient.out' ω)) :=

MulAction.selfEquivSigmaOrbits G X

In particular, when X is finite, this can be combined with Fintype.card_congr and Fintype.card_sigma to
deduce that the cardinality of X is the sum of the cardinalities of the orbits. Furthermore, the orbits are in bijection with
the quotient of G under the action of the stabilizers by left translation. This action of a subgroup by left-translation is used
to define quotients of a group by a subgroup with notation / so we can use the following concise statement.

example {G X : Type*} [Group G] [MulAction G X] (x : X) :
orbit G x ' G stabilizer G x :=

MulAction.orbitEquivQuotientStabilizer G x

An important special case of combining the above two results is when X is a group G equipped with the action of a
subgroup H by translation. In this case all stabilizers are trivial so every orbit is in bijection with H and we get:

example {G : Type*} [Group G] (H : Subgroup G) : G ' (G H) × H :=
groupEquivQuotientProdSubgroup
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This is the conceptual variant of the version of Lagrange theorem that we saw above. Note this version makes no finiteness
assumption.
As an exercise for this section, let us build the action of a group on its subgroup by conjugation, using our definition of
conjugate from a previous exercise.

variable {G : Type*} [Group G]

lemma conjugate_one (H : Subgroup G) : conjugate 1 H = H := by
sorry

instance : MulAction G (Subgroup G) where
smul := conjugate
one_smul := by
sorry

mul_smul := by
sorry

end GroupActions

8.1.6 Quotient groups

In the above discussion of subgroups acting on groups, we saw the quotient G H appear. In general this is only a type.
It can be endowed with a group structure such that the quotient map is a group morphism if and only if H is a normal
subgroup (and this group structure is then unique).
The normality assumption is a type class Subgroup.Normal so that type class inference can use it to derive the group
structure on the quotient.

noncomputable section QuotientGroup

example {G : Type*} [Group G] (H : Subgroup G) [H.Normal] : Group (G H) :=␣
↪→inferInstance

example {G : Type*} [Group G] (H : Subgroup G) [H.Normal] : G →* G H :=
QuotientGroup.mk' H

The universal property of quotient groups is accessed through QuotientGroup.lift: a group morphism φ descends
to G N as soon as its kernel contains N.

example {G : Type*} [Group G] (N : Subgroup G) [N.Normal] {M : Type*}
[Group M] (φ : G →* M) (h : N ≤ MonoidHom.ker φ) : G N →* M :=

QuotientGroup.lift N φ h

The fact that the target group is called M is the above snippet is a clue that having a monoid structure on M would be
enough.
An important special case is when N = ker φ. In that case the descended morphism is injective and we get a group
isomorphism onto its image. This result is often called the first isomorphism theorem.

example {G : Type*} [Group G] {M : Type*} [Group M] (φ : G →* M) :
G MonoidHom.ker φ →* MonoidHom.range φ :=

QuotientGroup.quotientKerEquivRange φ

Applying the universal property to a composition of a morphism φ : G →* G' with a quotient group projection
Quotient.mk' N', we can also aim for a morphism from G N to G' N'. The condition required on φ is usually
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formulated by saying “φ should send N inside N'.” But this is equivalent to asking that φ should pull N' back inside N,
and the latter condition is nicer to work with since the definition of pullback does not involve an existential quantifier.

example {G G': Type*} [Group G] [Group G']
{N : Subgroup G} [N.Normal] {N' : Subgroup G'} [N'.Normal]
{φ : G →* G'} (h : N ≤ Subgroup.comap φ N') : G N →* G' N':=

QuotientGroup.map N N' φ h

One subtle point to keep in mind is that the type G N really depends on N (up to definitional equality), so having a
proof that two normal subgroups N and M are equal is not enough to make the corresponding quotients equal. However
the universal properties does give an isomorphism in this case.

example {G : Type*} [Group G] {M N : Subgroup G} [M.Normal]
[N.Normal] (h : M = N) : G M '* G N := QuotientGroup.quotientMulEquivOfEq h

As a final series of exercises for this section, we will prove that if H and K are disjoint normal subgroups of a finite group
G such that the product of their cardinalities is equal to the cardinality of G then G is isomorphic to H × K. Recall that
disjoint in this context means H ⊓ K = ⊥.
We start with playing a bit with Lagrange’s lemma, without assuming the subgroups are normal or disjoint.

section
variable {G : Type*} [Group G] {H K : Subgroup G}

open MonoidHom

#check card_pos -- The nonempty argument will be automatically inferred for subgroups
#check Subgroup.index_eq_card
#check Subgroup.index_mul_card
#check Nat.eq_of_mul_eq_mul_right

lemma aux_card_eq [Fintype G] (h' : card G = card H * card K) : card (G H) = card K␣
↪→:= by
sorry

From now on, we assume that our subgroups are normal and disjoint, and we assume the cardinality condition. Now we
construct the first building block of the desired isomorphism.

variable [H.Normal] [K.Normal] [Fintype G] (h : Disjoint H K) (h' : card G = card H *␣
↪→card K)

#check bijective_iff_injective_and_card
#check ker_eq_bot_iff
#check restrict
#check ker_restrict

def iso1 [Fintype G] (h : Disjoint H K) (h' : card G = card H * card K) : K '* G H␣
↪→:= by
sorry

Now we can define our second building block. We will need MonoidHom.prod, which builds a morphism from G0 to
G1 × G2 out of morphisms from G0 to G1 and G2.

def iso2 : G '* (G K) × (G H) := by
sorry

We are ready to put all pieces together.

126 Chapter 8. Groups and Rings



Mathematics in Lean, Release 0.1

#check MulEquiv.prodCongr

def finalIso : G '* H × K :=
sorry

8.2 Rings

8.2.1 Rings, their units, morphisms and subrings

The type of ring structures on a type R is Ring R. The variant where multiplication is assumed to be commutative is
CommRing R. We have already seen that the ring tactic will prove any equality that follows from the axioms of a
commutative ring.

example {R : Type*} [CommRing R] (x y : R) : (x + y) ^ 2 = x ^ 2 + y ^ 2 + 2 * x * y␣
↪→:= by ring

More exotic variants do not require that the addition on R forms a group but only an additive monoid. The corresponding
type classes are Semiring R and CommSemiring R. The type of natural numbers is an important instance of
CommSemiring R, as is any type of functions taking values in the natural numbers. Another important example is
the type of ideals in a ring, which will be discussed below. The name of the ring tactic is doubly misleading, since it
assumes commutativity but works in semirings as well. In other words, it applies to any CommSemiring.

example (x y : N) : (x + y) ^ 2 = x ^ 2 + y ^ 2 + 2 * x * y := by ring

There are also versions of the ring and semiring classes that do not assume the existence of a multiplicative unit or the
associativity of multiplication. We will not discuss those here.
Some concepts that are traditionally taught in an introduction to ring theory are actually about the underlyingmultiplicative
monoid. A prominent example is the definition of the units of a ring. Every (multiplicative) monoid M has a predicate
IsUnit : M → Prop asserting existence of a two-sided inverse, a type Units M of units with notation Mˣ, and
a coercion to M. The type Units M bundles an invertible element with its inverse as well as properties than ensure that
each is indeed the inverse of the other. This implementation detail is relevant mainly when defining computable functions.
In most situations one can use IsUnit.unit {x : M} : IsUnit x → Mˣ to build a unit. In the commutative
case, one also has Units.mkOfMulEqOne (x y : M) : x * y = 1 → Mˣ which builds x seen as unit.

example (x : Zˣ) : x = 1 ∨ x = -1 := Int.units_eq_one_or x

example {M : Type*} [Monoid M] (x : Mˣ) : (x : M) * x ¹ = 1 := Units.mul_inv x

example {M : Type*} [Monoid M] : Group Mˣ := inferInstance

The type of ring morphisms between two (semi)-rings R and S is RingHom R S, with notation R →+* S.

example {R S : Type*} [Ring R] [Ring S] (f : R →+* S) (x y : R) :
f (x + y) = f x + f y := f.map_add x y

example {R S : Type*} [Ring R] [Ring S] (f : R →+* S) : Rˣ →* Sˣ :=
Units.map f

The isomorphism variant is RingEquiv, with notation '+*.
As with submonoids and subgroups, there is a Subring R type for subrings of a ring R, but this type is a lot less useful
than the type of subgroups since one cannot quotient a ring by a subring.
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example {R : Type*} [Ring R] (S : Subring R) : Ring S := inferInstance

Also notice that RingHom.range produces a subring.

8.2.2 Ideals and quotients

For historical reasons, Mathlib only has a theory of ideals for commutative rings. (The ring library was originally developed
to make quick progress toward the foundations of modern algebraic geometry.) So in this section we will work with
commutative (semi)rings. Ideals of R are defined as submodules of R seen as R-modules. Modules will be covered later
in a chapter on linear algebra, but this implementation detail can mostly be safely ignored since most (but not all) relevant
lemmas are restated in the special context of ideals. But anonymous projection notation won’t always work as expected.
For instance, one cannot replace Ideal.Quotient.mk I by I.Quotient.mk in the snippet below because there
are two .``s and so it will parse as ``(Ideal.Quotient I).mk; but Ideal.Quotient by
itself doesn’t exist.

example {R : Type*} [CommRing R] (I : Ideal R) : R →+* R I :=
Ideal.Quotient.mk I

example {R : Type*} [CommRing R] {a : R} {I : Ideal R} :
Ideal.Quotient.mk I a = 0 ↔ a ∈ I :=

Ideal.Quotient.eq_zero_iff_mem

The universal property of quotient rings is Ideal.Quotient.lift.

example {R S : Type*} [CommRing R] [CommRing S] (I : Ideal R) (f : R →+* S)
(H : I ≤ RingHom.ker f) : R I →+* S :=

Ideal.Quotient.lift I f H

In particular it leads to the first isomorphism theorem for rings.

example {R S : Type*} [CommRing R] [CommRing S](f : R →+* S) :
R RingHom.ker f '+* f.range :=

RingHom.quotientKerEquivRange f

Ideals form a complete lattice structure with the inclusion relation, as well as a semiring structure. These two structures
interact nicely.

variable {R : Type*} [CommRing R] {I J : Ideal R}

example : I + J = I ⊔ J := rfl

example {x : R} : x ∈ I + J ↔ ∃ a ∈ I, ∃ b ∈ J, a + b = x := by
simp [Submodule.mem_sup]

example : I * J ≤ J := Ideal.mul_le_left

example : I * J ≤ I := Ideal.mul_le_right

example : I * J ≤ I ⊓ J := Ideal.mul_le_inf

One can use ring morphisms to push ideals forward and pull them back using Ideal.map and Ideal.comap, re-
spectively. As usual, the latter is more convenient to use since it does not involve an existential quantifier. This explains
why it is used to state the condition that allows us to build morphisms between quotient rings.
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example {R S : Type*} [CommRing R] [CommRing S] (I : Ideal R) (J : Ideal S) (f : R␣
↪→→+* S)

(H : I ≤ Ideal.comap f J) : R I →+* S J :=
Ideal.quotientMap J f H

One subtle point is that the type R I really depends on I (up to definitional equality), so having a proof that two ideals
I and J are equal is not enough to make the corresponding quotients equal. However, the universal properties do provide
an isomorphism in this case.

example {R : Type*} [CommRing R] {I J : Ideal R} (h : I = J) : R I '+* R J :=
Ideal.quotEquivOfEq h

We can now present the Chinese remainder isomorphism as an example. Pay attention to the difference between the
indexed infimum symbol ⨅ and the big product of types symbol Π. Depending on your font, those can be pretty hard to
distinguish.

example {R : Type*} [CommRing R] {ι : Type*} [Fintype ι] (f : ι → Ideal R)
(hf : ∀ i j, i 6= j → IsCoprime (f i) (f j)) : (R ⨅ i, f i) '+* Π i, R f i :=

Ideal.quotientInfRingEquivPiQuotient f hf

The elementary version of the Chinese remainder theorem, a statement about ZMod, can be easily deduced from the
previous one:

open BigOperators PiNotation

example {ι : Type*} [Fintype ι] (a : ι → N) (coprime : ∀ i j, i 6= j → (a i).Coprime␣
↪→(a j)) :

ZMod (Π i, a i) '+* ∀ i, ZMod (a i) :=
ZMod.prodEquivPi a coprime

As a series of exercises, we will reprove the Chinese remainder theorem in the general case.
We first need to define the map appearing in the theorem, as a ring morphism, using the universal property of quotient
rings.

variable {ι R : Type*} [CommRing R]
open Ideal Quotient Function

#check Pi.ringHom
#check ker_Pi_Quotient_mk

/-- The homomorphism from ``R � � i, I i`` to ``Π i, R � I i`` featured in the␣
↪→Chinese
Remainder Theorem. -/

def chineseMap (I : ι → Ideal R) : (R ⨅ i, I i) →+* Π i, R I i :=
sorry

Make sure the following next two lemmas can be proven by rfl.

lemma chineseMap_mk (I : ι → Ideal R) (x : R) :
chineseMap I (Quotient.mk _ x) = fun i : ι 7→ Ideal.Quotient.mk (I i) x :=

sorry

lemma chineseMap_mk' (I : ι → Ideal R) (x : R) (i : ι) :
chineseMap I (mk _ x) i = mk (I i) x :=

sorry
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The next lemma proves the easy half of the Chinese remainder theorem, without any assumption on the family of ideals.
The proof is less than one line long.

#check injective_lift_iff

lemma chineseMap_inj (I : ι → Ideal R) : Injective (chineseMap I) := by
sorry

We are now ready for the heart of the theorem, which will show the surjectivity of our chineseMap. First we need to
know the different ways one can express the coprimality (also called co-maximality assumption). Only the first two will
be needed below.

#check IsCoprime
#check isCoprime_iff_add
#check isCoprime_iff_exists
#check isCoprime_iff_sup_eq
#check isCoprime_iff_codisjoint

We take the opportunity to use induction on Finset. Relevant lemmas on Finset are given below. Remember that
the ring tactic works for semirings and that the ideals of a ring form a semiring.

#check Finset.mem_insert_of_mem
#check Finset.mem_insert_self

theorem isCoprime_Inf {I : Ideal R} {J : ι → Ideal R} {s : Finset ι}
(hf : ∀ j ∈ s, IsCoprime I (J j)) : IsCoprime I (⨅ j ∈ s, J j) := by

classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>

simp
| @insert i s _ hs =>

rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc

1 = I + K := sorry
_ = I + K * (I + J i) := sorry
_ = (1 + K) * I + K * J i := sorry
_ ≤ I + K ⊓ J i := sorry

We can now prove surjectivity of the map appearing in the Chinese remainder theorem.

lemma chineseMap_surj [Fintype ι] {I : ι → Ideal R}
(hI : ∀ i j, i 6= j → IsCoprime (I i) (I j)) : Surjective (chineseMap I) := by

classical
intro g
choose f hf using fun i 7→ Ideal.Quotient.mk_surjective (g i)
have key : ∀ i, ∃ e : R, mk (I i) e = 1 ∧ ∀ j, j 6= i → mk (I j) e = 0 := by
intro i
have hI' : ∀ j ∈ ({i} : Finset ι)c, IsCoprime (I i) (I j) := by

sorry
sorry

choose e he using key
use mk _ (Σ i, f i * e i)
sorry

Now all the pieces come together in the following:
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noncomputable def chineseIso [Fintype ι] (f : ι → Ideal R)
(hf : ∀ i j, i 6= j → IsCoprime (f i) (f j)) : (R ⨅ i, f i) '+* Π i, R f i :=

{ Equiv.ofBijective _ 〈chineseMap_inj f, chineseMap_surj hf〉,
chineseMap f with }

8.2.3 Algebras and polynomials

Given a commutative (semi)ring R, an algebra over R is a semiring A equipped with a ring morphism whose image
commutes with every element of A. This is encoded as a type class Algebra R A. The morphism from R to A is
called the structure map and is denoted algebraMap R A : R →+* A in Lean. Multiplication of a : A by
algebraMap R A r for some r : R is called the scalar multiplication of a by r and denoted by r · a. Note
that this notion of algebra is sometimes called an associative unital algebra to emphasize the existence of more general
notions of algebra.
The fact that algebraMap R A is ring morphism packages together a lot of properties of scalar multiplication, such
as the following:

example {R A : Type*} [CommRing R] [Ring A] [Algebra R A] (r r' : R) (a : A) :
(r + r') · a = r · a + r' · a :=

add_smul r r' a

example {R A : Type*} [CommRing R] [Ring A] [Algebra R A] (r r' : R) (a : A) :
(r * r') · a = r · r' · a :=

mul_smul r r' a

The morphisms between two R-algebras A and B are ring morphisms which commute with scalar multiplication by ele-
ments of R. They are bundled morphisms with type AlgHom R A B, which is denoted by A →ₐ[R] B.
Important examples of non-commutative algebras include algebras of endomorphisms and algebras of square matrices,
both of which will be covered in the chapter on linear algebra. In this chapter we will discuss one of the most important
examples of a commutative algebra, namely, polynomial algebras.
The algebra of univariate polynomials with coefficients in R is called Polynomial R, which can be written as R[X]
as soon as one opens the Polynomial namespace. The algebra structure map from R to R[X] is denoted by C, which
stands for “constant” since the corresponding polynomial functions are always constant. The indeterminate is denoted by
X.

open Polynomial

example {R : Type*} [CommRing R] : R[X] := X

example {R : Type*} [CommRing R] (r : R) := X - C r

In the first example above, it is crucial that we give Lean the expected type since it cannot be determined from the body
of the definition. In the second example, the target polynomial algebra can be inferred from our use of C r since the type
of r is known.
Because C is a ring morphism from R to R[X], we can use all ring morphisms lemmas such as map_zero, map_one,
map_mul, and map_pow before computing in the ring R[X]. For example:

example {R : Type*} [CommRing R] (r : R) : (X + C r) * (X - C r) = X ^ 2 - C (r ^ 2)␣
↪→:= by
rw [C.map_pow]
ring

You can access coefficients using Polynomial.coeff
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example {R : Type*} [CommRing R] (r:R) : (C r).coeff 0 = r := by simp

example {R : Type*} [CommRing R] : (X ^ 2 + 2 * X + C 3 : R[X]).coeff 1 = 2 := by simp

Defining the degree of a polynomial is always tricky because of the special case of the zero polynomial. Mathlib has two
variants: Polynomial.natDegree : R[X] → N assigns degree 0 to the zero polynomial, and Polynomial.
degree : R[X] → WithBot N assigns ⊥. In the latter, WithBot N can be seen as N ∪ {-∞}, except that
-∞ is denoted ⊥, the same symbol as the bottom element in a complete lattice. This special value is used as the degree
of the zero polynomial, and it is absorbent for addition. (It is almost absorbent for multiplication, except that ⊥ * 0 =
0.)
Morally speaking, the degree version is the correct one. For instance, it allows us to state the expected formula for the
degree of a product (assuming the base ring has no zero divisor).

example {R : Type*} [Semiring R] [NoZeroDivisors R] {p q : R[X]} :
degree (p * q) = degree p + degree q :=

Polynomial.degree_mul

Whereas the version for natDegree needs to assume non-zero polynomials.

example {R : Type*} [Semiring R] [NoZeroDivisors R] {p q : R[X]} (hp : p 6= 0) (hq : q␣
↪→ 6= 0) :

natDegree (p * q) = natDegree p + natDegree q :=
Polynomial.natDegree_mul hp hq

However, N is much nicer to use than WithBot N, so Mathlib makes both versions available and provides lemmas
to convert between them. Also, natDegree is the more convenient definition to use when computing the degree of a
composition. Composition of polynomial is Polynomial.comp and we have:

example {R : Type*} [Semiring R] [NoZeroDivisors R] {p q : R[X]} :
natDegree (comp p q) = natDegree p * natDegree q :=

Polynomial.natDegree_comp

Polynomials give rise to polynomial functions: any polynomial can be evaluated on R using Polynomial.eval.

example {R : Type*} [CommRing R] (P: R[X]) (x : R) := P.eval x

example {R : Type*} [CommRing R] (r : R) : (X - C r).eval r = 0 := by simp

In particular, there is a predicate, IsRoot, that holds for elements r in R where a polynomial vanishes.

example {R : Type*} [CommRing R] (P : R[X]) (r : R) : IsRoot P r ↔ P.eval r = 0 :=␣
↪→Iff.rfl

We would like to say that, assuming R has no zero divisor, a polynomial has at most as many roots as its degree, where
the roots are counted with multiplicities. But once again the case of the zero polynomial is painful. So Mathlib defines
Polynomial.roots to send a polynomial P to a multiset, i.e. the finite set that is defined to be empty if P is zero and
the roots of P, with multiplicities, otherwise. This is defined only when the underlying ring is a domain since otherwise
the definition does not have good properties.

example {R : Type*} [CommRing R] [IsDomain R] (r : R) : (X - C r).roots = {r} :=
roots_X_sub_C r

example {R : Type*} [CommRing R] [IsDomain R] (r : R) (n : N):
((X - C r) ^ n).roots = n · {r} :=

by simp
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Both Polynomial.eval and Polynomial.roots consider only the coefficients ring. They do not allow us to
say that X ^ 2 - 2 : Q[X] has a root in R or that X ^ 2 + 1 : R[X] has a root in C. For this, we
need Polynomial.aeval, which will evaluate P : R[X] in any R-algebra. More precisely, given a semiring A
and an instance of Algebra R A, Polynomial.aeval sends every element of a along the R-algebra morphism of
evaluation at a. Since AlgHom has a coercion to functions, one can apply it to a polynomial. But aeval does not have
a polynomial as an argument, so one cannot use dot notation like in P.eval above.

example : aeval Complex.I (X ^ 2 + 1 : R[X]) = 0 := by simp

The function corresponding to roots in this context is aroots which takes a polynomial and then an algebra and
outputs a multiset (with the same caveat about the zero polynomial as for roots).

open Complex Polynomial

example : aroots (X ^ 2 + 1 : R[X]) C = {Complex.I, -I} := by
suffices roots (X ^ 2 + 1 : C[X]) = {I, -I} by simpa [aroots_def]
have factored : (X ^ 2 + 1 : C[X]) = (X - C I) * (X - C (-I)) := by
rw [C_neg]
linear_combination show (C I * C I : C[X]) = -1 by simp [← C_mul]

have p_ne_zero : (X - C I) * (X - C (-I)) 6= 0 := by
intro H
apply_fun eval 0 at H
simp [eval] at H

simp only [factored, roots_mul p_ne_zero, roots_X_sub_C]
rfl

-- Mathlib knows about D'Alembert-Gauss theorem: ``C`` is algebraically closed.
example : IsAlgClosed C := inferInstance

More generally, given an ring morphism f : R →+* S one can evaluate P : R[X] at a point in S using
Polynomial.eval2. This one produces an actual function from R[X] to S since it does not assume the existence of
a Algebra R S instance, so dot notation works as you would expect.

#check (Complex.ofReal : R →+* C)

example : (X ^ 2 + 1 : R[X]).eval2 Complex.ofReal Complex.I = 0 := by simp

Let us end by mentioning multivariate polynomials briefly. Given a commutative semiring R, the R-algebra of polynomials
with coefficients in R and indeterminates indexed by a type σ is MVPolynomial σ R. Given i : σ, the corresponding
polynomial is MvPolynomial.X i. (As usual, one can open the MVPolynomial namespace to shorten this to X
i.) For instance, if we want two indeterminates we can use Fin 2 as σ and write the polynomial defining the unit circle
in R2` as:

open MvPolynomial

def circleEquation : MvPolynomial (Fin 2) R := X 0 ^ 2 + X 1 ^ 2 - 1

Recall that function application has a very high precedence so the expression above is read as (X 0) ^ 2 + (X 1) ^
2 - 1. We can evaluate it to make sure the point with coordinates (1, 0) is on the circle. Recall the ![...] notation
denotes elements of Fin n → X for some natural number n determined by the number of arguments and some type
X determined by the type of arguments.

example : MvPolynomial.eval ![0, 1] circleEquation = 0 := by simp [circleEquation]
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CHAPTER

NINE

TOPOLOGY

Calculus is based on the concept of a function, which is used to model quantities that depend on one another. For example,
it is common to study quantities that change over time. The notion of a limit is also fundamental. We may say that the
limit of a function f(x) is a value b as x approaches a value a, or that f(x) converges to b as x approaches a. Equivalently,
we may say that a f(x) approaches b as x approaches a value a, or that it tends to b as x tends to a. We have already
begun to consider such notions in Section 3.6.
Topology is the abstract study of limits and continuity. Having covered the essentials of formalization in Chapters 2 to 6, in
this chapter, we will explain how topological notions are formalized inMathlib. Not only do topological abstractions apply
in much greater generality, but that also, somewhat paradoxically, make it easier to reason about limits and continuity in
concrete instances.
Topological notions build on quite a few layers of mathematical structure. The first layer is naive set theory, as described
in Chapter 4. The next layer is the theory of filters, which we will describe in Section 9.1. On top of that, we layer the
theories of topological spaces, metric spaces, and a slightly more exotic intermediate notion called a uniform space.
Whereas previous chapters relied on mathematical notions that were likely familiar to you, the notion of a filter less well
known, even to many working mathematicians. The notion is essential, however, for formalizing mathematics effectively.
Let us explain why. Let f : R → R be any function. We can consider the limit of f x as x approaches some value
x0, but we can also consider the limit of f x as x approaches infinity or negative infinity. We can moreover consider
the limit of f x as x approaches x0 from the right, conventionally written x0⁺, or from the left, written x0 . There are
variations where x approaches x0 or x0⁺ or x0 but is not allowed to take on the value x0 itself. This results in at least
eight ways that x can approach something. We can also restrict to rational values of x or place other constraints on the
domain, but let’s stick to those 8 cases.
We have a similar variety of options on the codomain: we can specify that f x approaches a value from the left or right,
or that it approaches positive or negative infinity, and so on. For example, we may wish to say that f x tends to +∞
when x tends to x0 from the right without being equal to x0. This results in 64 different kinds of limit statements, and
we haven’t even begun to deal with limits of sequences, as we did in Section 3.6.
The problem is compounded even further when it comes to the supporting lemmas. For instance, limits compose: if f x
tends to y0 when x tends to x0 and g y tends to z0 when y tends to y0 then g ◦ f x tends to z0 when x tends to x0.
There are three notions of “tends to” at play here, each of which can be instantiated in any of the eight ways described in the
previous paragraph. This results in 512 lemmas, a lot to have to add to a library! Informally, mathematicians generally
prove two or three of these and simply note that the rest can be proved “in the same way.” Formalizing mathematics
requires making the relevant notion of “sameness” fully explicit, and that is exactly what Bourbaki’s theory of filters
manages to do.
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9.1 Filters

A filter on a type X is a collection of sets of X that satisfies three conditions that we will spell out below. The notion
supports two related ideas:

• limits, including all the kinds of limits discussed above: finite and infinite limits of sequences, finite and infinite
limits of functions at a point or at infinity, and so on.

• things happening eventually, including things happening for large enough n : N, or sufficiently near a point x, or
for sufficiently close pairs of points, or almost everywhere in the sense of measure theory. Dually, filters can also
express the idea of things happening often: for arbitrarily large n, at a point in any neighborhood of given a point,
etc.

The filters that correspond to these descriptions will be defined later in this section, but we can already name them:
• (atTop : Filter N), made of sets of N containing {n | n ≥ N} for some N
• N x, made of neighborhoods of x in a topological space
• U X, made of entourages of a uniform space (uniform spaces generalize metric spaces and topological groups)
• µ.ae , made of sets whose complement has zero measure with respect to a measure µ.

The general definition is as follows: a filter F : Filter X is a collection of sets F.sets : Set (Set X)
satisfying the following:

• F.univ_sets : univ ∈ F.sets

• F.sets_of_superset : ∀ {U V}, U ∈ F.sets → U ⊆ V → V ∈ F.sets

• F.inter_sets : ∀ {U V}, U ∈ F.sets → V ∈ F.sets → U ∩ V ∈ F.sets.
The first condition says that the set of all elements of X belongs to F.sets. The second condition says that if U belongs
to F.sets then anything containing U also belongs to F.sets. The third condition says that F.sets is closed under
finite intersections. In Mathlib, a filter F is defined to be a structure bundling F.sets and its three properties, but the
properties carry no additional data, and it is convenient to blur the distinction between F and F.sets. We therefore
define U ∈ F to mean U ∈ F.sets. This explains why the word sets appears in the names of some lemmas that
that mention U ∈ F.
It may help to think of a filter as defining a notion of a “sufficiently large” set. The first condition then says that univ
is sufficiently large, the second one says that a set containing a sufficiently large set is sufficiently large and the third one
says that the intersection of two sufficiently large sets is sufficiently large.
It may be even more useful to think of a filter on a type X as a generalized element of Set X. For instance, atTop is
the “set of very large numbers” and N x0 is the “set of points very close to x0.” One manifestation of this view is that
we can associate to any s : Set X the so-called principal filter consisting of all sets that contain s. This definition
is already in Mathlib and has a notation P (localized in the Filter namespace). For the purpose of demonstration, we
ask you to take this opportunity to work out the definition here.

def principal {α : Type*} (s : Set α) : Filter α
where

sets := { t | s ⊆ t }
univ_sets := sorry
sets_of_superset := sorry
inter_sets := sorry

For our second example, we ask you to define the filter atTop : Filter N. (We could use any type with a preorder
instead of N.)
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example : Filter N :=
{ sets := { s | ∃ a, ∀ b, a ≤ b → b ∈ s }
univ_sets := sorry
sets_of_superset := sorry
inter_sets := sorry }

We can also directly define the filterN x of neighborhoods of any x : R. In the real numbers, a neighborhood of x is
a set containing an open interval (x0 − ε, x0 + ε), defined in Mathlib as Ioo (x0 - ε) (x0 + ε). (This is notion
of a neighborhood is only a special case of a more general construction in Mathlib.)
With these examples, we can already define what is means for a function f : X → Y to converge to some G :
Filter Y along some F : Filter X, as follows:

def Tendsto1 {X Y : Type*} (f : X → Y) (F : Filter X) (G : Filter Y) :=
∀ V ∈ G, f ¹' V ∈ F

When X is N and Y is R, Tendsto1 u atTop (N x) is equivalent to saying that the sequence u : N → R
converges to the real number x. When both X and Y are R, Tendsto f (N x0) (N y0) is equivalent to the
familiar notion limx→x0

f(x) = y0. All of the other kinds of limits mentioned in the introduction are also equivalent to
instances of Tendsto1 for suitable choices of filters on the source and target.
The notion Tendsto1 above is definitionally equivalent to the notion Tendsto that is defined in Mathlib, but the latter
is defined more abstractly. The problem with the definition of Tendsto1 is that it exposes a quantifier and elements of
G, and it hides the intuition that we get by viewing filters as generalized sets. We can hide the quantifier ∀ V and make
the intuition more salient by using more algebraic and set-theoretic machinery. The first ingredient is the pushforward
operation f∗ associated to any map f : X → Y, denoted Filter.map f in Mathlib. Given a filter F on X,
Filter.map f F : Filter Y is defined so that V ∈ Filter.map f F ↔ f ¹' V ∈ F holds
definitionally. In this examples file we’ve opened the Filter namespace so that Filter.map can be written as map.
This means that we can rewrite the definition of Tendsto using the order relation on Filter Y, which is reversed
inclusion of the set of members. In other words, given G H : Filter Y, we have G ≤ H ↔ ∀ V : Set Y, V
∈ H → V ∈ G.

def Tendsto2 {X Y : Type*} (f : X → Y) (F : Filter X) (G : Filter Y) :=
map f F ≤ G

example {X Y : Type*} (f : X → Y) (F : Filter X) (G : Filter Y) :
Tendsto2 f F G ↔ Tendsto1 f F G :=

Iff.rfl

It may seem that the order relation on filters is backward. But recall that we can view filters on X as generalized elements
of Set X, via the inclusion of P : Set X → Filter X which maps any set s to the corresponding principal filter.
This inclusion is order preserving, so the order relation on Filter can indeed be seen as the natural inclusion relation
between generalized sets. In this analogy, pushforward is analogous to the direct image. And, indeed, map f (P s)
= P (f '' s).
We can now understand intuitively why a sequence u : N → R converges to a point x0 if and only if we have map
u atTop ≤ N x0. The inequality means the “direct image under u” of “the set of very big natural numbers” is
“included” in “the set of points very close to x0.”
As promised, the definition of Tendsto2 does not exhibit any quantifiers or sets. It also leverages the algebraic properties
of the pushforward operation. First, each Filter.map f is monotone. And, second, Filter.map is compatible
with composition.

#check (@Filter.map_mono : ∀ {α β} {m : α → β}, Monotone (map m))

#check
(@Filter.map_map :

(continues on next page)
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(continued from previous page)
∀ {α β γ} {f : Filter α} {m : α → β} {m' : β → γ}, map m' (map m f) = map (m' ◦␣

↪→m) f)

Together these two properties allow us to prove that limits compose, yielding in one shot all 256 variants of the composition
lemma described in the introduction, and lots more. You can practice proving the following statement using either the
definition of Tendsto1 in terms of the universal quantifier or the algebraic definition, together with the two lemmas
above.

example {X Y Z : Type*} {F : Filter X} {G : Filter Y} {H : Filter Z} {f : X → Y} {g :␣
↪→Y → Z}

(hf : Tendsto1 f F G) (hg : Tendsto1 g G H) : Tendsto1 (g ◦ f) F H :=
sorry

The pushforward construction uses a map to push filters from the map source to the map target. There also a pullback
operation, Filter.comap, going in the other direction. This generalizes the preimage operation on sets. For any map
f, Filter.map f and Filter.comap f form what is known as a Galois connection, which is to say, they satisfy

Filter.map_le_iff_le_comap : Filter.map f F ≤ G ↔ F ≤ Filter.comap f
G

for every F and G. This operation could be used to provided another formulation of Tendsto that would be provably
(but not definitionally) equivalent to the one in Mathlib.
The comap operation can be used to restrict filters to a subtype. For instance, suppose we have f : R → R, x0

: R and y0 : R, and suppose we want to state that f x approaches y0 when x approaches x0 within the rational
numbers. We can pull the filterN x0 back to Q using the coercion map (↑) : Q → R and state Tendsto (f ◦
(↑) : Q → R) (comap (↑) (N x0)) (N y0).

variable (f : R → R) (x0 y0 : R)

#check comap ((↑) : Q → R) (N x0)

#check Tendsto (f ◦ (↑)) (comap ((↑) : Q → R) (N x0)) (N y0)

The pullback operation is also compatible with composition, but it is contravariant, which is to say, it reverses the order
of the arguments.

section
variable {α β γ : Type*} (F : Filter α) {m : γ → β} {n : β → α}

#check (comap_comap : comap m (comap n F) = comap (n ◦ m) F)

end

Let’s now shift attention to the plane R × R and try to understand how the neighborhoods of a point (x0, y0) are
related to N x0 and N y0. There is a product operation Filter.prod : Filter X → Filter Y →
Filter (X × Y), denoted by ×ˢ, which answers this question:

example : N (x0, y0) = N x0 ×ˢ N y0 :=
nhds_prod_eq

The product operation is defined in terms of the pullback operation and the inf operation:
F ×ˢ G = (comap Prod.fst F) ⊓ (comap Prod.snd G).

Here the inf operation refers to the lattice structure on Filter X for any type X, whereby F ⊓ G is the greatest filter
that is smaller than both F and G. Thus the inf operation generalizes the notion of the intersection of sets.
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A lot of proofs in Mathlib use all of the aforementioned structure (map, comap, inf, sup, and prod) to give algebraic
proofs about convergence without ever referring to members of filters. You can practice doing this in a proof of the
following lemma, unfolding the definition of Tendsto and Filter.prod if needed.

#check le_inf_iff

example (f : N → R × R) (x0 y0 : R) :
Tendsto f atTop (N (x0, y0)) ↔

Tendsto (Prod.fst ◦ f) atTop (N x0) ∧ Tendsto (Prod.snd ◦ f) atTop (N y0) :=
sorry

The ordered type Filter X is actually a complete lattice, which is to say, there is a bottom element, there is a top
element, and every set of filters on X has an Inf and a Sup.
Note that given the second property in the definition of a filter (if U belongs to F then anything larger than U also belongs
to F), the first property (the set of all inhabitants of X belongs to F) is equivalent to the property that F is not the empty
collection of sets. This shouldn’t be confused with the more subtle question as to whether the empty set is an element of
F. The definition of a filter does not prohibit ∅ ∈ F, but if the empty set is in F then every set is in F, which is to say, ∀ U
: Set X, U ∈ F. In this case, F is a rather trivial filter, which is precisely the bottom element of the complete lattice
Filter X. This contrasts with the definition of filters in Bourbaki, which doesn’t allow filters containing the empty set.
Because we include the trivial filter in our definition, we sometimes need to explicitly assume nontriviality in some lemmas.
In return, however, the theory has nicer global properties. We have already seen that including the trivial filter gives us
a bottom element. It also allows us to define principal : Set X → Filter X, which maps ∅ to ⊥, without
adding a precondition to rule out the empty set. And it allows us to define the pullback operation without a precondition
as well. Indeed, it can happen that comap f F = ⊥ although F 6= ⊥. For instance, given x0 : R and s : Set
R, the pullback of N x0 under the coercion from the subtype corresponding to s is nontrivial if and only if x0 belongs
to the closure of s.
In order to manage lemmas that do need to assume some filter is nontrivial, Mathlib has a type class Filter.NeBot,
and the library has lemmas that assume (F : Filter X) [F.NeBot]. The instance database knows, for example,
that (atTop : Filter N).NeBot, and it knows that pushing forward a nontrivial filter gives a nontrivial filter.
As a result, a lemma assuming [F.NeBot] will automatically apply to map u atTop for any sequence u.
Our tour of the algebraic properties of filters and their relation to limits is essentially done, but we have not yet justified
our claim to have recaptured the usual limit notions. Superficially, it may seem that Tendsto u atTop (N x0)
is stronger than the notion of convergence defined in Section 3.6 because we ask that every neighborhood of x0 has a
preimage belonging to atTop, whereas the usual definition only requires this for the standard neighborhoods Ioo (x0

- ε) (x0 + ε). The key is that, by definition, every neighborhood contains such a standard one. This observation
leads to the notion of a filter basis.
Given F : Filter X, a family of sets s : ι → Set X is a basis for F if for every set U, we have U ∈ F if
and only if it contains some s i. In other words, formally speaking, s is a basis if it satisfies ∀ U : Set X, U ∈
F ↔ ∃ i, s i ⊆ U. It is even more flexible to consider a predicate on ι that selects only some of the values i in
the indexing type. In the case ofN x0, we want ι to be R, we write ε for i, and the predicate should select the positive
values of ε. So the fact that the sets Ioo (x0 - ε) (x0 + ε) form a basis for the neighborhood topology on R is
stated as follows:

example (x0 : R) : HasBasis (N x0) (fun ε : R 7→ 0 < ε) fun ε 7→ Ioo (x0 - ε) (x0 + ε)␣
↪→:=
nhds_basis_Ioo_pos x0

There is also a nice basis for the filter atTop. The lemma Filter.HasBasis.tendsto_iff allows us to re-
formulate a statement of the form Tendsto f F G given bases for F and G. Putting these pieces together gives us
essentially the notion of convergence that we used in Section 3.6.
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example (u : N → R) (x0 : R) :
Tendsto u atTop (N x0) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, u n ∈ Ioo (x0 - ε) (x0 + ε) := by

have : atTop.HasBasis (fun _ : N 7→ True) Ici := atTop_basis
rw [this.tendsto_iff (nhds_basis_Ioo_pos x0)]
simp

We now show how filters facilitate working with properties that hold for sufficiently large numbers or for points that are
sufficiently close to a given point. In Section 3.6, we were often faced with the situation where we knew that some property
P n holds for sufficiently large n and that some other property Q n holds for sufficiently large n. Using cases twice
gave us N_P and N_Q satisfying ∀ n ≥ N_P, P n and ∀ n ≥ N_Q, Q n. Using set N := max N_P N_Q,
we could eventually prove ∀ n ≥ N, P n ∧ Q n. Doing this repeatedly becomes tiresome.
We can do better by noting that the statement “P n and Q n hold for large enough n” means that we have {n | P n}
∈ atTop and {n | Q n} ∈ atTop. The fact that atTop is a filter implies that the intersection of two elements
of atTop is again in atTop, so we have {n | P n ∧ Q n} ∈ atTop. Writing {n | P n} ∈ atTop is
unpleasant, but we can use the more suggestive notation ∀f n in atTop, P n. Here the superscripted f stands
for “Filter.” You can think of the notation as saying that for all n in the “set of very large numbers,” P n holds. The
∀f notation stands for Filter.Eventually, and the lemma Filter.Eventually.and uses the intersection
property of filters to do what we just described:

example (P Q : N → Prop) (hP : ∀f n in atTop, P n) (hQ : ∀f n in atTop, Q n) :

∀f n in atTop, P n ∧ Q n :=
hP.and hQ

This notation is so convenient and intuitive that we also have specializations when P is an equality or inequality statement.
For example, let u and v be two sequences of real numbers, and let us show that if u n and v n coincide for sufficiently
large n then u tends to x0 if and only if v tends to x0. First we’ll use the generic Eventually and then the one
specialized for the equality predicate, EventuallyEq. The two statements are definitionally equivalent so the same
proof work in both cases.

example (u v : N → R) (h : ∀f n in atTop, u n = v n) (x0 : R) :
Tendsto u atTop (N x0) ↔ Tendsto v atTop (N x0) :=

tendsto_congr' h

example (u v : N → R) (h : u =f[atTop] v) (x0 : R) :
Tendsto u atTop (N x0) ↔ Tendsto v atTop (N x0) :=

tendsto_congr' h

It is instructive to review the definition of filters in terms of Eventually. Given F : Filter X, for any predicates
P and Q on X,

• the condition univ ∈ F ensures (∀ x, P x) → ∀f x in F, P x,
• the condition U ∈ F → U ⊆ V → V ∈ F ensures (∀f x in F, P x) → (∀ x, P x → Q x)
→ ∀f x in F, Q x, and

• the condition U ∈ F → V ∈ F → U ∩ V ∈ F ensures (∀f x in F, P x) → (∀f x in F, Q
x) → ∀f x in F, P x ∧ Q x.

#check eventually_of_forall
#check Eventually.mono
#check Eventually.and

The second item, corresponding to Eventually.mono, supports nice ways of using filters, especially when combined
with Eventually.and. The filter_upwards tactic allows us to combine them. Compare:
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example (P Q R : N → Prop) (hP : ∀f n in atTop, P n) (hQ : ∀f n in atTop, Q n)

(hR : ∀f n in atTop, P n ∧ Q n → R n) : ∀f n in atTop, R n := by
apply (hP.and (hQ.and hR)).mono
rintro n 〈h, h', h''〉
exact h'' 〈h, h'〉

example (P Q R : N → Prop) (hP : ∀f n in atTop, P n) (hQ : ∀f n in atTop, Q n)

(hR : ∀f n in atTop, P n ∧ Q n → R n) : ∀f n in atTop, R n := by
filter_upwards [hP, hQ, hR] with n h h' h''
exact h'' 〈h, h'〉

Readers who know about measure theory will note that the filter µ.ae of sets whose complement has measure zero (aka
“the set consisting of almost every point”) is not very useful as the source or target of Tendsto, but it can be conveniently
used with Eventually to say that a property holds for almost every point.
There is a dual version of ∀f x in F, P x, which is occasionally useful: ∃f x in F, P xmeans {x | ¬P x}
/∈ F. For example, ∃f n in atTop, P n means there are arbitrarily large n such that P n holds. The ∃f notation
stands for Filter.Frequently.
For a more sophisticated example, consider the following statement about a sequence u, a set M, and a value x:

If u converges to x and u n belongs to M for sufficiently large n then x is in the closure of M.
This can be formalized as follows:

Tendsto u atTop (N x) → (∀f n in atTop, u n ∈ M) → x ∈ closure M.
This is a special case of the theorem mem_closure_of_tendsto from the topology library. See if you can prove it
using the quoted lemmas, using the fact that ClusterPt x F means (N x ⊓ F).NeBot and that, by definition,
the assumption ∀f n in atTop, u n ∈ M means M ∈ map u atTop.

#check mem_closure_iff_clusterPt
#check le_principal_iff
#check neBot_of_le

example (u : N → R) (M : Set R) (x : R) (hux : Tendsto u atTop (N x))

(huM : ∀f n in atTop, u n ∈ M) : x ∈ closure M :=
sorry

9.2 Metric spaces

Examples in the previous section focus on sequences of real numbers. In this section we will go up a bit in generality and
focus on metric spaces. A metric space is a type X equipped with a distance function dist : X → X → R which
is a generalization of the function fun x y 7→ |x - y| from the case where X = R.
Introducing such a space is easy and we will check all properties required from the distance function.

variable {X : Type*} [MetricSpace X] (a b c : X)

#check (dist a b : R)
#check (dist_nonneg : 0 ≤ dist a b)
#check (dist_eq_zero : dist a b = 0 ↔ a = b)
#check (dist_comm a b : dist a b = dist b a)
#check (dist_triangle a b c : dist a c ≤ dist a b + dist b c)
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Note we also have variants where the distance can be infinite or where dist a b can be zero without having a = b or
both. They are called EMetricSpace, PseudoMetricSpace and PseudoEMetricSpace respectively (here
“e” stands for “extended”).
Note that our journey from R to metric spaces jumped over the special case of normed spaces that also require linear
algebra and will be explained as part of the calculus chapter.

9.2.1 Convergence and continuity

Using distance functions, we can already define convergent sequences and continuous functions between metric spaces.
They are actually defined in a more general setting covered in the next section, but we have lemmas recasting the definition
is terms of distances.

example {u : N → X} {a : X} :
Tendsto u atTop (N a) ↔ ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) a < ε :=

Metric.tendsto_atTop

example {X Y : Type*} [MetricSpace X] [MetricSpace Y] {f : X → Y} :
Continuous f ↔

∀ x : X, ∀ ε > 0, ∃ δ > 0, ∀ x', dist x' x < δ → dist (f x') (f x) < ε :=
Metric.continuous_iff

A lot of lemmas have some continuity assumptions, so we end up proving a lot of continuity results and there is a con-
tinuity tactic devoted to this task. Let’s prove a continuity statement that will be needed in an exercise below. Notice
that Lean knows how to treat a product of two metric spaces as a metric space, so it makes sense to consider continuous
functions from X × X to R. In particular the (uncurried version of the) distance function is such a function.

example {X Y : Type*} [MetricSpace X] [MetricSpace Y] {f : X → Y} (hf : Continuous f)␣
↪→:

Continuous fun p : X × X 7→ dist (f p.1) (f p.2) := by continuity

This tactic is a bit slow, so it is also useful to know how to do it by hand. We first need to use that fun p : X
× X 7→ f p.1 is continuous because it is the composition of f, which is continuous by assumption hf, and the
projection prod.fst whose continuity is the content of the lemma continuous_fst. The composition property is
Continuous.compwhich is in theContinuous namespace so we can use dot notation to compressContinuous.
comp hf continuous_fst into hf.comp continuous_fst which is actually more readable since it really
reads as composing our assumption and our lemma. We can do the same for the second component to get continuity of
fun p : X × X 7→ f p.2. We then assemble those two continuities using Continuous.prod_mk to get
(hf.comp continuous_fst).prod_mk (hf.comp continuous_snd) : Continuous (fun p
: X × X 7→ (f p.1, f p.2)) and compose once more to get our full proof.

example {X Y : Type*} [MetricSpace X] [MetricSpace Y] {f : X → Y} (hf : Continuous f)␣
↪→:

Continuous fun p : X × X 7→ dist (f p.1) (f p.2) :=
continuous_dist.comp ((hf.comp continuous_fst).prod_mk (hf.comp continuous_snd))

The combination of Continuous.prod_mk and continuous_dist via Continuous.comp feels clunky, even
when heavily using dot notation as above. A more serious issue is that this nice proof requires a lot of planning. Lean
accepts the above proof term because it is a full term proving a statement which is definitionally equivalent to our goal,
the crucial definition to unfold being that of a composition of functions. Indeed our target function fun p : X ×
X 7→ dist (f p.1) (f p.2) is not presented as a composition. The proof term we provided proves continuity
of dist ◦ (fun p : X × X 7→ (f p.1, f p.2)) which happens to be definitionally equal to our target
function. But if we try to build this proof gradually using tactics starting with apply continuous_dist.comp
then Lean’s elaborator will fail to recognize a composition and refuse to apply this lemma. It is especially bad at this when
products of types are involved.
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A better lemma to apply here is Continuous.dist {f g : X → Y} : Continuous f → Continuous
g → Continuous (fun x 7→ dist (f x) (g x)) which is nicer to Lean’s elaborator and also provides a
shorter proof when directly providing a full proof term, as can be seen from the following two new proofs of the above
statement:

example {X Y : Type*} [MetricSpace X] [MetricSpace Y] {f : X → Y} (hf : Continuous f)␣
↪→:

Continuous fun p : X × X 7→ dist (f p.1) (f p.2) := by
apply Continuous.dist
exact hf.comp continuous_fst
exact hf.comp continuous_snd

example {X Y : Type*} [MetricSpace X] [MetricSpace Y] {f : X → Y} (hf : Continuous f)␣
↪→:

Continuous fun p : X × X 7→ dist (f p.1) (f p.2) :=
(hf.comp continuous_fst).dist (hf.comp continuous_snd)

Note that, without the elaboration issue coming from composition, another way to compress our proof would be to use
Continuous.prod_map which is sometimes useful and gives as an alternate proof term continuous_dist.
comp (hf.prod_map hf) which even shorter to type.
Since it is sad to decide between a version which is better for elaboration and a version which is shorter to type, let us
wrap this discussion with a last bit of compression offered by Continuous.fst'which allows to compress hf.comp
continuous_fst to hf.fst' (and the same with snd) and get our final proof, now bordering obfuscation.

example {X Y : Type*} [MetricSpace X] [MetricSpace Y] {f : X → Y} (hf : Continuous f)␣
↪→:

Continuous fun p : X × X 7→ dist (f p.1) (f p.2) :=
hf.fst'.dist hf.snd'

It’s your turn now to prove some continuity lemma. After trying the continuity tactic, you will need Continuous.add,
continuous_pow and continuous_id to do it by hand.

example {f : R → X} (hf : Continuous f) : Continuous fun x : R 7→ f (x ^ 2 + x) :=
sorry

So far we saw continuity as a global notion, but one can also define continuity at a point.

example {X Y : Type*} [MetricSpace X] [MetricSpace Y] (f : X → Y) (a : X) :
ContinuousAt f a ↔ ∀ ε > 0, ∃ δ > 0, ∀ {x}, dist x a < δ → dist (f x) (f a) < ε :=

Metric.continuousAt_iff

9.2.2 Balls, open sets and closed sets

Once we have a distance function, the most important geometric definitions are (open) balls and closed balls.

variable (r : R)

example : Metric.ball a r = { b | dist b a < r } :=
rfl

example : Metric.closedBall a r = { b | dist b a ≤ r } :=
rfl

Note that r is any real number here, there is no sign restriction. Of course some statements do require a radius condition.
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example (hr : 0 < r) : a ∈ Metric.ball a r :=
Metric.mem_ball_self hr

example (hr : 0 ≤ r) : a ∈ Metric.closedBall a r :=
Metric.mem_closedBall_self hr

Once we have balls, we can define open sets. They are actually defined in a more general setting covered in the next
section, but we have lemmas recasting the definition is terms of balls.

example (s : Set X) : IsOpen s ↔ ∀ x ∈ s, ∃ ε > 0, Metric.ball x ε ⊆ s :=
Metric.isOpen_iff

Then closed sets are sets whose complement is open. Their important property is they are closed under limits. The closure
of a set is the smallest closed set containing it.

example {s : Set X} : IsClosed s ↔ IsOpen (sc) :=
isOpen_compl_iff.symm

example {s : Set X} (hs : IsClosed s) {u : N → X} (hu : Tendsto u atTop (N a))
(hus : ∀ n, u n ∈ s) : a ∈ s :=

hs.mem_of_tendsto hu (eventually_of_forall hus)

example {s : Set X} : a ∈ closure s ↔ ∀ ε > 0, ∃ b ∈ s, a ∈ Metric.ball b ε :=
Metric.mem_closure_iff

Do the next exercise without using mem_closure_iff_seq_limit

example {u : N → X} (hu : Tendsto u atTop (N a)) {s : Set X} (hs : ∀ n, u n ∈ s) :
a ∈ closure s :=

sorry

Remember from the filters sections that neighborhood filters play a big role in Mathlib. In the metric space context, the
crucial point is that balls provide bases for those filters. The main lemmas here are Metric.nhds_basis_ball and
Metric.nhds_basis_closedBall that claim this for open and closed balls with positive radius. The center point
is an implicit argument so we can invoke Filter.HasBasis.mem_iff as in the following example.

example {x : X} {s : Set X} : s ∈ N x ↔ ∃ ε > 0, Metric.ball x ε ⊆ s :=
Metric.nhds_basis_ball.mem_iff

example {x : X} {s : Set X} : s ∈ N x ↔ ∃ ε > 0, Metric.closedBall x ε ⊆ s :=
Metric.nhds_basis_closedBall.mem_iff

9.2.3 Compactness

Compactness is an important topological notion. It distinguishes subsets of a metric space that enjoy the same kind of
properties as segments in reals compared to other intervals:

• Any sequence taking value in a compact set has a subsequence that converges in this set
• Any continuous function on a nonempty compact set with values in real numbers is bounded and achieves its bounds
somewhere (this is called the extreme values theorem).

• Compact sets are closed sets.
Let us first check that the unit interval in reals is indeed a compact set, and then check the above claims for compact sets in
general metric spaces. In the second statement we only need continuity on the given set so we will use ContinuousOn
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instead of Continuous, and we will give separate statements for the minimum and the maximum. Of course all these
results are deduced from more general versions, some of which will be discussed in later sections.

example : IsCompact (Set.Icc 0 1 : Set R) :=
isCompact_Icc

example {s : Set X} (hs : IsCompact s) {u : N → X} (hu : ∀ n, u n ∈ s) :
∃ a ∈ s, ∃ φ : N → N, StrictMono φ ∧ Tendsto (u ◦ φ) atTop (N a) :=

hs.tendsto_subseq hu

example {s : Set X} (hs : IsCompact s) (hs' : s.Nonempty) {f : X → R}
(hfs : ContinuousOn f s) :

∃ x ∈ s, ∀ y ∈ s, f x ≤ f y :=
hs.exists_forall_le hs' hfs

example {s : Set X} (hs : IsCompact s) (hs' : s.Nonempty) {f : X → R}
(hfs : ContinuousOn f s) :

∃ x ∈ s, ∀ y ∈ s, f y ≤ f x :=
hs.exists_forall_ge hs' hfs

example {s : Set X} (hs : IsCompact s) : IsClosed s :=
hs.isClosed

We can also specify that a metric spaces is globally compact, using an extra Prop-valued type class:

example {X : Type*} [MetricSpace X] [CompactSpace X] : IsCompact (univ : Set X) :=
isCompact_univ

In a compact metric space any closed set is compact, this is IsClosed.isCompact.

9.2.4 Uniformly continuous functions

We now turn to uniformity notions on metric spaces : uniformly continuous functions, Cauchy sequences and complete-
ness. Again those are defined in a more general context but we have lemmas in the metric name space to access their
elementary definitions. We start with uniform continuity.

example {X : Type*} [MetricSpace X] {Y : Type*} [MetricSpace Y] {f : X → Y} :
UniformContinuous f ↔

∀ ε > 0, ∃ δ > 0, ∀ {a b : X}, dist a b < δ → dist (f a) (f b) < ε :=
Metric.uniformContinuous_iff

In order to practice manipulating all those definitions, we will prove that continuous functions from a compact metric
space to a metric space are uniformly continuous (we will see a more general version in a later section).
We will first give an informal sketch. Let f : X → Y be a continuous function from a compact metric space to a
metric space. We fix ε > 0 and start looking for some δ.
Let φ : X × X → R := fun p 7→ dist (f p.1) (f p.2) and let K := { p : X × X | ε ≤ φ
p }. Observe φ is continuous since f and distance are continuous. And K is clearly closed (use isClosed_le) hence
compact since X is compact.
Then we discuss two possibilities using eq_empty_or_nonempty. If K is empty then we are clearly done (we can set
δ = 1 for instance). So let’s assume K is not empty, and use the extreme value theorem to choose (x0, x1) attaining
the infimum of the distance function on K. We can then set δ = dist x0 x1 and check everything works.

example {X : Type*} [MetricSpace X] [CompactSpace X]
{Y : Type*} [MetricSpace Y] {f : X → Y}

(continues on next page)
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(hf : Continuous f) : UniformContinuous f :=

sorry

9.2.5 Completeness

A Cauchy sequence in a metric space is a sequence whose terms get closer and closer to each other. There are a couple of
equivalent ways to state that idea. In particular converging sequences are Cauchy. The converse is true only in so-called
complete spaces.

example (u : N → X) :
CauchySeq u ↔ ∀ ε > 0, ∃ N : N, ∀ m ≥ N, ∀ n ≥ N, dist (u m) (u n) < ε :=

Metric.cauchySeq_iff

example (u : N → X) :
CauchySeq u ↔ ∀ ε > 0, ∃ N : N, ∀ n ≥ N, dist (u n) (u N) < ε :=

Metric.cauchySeq_iff'

example [CompleteSpace X] (u : N → X) (hu : CauchySeq u) :
∃ x, Tendsto u atTop (N x) :=

cauchySeq_tendsto_of_complete hu

We’ll practice using this definition by proving a convenient criterion which is a special case of a criterion appearing in
Mathlib. This is also a good opportunity to practice using big sums in a geometric context. In addition to the explanations
from the filters section, you will probably need tendsto_pow_atTop_nhds_0_of_lt_1, Tendsto.mul and
dist_le_range_sum_dist.

theorem cauchySeq_of_le_geometric_two' {u : N → X}
(hu : ∀ n : N, dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n) : CauchySeq u := by

rw [Metric.cauchySeq_iff']
intro ε ε_pos
obtain 〈N, hN〉 : ∃ N : N, 1 / 2 ^ N * 2 < ε := by sorry
use N
intro n hn
obtain 〈k, rfl : n = N + k〉 := le_iff_exists_add.mp hn
calc
dist (u (N + k)) (u N) = dist (u (N + 0)) (u (N + k)) := sorry
_ ≤ Σ i in range k, dist (u (N + i)) (u (N + (i + 1))) := sorry
_ ≤ Σ i in range k, (1 / 2 : R) ^ (N + i) := sorry
_ = 1 / 2 ^ N * Σ i in range k, (1 / 2 : R) ^ i := sorry
_ ≤ 1 / 2 ^ N * 2 := sorry
_ < ε := sorry

We are ready for the final boss of this section: Baire’s theorem for complete metric spaces! The proof skeleton below
shows interesting techniques. It uses the choose tactic in its exclamation mark variant (you should experiment with
removing this exclamation mark) and it shows how to define something inductively in the middle of a proof using Nat.
rec_on.

open Metric

example [CompleteSpace X] (f : N → Set X) (ho : ∀ n, IsOpen (f n)) (hd : ∀ n, Dense␣
↪→(f n)) :

Dense (⋂ n, f n) := by
let B : N → R := fun n 7→ (1 / 2) ^ n
have Bpos : ∀ n, 0 < B n

(continues on next page)
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sorry
/- Translate the density assumption into two functions `center` and `radius`␣

↪→associating
to any n, x, δ, δpos a center and a positive radius such that
`closedBall center radius` is included both in `f n` and in `closedBall x δ`.
We can also require `radius ≤ (1/2)^(n+1)`, to ensure we get a Cauchy sequence␣

↪→later. -/
have :

∀ (n : N) (x : X),
∀ δ > 0, ∃ y : X, ∃ r > 0, r ≤ B (n + 1) ∧ closedBall y r ⊆ closedBall x δ ∩ f␣

↪→n :=
by sorry

choose! center radius Hpos HB Hball using this
intro x
rw [mem_closure_iff_nhds_basis nhds_basis_closedBall]
intro ε εpos
/- `ε` is positive. We have to find a point in the ball of radius `ε` around `x`
belonging to all `f n`. For this, we construct inductively a sequence
`F n = (c n, r n)` such that the closed ball `closedBall (c n) (r n)` is included
in the previous ball and in `f n`, and such that `r n` is small enough to ensure
that `c n` is a Cauchy sequence. Then `c n` converges to a limit which belongs
to all the `f n`. -/

let F : N → X × R := fun n 7→
Nat.recOn n (Prod.mk x (min ε (B 0)))

fun n p 7→ Prod.mk (center n p.1 p.2) (radius n p.1 p.2)
let c : N → X := fun n 7→ (F n).1
let r : N → R := fun n 7→ (F n).2
have rpos : ∀ n, 0 < r n := by sorry
have rB : ∀ n, r n ≤ B n := by sorry
have incl : ∀ n, closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n␣

↪→:= by
sorry

have cdist : ∀ n, dist (c n) (c (n + 1)) ≤ B n := by sorry
have : CauchySeq c := cauchySeq_of_le_geometric_two' cdist
-- as the sequence `c n` is Cauchy in a complete space, it converges to a limit `y`.
rcases cauchySeq_tendsto_of_complete this with 〈y, ylim〉
-- this point `y` will be the desired point. We will check that it belongs to all
-- `f n` and to `ball x ε`.
use y
have I : ∀ n, ∀ m ≥ n, closedBall (c m) (r m) ⊆ closedBall (c n) (r n) := by sorry
have yball : ∀ n, y ∈ closedBall (c n) (r n) := by sorry
sorry

9.3 Topological spaces

9.3.1 Fundamentals

We now go up in generality and introduce topological spaces. We will review the two main ways to define topological
spaces and then explain how the category of topological spaces is much better behaved than the category of metric spaces.
Note that we won’t be using Mathlib category theory here, only having a somewhat categorical point of view.
The first way to think about the transition from metric spaces to topological spaces is that we only remember the notion
of open sets (or equivalently the notion of closed sets). From this point of view, a topological space is a type equipped
with a collection of sets that are called open sets. This collection has to satisfy a number of axioms presented below (this
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collection is slightly redundant but we will ignore that).

section
variable {X : Type*} [TopologicalSpace X]

example : IsOpen (univ : Set X) :=
isOpen_univ

example : IsOpen (∅ : Set X) :=
isOpen_empty

example {ι : Type*} {s : ι → Set X} (hs : ∀ i, IsOpen (s i)) : IsOpen (⋃ i, s i) :=
isOpen_iUnion hs

example {ι : Type*} [Fintype ι] {s : ι → Set X} (hs : ∀ i, IsOpen (s i)) :
IsOpen (⋂ i, s i) :=

isOpen_iInter_of_finite hs

Closed sets are then defined as sets whose complement is open. A function between topological spaces is (globally)
continuous if all preimages of open sets are open.

variable {Y : Type*} [TopologicalSpace Y]

example {f : X → Y} : Continuous f ↔ ∀ s, IsOpen s → IsOpen (f ¹' s) :=
continuous_def

With this definition we already see that, compared to metric spaces, topological spaces only remember enough information
to talk about continuous functions: two topological structures on a type are the same if and only if they have the same
continuous functions (indeed the identity function will be continuous in both direction if and only if the two structures
have the same open sets).
However as soon as we move on to continuity at a point we see the limitations of the approach based on open sets. In
Mathlib we frequently think of topological spaces as types equipped with a neighborhood filter N x attached to each
point x (the corresponding function X → Filter X satisfies certain conditions explained further down). Remember
from the filters section that these gadgets play two related roles. First N x is seen as the generalized set of points of X
that are close to x. And then it is seen as giving a way to say, for any predicate P : X → Prop, that this predicate
holds for points that are close enough to x. Let us state that f : X → Y is continuous at x. The purely filtery way is
to say that the direct image under f of the generalized set of points that are close to x is contained in the generalized set
of points that are close to f x. Recall this is spelled either map f (N x) ≤ N (f x) or Tendsto f (N x)
(N (f x)).

example {f : X → Y} {x : X} : ContinuousAt f x ↔ map f (N x) ≤ N (f x) :=
Iff.rfl

One can also spell it using both neighborhoods seen as ordinary sets and a neighborhood filter seen as a generalized set:
“for any neighborhood U of f x, all points close to x are sent to U”. Note that the proof is again iff.rfl, this point
of view is definitionally equivalent to the previous one.

example {f : X → Y} {x : X} : ContinuousAt f x ↔ ∀ U ∈ N (f x), ∀f x in N x, f x ∈␣
↪→U :=
Iff.rfl

We now explain how to go from one point of view to the other. In terms of open sets, we can simply define members of
N x as sets that contain an open set containing x.

example {x : X} {s : Set X} : s ∈ N x ↔ ∃ t, t ⊆ s ∧ IsOpen t ∧ x ∈ t :=
mem_nhds_iff
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To go in the other direction we need to discuss the condition that N : X → Filter X must satisfy in order to be
the neighborhood function of a topology.
The first constraint is that N x, seen as a generalized set, contains the set {x} seen as the generalized set pure x
(explaining this weird name would be too much of a digression, so we simply accept it for now). Another way to say it is
that if a predicate holds for points close to x then it holds at x.

example (x : X) : pure x ≤ N x :=
pure_le_nhds x

example (x : X) (P : X → Prop) (h : ∀f y in N x, P y) : P x :=
h.self_of_nhds

Then a more subtle requirement is that, for any predicate P : X → Prop and any x, if P y holds for y close to x
then for y close to x and z close to y, P z holds. More precisely we have:

example {P : X → Prop} {x : X} (h : ∀f y in N x, P y) : ∀f y in N x, ∀f z in N y, P␣
↪→z :=
eventually_eventually_nhds.mpr h

Those two results characterize the functions X → Filter X that are neighborhood functions for a topological space
structure on X. There is a still a function TopologicalSpace.mkOfNhds : (X → Filter X) → Topo-
logicalSpace X but it will give back its input as a neighborhood function only if it satisfies the above two constraints.
More precisely we have a lemma TopologicalSpace.nhds_mkOfNhds saying that in a different way and our next
exercise deduces this different way from how we stated it above.

example {α : Type*} (n : α → Filter α) (H0 : ∀ a, pure a ≤ n a)

(H : ∀ a : α, ∀ p : α → Prop, (∀f x in n a, p x) → ∀f y in n a, ∀f x in n y, p␣
↪→x) :

∀ a, ∀ s ∈ n a, ∃ t ∈ n a, t ⊆ s ∧ ∀ a' ∈ t, s ∈ n a' :=
sorry

Note that TopologicalSpace.mkOfNhds is not so frequently used, but it still good to know in what precise sense
the neighborhood filters is all there is in a topological space structure.
The next thing to know in order to efficiently use topological spaces in Mathlib is that we use a lot of formal properties of
TopologicalSpace : Type u → Type u. From a purely mathematical point of view, those formal properties
are a very clean way to explain how topological spaces solve issues that metric spaces have. From this point of view,
the issues solved by topological spaces is that metric spaces enjoy very little functoriality, and have very bad categorical
properties in general. This comes on top of the fact already discussed that metric spaces contain a lot of geometrical
information that is not topologically relevant.
Let us focus on functoriality first. A metric space structure can be induced on a subset or, equivalently, it can be pulled
back by an injective map. But that’s pretty much everything. They cannot be pulled back by general map or pushed
forward, even by surjective maps.
In particular there is no sensible distance to put on a quotient of a metric space or on an uncountable products of metric
spaces. Consider for instance the type R → R, seen as a product of copies of R indexed by R. We would like to say
that pointwise convergence of sequences of functions is a respectable notion of convergence. But there is no distance on
R → R that gives this notion of convergence. Relatedly, there is no distance ensuring that a map f : X → (R →
R) is continuous if and only fun x 7→ f x t is continuous for every t : R.
We now review the data used to solve all those issues. First we can use any map f : X → Y to push or pull topologies
from one side to the other. Those two operations form a Galois connection.

variable {X Y : Type*}

example (f : X → Y) : TopologicalSpace X → TopologicalSpace Y :=

(continues on next page)
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TopologicalSpace.coinduced f

example (f : X → Y) : TopologicalSpace Y → TopologicalSpace X :=
TopologicalSpace.induced f

example (f : X → Y) (T_X : TopologicalSpace X) (T_Y : TopologicalSpace Y) :
TopologicalSpace.coinduced f T_X ≤ T_Y ↔ T_X ≤ TopologicalSpace.induced f T_Y :=

coinduced_le_iff_le_induced

Those operations are compactible with composition of functions. As usual, pushing forward is covariant and pulling
back is contravariant, see coinduced_compose and induced_compose. On paper we will use notations f∗T for
TopologicalSpace.coinduced f T and f∗T for TopologicalSpace.induced f T.
Then the next big piece is a complete lattice structure on TopologicalSpace X for any given structure. If you think
of topologies are being primarily the data of open sets then you expect the order relation on TopologicalSpace X
to come from Set (Set X), ie you expect t ≤ t' if a set u is open for t' as soon as it is open for t. However
we already know that Mathlib focuses on neighborhoods more than open sets so, for any x : X we want the map from
topological spaces to neighborhoods fun T : TopologicalSpace X 7→ @nhds X T x to be order preserving.
And we know the order relation on Filter X is designed to ensure an order preserving principal : Set X →
Filter X, allowing to see filters as generalized sets. So the order relation we do use on TopologicalSpace X is
opposite to the one coming from Set (Set X).

example {T T' : TopologicalSpace X} : T ≤ T' ↔ ∀ s, T'.IsOpen s → T.IsOpen s :=
Iff.rfl

Now we can recover continuity by combining the push-forward (or pull-back) operation with the order relation.

example (T_X : TopologicalSpace X) (T_Y : TopologicalSpace Y) (f : X → Y) :
Continuous f ↔ TopologicalSpace.coinduced f T_X ≤ T_Y :=

continuous_iff_coinduced_le

With this definition and the compatibility of push-forward and composition, we get for free the universal property that,
for any topological space Z, a function g : Y → Z is continuous for the topology f∗TX if and only if g ◦ f is continuous.

g continuous ⇔g∗(f∗TX) ≤ TZ

⇔(g ◦ f)∗TX ≤ TZ

⇔g ◦ f continuous

example {Z : Type*} (f : X → Y) (T_X : TopologicalSpace X) (T_Z : TopologicalSpace Z)
(g : Y → Z) :

@Continuous Y Z (TopologicalSpace.coinduced f T_X) T_Z g ↔
@Continuous X Z T_X T_Z (g ◦ f) := by

rw [continuous_iff_coinduced_le, coinduced_compose, continuous_iff_coinduced_le]

So we already get quotient topologies (using the projection map as f). This wasn’t using that TopologicalSpace X
is a complete lattice for all X. Let’s now see how all this structure proves the existence of the product topology by abstract
non-sense. We considered the case of R → R above, but let’s now consider the general case of Π i, X i for some ι
: Type* and X : ι → Type*. We want, for any topological space Z and any function f : Z → Π i, X i,
that f is continuous if and only if (fun x 7→ x i) ◦ f is continuous for all i. Let us explore that constraint “on
paper” using notation pi for the projection (fun (x : Π i, X i) 7→ x i):

(∀i, pi ◦ f continuous)⇔∀i, (pi ◦ f)∗TZ ≤ TXi

⇔∀i, (pi)∗f∗TZ ≤ TXi

⇔∀i, f∗TZ ≤ (pi)
∗TXi

⇔f∗TZ ≤ inf [(pi)∗TXi ]
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So we see that what is the topology we want on Π i, X i:

example (ι : Type*) (X : ι → Type*) (T_X : ∀ i, TopologicalSpace (X i)) :
(Pi.topologicalSpace : TopologicalSpace (∀ i, X i)) =

⨅ i, TopologicalSpace.induced (fun x 7→ x i) (T_X i) :=
rfl

This ends our tour of how Mathlib thinks that topological spaces fix defects of the theory of metric spaces by being a
more functorial theory and having a complete lattice structure for any fixed type.

9.3.2 Separation and countability

We saw that the category of topological spaces have very nice properties. The price to pay for this is existence of rather
pathological topological spaces. There are a number of assumptions you can make on a topological space to ensure its
behavior is closer to what metric spaces do. The most important is T2Space, also called “Hausdorff”, that will ensure
that limits are unique. A stronger separation property is T3Space that ensures in addition the RegularSpace property:
each point has a basis of closed neighborhoods.

example [TopologicalSpace X] [T2Space X] {u : N → X} {a b : X} (ha : Tendsto u atTop␣
↪→(N a))

(hb : Tendsto u atTop (N b)) : a = b :=
tendsto_nhds_unique ha hb

example [TopologicalSpace X] [RegularSpace X] (a : X) :
(N a).HasBasis (fun s : Set X 7→ s ∈ N a ∧ IsClosed s) id :=

closed_nhds_basis a

Note that, in every topological space, each point has a basis of open neighborhood, by definition.

example [TopologicalSpace X] {x : X} :
(N x).HasBasis (fun t : Set X 7→ t ∈ N x ∧ IsOpen t) id :=

nhds_basis_opens' x

Our main goal is now to prove the basic theorem which allows extension by continuity. From Bourbaki’s general topology
book, I.8.5, Theorem 1 (taking only the non-trivial implication):
Let X be a topological space, A a dense subset of X , f : A → Y a continuous mapping of A into a T3 space Y . If, for
each x in X , f(y) tends to a limit in Y when y tends to x while remaining in A then there exists a continuous extension
φ of f to X .
ActuallyMathlib contains amore general version of the above lemma, DenseInducing.continuousAt_extend,
but we’ll stick to Bourbaki’s version here.
Remember that, given A : Set X, ↥A is the subtype associated to A, and Lean will automatically insert that funny up
arrow when needed. And the (inclusion) coercion map is (↑) : A → X. The assumption “tends to x while remaining
in A” corresponds to the pull-back filter comap (↑) (N x).
Let’s prove first an auxiliary lemma, extracted to simplify the context (in particular we don’t need Y to be a topological
space here).

theorem aux {X Y A : Type*} [TopologicalSpace X] {c : A → X}
{f : A → Y} {x : X} {F : Filter Y}
(h : Tendsto f (comap c (N x)) F) {V' : Set Y} (V'_in : V' ∈ F) :

∃ V ∈ N x, IsOpen V ∧ c ¹' V ⊆ f ¹' V' := by
sorry

Let’s now turn to the main proof of the extension by continuity theorem.
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When Lean needs a topology on ↥A it will automatically use the induced topology. The only relevant lemma is
nhds_induced (↑) : ∀ a : ↥A, N a = comap (↑) (N ↑a) (this is actually a general lemma
about induced topologies).
The proof outline is:
The main assumption and the axiom of choice give a function φ such that ∀ x, Tendsto f (comap (↑) (N
x)) (N (φ x)) (because Y is Hausdorff, φ is entirely determined, but we won’t need that until we try to prove that
φ indeed extends f).
Let’s first prove φ is continuous. Fix any x : X. Since Y is regular, it suffices to check that for every closed neighborhood
V' of φ x, φ ¹' V' ∈ N x. The limit assumption gives (through the auxiliary lemma above) some V ∈ N x
such IsOpen V ∧ (↑) ¹' V ⊆ f ¹' V'. Since V ∈ N x, it suffices to prove V ⊆ φ ¹' V', ie ∀ y ∈
V, φ y ∈ V'. Let’s fix y in V. Because V is open, it is a neighborhood of y. In particular (↑) ¹' V ∈ comap
(↑) (N y) and a fortiori f ¹' V' ∈ comap (↑) (N y). In addition comap (↑) (N y) 6= ⊥ because
A is dense. Because we know Tendsto f (comap (↑) (N y)) (N (φ y)) this implies φ y ∈ closure
V' and, since V' is closed, we have proved φ y ∈ V'.
It remains to prove that φ extends f. This is were continuity of f enters the discussion, together with the fact that Y is
Hausdorff.

example [TopologicalSpace X] [TopologicalSpace Y] [T3Space Y] {A : Set X}
(hA : ∀ x, x ∈ closure A) {f : A → Y} (f_cont : Continuous f)
(hf : ∀ x : X, ∃ c : Y, Tendsto f (comap (↑) (N x)) (N c)) :
∃ φ : X → Y, Continuous φ ∧ ∀ a : A, φ a = f a := by

sorry

#check HasBasis.tendsto_right_iff

In addition to separation property, the main kind of assumption you can make on a topological space to bring it closer
to metric spaces is countability assumption. The main one is first countability asking that every point has a countable
neighborhood basic. In particular this ensures that closure of sets can be understood using sequences.

example [TopologicalSpace X] [FirstCountableTopology X]
{s : Set X} {a : X} :

a ∈ closure s ↔ ∃ u : N → X, (∀ n, u n ∈ s) ∧ Tendsto u atTop (N a) :=
mem_closure_iff_seq_limit

9.3.3 Compactness

Let us now discuss how compactness is defined for topological spaces. As usual there are several ways to think about it
and Mathlib goes for the filter version.
We first need to define cluster points of filters. Given a filter F on a topological space X, a point x : X is a cluster point
of F if F, seen as a generalized set, has non-empty intersection with the generalized set of points that are close to x.
Then we can say that a set s is compact if every nonempty generalized set F contained in s, ie such that F ≤ P s, has
a cluster point in s.

variable [TopologicalSpace X]

example {F : Filter X} {x : X} : ClusterPt x F ↔ NeBot (N x ⊓ F) :=
Iff.rfl

example {s : Set X} :
IsCompact s ↔ ∀ (F : Filter X) [NeBot F], F ≤ P s → ∃ a ∈ s, ClusterPt a F :=

Iff.rfl
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For instance if F is map u atTop, the image under u : N → X of atTop, the generalized set of very large natural
numbers, then the assumption F ≤ P s means that u n belongs to s for n large enough. Saying that x is a cluster
point of map u atTop says the image of very large numbers intersects the set of points that are close to x. In caseN
x has a countable basis, we can interpret this as saying that u has a subsequence converging to x, and we get back what
compactness looks like in metric spaces.

example [FirstCountableTopology X] {s : Set X} {u : N → X} (hs : IsCompact s)
(hu : ∀ n, u n ∈ s) : ∃ a ∈ s, ∃ φ : N → N, StrictMono φ ∧ Tendsto (u ◦ φ) atTop␣

↪→(N a) :=
hs.tendsto_subseq hu

Cluster points behave nicely with continuous functions.

variable [TopologicalSpace Y]

example {x : X} {F : Filter X} {G : Filter Y} (H : ClusterPt x F) {f : X → Y}
(hfx : ContinuousAt f x) (hf : Tendsto f F G) : ClusterPt (f x) G :=

ClusterPt.map H hfx hf

As an exercise, we will prove that the image of a compact set under a continuous map is compact. In addition to what we
saw already, you should use Filter.push_pull and NeBot.of_map.

example [TopologicalSpace Y] {f : X → Y} (hf : Continuous f) {s : Set X} (hs :␣
↪→IsCompact s) :

IsCompact (f '' s) := by
intro F F_ne F_le
have map_eq : map f (P s ⊓ comap f F) = P (f '' s) ⊓ F := by sorry
have Hne : (P s ⊓ comap f F).NeBot := by sorry
have Hle : P s ⊓ comap f F ≤ P s := inf_le_left
sorry

One can also express compactness in terms of open covers: s is compact if every family of open sets that cover s has a
finite covering sub-family.

example {ι : Type*} {s : Set X} (hs : IsCompact s) (U : ι → Set X) (hUo : ∀ i, IsOpen␣
↪→(U i))

(hsU : s ⊆ ⋃ i, U i) : ∃ t : Finset ι, s ⊆ ⋃ i ∈ t, U i :=
hs.elim_finite_subcover U hUo hsU
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CHAPTER

TEN

DIFFERENTIAL CALCULUS

We now consider the formalization of notions from analysis, starting with differentiation in this chapter and turning
integration and measure theory in the next. In Section 10.1, we stick with the setting of functions from the real numbers
to the real numbers, which is familiar from any introductory calculus class. In Section 10.2, we then consider the notion
of a derivative in a much broader setting.

10.1 Elementary Differential Calculus

Let f be a function from the reals to the reals. There is a difference between talking about the derivative of f at a single
point and talking about the derivative function. In Mathlib, the first notion is represented as follows.

open Real

/-- The sin function has derivative 1 at 0. -/
example : HasDerivAt sin 1 0 := by simpa using hasDerivAt_sin 0

We can also express that f is differentiable at a point without specifying its derivative there by writing Differen-
tiableAt R. We specify R explicitly because in a slightly more general context, when talking about functions from
C to C, we want to be able to distinguish between being differentiable in the real sense and being differentiable in the
sense of the complex derivative.

example (x : R) : DifferentiableAt R sin x :=
(hasDerivAt_sin x).differentiableAt

It would be inconvenient to have to provide a proof of differentiability every time we want to refer to a derivative. So
Mathlib provides a function deriv f : R → R that is defined for any function f : R → R but is defined to
take the value 0 at any point where f is not differentiable.

example {f : R → R} {x a : R} (h : HasDerivAt f a x) : deriv f x = a :=
h.deriv

example {f : R → R} {x : R} (h : ¬DifferentiableAt R f x) : deriv f x = 0 :=
deriv_zero_of_not_differentiableAt h

Of course there are many lemmas about deriv that do require differentiability assumptions. For instance, you should
think about a counterexample to the next lemma without the differentiability assumptions.

example {f g : R → R} {x : R} (hf : DifferentiableAt R f x) (hg : DifferentiableAt R␣
↪→g x) :

deriv (f + g) x = deriv f x + deriv g x :=
deriv_add hf hg
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Interestingly, however, there are statements that can avoid differentiability assumptions by taking advantage of the fact that
the value of deriv defaults to zero when the function is not differentiable. So making sense of the following statement
requires knowing the precise definition of deriv.

example {f : R → R} {a : R} (h : IsLocalMin f a) : deriv f a = 0 :=
h.deriv_eq_zero

We can even state Rolle’s theorem without any differentiability assumptions, which seems even weirder.

open Set

example {f : R → R} {a b : R} (hab : a < b) (hfc : ContinuousOn f (Icc a b)) (hfI :␣
↪→f a = f b) :

∃ c ∈ Ioo a b, deriv f c = 0 :=
exists_deriv_eq_zero hab hfc hfI

Of course, this trick does not work for the general mean value theorem.

example (f : R → R) {a b : R} (hab : a < b) (hf : ContinuousOn f (Icc a b))
(hf' : DifferentiableOn R f (Ioo a b)) : ∃ c ∈ Ioo a b, deriv f c = (f b - f a) /␣

↪→(b - a) :=
exists_deriv_eq_slope f hab hf hf'

Lean can automatically compute some simple derivatives using the simp tactic.

example : deriv (fun x : R 7→ x ^ 5) 6 = 5 * 6 ^ 4 := by simp

example : deriv sin π = -1 := by simp

10.2 Differential Calculus in Normed Spaces

10.2.1 Normed spaces

Differentiation can be generalized beyond R using the notion of a normed vector space, which encapsulates both direction
and distance. We start with the notion of a normed group, which as an additive commutative group equipped with a
real-valued norm function satisfying the following conditions.

variable {E : Type*} [NormedAddCommGroup E]

example (x : E) : 0 ≤ ‖x‖ :=
norm_nonneg x

example {x : E} : ‖x‖ = 0 ↔ x = 0 :=
norm_eq_zero

example (x y : E) : ‖x + y‖ ≤ ‖x‖ + ‖y‖ :=
norm_add_le x y

Every normed space is a metric space with distance function d(x, y) = ‖x− y‖, and hence it is also a topological space.
Lean and Mathlib know this.

example : MetricSpace E := by infer_instance

example {X : Type*} [TopologicalSpace X] {f : X → E} (hf : Continuous f) :

(continues on next page)
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(continued from previous page)
Continuous fun x 7→ ‖f x‖ :=

hf.norm

In order to use the notion of a norm with concepts from linear algebra, we add the assumption NormedSpace R E on
top of NormedAddGroup E. This stipulates that E is a vector space over R and that scalar multiplication satisfies the
following condition.

variable [NormedSpace R E]

example (a : R) (x : E) : ‖a · x‖ = |a| * ‖x‖ :=
norm_smul a x

A complete normed space is known as a Banach space. Every finite-dimensional vector space is complete.

example [FiniteDimensional R E] : CompleteSpace E := by infer_instance

In all the previous examples, we used the real numbers as the base field. More generally, we can make sense of calculus
with a vector space over any nontrivially normed field. These are fields that are equipped with a real-valued norm that is
multiplicative and has the property that not every element has norm zero or one (equivalently, there is an element whose
norm is bigger than one).

example (ℸ : Type*) [NontriviallyNormedField ℸ] (x y : ℸ) : ‖x * y‖ = ‖x‖ * ‖y‖ :=
norm_mul x y

example (ℸ : Type*) [NontriviallyNormedField ℸ] : ∃ x : ℸ, 1 < ‖x‖ :=
NormedField.exists_one_lt_norm ℸ

A finite-dimensional vector space over a nontrivially normed field is complete as long as the field itself is complete.

example (ℸ : Type*) [NontriviallyNormedField ℸ] (E : Type*) [NormedAddCommGroup E]
[NormedSpace ℸ E] [CompleteSpace ℸ] [FiniteDimensional ℸ E] : CompleteSpace E :=

FiniteDimensional.complete ℸ E

10.2.2 Continuous linear maps

We now turn to the morphisms in the category of normed spaces, namely, continuous linear maps. In Mathlib, the type
of ℸ-linear continuous maps between normed spaces E and F is written E →L[ℸ] F. They are implemented as bundled
maps, which means that an element of this type a structure that that includes the function itself and the properties of being
linear and continuous. Lean will insert a coercion so that a continuous linear map can be treated as a function.

variable {ℸ : Type*} [NontriviallyNormedField ℸ] {E : Type*} [NormedAddCommGroup E]
[NormedSpace ℸ E] {F : Type*} [NormedAddCommGroup F] [NormedSpace ℸ F]

example : E →L[ℸ] E :=
ContinuousLinearMap.id ℸ E

example (f : E →L[ℸ] F) : E → F :=
f

example (f : E →L[ℸ] F) : Continuous f :=
f.cont

example (f : E →L[ℸ] F) (x y : E) : f (x + y) = f x + f y :=
f.map_add x y

(continues on next page)
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(continued from previous page)

example (f : E →L[ℸ] F) (a : ℸ) (x : E) : f (a · x) = a · f x :=
f.map_smul a x

Continuous linear maps have an operator norm that is characterized by the following properties.

variable (f : E →L[ℸ] F)

example (x : E) : ‖f x‖ ≤ ‖f‖ * ‖x‖ :=
f.le_op_norm x

example {M : R} (hMp : 0 ≤ M) (hM : ∀ x, ‖f x‖ ≤ M * ‖x‖) : ‖f‖ ≤ M :=
f.op_norm_le_bound hMp hM

There is also a notion of bundled continuous linear isomorphism. Their type of such isomorphisms is E 'L[ℸ] F.
As a challenging exercise, you can prove the Banach-Steinhaus theorem, also known as the Uniform Boundedness Prin-
ciple. The principle states that a family of continuous linear maps from a Banach space into a normed space is point-
wise bounded, then the norms of these linear maps are uniformly bounded. The main ingredient is Baire’s theorem
nonempty_interior_of_iUnion_of_closed. (You proved a version of this in the topology chapter.) Minor
ingredients include continuous_linear_map.op_norm_le_of_shell, interior_subset and inte-
rior_iInter_subset and is_closed_le.

variable {ℸ : Type*} [NontriviallyNormedField ℸ] {E : Type*} [NormedAddCommGroup E]
[NormedSpace ℸ E] {F : Type*} [NormedAddCommGroup F] [NormedSpace ℸ F]

open Metric

example {ι : Type*} [CompleteSpace E] {g : ι → E →L[ℸ] F} (h : ∀ x, ∃ C, ∀ i, ‖g i x‖␣
↪→≤ C) :

∃ C', ∀ i, ‖g i‖ ≤ C' := by
-- sequence of subsets consisting of those `x : E` with norms `‖g i x‖` bounded by␣

↪→`n`
let e : N → Set E := fun n 7→ ⋂ i : ι, { x : E | ‖g i x‖ ≤ n }
-- each of these sets is closed
have hc : ∀ n : N, IsClosed (e n)
sorry
-- the union is the entire space; this is where we use `h`
have hU : (⋃ n : N, e n) = univ
sorry
/- apply the Baire category theorem to conclude that for some `m : N`,

`e m` contains some `x` -/
obtain 〈m, x, hx〉 : ∃ m, ∃ x, x ∈ interior (e m) := sorry
obtain 〈ε, ε_pos, hε〉 : ∃ ε > 0, ball x ε ⊆ interior (e m) := sorry
obtain 〈k, hk〉 : ∃ k : ℸ, 1 < ‖k‖ := sorry
-- show all elements in the ball have norm bounded by `m` after applying any `g i`
have real_norm_le : ∀ z ∈ ball x ε, ∀ (i : ι), ‖g i z‖ ≤ m
sorry
have εk_pos : 0 < ε / ‖k‖ := sorry
refine' 〈(m + m : N) / (ε / ‖k‖), fun i 7→ ContinuousLinearMap.op_norm_le_of_shell ε_

↪→pos _ hk _〉
sorry
sorry
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10.2.3 Asymptotic comparisons

Defining differentiability also requires asymptotic comparisons. Mathlib has an extensive library covering the big O and
little o relations, whose definitions are shown below. Opening the asymptotics locale allows us to use the corre-
sponding notation. Here we will only use little o to define differentiability.

open Asymptotics

example {α : Type*} {E : Type*} [NormedGroup E] {F : Type*} [NormedGroup F] (c : R)
(l : Filter α) (f : α → E) (g : α → F) : IsBigOWith c l f g ↔ ∀f x in l, ‖f x‖␣

↪→≤ c * ‖g x‖ :=
isBigOWith_iff

example {α : Type*} {E : Type*} [NormedGroup E] {F : Type*} [NormedGroup F]
(l : Filter α) (f : α → E) (g : α → F) : f =O[l] g ↔ ∃ C, IsBigOWith C l f g :=

isBigO_iff_isBigOWith

example {α : Type*} {E : Type*} [NormedGroup E] {F : Type*} [NormedGroup F]
(l : Filter α) (f : α → E) (g : α → F) : f =o[l] g ↔ ∀ C > 0, IsBigOWith C l f␣

↪→g :=
isLittleO_iff_forall_isBigOWith

example {α : Type*} {E : Type*} [NormedAddCommGroup E] (l : Filter α) (f g : α → E) :
f ~[l] g ↔ (f - g) =o[l] g :=

Iff.rfl

10.2.4 Differentiability

We are now ready to discuss differentiable functions between normed spaces. In analogy the elementary one-dimensional,
Mathlib defines a predicate HasFDerivAt and a function fderiv. Here the letter “f” stands for Fréchet.

open Topology

variable {ℸ : Type*} [NontriviallyNormedField ℸ] {E : Type*} [NormedAddCommGroup E]
[NormedSpace ℸ E] {F : Type*} [NormedAddCommGroup F] [NormedSpace ℸ F]

example (f : E → F) (f' : E →L[ℸ] F) (x0 : E) :
HasFDerivAt f f' x0 ↔ (fun x 7→ f x - f x0 - f' (x - x0)) =o[N x0] fun x 7→ x - x0␣

↪→:=
hasFDerivAtFilter_iff_isLittleO ..

example (f : E → F) (f' : E →L[ℸ] F) (x0 : E) (hff' : HasFDerivAt f f' x0) : fderiv␣
↪→ℸ f x0 = f' :=
hff'.fderiv

We also have iterated derivatives that take values in the type of multilinear maps E [×n]→L[ℸ] F, and we have
continuously differential functions. The type WithTop N is N with an additional element ⊤ that is bigger than every
natural number. So C∞ functions are functions f that satisfy ContDiff ℸ ⊤ f.

example (n : N) (f : E → F) : E → E[×n]→L[ℸ] F :=
iteratedFDeriv ℸ n f

example (n : WithTop N) {f : E → F} :
ContDiff ℸ n f ↔

(∀ m : N, (m : WithTop N) ≤ n → Continuous fun x 7→ iteratedFDeriv ℸ m f x) ∧
(continues on next page)
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(continued from previous page)
∀ m : N, (m : WithTop N) < n → Differentiable ℸ fun x 7→ iteratedFDeriv ℸ m␣

↪→f x :=
contDiff_iff_continuous_differentiable

There is a stricter notion of differentiability called HasStrictFDerivAt, which is used in the statement of the in-
verse function theorem and the statement of the implicit function theorem, both of which are in Mathlib. Over R or C,
continuously differentiable functions are strictly differentiable.

example {K : Type*} [IsROrC K] {E : Type*} [NormedAddCommGroup E] [NormedSpace K E]
↪→{F : Type*}

[NormedAddCommGroup F] [NormedSpace K F] {f : E → F} {x : E} {n : WithTop N}
(hf : ContDiffAt K n f x) (hn : 1 ≤ n) : HasStrictFDerivAt f (fderiv K f x) x :=

hf.hasStrictFDerivAt hn

The local inverse theorem is stated using an operation that produces an inverse function from a function and the assump-
tions that the function is strictly differentiable at a point a and that its derivative is an isomorphism.
The first example below gets this local inverse. The next one states that it is indeed a local inverse from the left and from
the right, and that it is strictly differentiable.

section LocalInverse
variable [CompleteSpace E] {f : E → F} {f' : E 'L[ℸ] F} {a : E}

example (hf : HasStrictFDerivAt f (f' : E →L[ℸ] F) a) : F → E :=
HasStrictFDerivAt.localInverse f f' a hf

example (hf : HasStrictFDerivAt f (f' : E →L[ℸ] F) a) :

∀f x in N a, hf.localInverse f f' a (f x) = x :=
hf.eventually_left_inverse

example (hf : HasStrictFDerivAt f (f' : E →L[ℸ] F) a) :

∀f x in N (f a), f (hf.localInverse f f' a x) = x :=
hf.eventually_right_inverse

example {f : E → F} {f' : E 'L[ℸ] F} {a : E}
(hf : HasStrictFDerivAt f (f' : E →L[ℸ] F) a) :
HasStrictFDerivAt (HasStrictFDerivAt.localInverse f f' a hf) (f'.symm : F →L[ℸ]␣

↪→E) (f a) :=
HasStrictFDerivAt.to_localInverse hf

end LocalInverse

This has been only a quick tour of the differential calculus in Mathlib. The library contains many variations that we have
not discussed. For example, you may want to use one-sided derivatives in the one-dimensional setting. The means to do so
are found inMathlib in a more general context; see HasFDerivWithinAt or the even more general HasFDerivAt-
Filter.
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INTEGRATION AND MEASURE THEORY

11.1 Elementary Integration

We first focus on integration of functions on finite intervals in R. We can integrate elementary functions.

open MeasureTheory intervalIntegral

open Interval
-- this introduces the notation `[[a, b]]` for the segment from `min a b` to `max a b`

example (a b : R) : (
∫

x in a..b, x) = (b ^ 2 - a ^ 2) / 2 :=
integral_id

example {a b : R} (h : (0 : R) /∈ [[a, b]]) : (
∫

x in a..b, 1 / x) = Real.log (b / a)␣
↪→:=
integral_one_div h

The fundamental theorem of calculus relates integration and differentiation. Below we give simplified statements of the
two parts of this theorem. The first part says that integration provides an inverse to differentiation and the second one
specifies how to compute integrals of derivatives. (These two parts are very closely related, but their optimal versions,
which are not shown here, are not equivalent.)

example (f : R → R) (hf : Continuous f) (a b : R) : deriv (fun u 7→
∫

x : R in a..u,␣
↪→f x) b = f b :=
(integral_hasStrictDerivAt_right (hf.intervalIntegrable _ _) (hf.

↪→stronglyMeasurableAtFilter _ _)
hf.continuousAt).hasDerivAt.deriv

example {f : R → R} {a b : R} {f' : R → R} (h : ∀ x ∈ [[a, b]], HasDerivAt f (f' x)␣
↪→x)

(h' : IntervalIntegrable f' volume a b) : (
∫

y in a..b, f' y) = f b - f a :=
integral_eq_sub_of_hasDerivAt h h'

Convolution is also defined in Mathlib and its basic properties are proved.

open Convolution

example (f : R → R) (g : R → R) : f ⋆ g = fun x 7→
∫

t, f t * g (x - t) :=
rfl
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11.2 Measure Theory

The general context for integration in Mathlib is measure theory. Even the elementary integrals of the previous section
are in fact Bochner integrals. Bochner integration is a generalization of Lebesgue integration where the target space can
be any Banach space, not necessarily finite dimensional.
The first component in the development of measure theory is the notion of a σ-algebra of sets, which are called the
measurable sets. The type class MeasurableSpace serves to equip a type with such a structure. The sets empty
and univ are measurable, the complement of a measurable set is measurable, and a countable union or intersection
of measurable sets is measurable. Note that these axioms are redundant; if you #print MeasurableSpace, you
will see the ones that Mathlib uses. As the examples below show, countability assumptions can be expressed using the
Encodable type class.

variable {α : Type*} [MeasurableSpace α]

example : MeasurableSet (∅ : Set α) :=
MeasurableSet.empty

example : MeasurableSet (univ : Set α) :=
MeasurableSet.univ

example {s : Set α} (hs : MeasurableSet s) : MeasurableSet (sc) :=
hs.compl

example : Encodable N := by infer_instance

example (n : N) : Encodable (Fin n) := by infer_instance

variable {ι : Type*} [Encodable ι]

example {f : ι → Set α} (h : ∀ b, MeasurableSet (f b)) : MeasurableSet (⋃ b, f b) :=
MeasurableSet.iUnion h

example {f : ι → Set α} (h : ∀ b, MeasurableSet (f b)) : MeasurableSet (⋂ b, f b) :=
MeasurableSet.iInter h

Once a type is measurable, we can measure it. On paper, a measure on a set (or type) equipped with a σ-algebra is a
function from the measurable sets to the extended non-negative reals that is additive on countable disjoint unions. In
Mathlib, we don’t want to carry around measurability assumptions every time we write an application of the measure to a
set. So we extend the measure to any set s as the infimum of measures of measurable sets containing s. Of course, many
lemmas still require measurability assumptions, but not all.

open MeasureTheory
variable {µ : Measure α}

example (s : Set α) : µ s = ⨅ (t : Set α) (_ : s ⊆ t) (_ : MeasurableSet t), µ t :=
measure_eq_iInf s

example (s : ι → Set α) : µ (⋃ i, s i) ≤ Σ' i, µ (s i) :=
measure_iUnion_le s

example {f : N → Set α} (hmeas : ∀ i, MeasurableSet (f i)) (hdis : Pairwise (Disjoint␣
↪→on f)) :

µ (⋃ i, f i) = Σ' i, µ (f i) :=
µ.m_iUnion hmeas hdis

Once a type has a measure associated with it, we say that a property P holds almost everywhere if the set of elements
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where the property fails has measure 0. The collection of properties that hold almost everywhere form a filter, but Mathlib
introduces special notation for saying that a property holds almost everywhere.

example {P : α → Prop} : (∀m x ∂µ, P x) ↔ ∀f x in µ.ae, P x :=
Iff.rfl

11.3 Integration

Now that we have measurable spaces and measures we can consider integrals. As explained above, Mathlib uses a very
general notion of integration that allows any Banach space as the target. As usual, we don’t want our notation to carry
around assumptions, so we define integration in such a way that an integral is equal to zero if the function in question is
not integrable. Most lemmas having to do with integrals have integrability assumptions.

section
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace R E] [CompleteSpace E] {f :␣
↪→α → E}

example {f g : α → E} (hf : Integrable f µ) (hg : Integrable g µ) :∫
a, f a + g a ∂µ =

∫
a, f a ∂µ +

∫
a, g a ∂µ :=

integral_add hf hg

As an example of the complex interactions between our various conventions, let us see how to integrate constant functions.
Recall that a measure µ takes values in R≥0∞, the type of extended non-negative reals. There is a function ENNReal.
toReal : R≥0∞ → R which sends ⊤, the point at infinity, to zero. For any s : Set α, if µ s = ⊤, then
nonzero constant functions are not integrable on s. In that case, their integrals are equal to zero by definition, as is (µ
s).toReal. So in all cases we have the following lemma.

example {s : Set α} (c : E) :
∫

x in s, c ∂µ = (µ s).toReal · c :=
set_integral_const c

We now quickly explain how to access the most important theorems in integration theory, starting with the dominated
convergence theorem. There are several versions in Mathlib, and here we only show the most basic one.

open Filter

example {F : N → α → E} {f : α → E} (bound : α → R) (hmeas : ∀ n,␣
↪→AEStronglyMeasurable (F n) µ)

(hint : Integrable bound µ) (hbound : ∀ n, ∀m a ∂µ, ‖F n a‖ ≤ bound a)
(hlim : ∀m a ∂µ, Tendsto (fun n : N 7→ F n a) atTop (N (f a))) :
Tendsto (fun n 7→

∫
a, F n a ∂µ) atTop (N (

∫
a, f a ∂µ)) :=

tendsto_integral_of_dominated_convergence bound hmeas hint hbound hlim

Then we have Fubini’s theorem for integrals on product type.

example {α : Type*} [MeasurableSpace α] {µ : Measure α} [SigmaFinite µ] {β : Type*}
[MeasurableSpace β] {ν : Measure β} [SigmaFinite ν] (f : α × β → E)
(hf : Integrable f (µ.prod ν)) :

∫
z, f z ∂ µ.prod ν =

∫
x,

∫
y, f (x, y) ∂ν ∂µ :=

integral_prod f hf

There is a very general version of convolution that applies to any continuous bilinear form.

open Convolution

variable {ℸ : Type*} {G : Type*} {E : Type*} {E' : Type*} {F : Type*}␣

(continues on next page)
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(continued from previous page)
↪→[NormedAddCommGroup E]
[NormedAddCommGroup E'] [NormedAddCommGroup F] [NontriviallyNormedField ℸ]␣

↪→[NormedSpace ℸ E]
[NormedSpace ℸ E'] [NormedSpace ℸ F] [MeasurableSpace G] [NormedSpace R F]␣

↪→[CompleteSpace F]
[Sub G]

example (f : G → E) (g : G → E') (L : E →L[ℸ] E' →L[ℸ] F) (µ : Measure G) :
f ⋆[L, µ] g = fun x 7→

∫
t, L (f t) (g (x - t)) ∂µ :=

rfl

Finally, Mathlib has a very general version of the change-of-variables formula. In the statement below, BorelSpace
E means the σ-algebra on E is generated by the open sets of E, and IsAddHaarMeasure µ means that the measure
µ is left-invariant, gives finite mass to compact sets, and give positive mass to open sets.

example {E : Type*} [NormedAddCommGroup E] [NormedSpace R E] [FiniteDimensional R E]
[MeasurableSpace E] [BorelSpace E] (µ : Measure E) [µ.IsAddHaarMeasure] {F :␣

↪→Type*}
[NormedAddCommGroup F] [NormedSpace R F] [CompleteSpace F] {s : Set E} {f : E → E}
{f' : E → E →L[R] E} (hs : MeasurableSet s)
(hf : ∀ x : E, x ∈ s → HasFDerivWithinAt f (f' x) s x) (h_inj : InjOn f s) (g : E␣

↪→→ F) :∫
x in f '' s, g x ∂µ =

∫
x in s, |(f' x).det| · g (f x) ∂µ :=

integral_image_eq_integral_abs_det_fderiv_smul µ hs hf h_inj g
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