algebra.big_operators.finprod
⟷
Mathlib.Algebra.BigOperators.Finprod
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -3,7 +3,7 @@ Copyright (c) 2020 Kexing Ying and Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
-/
-import Algebra.BigOperators.Order
+import Algebra.Order.BigOperators.Group.Finset
import Algebra.Function.Indicator
#align_import algebra.big_operators.finprod from "leanprover-community/mathlib"@"63f84d91dd847f50bae04a01071f3a5491934e36"
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
-/
import Algebra.BigOperators.Order
-import Algebra.IndicatorFunction
+import Algebra.Function.Indicator
#align_import algebra.big_operators.finprod from "leanprover-community/mathlib"@"63f84d91dd847f50bae04a01071f3a5491934e36"
@@ -164,7 +164,7 @@ theorem finprod_false (f : False → M) : ∏ᶠ i, f i = 1 :=
#align finsum_false finsum_false
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (x «expr ≠ » a) -/
#print finprod_eq_single /-
@[to_additive]
theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) : ∏ᶠ x, f x = f a :=
@@ -463,7 +463,7 @@ theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : F
#align finsum_cond_eq_sum_of_cond_iff finsum_cond_eq_sum_of_cond_iff
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (i «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (i «expr ≠ » a) -/
#print finprod_cond_ne /-
@[to_additive]
theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSupport f).Finite) :
@@ -893,7 +893,7 @@ theorem finprod_mem_singleton : ∏ᶠ i ∈ ({a} : Set α), f i = f a := by
#align finsum_mem_singleton finsum_mem_singleton
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (i «expr = » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (i «expr = » a) -/
#print finprod_cond_eq_left /-
@[simp, to_additive]
theorem finprod_cond_eq_left : ∏ᶠ (i) (_ : i = a), f i = f a :=
@@ -1197,7 +1197,7 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
#align finsum_mem_sUnion finsum_mem_sUnion
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (i «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (i «expr ≠ » a) -/
#print mul_finprod_cond_ne /-
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -123,7 +123,7 @@ theorem finprod_eq_prod_plift_of_mulSupport_toFinset_subset {f : α → M}
∏ᶠ i, f i = ∏ i in s, f i.down := by
rw [finprod, dif_pos]
refine' Finset.prod_subset hs fun x hx hxf => _
- rwa [hf.mem_to_finset, nmem_mul_support] at hxf
+ rwa [hf.mem_to_finset, nmem_mul_support] at hxf
#align finprod_eq_prod_plift_of_mul_support_to_finset_subset finprod_eq_prod_plift_of_mulSupport_toFinset_subset
#align finsum_eq_sum_plift_of_support_to_finset_subset finsum_eq_sum_plift_of_support_toFinset_subset
-/
@@ -133,7 +133,7 @@ theorem finprod_eq_prod_plift_of_mulSupport_toFinset_subset {f : α → M}
theorem finprod_eq_prod_plift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
(hs : mulSupport (f ∘ PLift.down) ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i.down :=
finprod_eq_prod_plift_of_mulSupport_toFinset_subset (s.finite_toSet.Subset hs) fun x hx => by
- rw [finite.mem_to_finset] at hx ; exact hs hx
+ rw [finite.mem_to_finset] at hx; exact hs hx
#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_plift_of_mulSupport_subset
#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_plift_of_support_subset
-/
@@ -554,7 +554,7 @@ theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩
∏ᶠ i ∈ s, f i = 1 := by
rw [finprod_mem_def]
apply finprod_of_infinite_mulSupport
- rwa [← mul_support_mul_indicator] at hs
+ rwa [← mul_support_mul_indicator] at hs
#align finprod_mem_eq_one_of_infinite finprod_mem_eq_one_of_infinite
#align finsum_mem_eq_zero_of_infinite finsum_mem_eq_zero_of_infinite
-/
@@ -666,7 +666,7 @@ theorem finprod_div_distrib [DivisionCommMonoid G] {f g : α → G} (hf : (mulSu
theorem finprod_mem_mul_distrib' (hf : (s ∩ mulSupport f).Finite) (hg : (s ∩ mulSupport g).Finite) :
∏ᶠ i ∈ s, f i * g i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i :=
by
- rw [← mul_support_mul_indicator] at hf hg
+ rw [← mul_support_mul_indicator] at hf hg
simp only [finprod_mem_def, mul_indicator_mul, finprod_mul_distrib hf hg]
#align finprod_mem_mul_distrib' finprod_mem_mul_distrib'
#align finsum_mem_add_distrib' finsum_mem_add_distrib'
@@ -1212,7 +1212,7 @@ theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
rw [finprod_cond_eq_prod_of_cond_iff f h, Finset.sdiff_singleton_eq_erase]
by_cases ha : a ∈ mul_support f
· apply Finset.mul_prod_erase _ _ ((finite.mem_to_finset _).mpr ha)
- · rw [mem_mul_support, Classical.not_not] at ha
+ · rw [mem_mul_support, Classical.not_not] at ha
rw [ha, one_mul]
apply Finset.prod_erase _ ha
#align mul_finprod_cond_ne mul_finprod_cond_ne
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -426,7 +426,7 @@ theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
#print finprod_of_infinite_mulSupport /-
@[to_additive]
theorem finprod_of_infinite_mulSupport {f : α → M} (hf : (mulSupport f).Infinite) : ∏ᶠ i, f i = 1 :=
- by classical
+ by classical rw [finprod_def, dif_neg hf]
#align finprod_of_infinite_mul_support finprod_of_infinite_mulSupport
#align finsum_of_infinite_support finsum_of_infinite_support
-/
@@ -434,7 +434,7 @@ theorem finprod_of_infinite_mulSupport {f : α → M} (hf : (mulSupport f).Infin
#print finprod_eq_prod /-
@[to_additive]
theorem finprod_eq_prod (f : α → M) (hf : (mulSupport f).Finite) :
- ∏ᶠ i : α, f i = ∏ i in hf.toFinset, f i := by classical
+ ∏ᶠ i : α, f i = ∏ i in hf.toFinset, f i := by classical rw [finprod_def, dif_pos hf]
#align finprod_eq_prod finprod_eq_prod
#align finsum_eq_sum finsum_eq_sum
-/
@@ -634,7 +634,13 @@ the product of `f i` multiplied by the product of `g i`. -/
@[to_additive
"If the additive supports of `f` and `g` are finite, then the sum of `f i + g i`\nequals the sum of `f i` plus the sum of `g i`."]
theorem finprod_mul_distrib (hf : (mulSupport f).Finite) (hg : (mulSupport g).Finite) :
- ∏ᶠ i, f i * g i = (∏ᶠ i, f i) * ∏ᶠ i, g i := by classical
+ ∏ᶠ i, f i * g i = (∏ᶠ i, f i) * ∏ᶠ i, g i := by
+ classical
+ rw [finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_union_left _ _),
+ finprod_eq_prod_of_mulSupport_toFinset_subset _ hg (Finset.subset_union_right _ _), ←
+ Finset.prod_mul_distrib]
+ refine' finprod_eq_prod_of_mulSupport_subset _ _
+ simp [mul_support_mul]
#align finprod_mul_distrib finprod_mul_distrib
#align finsum_add_distrib finsum_add_distrib
-/
@@ -816,6 +822,8 @@ theorem finprod_mem_union_inter (hs : s.Finite) (ht : t.Finite) :
by
lift s to Finset α using hs; lift t to Finset α using ht
classical
+ rw [← Finset.coe_union, ← Finset.coe_inter]
+ simp only [finprod_mem_coe_finset, Finset.prod_union_inter]
#align finprod_mem_union_inter finprod_mem_union_inter
#align finsum_mem_union_inter finsum_mem_union_inter
-/
@@ -982,7 +990,16 @@ provided that `g` is injective on `s ∩ mul_support (f ∘ g)`. -/
@[to_additive
"The sum of `f y` over `y ∈ g '' s` equals the sum of `f (g i)` over `s` provided that\n`g` is injective on `s ∩ support (f ∘ g)`."]
theorem finprod_mem_image' {s : Set β} {g : β → α} (hg : (s ∩ mulSupport (f ∘ g)).InjOn g) :
- ∏ᶠ i ∈ g '' s, f i = ∏ᶠ j ∈ s, f (g j) := by classical
+ ∏ᶠ i ∈ g '' s, f i = ∏ᶠ j ∈ s, f (g j) := by
+ classical
+ by_cases hs : (s ∩ mul_support (f ∘ g)).Finite
+ · have hg : ∀ x ∈ hs.to_finset, ∀ y ∈ hs.to_finset, g x = g y → x = y := by
+ simpa only [hs.mem_to_finset]
+ rw [finprod_mem_eq_prod _ hs, ← Finset.prod_image hg]
+ refine' finprod_mem_eq_prod_of_inter_mulSupport_eq f _
+ rw [Finset.coe_image, hs.coe_to_finset, ← image_inter_mul_support_eq, inter_assoc, inter_self]
+ · rw [finprod_mem_eq_one_of_infinite hs, finprod_mem_eq_one_of_infinite]
+ rwa [image_inter_mul_support_eq, infinite_image_iff hg]
#align finprod_mem_image' finprod_mem_image'
#align finsum_mem_image' finsum_mem_image'
-/
@@ -1143,6 +1160,10 @@ theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoi
cases nonempty_fintype ι
lift t to ι → Finset α using ht
classical
+ rw [← bUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset,
+ Finset.prod_biUnion]
+ · simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype]
+ · exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)
#align finprod_mem_Union finprod_mem_iUnion
#align finsum_mem_Union finsum_mem_iUnion
-/
@@ -1180,7 +1201,20 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
#print mul_finprod_cond_ne /-
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
- f a * ∏ᶠ (i) (_ : i ≠ a), f i = ∏ᶠ i, f i := by classical
+ f a * ∏ᶠ (i) (_ : i ≠ a), f i = ∏ᶠ i, f i := by
+ classical
+ rw [finprod_eq_prod _ hf]
+ have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.to_finset \ {a}) :=
+ by
+ intro x hx
+ rw [Finset.mem_sdiff, Finset.mem_singleton, finite.mem_to_finset, mem_mul_support]
+ exact ⟨fun h => And.intro hx h, fun h => h.2⟩
+ rw [finprod_cond_eq_prod_of_cond_iff f h, Finset.sdiff_singleton_eq_erase]
+ by_cases ha : a ∈ mul_support f
+ · apply Finset.mul_prod_erase _ _ ((finite.mem_to_finset _).mpr ha)
+ · rw [mem_mul_support, Classical.not_not] at ha
+ rw [ha, one_mul]
+ apply Finset.prod_erase _ ha
#align mul_finprod_cond_ne mul_finprod_cond_ne
#align add_finsum_cond_ne add_finsum_cond_ne
-/
@@ -1222,7 +1256,12 @@ theorem finprod_cond_nonneg {R : Type _} [OrderedCommSemiring R] {p : α → Pro
#print single_le_finprod /-
@[to_additive]
theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α → M}
- (hf : (mulSupport f).Finite) (h : ∀ j, 1 ≤ f j) : f i ≤ ∏ᶠ j, f j := by classical
+ (hf : (mulSupport f).Finite) (h : ∀ j, 1 ≤ f j) : f i ≤ ∏ᶠ j, f j := by
+ classical calc
+ f i ≤ ∏ j in insert i hf.to_finset, f j :=
+ Finset.single_le_prod' (fun j hj => h j) (Finset.mem_insert_self _ _)
+ _ = ∏ᶠ j, f j :=
+ (finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm
#align single_le_finprod single_le_finprod
#align single_le_finsum single_le_finsum
-/
@@ -1338,7 +1377,10 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
/-- See also `finprod_mem_finset_product'`. -/
@[to_additive "See also `finsum_mem_finset_product'`."]
theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M) :
- ∏ᶠ (ab) (h : ab ∈ s), f ab = ∏ᶠ (a) (b) (h : (a, b) ∈ s), f (a, b) := by classical
+ ∏ᶠ (ab) (h : ab ∈ s), f ab = ∏ᶠ (a) (b) (h : (a, b) ∈ s), f (a, b) := by
+ classical
+ rw [finprod_mem_finset_product']
+ simp
#align finprod_mem_finset_product finprod_mem_finset_product
#align finsum_mem_finset_product finsum_mem_finset_product
-/
@@ -1347,7 +1389,11 @@ theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M)
#print finprod_mem_finset_product₃ /-
@[to_additive]
theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)) (f : α × β × γ → M) :
- ∏ᶠ (abc) (h : abc ∈ s), f abc = ∏ᶠ (a) (b) (c) (h : (a, b, c) ∈ s), f (a, b, c) := by classical
+ ∏ᶠ (abc) (h : abc ∈ s), f abc = ∏ᶠ (a) (b) (c) (h : (a, b, c) ∈ s), f (a, b, c) := by
+ classical
+ rw [finprod_mem_finset_product']
+ simp_rw [finprod_mem_finset_product']
+ simp
#align finprod_mem_finset_product₃ finprod_mem_finset_product₃
#align finsum_mem_finset_product₃ finsum_mem_finset_product₃
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -426,7 +426,7 @@ theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
#print finprod_of_infinite_mulSupport /-
@[to_additive]
theorem finprod_of_infinite_mulSupport {f : α → M} (hf : (mulSupport f).Infinite) : ∏ᶠ i, f i = 1 :=
- by classical rw [finprod_def, dif_neg hf]
+ by classical
#align finprod_of_infinite_mul_support finprod_of_infinite_mulSupport
#align finsum_of_infinite_support finsum_of_infinite_support
-/
@@ -434,7 +434,7 @@ theorem finprod_of_infinite_mulSupport {f : α → M} (hf : (mulSupport f).Infin
#print finprod_eq_prod /-
@[to_additive]
theorem finprod_eq_prod (f : α → M) (hf : (mulSupport f).Finite) :
- ∏ᶠ i : α, f i = ∏ i in hf.toFinset, f i := by classical rw [finprod_def, dif_pos hf]
+ ∏ᶠ i : α, f i = ∏ i in hf.toFinset, f i := by classical
#align finprod_eq_prod finprod_eq_prod
#align finsum_eq_sum finsum_eq_sum
-/
@@ -634,13 +634,7 @@ the product of `f i` multiplied by the product of `g i`. -/
@[to_additive
"If the additive supports of `f` and `g` are finite, then the sum of `f i + g i`\nequals the sum of `f i` plus the sum of `g i`."]
theorem finprod_mul_distrib (hf : (mulSupport f).Finite) (hg : (mulSupport g).Finite) :
- ∏ᶠ i, f i * g i = (∏ᶠ i, f i) * ∏ᶠ i, g i := by
- classical
- rw [finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_union_left _ _),
- finprod_eq_prod_of_mulSupport_toFinset_subset _ hg (Finset.subset_union_right _ _), ←
- Finset.prod_mul_distrib]
- refine' finprod_eq_prod_of_mulSupport_subset _ _
- simp [mul_support_mul]
+ ∏ᶠ i, f i * g i = (∏ᶠ i, f i) * ∏ᶠ i, g i := by classical
#align finprod_mul_distrib finprod_mul_distrib
#align finsum_add_distrib finsum_add_distrib
-/
@@ -822,8 +816,6 @@ theorem finprod_mem_union_inter (hs : s.Finite) (ht : t.Finite) :
by
lift s to Finset α using hs; lift t to Finset α using ht
classical
- rw [← Finset.coe_union, ← Finset.coe_inter]
- simp only [finprod_mem_coe_finset, Finset.prod_union_inter]
#align finprod_mem_union_inter finprod_mem_union_inter
#align finsum_mem_union_inter finsum_mem_union_inter
-/
@@ -990,16 +982,7 @@ provided that `g` is injective on `s ∩ mul_support (f ∘ g)`. -/
@[to_additive
"The sum of `f y` over `y ∈ g '' s` equals the sum of `f (g i)` over `s` provided that\n`g` is injective on `s ∩ support (f ∘ g)`."]
theorem finprod_mem_image' {s : Set β} {g : β → α} (hg : (s ∩ mulSupport (f ∘ g)).InjOn g) :
- ∏ᶠ i ∈ g '' s, f i = ∏ᶠ j ∈ s, f (g j) := by
- classical
- by_cases hs : (s ∩ mul_support (f ∘ g)).Finite
- · have hg : ∀ x ∈ hs.to_finset, ∀ y ∈ hs.to_finset, g x = g y → x = y := by
- simpa only [hs.mem_to_finset]
- rw [finprod_mem_eq_prod _ hs, ← Finset.prod_image hg]
- refine' finprod_mem_eq_prod_of_inter_mulSupport_eq f _
- rw [Finset.coe_image, hs.coe_to_finset, ← image_inter_mul_support_eq, inter_assoc, inter_self]
- · rw [finprod_mem_eq_one_of_infinite hs, finprod_mem_eq_one_of_infinite]
- rwa [image_inter_mul_support_eq, infinite_image_iff hg]
+ ∏ᶠ i ∈ g '' s, f i = ∏ᶠ j ∈ s, f (g j) := by classical
#align finprod_mem_image' finprod_mem_image'
#align finsum_mem_image' finsum_mem_image'
-/
@@ -1160,10 +1143,6 @@ theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoi
cases nonempty_fintype ι
lift t to ι → Finset α using ht
classical
- rw [← bUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset,
- Finset.prod_biUnion]
- · simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype]
- · exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)
#align finprod_mem_Union finprod_mem_iUnion
#align finsum_mem_Union finsum_mem_iUnion
-/
@@ -1201,20 +1180,7 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
#print mul_finprod_cond_ne /-
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
- f a * ∏ᶠ (i) (_ : i ≠ a), f i = ∏ᶠ i, f i := by
- classical
- rw [finprod_eq_prod _ hf]
- have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.to_finset \ {a}) :=
- by
- intro x hx
- rw [Finset.mem_sdiff, Finset.mem_singleton, finite.mem_to_finset, mem_mul_support]
- exact ⟨fun h => And.intro hx h, fun h => h.2⟩
- rw [finprod_cond_eq_prod_of_cond_iff f h, Finset.sdiff_singleton_eq_erase]
- by_cases ha : a ∈ mul_support f
- · apply Finset.mul_prod_erase _ _ ((finite.mem_to_finset _).mpr ha)
- · rw [mem_mul_support, Classical.not_not] at ha
- rw [ha, one_mul]
- apply Finset.prod_erase _ ha
+ f a * ∏ᶠ (i) (_ : i ≠ a), f i = ∏ᶠ i, f i := by classical
#align mul_finprod_cond_ne mul_finprod_cond_ne
#align add_finsum_cond_ne add_finsum_cond_ne
-/
@@ -1256,12 +1222,7 @@ theorem finprod_cond_nonneg {R : Type _} [OrderedCommSemiring R] {p : α → Pro
#print single_le_finprod /-
@[to_additive]
theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α → M}
- (hf : (mulSupport f).Finite) (h : ∀ j, 1 ≤ f j) : f i ≤ ∏ᶠ j, f j := by
- classical calc
- f i ≤ ∏ j in insert i hf.to_finset, f j :=
- Finset.single_le_prod' (fun j hj => h j) (Finset.mem_insert_self _ _)
- _ = ∏ᶠ j, f j :=
- (finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm
+ (hf : (mulSupport f).Finite) (h : ∀ j, 1 ≤ f j) : f i ≤ ∏ᶠ j, f j := by classical
#align single_le_finprod single_le_finprod
#align single_le_finsum single_le_finsum
-/
@@ -1377,10 +1338,7 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
/-- See also `finprod_mem_finset_product'`. -/
@[to_additive "See also `finsum_mem_finset_product'`."]
theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M) :
- ∏ᶠ (ab) (h : ab ∈ s), f ab = ∏ᶠ (a) (b) (h : (a, b) ∈ s), f (a, b) := by
- classical
- rw [finprod_mem_finset_product']
- simp
+ ∏ᶠ (ab) (h : ab ∈ s), f ab = ∏ᶠ (a) (b) (h : (a, b) ∈ s), f (a, b) := by classical
#align finprod_mem_finset_product finprod_mem_finset_product
#align finsum_mem_finset_product finsum_mem_finset_product
-/
@@ -1389,11 +1347,7 @@ theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M)
#print finprod_mem_finset_product₃ /-
@[to_additive]
theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)) (f : α × β × γ → M) :
- ∏ᶠ (abc) (h : abc ∈ s), f abc = ∏ᶠ (a) (b) (c) (h : (a, b, c) ∈ s), f (a, b, c) := by
- classical
- rw [finprod_mem_finset_product']
- simp_rw [finprod_mem_finset_product']
- simp
+ ∏ᶠ (abc) (h : abc ∈ s), f abc = ∏ᶠ (a) (b) (c) (h : (a, b, c) ∈ s), f (a, b, c) := by classical
#align finprod_mem_finset_product₃ finprod_mem_finset_product₃
#align finsum_mem_finset_product₃ finsum_mem_finset_product₃
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -697,7 +697,7 @@ theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : ∏ᶠ i ∈ s, f i = 1 := b
"If the product of `f i` over `i ∈ s` is not equal to `0`, then there is some `x ∈ s`\nsuch that `f x ≠ 0`."]
theorem exists_ne_one_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : ∃ x ∈ s, f x ≠ 1 :=
by
- by_contra' h'
+ by_contra! h'
exact h (finprod_mem_of_eqOn_one h')
#align exists_ne_one_of_finprod_mem_ne_one exists_ne_one_of_finprod_mem_ne_one
#align exists_ne_zero_of_finsum_mem_ne_zero exists_ne_zero_of_finsum_mem_ne_zero
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2020 Kexing Ying and Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
-/
-import Mathbin.Algebra.BigOperators.Order
-import Mathbin.Algebra.IndicatorFunction
+import Algebra.BigOperators.Order
+import Algebra.IndicatorFunction
#align_import algebra.big_operators.finprod from "leanprover-community/mathlib"@"63f84d91dd847f50bae04a01071f3a5491934e36"
@@ -164,7 +164,7 @@ theorem finprod_false (f : False → M) : ∏ᶠ i, f i = 1 :=
#align finsum_false finsum_false
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ≠ » a) -/
#print finprod_eq_single /-
@[to_additive]
theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) : ∏ᶠ x, f x = f a :=
@@ -463,7 +463,7 @@ theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : F
#align finsum_cond_eq_sum_of_cond_iff finsum_cond_eq_sum_of_cond_iff
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (i «expr ≠ » a) -/
#print finprod_cond_ne /-
@[to_additive]
theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSupport f).Finite) :
@@ -893,7 +893,7 @@ theorem finprod_mem_singleton : ∏ᶠ i ∈ ({a} : Set α), f i = f a := by
#align finsum_mem_singleton finsum_mem_singleton
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr = » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (i «expr = » a) -/
#print finprod_cond_eq_left /-
@[simp, to_additive]
theorem finprod_cond_eq_left : ∏ᶠ (i) (_ : i = a), f i = f a :=
@@ -1197,7 +1197,7 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
#align finsum_mem_sUnion finsum_mem_sUnion
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (i «expr ≠ » a) -/
#print mul_finprod_cond_ne /-
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/001ffdc42920050657fd45bd2b8bfbec8eaaeb29
@@ -116,26 +116,26 @@ scoped[BigOperators] notation3"∑ᶠ "(...)", "r:67:(scoped f => finsum f) => r
scoped[BigOperators] notation3"∏ᶠ "(...)", "r:67:(scoped f => finprod f) => r
-#print finprod_eq_prod_pLift_of_mulSupport_toFinset_subset /-
+#print finprod_eq_prod_plift_of_mulSupport_toFinset_subset /-
@[to_additive]
-theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
+theorem finprod_eq_prod_plift_of_mulSupport_toFinset_subset {f : α → M}
(hf : (mulSupport (f ∘ PLift.down)).Finite) {s : Finset (PLift α)} (hs : hf.toFinset ⊆ s) :
∏ᶠ i, f i = ∏ i in s, f i.down := by
rw [finprod, dif_pos]
refine' Finset.prod_subset hs fun x hx hxf => _
rwa [hf.mem_to_finset, nmem_mul_support] at hxf
-#align finprod_eq_prod_plift_of_mul_support_to_finset_subset finprod_eq_prod_pLift_of_mulSupport_toFinset_subset
-#align finsum_eq_sum_plift_of_support_to_finset_subset finsum_eq_sum_pLift_of_support_toFinset_subset
+#align finprod_eq_prod_plift_of_mul_support_to_finset_subset finprod_eq_prod_plift_of_mulSupport_toFinset_subset
+#align finsum_eq_sum_plift_of_support_to_finset_subset finsum_eq_sum_plift_of_support_toFinset_subset
-/
-#print finprod_eq_prod_pLift_of_mulSupport_subset /-
+#print finprod_eq_prod_plift_of_mulSupport_subset /-
@[to_additive]
-theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
+theorem finprod_eq_prod_plift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
(hs : mulSupport (f ∘ PLift.down) ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i.down :=
- finprod_eq_prod_pLift_of_mulSupport_toFinset_subset (s.finite_toSet.Subset hs) fun x hx => by
+ finprod_eq_prod_plift_of_mulSupport_toFinset_subset (s.finite_toSet.Subset hs) fun x hx => by
rw [finite.mem_to_finset] at hx ; exact hs hx
-#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_pLift_of_mulSupport_subset
-#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_pLift_of_support_subset
+#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_plift_of_mulSupport_subset
+#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_plift_of_support_subset
-/
#print finprod_one /-
@@ -144,7 +144,7 @@ theorem finprod_one : ∏ᶠ i : α, (1 : M) = 1 :=
by
have : (mul_support fun x : PLift α => (fun _ => 1 : α → M) x.down) ⊆ (∅ : Finset (PLift α)) :=
fun x h => h rfl
- rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_empty]
+ rw [finprod_eq_prod_plift_of_mulSupport_subset this, Finset.prod_empty]
#align finprod_one finprod_one
#align finsum_zero finsum_zero
-/
@@ -173,7 +173,7 @@ theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f
by
intro x; contrapose
simpa [PLift.eq_up_iff_down_eq] using ha x.down
- rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_singleton]
+ rw [finprod_eq_prod_plift_of_mulSupport_subset this, Finset.prod_singleton]
#align finprod_eq_single finprod_eq_single
#align finsum_eq_single finsum_eq_single
-/
@@ -263,24 +263,24 @@ theorem one_le_finprod' {M : Type _} [OrderedCommMonoid M] {f : α → M} (hf :
#align finsum_nonneg finsum_nonneg
-/
-#print MonoidHom.map_finprod_pLift /-
+#print MonoidHom.map_finprod_plift /-
@[to_additive]
-theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
+theorem MonoidHom.map_finprod_plift (f : M →* N) (g : α → M)
(h : (mulSupport <| g ∘ PLift.down).Finite) : f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) :=
by
- rw [finprod_eq_prod_pLift_of_mulSupport_subset h.coe_to_finset.ge,
- finprod_eq_prod_pLift_of_mulSupport_subset, f.map_prod]
+ rw [finprod_eq_prod_plift_of_mulSupport_subset h.coe_to_finset.ge,
+ finprod_eq_prod_plift_of_mulSupport_subset, f.map_prod]
rw [h.coe_to_finset]
exact mul_support_comp_subset f.map_one (g ∘ PLift.down)
-#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_pLift
-#align add_monoid_hom.map_finsum_plift AddMonoidHom.map_finsum_pLift
+#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_plift
+#align add_monoid_hom.map_finsum_plift AddMonoidHom.map_finsum_plift
-/
#print MonoidHom.map_finprod_Prop /-
@[to_additive]
theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) :=
- f.map_finprod_pLift g (Set.toFinite _)
+ f.map_finprod_plift g (Set.toFinite _)
#align monoid_hom.map_finprod_Prop MonoidHom.map_finprod_Prop
#align add_monoid_hom.map_finsum_Prop AddMonoidHom.map_finsum_Prop
-/
@@ -383,7 +383,7 @@ theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h :
exact (equiv.plift.symm.image_eq_preimage _).symm
have : mul_support (f ∘ PLift.down) ⊆ s.map equiv.plift.symm.to_embedding := by
rw [A, Finset.coe_map]; exact image_subset _ h
- rw [finprod_eq_prod_pLift_of_mulSupport_subset this]
+ rw [finprod_eq_prod_plift_of_mulSupport_subset this]
simp
#align finprod_eq_prod_of_mul_support_subset finprod_eq_prod_of_mulSupport_subset
#align finsum_eq_sum_of_support_subset finsum_eq_sum_of_support_subset
@@ -719,7 +719,7 @@ theorem finprod_mem_mul_distrib (hs : s.Finite) :
@[to_additive]
theorem MonoidHom.map_finprod {f : α → M} (g : M →* N) (hf : (mulSupport f).Finite) :
g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
- g.map_finprod_pLift f <| hf.Preimage <| Equiv.plift.Injective.InjOn _
+ g.map_finprod_plift f <| hf.Preimage <| Equiv.plift.Injective.InjOn _
#align monoid_hom.map_finprod MonoidHom.map_finprod
#align add_monoid_hom.map_finsum AddMonoidHom.map_finsum
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2020 Kexing Ying and Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
-
-! This file was ported from Lean 3 source module algebra.big_operators.finprod
-! leanprover-community/mathlib commit 63f84d91dd847f50bae04a01071f3a5491934e36
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Algebra.BigOperators.Order
import Mathbin.Algebra.IndicatorFunction
+#align_import algebra.big_operators.finprod from "leanprover-community/mathlib"@"63f84d91dd847f50bae04a01071f3a5491934e36"
+
/-!
# Finite products and sums over types and sets
@@ -167,7 +164,7 @@ theorem finprod_false (f : False → M) : ∏ᶠ i, f i = 1 :=
#align finsum_false finsum_false
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ≠ » a) -/
#print finprod_eq_single /-
@[to_additive]
theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) : ∏ᶠ x, f x = f a :=
@@ -466,7 +463,7 @@ theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : F
#align finsum_cond_eq_sum_of_cond_iff finsum_cond_eq_sum_of_cond_iff
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr ≠ » a) -/
#print finprod_cond_ne /-
@[to_additive]
theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSupport f).Finite) :
@@ -896,7 +893,7 @@ theorem finprod_mem_singleton : ∏ᶠ i ∈ ({a} : Set α), f i = f a := by
#align finsum_mem_singleton finsum_mem_singleton
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr = » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr = » a) -/
#print finprod_cond_eq_left /-
@[simp, to_additive]
theorem finprod_cond_eq_left : ∏ᶠ (i) (_ : i = a), f i = f a :=
@@ -1200,7 +1197,7 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
#align finsum_mem_sUnion finsum_mem_sUnion
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr ≠ » a) -/
#print mul_finprod_cond_ne /-
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -115,12 +115,11 @@ noncomputable irreducible_def finprod (f : α → M) : M :=
end
--- mathport name: finsum
scoped[BigOperators] notation3"∑ᶠ "(...)", "r:67:(scoped f => finsum f) => r
--- mathport name: finprod
scoped[BigOperators] notation3"∏ᶠ "(...)", "r:67:(scoped f => finprod f) => r
+#print finprod_eq_prod_pLift_of_mulSupport_toFinset_subset /-
@[to_additive]
theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
(hf : (mulSupport (f ∘ PLift.down)).Finite) {s : Finset (PLift α)} (hs : hf.toFinset ⊆ s) :
@@ -130,7 +129,9 @@ theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
rwa [hf.mem_to_finset, nmem_mul_support] at hxf
#align finprod_eq_prod_plift_of_mul_support_to_finset_subset finprod_eq_prod_pLift_of_mulSupport_toFinset_subset
#align finsum_eq_sum_plift_of_support_to_finset_subset finsum_eq_sum_pLift_of_support_toFinset_subset
+-/
+#print finprod_eq_prod_pLift_of_mulSupport_subset /-
@[to_additive]
theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
(hs : mulSupport (f ∘ PLift.down) ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i.down :=
@@ -138,7 +139,9 @@ theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (P
rw [finite.mem_to_finset] at hx ; exact hs hx
#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_pLift_of_mulSupport_subset
#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_pLift_of_support_subset
+-/
+#print finprod_one /-
@[simp, to_additive]
theorem finprod_one : ∏ᶠ i : α, (1 : M) = 1 :=
by
@@ -147,19 +150,25 @@ theorem finprod_one : ∏ᶠ i : α, (1 : M) = 1 :=
rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_empty]
#align finprod_one finprod_one
#align finsum_zero finsum_zero
+-/
+#print finprod_of_isEmpty /-
@[to_additive]
theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : ∏ᶠ i, f i = 1 := by rw [← finprod_one]; congr
#align finprod_of_is_empty finprod_of_isEmpty
#align finsum_of_is_empty finsum_of_isEmpty
+-/
+#print finprod_false /-
@[simp, to_additive]
theorem finprod_false (f : False → M) : ∏ᶠ i, f i = 1 :=
finprod_of_isEmpty _
#align finprod_false finprod_false
#align finsum_false finsum_false
+-/
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x «expr ≠ » a) -/
+#print finprod_eq_single /-
@[to_additive]
theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) : ∏ᶠ x, f x = f a :=
by
@@ -170,6 +179,7 @@ theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f
rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_singleton]
#align finprod_eq_single finprod_eq_single
#align finsum_eq_single finsum_eq_single
+-/
#print finprod_unique /-
@[to_additive]
@@ -187,6 +197,7 @@ theorem finprod_true (f : True → M) : ∏ᶠ i, f i = f trivial :=
#align finsum_true finsum_true
-/
+#print finprod_eq_dif /-
@[to_additive]
theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
∏ᶠ i, f i = if h : p then f h else 1 := by
@@ -195,18 +206,23 @@ theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
· haveI : IsEmpty p := ⟨h⟩; exact finprod_of_isEmpty f
#align finprod_eq_dif finprod_eq_dif
#align finsum_eq_dif finsum_eq_dif
+-/
+#print finprod_eq_if /-
@[to_additive]
theorem finprod_eq_if {p : Prop} [Decidable p] {x : M} : ∏ᶠ i : p, x = if p then x else 1 :=
finprod_eq_dif fun _ => x
#align finprod_eq_if finprod_eq_if
#align finsum_eq_if finsum_eq_if
+-/
+#print finprod_congr /-
@[to_additive]
theorem finprod_congr {f g : α → M} (h : ∀ x, f x = g x) : finprod f = finprod g :=
congr_arg _ <| funext h
#align finprod_congr finprod_congr
#align finsum_congr finsum_congr
+-/
#print finprod_congr_Prop /-
@[congr, to_additive]
@@ -219,6 +235,7 @@ theorem finprod_congr_Prop {p q : Prop} {f : p → M} {g : q → M} (hpq : p = q
attribute [congr] finsum_congr_Prop
+#print finprod_induction /-
/-- To prove a property of a finite product, it suffices to prove that the property is
multiplicative and holds on the factors. -/
@[to_additive
@@ -231,19 +248,25 @@ theorem finprod_induction {f : α → M} (p : M → Prop) (hp₀ : p 1)
exacts [Finset.prod_induction _ _ hp₁ hp₀ fun i hi => hp₂ _, hp₀]
#align finprod_induction finprod_induction
#align finsum_induction finsum_induction
+-/
+#print finprod_nonneg /-
theorem finprod_nonneg {R : Type _} [OrderedCommSemiring R] {f : α → R} (hf : ∀ x, 0 ≤ f x) :
0 ≤ ∏ᶠ x, f x :=
finprod_induction (fun x => 0 ≤ x) zero_le_one (fun x y => mul_nonneg) hf
#align finprod_nonneg finprod_nonneg
+-/
+#print one_le_finprod' /-
@[to_additive finsum_nonneg]
theorem one_le_finprod' {M : Type _} [OrderedCommMonoid M] {f : α → M} (hf : ∀ i, 1 ≤ f i) :
1 ≤ ∏ᶠ i, f i :=
finprod_induction _ le_rfl (fun _ _ => one_le_mul) hf
#align one_le_finprod' one_le_finprod'
#align finsum_nonneg finsum_nonneg
+-/
+#print MonoidHom.map_finprod_pLift /-
@[to_additive]
theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
(h : (mulSupport <| g ∘ PLift.down).Finite) : f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) :=
@@ -254,14 +277,18 @@ theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
exact mul_support_comp_subset f.map_one (g ∘ PLift.down)
#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_pLift
#align add_monoid_hom.map_finsum_plift AddMonoidHom.map_finsum_pLift
+-/
+#print MonoidHom.map_finprod_Prop /-
@[to_additive]
theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) :=
f.map_finprod_pLift g (Set.toFinite _)
#align monoid_hom.map_finprod_Prop MonoidHom.map_finprod_Prop
#align add_monoid_hom.map_finsum_Prop AddMonoidHom.map_finsum_Prop
+-/
+#print MonoidHom.map_finprod_of_preimage_one /-
@[to_additive]
theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x = 1 → x = 1) (g : α → M) :
f (∏ᶠ i, g i) = ∏ᶠ i, f (g i) :=
@@ -271,39 +298,50 @@ theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x =
exacts [infinite.mono (fun x hx => mt (hf (g x.down)) hx) hg, hg]
#align monoid_hom.map_finprod_of_preimage_one MonoidHom.map_finprod_of_preimage_one
#align add_monoid_hom.map_finsum_of_preimage_zero AddMonoidHom.map_finsum_of_preimage_zero
+-/
+#print MonoidHom.map_finprod_of_injective /-
@[to_additive]
theorem MonoidHom.map_finprod_of_injective (g : M →* N) (hg : Injective g) (f : α → M) :
g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
g.map_finprod_of_preimage_one (fun x => (hg.eq_iff' g.map_one).mp) f
#align monoid_hom.map_finprod_of_injective MonoidHom.map_finprod_of_injective
#align add_monoid_hom.map_finsum_of_injective AddMonoidHom.map_finsum_of_injective
+-/
+#print MulEquiv.map_finprod /-
@[to_additive]
theorem MulEquiv.map_finprod (g : M ≃* N) (f : α → M) : g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
g.toMonoidHom.map_finprod_of_injective g.Injective f
#align mul_equiv.map_finprod MulEquiv.map_finprod
#align add_equiv.map_finsum AddEquiv.map_finsum
+-/
+#print finsum_smul /-
theorem finsum_smul {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(f : ι → R) (x : M) : (∑ᶠ i, f i) • x = ∑ᶠ i, f i • x :=
by
rcases eq_or_ne x 0 with (rfl | hx); · simp
exact ((smulAddHom R M).flip x).map_finsum_of_injective (smul_left_injective R hx) _
#align finsum_smul finsum_smul
+-/
+#print smul_finsum /-
theorem smul_finsum {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(c : R) (f : ι → M) : c • ∑ᶠ i, f i = ∑ᶠ i, c • f i :=
by
rcases eq_or_ne c 0 with (rfl | hc); · simp
exact (smulAddHom R M c).map_finsum_of_injective (smul_right_injective M hc) _
#align smul_finsum smul_finsum
+-/
+#print finprod_inv_distrib /-
@[to_additive]
theorem finprod_inv_distrib [DivisionCommMonoid G] (f : α → G) : ∏ᶠ x, (f x)⁻¹ = (∏ᶠ x, f x)⁻¹ :=
((MulEquiv.inv G).map_finprod f).symm
#align finprod_inv_distrib finprod_inv_distrib
#align finsum_neg_distrib finsum_neg_distrib
+-/
end Sort
@@ -313,24 +351,31 @@ variable {α β ι G M N : Type _} [CommMonoid M] [CommMonoid N]
open scoped BigOperators
+#print finprod_eq_mulIndicator_apply /-
@[to_additive]
theorem finprod_eq_mulIndicator_apply (s : Set α) (f : α → M) (a : α) :
∏ᶠ h : a ∈ s, f a = mulIndicator s f a := by convert finprod_eq_if
#align finprod_eq_mul_indicator_apply finprod_eq_mulIndicator_apply
#align finsum_eq_indicator_apply finsum_eq_indicator_apply
+-/
+#print finprod_mem_mulSupport /-
@[simp, to_additive]
theorem finprod_mem_mulSupport (f : α → M) (a : α) : ∏ᶠ h : f a ≠ 1, f a = f a := by
rw [← mem_mul_support, finprod_eq_mulIndicator_apply, mul_indicator_mul_support]
#align finprod_mem_mul_support finprod_mem_mulSupport
#align finsum_mem_support finsum_mem_support
+-/
+#print finprod_mem_def /-
@[to_additive]
theorem finprod_mem_def (s : Set α) (f : α → M) : ∏ᶠ a ∈ s, f a = ∏ᶠ a, mulIndicator s f a :=
finprod_congr <| finprod_eq_mulIndicator_apply s f
#align finprod_mem_def finprod_mem_def
#align finsum_mem_def finsum_mem_def
+-/
+#print finprod_eq_prod_of_mulSupport_subset /-
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h : mulSupport f ⊆ s) :
∏ᶠ i, f i = ∏ i in s, f i :=
@@ -345,14 +390,18 @@ theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h :
simp
#align finprod_eq_prod_of_mul_support_subset finprod_eq_prod_of_mulSupport_subset
#align finsum_eq_sum_of_support_subset finsum_eq_sum_of_support_subset
+-/
+#print finprod_eq_prod_of_mulSupport_toFinset_subset /-
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_toFinset_subset (f : α → M) (hf : (mulSupport f).Finite)
{s : Finset α} (h : hf.toFinset ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i :=
finprod_eq_prod_of_mulSupport_subset _ fun x hx => h <| hf.mem_toFinset.2 hx
#align finprod_eq_prod_of_mul_support_to_finset_subset finprod_eq_prod_of_mulSupport_toFinset_subset
#align finsum_eq_sum_of_support_to_finset_subset finsum_eq_sum_of_support_toFinset_subset
+-/
+#print finprod_eq_finset_prod_of_mulSupport_subset /-
@[to_additive]
theorem finprod_eq_finset_prod_of_mulSupport_subset (f : α → M) {s : Finset α}
(h : mulSupport f ⊆ (s : Set α)) : ∏ᶠ i, f i = ∏ i in s, f i :=
@@ -361,7 +410,9 @@ theorem finprod_eq_finset_prod_of_mulSupport_subset (f : α → M) {s : Finset
finprod_eq_prod_of_mulSupport_toFinset_subset _ _ h'
#align finprod_eq_finset_prod_of_mul_support_subset finprod_eq_finset_prod_of_mulSupport_subset
#align finsum_eq_finset_sum_of_support_subset finsum_eq_finset_sum_of_support_subset
+-/
+#print finprod_def /-
@[to_additive]
theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
∏ᶠ i : α, f i = if h : (mulSupport f).Finite then ∏ i in h.toFinset, f i else 1 :=
@@ -373,25 +424,33 @@ theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
exact mt (fun hf => hf.of_preimage equiv.plift.surjective) h
#align finprod_def finprod_def
#align finsum_def finsum_def
+-/
+#print finprod_of_infinite_mulSupport /-
@[to_additive]
theorem finprod_of_infinite_mulSupport {f : α → M} (hf : (mulSupport f).Infinite) : ∏ᶠ i, f i = 1 :=
by classical rw [finprod_def, dif_neg hf]
#align finprod_of_infinite_mul_support finprod_of_infinite_mulSupport
#align finsum_of_infinite_support finsum_of_infinite_support
+-/
+#print finprod_eq_prod /-
@[to_additive]
theorem finprod_eq_prod (f : α → M) (hf : (mulSupport f).Finite) :
∏ᶠ i : α, f i = ∏ i in hf.toFinset, f i := by classical rw [finprod_def, dif_pos hf]
#align finprod_eq_prod finprod_eq_prod
#align finsum_eq_sum finsum_eq_sum
+-/
+#print finprod_eq_prod_of_fintype /-
@[to_additive]
theorem finprod_eq_prod_of_fintype [Fintype α] (f : α → M) : ∏ᶠ i : α, f i = ∏ i, f i :=
finprod_eq_prod_of_mulSupport_toFinset_subset _ (Set.toFinite _) <| Finset.subset_univ _
#align finprod_eq_prod_of_fintype finprod_eq_prod_of_fintype
#align finsum_eq_sum_of_fintype finsum_eq_sum_of_fintype
+-/
+#print finprod_cond_eq_prod_of_cond_iff /-
@[to_additive]
theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : Finset α}
(h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : ∏ᶠ (i) (hi : p i), f i = ∏ i in t, f i :=
@@ -405,8 +464,10 @@ theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : F
exact (h hxs).2 hx
#align finprod_cond_eq_prod_of_cond_iff finprod_cond_eq_prod_of_cond_iff
#align finsum_cond_eq_sum_of_cond_iff finsum_cond_eq_sum_of_cond_iff
+-/
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr ≠ » a) -/
+#print finprod_cond_ne /-
@[to_additive]
theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSupport f).Finite) :
∏ᶠ (i) (_ : i ≠ a), f i = ∏ i in hf.toFinset.eraseₓ a, f i :=
@@ -417,62 +478,80 @@ theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSuppo
exact ⟨fun h => And.intro h hx, fun h => h.1⟩
#align finprod_cond_ne finprod_cond_ne
#align finsum_cond_ne finsum_cond_ne
+-/
+#print finprod_mem_eq_prod_of_inter_mulSupport_eq /-
@[to_additive]
theorem finprod_mem_eq_prod_of_inter_mulSupport_eq (f : α → M) {s : Set α} {t : Finset α}
(h : s ∩ mulSupport f = t ∩ mulSupport f) : ∏ᶠ i ∈ s, f i = ∏ i in t, f i :=
finprod_cond_eq_prod_of_cond_iff _ <| by simpa [Set.ext_iff] using h
#align finprod_mem_eq_prod_of_inter_mul_support_eq finprod_mem_eq_prod_of_inter_mulSupport_eq
#align finsum_mem_eq_sum_of_inter_support_eq finsum_mem_eq_sum_of_inter_support_eq
+-/
+#print finprod_mem_eq_prod_of_subset /-
@[to_additive]
theorem finprod_mem_eq_prod_of_subset (f : α → M) {s : Set α} {t : Finset α}
(h₁ : s ∩ mulSupport f ⊆ t) (h₂ : ↑t ⊆ s) : ∏ᶠ i ∈ s, f i = ∏ i in t, f i :=
finprod_cond_eq_prod_of_cond_iff _ fun x hx => ⟨fun h => h₁ ⟨h, hx⟩, fun h => h₂ h⟩
#align finprod_mem_eq_prod_of_subset finprod_mem_eq_prod_of_subset
#align finsum_mem_eq_sum_of_subset finsum_mem_eq_sum_of_subset
+-/
+#print finprod_mem_eq_prod /-
@[to_additive]
theorem finprod_mem_eq_prod (f : α → M) {s : Set α} (hf : (s ∩ mulSupport f).Finite) :
∏ᶠ i ∈ s, f i = ∏ i in hf.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by simp [inter_assoc]
#align finprod_mem_eq_prod finprod_mem_eq_prod
#align finsum_mem_eq_sum finsum_mem_eq_sum
+-/
+#print finprod_mem_eq_prod_filter /-
@[to_additive]
theorem finprod_mem_eq_prod_filter (f : α → M) (s : Set α) [DecidablePred (· ∈ s)]
(hf : (mulSupport f).Finite) : ∏ᶠ i ∈ s, f i = ∏ i in Finset.filter (· ∈ s) hf.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by simp [inter_comm, inter_left_comm]
#align finprod_mem_eq_prod_filter finprod_mem_eq_prod_filter
#align finsum_mem_eq_sum_filter finsum_mem_eq_sum_filter
+-/
+#print finprod_mem_eq_toFinset_prod /-
@[to_additive]
theorem finprod_mem_eq_toFinset_prod (f : α → M) (s : Set α) [Fintype s] :
∏ᶠ i ∈ s, f i = ∏ i in s.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by rw [coe_to_finset]
#align finprod_mem_eq_to_finset_prod finprod_mem_eq_toFinset_prod
#align finsum_mem_eq_to_finset_sum finsum_mem_eq_toFinset_sum
+-/
+#print finprod_mem_eq_finite_toFinset_prod /-
@[to_additive]
theorem finprod_mem_eq_finite_toFinset_prod (f : α → M) {s : Set α} (hs : s.Finite) :
∏ᶠ i ∈ s, f i = ∏ i in hs.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by rw [hs.coe_to_finset]
#align finprod_mem_eq_finite_to_finset_prod finprod_mem_eq_finite_toFinset_prod
#align finsum_mem_eq_finite_to_finset_sum finsum_mem_eq_finite_toFinset_sum
+-/
+#print finprod_mem_finset_eq_prod /-
@[to_additive]
theorem finprod_mem_finset_eq_prod (f : α → M) (s : Finset α) : ∏ᶠ i ∈ s, f i = ∏ i in s, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ rfl
#align finprod_mem_finset_eq_prod finprod_mem_finset_eq_prod
#align finsum_mem_finset_eq_sum finsum_mem_finset_eq_sum
+-/
+#print finprod_mem_coe_finset /-
@[to_additive]
theorem finprod_mem_coe_finset (f : α → M) (s : Finset α) :
∏ᶠ i ∈ (s : Set α), f i = ∏ i in s, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ rfl
#align finprod_mem_coe_finset finprod_mem_coe_finset
#align finsum_mem_coe_finset finsum_mem_coe_finset
+-/
+#print finprod_mem_eq_one_of_infinite /-
@[to_additive]
theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩ mulSupport f).Infinite) :
∏ᶠ i ∈ s, f i = 1 := by
@@ -481,27 +560,35 @@ theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩
rwa [← mul_support_mul_indicator] at hs
#align finprod_mem_eq_one_of_infinite finprod_mem_eq_one_of_infinite
#align finsum_mem_eq_zero_of_infinite finsum_mem_eq_zero_of_infinite
+-/
+#print finprod_mem_eq_one_of_forall_eq_one /-
@[to_additive]
theorem finprod_mem_eq_one_of_forall_eq_one {f : α → M} {s : Set α} (h : ∀ x ∈ s, f x = 1) :
∏ᶠ i ∈ s, f i = 1 := by simp (config := { contextual := true }) [h]
#align finprod_mem_eq_one_of_forall_eq_one finprod_mem_eq_one_of_forall_eq_one
#align finsum_mem_eq_zero_of_forall_eq_zero finsum_mem_eq_zero_of_forall_eq_zero
+-/
+#print finprod_mem_inter_mulSupport /-
@[to_additive]
theorem finprod_mem_inter_mulSupport (f : α → M) (s : Set α) :
∏ᶠ i ∈ s ∩ mulSupport f, f i = ∏ᶠ i ∈ s, f i := by
rw [finprod_mem_def, finprod_mem_def, mul_indicator_inter_mul_support]
#align finprod_mem_inter_mul_support finprod_mem_inter_mulSupport
#align finsum_mem_inter_support finsum_mem_inter_support
+-/
+#print finprod_mem_inter_mulSupport_eq /-
@[to_additive]
theorem finprod_mem_inter_mulSupport_eq (f : α → M) (s t : Set α)
(h : s ∩ mulSupport f = t ∩ mulSupport f) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_inter_mulSupport, h, finprod_mem_inter_mulSupport]
#align finprod_mem_inter_mul_support_eq finprod_mem_inter_mulSupport_eq
#align finsum_mem_inter_support_eq finsum_mem_inter_support_eq
+-/
+#print finprod_mem_inter_mulSupport_eq' /-
@[to_additive]
theorem finprod_mem_inter_mulSupport_eq' (f : α → M) (s t : Set α)
(h : ∀ x ∈ mulSupport f, x ∈ s ↔ x ∈ t) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, f i :=
@@ -511,6 +598,7 @@ theorem finprod_mem_inter_mulSupport_eq' (f : α → M) (s t : Set α)
exact and_congr_left (h x)
#align finprod_mem_inter_mul_support_eq' finprod_mem_inter_mulSupport_eq'
#align finsum_mem_inter_support_eq' finsum_mem_inter_support_eq'
+-/
#print finprod_mem_univ /-
@[to_additive]
@@ -522,23 +610,28 @@ theorem finprod_mem_univ (f : α → M) : ∏ᶠ i ∈ @Set.univ α, f i = ∏
variable {f g : α → M} {a b : α} {s t : Set α}
+#print finprod_mem_congr /-
@[to_additive]
theorem finprod_mem_congr (h₀ : s = t) (h₁ : ∀ x ∈ t, f x = g x) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, g i :=
h₀.symm ▸ finprod_congr fun i => finprod_congr_Prop rfl (h₁ i)
#align finprod_mem_congr finprod_mem_congr
#align finsum_mem_congr finsum_mem_congr
+-/
+#print finprod_eq_one_of_forall_eq_one /-
@[to_additive]
theorem finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) : ∏ᶠ i, f i = 1 := by
simp (config := { contextual := true }) [h]
#align finprod_eq_one_of_forall_eq_one finprod_eq_one_of_forall_eq_one
#align finsum_eq_zero_of_forall_eq_zero finsum_eq_zero_of_forall_eq_zero
+-/
/-!
### Distributivity w.r.t. addition, subtraction, and (scalar) multiplication
-/
+#print finprod_mul_distrib /-
/-- If the multiplicative supports of `f` and `g` are finite, then the product of `f i * g i` equals
the product of `f i` multiplied by the product of `g i`. -/
@[to_additive
@@ -553,7 +646,9 @@ theorem finprod_mul_distrib (hf : (mulSupport f).Finite) (hg : (mulSupport g).Fi
simp [mul_support_mul]
#align finprod_mul_distrib finprod_mul_distrib
#align finsum_add_distrib finsum_add_distrib
+-/
+#print finprod_div_distrib /-
/-- If the multiplicative supports of `f` and `g` are finite, then the product of `f i / g i`
equals the product of `f i` divided by the product of `g i`. -/
@[to_additive
@@ -564,7 +659,9 @@ theorem finprod_div_distrib [DivisionCommMonoid G] {f g : α → G} (hf : (mulSu
finprod_inv_distrib]
#align finprod_div_distrib finprod_div_distrib
#align finsum_sub_distrib finsum_sub_distrib
+-/
+#print finprod_mem_mul_distrib' /-
/-- A more general version of `finprod_mem_mul_distrib` that only requires `s ∩ mul_support f` and
`s ∩ mul_support g` rather than `s` to be finite. -/
@[to_additive
@@ -576,13 +673,17 @@ theorem finprod_mem_mul_distrib' (hf : (s ∩ mulSupport f).Finite) (hg : (s ∩
simp only [finprod_mem_def, mul_indicator_mul, finprod_mul_distrib hf hg]
#align finprod_mem_mul_distrib' finprod_mem_mul_distrib'
#align finsum_mem_add_distrib' finsum_mem_add_distrib'
+-/
+#print finprod_mem_one /-
/-- The product of the constant function `1` over any set equals `1`. -/
@[to_additive "The product of the constant function `0` over any set equals `0`."]
theorem finprod_mem_one (s : Set α) : ∏ᶠ i ∈ s, (1 : M) = 1 := by simp
#align finprod_mem_one finprod_mem_one
#align finsum_mem_zero finsum_mem_zero
+-/
+#print finprod_mem_of_eqOn_one /-
/-- If a function `f` equals `1` on a set `s`, then the product of `f i` over `i ∈ s` equals `1`. -/
@[to_additive
"If a function `f` equals `0` on a set `s`, then the product of `f i` over `i ∈ s`\nequals `0`."]
@@ -590,7 +691,9 @@ theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : ∏ᶠ i ∈ s, f i = 1 := b
rw [← finprod_mem_one s]; exact finprod_mem_congr rfl hf
#align finprod_mem_of_eq_on_one finprod_mem_of_eqOn_one
#align finsum_mem_of_eq_on_zero finsum_mem_of_eqOn_zero
+-/
+#print exists_ne_one_of_finprod_mem_ne_one /-
/-- If the product of `f i` over `i ∈ s` is not equal to `1`, then there is some `x ∈ s` such that
`f x ≠ 1`. -/
@[to_additive
@@ -601,7 +704,9 @@ theorem exists_ne_one_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) :
exact h (finprod_mem_of_eqOn_one h')
#align exists_ne_one_of_finprod_mem_ne_one exists_ne_one_of_finprod_mem_ne_one
#align exists_ne_zero_of_finsum_mem_ne_zero exists_ne_zero_of_finsum_mem_ne_zero
+-/
+#print finprod_mem_mul_distrib /-
/-- Given a finite set `s`, the product of `f i * g i` over `i ∈ s` equals the product of `f i`
over `i ∈ s` times the product of `g i` over `i ∈ s`. -/
@[to_additive
@@ -611,20 +716,26 @@ theorem finprod_mem_mul_distrib (hs : s.Finite) :
finprod_mem_mul_distrib' (hs.inter_of_left _) (hs.inter_of_left _)
#align finprod_mem_mul_distrib finprod_mem_mul_distrib
#align finsum_mem_add_distrib finsum_mem_add_distrib
+-/
+#print MonoidHom.map_finprod /-
@[to_additive]
theorem MonoidHom.map_finprod {f : α → M} (g : M →* N) (hf : (mulSupport f).Finite) :
g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
g.map_finprod_pLift f <| hf.Preimage <| Equiv.plift.Injective.InjOn _
#align monoid_hom.map_finprod MonoidHom.map_finprod
#align add_monoid_hom.map_finsum AddMonoidHom.map_finsum
+-/
+#print finprod_pow /-
@[to_additive]
theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n = ∏ᶠ i, f i ^ n :=
(powMonoidHom n).map_finprod hf
#align finprod_pow finprod_pow
#align finsum_nsmul finsum_nsmul
+-/
+#print MonoidHom.map_finprod_mem' /-
/-- A more general version of `monoid_hom.map_finprod_mem` that requires `s ∩ mul_support f` rather
than `s` to be finite. -/
@[to_additive
@@ -637,7 +748,9 @@ theorem MonoidHom.map_finprod_mem' {f : α → M} (g : M →* N) (h₀ : (s ∩
· simpa only [finprod_eq_mulIndicator_apply, mul_support_mul_indicator]
#align monoid_hom.map_finprod_mem' MonoidHom.map_finprod_mem'
#align add_monoid_hom.map_finsum_mem' AddMonoidHom.map_finsum_mem'
+-/
+#print MonoidHom.map_finprod_mem /-
/-- Given a monoid homomorphism `g : M →* N` and a function `f : α → M`, the value of `g` at the
product of `f i` over `i ∈ s` equals the product of `g (f i)` over `s`. -/
@[to_additive
@@ -647,21 +760,27 @@ theorem MonoidHom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.Finite)
g.map_finprod_mem' (hs.inter_of_left _)
#align monoid_hom.map_finprod_mem MonoidHom.map_finprod_mem
#align add_monoid_hom.map_finsum_mem AddMonoidHom.map_finsum_mem
+-/
+#print MulEquiv.map_finprod_mem /-
@[to_additive]
theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs : s.Finite) :
g (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ s, g (f i) :=
g.toMonoidHom.map_finprod_mem f hs
#align mul_equiv.map_finprod_mem MulEquiv.map_finprod_mem
#align add_equiv.map_finsum_mem AddEquiv.map_finsum_mem
+-/
+#print finprod_mem_inv_distrib /-
@[to_additive]
theorem finprod_mem_inv_distrib [DivisionCommMonoid G] (f : α → G) (hs : s.Finite) :
∏ᶠ x ∈ s, (f x)⁻¹ = (∏ᶠ x ∈ s, f x)⁻¹ :=
((MulEquiv.inv G).map_finprod_mem f hs).symm
#align finprod_mem_inv_distrib finprod_mem_inv_distrib
#align finsum_mem_neg_distrib finsum_mem_neg_distrib
+-/
+#print finprod_mem_div_distrib /-
/-- Given a finite set `s`, the product of `f i / g i` over `i ∈ s` equals the product of `f i`
over `i ∈ s` divided by the product of `g i` over `i ∈ s`. -/
@[to_additive
@@ -671,25 +790,31 @@ theorem finprod_mem_div_distrib [DivisionCommMonoid G] (f g : α → G) (hs : s.
simp only [div_eq_mul_inv, finprod_mem_mul_distrib hs, finprod_mem_inv_distrib g hs]
#align finprod_mem_div_distrib finprod_mem_div_distrib
#align finsum_mem_sub_distrib finsum_mem_sub_distrib
+-/
/-!
### `∏ᶠ x ∈ s, f x` and set operations
-/
+#print finprod_mem_empty /-
/-- The product of any function over an empty set is `1`. -/
@[to_additive "The sum of any function over an empty set is `0`."]
theorem finprod_mem_empty : ∏ᶠ i ∈ (∅ : Set α), f i = 1 := by simp
#align finprod_mem_empty finprod_mem_empty
#align finsum_mem_empty finsum_mem_empty
+-/
+#print nonempty_of_finprod_mem_ne_one /-
/-- A set `s` is nonempty if the product of some function over `s` is not equal to `1`. -/
@[to_additive "A set `s` is nonempty if the sum of some function over `s` is not equal to `0`."]
theorem nonempty_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : s.Nonempty :=
nonempty_iff_ne_empty.2 fun h' => h <| h'.symm ▸ finprod_mem_empty
#align nonempty_of_finprod_mem_ne_one nonempty_of_finprod_mem_ne_one
#align nonempty_of_finsum_mem_ne_zero nonempty_of_finsum_mem_ne_zero
+-/
+#print finprod_mem_union_inter /-
/-- Given finite sets `s` and `t`, the product of `f i` over `i ∈ s ∪ t` times the product of
`f i` over `i ∈ s ∩ t` equals the product of `f i` over `i ∈ s` times the product of `f i`
over `i ∈ t`. -/
@@ -704,7 +829,9 @@ theorem finprod_mem_union_inter (hs : s.Finite) (ht : t.Finite) :
simp only [finprod_mem_coe_finset, Finset.prod_union_inter]
#align finprod_mem_union_inter finprod_mem_union_inter
#align finsum_mem_union_inter finsum_mem_union_inter
+-/
+#print finprod_mem_union_inter' /-
/-- A more general version of `finprod_mem_union_inter` that requires `s ∩ mul_support f` and
`t ∩ mul_support f` rather than `s` and `t` to be finite. -/
@[to_additive
@@ -719,7 +846,9 @@ theorem finprod_mem_union_inter' (hs : (s ∩ mulSupport f).Finite) (ht : (t ∩
rw [inter_left_comm, inter_assoc, inter_assoc, inter_self, inter_left_comm]
#align finprod_mem_union_inter' finprod_mem_union_inter'
#align finsum_mem_union_inter' finsum_mem_union_inter'
+-/
+#print finprod_mem_union' /-
/-- A more general version of `finprod_mem_union` that requires `s ∩ mul_support f` and
`t ∩ mul_support f` rather than `s` and `t` to be finite. -/
@[to_additive
@@ -730,7 +859,9 @@ theorem finprod_mem_union' (hst : Disjoint s t) (hs : (s ∩ mulSupport f).Finit
mul_one]
#align finprod_mem_union' finprod_mem_union'
#align finsum_mem_union' finsum_mem_union'
+-/
+#print finprod_mem_union /-
/-- Given two finite disjoint sets `s` and `t`, the product of `f i` over `i ∈ s ∪ t` equals the
product of `f i` over `i ∈ s` times the product of `f i` over `i ∈ t`. -/
@[to_additive
@@ -740,7 +871,9 @@ theorem finprod_mem_union (hst : Disjoint s t) (hs : s.Finite) (ht : t.Finite) :
finprod_mem_union' hst (hs.inter_of_left _) (ht.inter_of_left _)
#align finprod_mem_union finprod_mem_union
#align finsum_mem_union finsum_mem_union
+-/
+#print finprod_mem_union'' /-
/-- A more general version of `finprod_mem_union'` that requires `s ∩ mul_support f` and
`t ∩ mul_support f` rather than `s` and `t` to be disjoint -/
@[to_additive
@@ -752,6 +885,7 @@ theorem finprod_mem_union'' (hst : Disjoint (s ∩ mulSupport f) (t ∩ mulSuppo
finprod_mem_union hst hs ht, ← union_inter_distrib_right, finprod_mem_inter_mulSupport]
#align finprod_mem_union'' finprod_mem_union''
#align finsum_mem_union'' finsum_mem_union''
+-/
#print finprod_mem_singleton /-
/-- The product of `f i` over `i ∈ {a}` equals `f a`. -/
@@ -778,6 +912,7 @@ theorem finprod_cond_eq_right : ∏ᶠ (i) (hi : a = i), f i = f a := by simp [@
#align finsum_cond_eq_right finsum_cond_eq_right
-/
+#print finprod_mem_insert' /-
/-- A more general version of `finprod_mem_insert` that requires `s ∩ mul_support f` rather than `s`
to be finite. -/
@[to_additive
@@ -790,7 +925,9 @@ theorem finprod_mem_insert' (f : α → M) (h : a ∉ s) (hs : (s ∩ mulSupport
· exact (finite_singleton a).inter_of_left _
#align finprod_mem_insert' finprod_mem_insert'
#align finsum_mem_insert' finsum_mem_insert'
+-/
+#print finprod_mem_insert /-
/-- Given a finite set `s` and an element `a ∉ s`, the product of `f i` over `i ∈ insert a s` equals
`f a` times the product of `f i` over `i ∈ s`. -/
@[to_additive
@@ -800,7 +937,9 @@ theorem finprod_mem_insert (f : α → M) (h : a ∉ s) (hs : s.Finite) :
finprod_mem_insert' f h <| hs.inter_of_left _
#align finprod_mem_insert finprod_mem_insert
#align finsum_mem_insert finsum_mem_insert
+-/
+#print finprod_mem_insert_of_eq_one_if_not_mem /-
/-- If `f a = 1` when `a ∉ s`, then the product of `f i` over `i ∈ insert a s` equals the product of
`f i` over `i ∈ s`. -/
@[to_additive
@@ -813,7 +952,9 @@ theorem finprod_mem_insert_of_eq_one_if_not_mem (h : a ∉ s → f a = 1) :
exacts [not_imp_comm.1 h hx, hxs]
#align finprod_mem_insert_of_eq_one_if_not_mem finprod_mem_insert_of_eq_one_if_not_mem
#align finsum_mem_insert_of_eq_zero_if_not_mem finsum_mem_insert_of_eq_zero_if_not_mem
+-/
+#print finprod_mem_insert_one /-
/-- If `f a = 1`, then the product of `f i` over `i ∈ insert a s` equals the product of `f i` over
`i ∈ s`. -/
@[to_additive
@@ -822,7 +963,9 @@ theorem finprod_mem_insert_one (h : f a = 1) : ∏ᶠ i ∈ insert a s, f i =
finprod_mem_insert_of_eq_one_if_not_mem fun _ => h
#align finprod_mem_insert_one finprod_mem_insert_one
#align finsum_mem_insert_zero finsum_mem_insert_zero
+-/
+#print finprod_mem_dvd /-
/-- If the multiplicative support of `f` is finite, then for every `x` in the domain of `f`, `f x`
divides `finprod f`. -/
theorem finprod_mem_dvd {f : α → N} (a : α) (hf : (mulSupport f).Finite) : f a ∣ finprod f :=
@@ -833,14 +976,18 @@ theorem finprod_mem_dvd {f : α → N} (a : α) (hf : (mulSupport f).Finite) : f
· rw [nmem_mul_support.mp ha]
exact one_dvd (finprod f)
#align finprod_mem_dvd finprod_mem_dvd
+-/
+#print finprod_mem_pair /-
/-- The product of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a * f b`. -/
@[to_additive "The sum of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a + f b`."]
theorem finprod_mem_pair (h : a ≠ b) : ∏ᶠ i ∈ ({a, b} : Set α), f i = f a * f b := by
rw [finprod_mem_insert, finprod_mem_singleton]; exacts [h, finite_singleton b]
#align finprod_mem_pair finprod_mem_pair
#align finsum_mem_pair finsum_mem_pair
+-/
+#print finprod_mem_image' /-
/-- The product of `f y` over `y ∈ g '' s` equals the product of `f (g i)` over `s`
provided that `g` is injective on `s ∩ mul_support (f ∘ g)`. -/
@[to_additive
@@ -858,7 +1005,9 @@ theorem finprod_mem_image' {s : Set β} {g : β → α} (hg : (s ∩ mulSupport
rwa [image_inter_mul_support_eq, infinite_image_iff hg]
#align finprod_mem_image' finprod_mem_image'
#align finsum_mem_image' finsum_mem_image'
+-/
+#print finprod_mem_image /-
/-- The product of `f y` over `y ∈ g '' s` equals the product of `f (g i)` over `s` provided that
`g` is injective on `s`. -/
@[to_additive
@@ -868,7 +1017,9 @@ theorem finprod_mem_image {s : Set β} {g : β → α} (hg : s.InjOn g) :
finprod_mem_image' <| hg.mono <| inter_subset_left _ _
#align finprod_mem_image finprod_mem_image
#align finsum_mem_image finsum_mem_image
+-/
+#print finprod_mem_range' /-
/-- The product of `f y` over `y ∈ set.range g` equals the product of `f (g i)` over all `i`
provided that `g` is injective on `mul_support (f ∘ g)`. -/
@[to_additive
@@ -880,7 +1031,9 @@ theorem finprod_mem_range' {g : β → α} (hg : (mulSupport (f ∘ g)).InjOn g)
rwa [univ_inter]
#align finprod_mem_range' finprod_mem_range'
#align finsum_mem_range' finsum_mem_range'
+-/
+#print finprod_mem_range /-
/-- The product of `f y` over `y ∈ set.range g` equals the product of `f (g i)` over all `i`
provided that `g` is injective. -/
@[to_additive
@@ -889,7 +1042,9 @@ theorem finprod_mem_range {g : β → α} (hg : Injective g) : ∏ᶠ i ∈ rang
finprod_mem_range' (hg.InjOn _)
#align finprod_mem_range finprod_mem_range
#align finsum_mem_range finsum_mem_range
+-/
+#print finprod_mem_eq_of_bijOn /-
/-- See also `finset.prod_bij`. -/
@[to_additive "See also `finset.sum_bij`."]
theorem finprod_mem_eq_of_bijOn {s : Set α} {t : Set β} {f : α → M} {g : β → M} (e : α → β)
@@ -899,7 +1054,9 @@ theorem finprod_mem_eq_of_bijOn {s : Set α} {t : Set β} {f : α → M} {g : β
exact finprod_mem_congr rfl he₁
#align finprod_mem_eq_of_bij_on finprod_mem_eq_of_bijOn
#align finsum_mem_eq_of_bij_on finsum_mem_eq_of_bijOn
+-/
+#print finprod_eq_of_bijective /-
/-- See `finprod_comp`, `fintype.prod_bijective` and `finset.prod_bij`. -/
@[to_additive "See `finsum_comp`, `fintype.sum_bijective` and `finset.sum_bij`."]
theorem finprod_eq_of_bijective {f : α → M} {g : β → M} (e : α → β) (he₀ : Bijective e)
@@ -909,7 +1066,9 @@ theorem finprod_eq_of_bijective {f : α → M} {g : β → M} (e : α → β) (h
exact finprod_mem_eq_of_bijOn _ (bijective_iff_bij_on_univ.mp he₀) fun x _ => he₁ x
#align finprod_eq_of_bijective finprod_eq_of_bijective
#align finsum_eq_of_bijective finsum_eq_of_bijective
+-/
+#print finprod_comp /-
/-- See also `finprod_eq_of_bijective`, `fintype.prod_bijective` and `finset.prod_bij`. -/
@[to_additive "See also `finsum_eq_of_bijective`, `fintype.sum_bijective` and `finset.sum_bij`."]
theorem finprod_comp {g : β → M} (e : α → β) (he₀ : Function.Bijective e) :
@@ -917,13 +1076,17 @@ theorem finprod_comp {g : β → M} (e : α → β) (he₀ : Function.Bijective
finprod_eq_of_bijective e he₀ fun x => rfl
#align finprod_comp finprod_comp
#align finsum_comp finsum_comp
+-/
+#print finprod_comp_equiv /-
@[to_additive]
theorem finprod_comp_equiv (e : α ≃ β) {f : β → M} : ∏ᶠ i, f (e i) = ∏ᶠ i', f i' :=
finprod_comp e e.Bijective
#align finprod_comp_equiv finprod_comp_equiv
#align finsum_comp_equiv finsum_comp_equiv
+-/
+#print finprod_set_coe_eq_finprod_mem /-
@[to_additive]
theorem finprod_set_coe_eq_finprod_mem (s : Set α) : ∏ᶠ j : s, f j = ∏ᶠ i ∈ s, f i :=
by
@@ -931,6 +1094,7 @@ theorem finprod_set_coe_eq_finprod_mem (s : Set α) : ∏ᶠ j : s, f j = ∏ᶠ
exact Subtype.coe_injective
#align finprod_set_coe_eq_finprod_mem finprod_set_coe_eq_finprod_mem
#align finsum_set_coe_eq_finsum_mem finsum_set_coe_eq_finsum_mem
+-/
#print finprod_subtype_eq_finprod_cond /-
@[to_additive]
@@ -941,6 +1105,7 @@ theorem finprod_subtype_eq_finprod_cond (p : α → Prop) :
#align finsum_subtype_eq_finsum_cond finsum_subtype_eq_finsum_cond
-/
+#print finprod_mem_inter_mul_diff' /-
@[to_additive]
theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finite) :
(∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i = ∏ᶠ i ∈ s, f i :=
@@ -951,14 +1116,18 @@ theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finit
h.subset fun x hx => ⟨hx.1.1, hx.2⟩]
#align finprod_mem_inter_mul_diff' finprod_mem_inter_mul_diff'
#align finsum_mem_inter_add_diff' finsum_mem_inter_add_diff'
+-/
+#print finprod_mem_inter_mul_diff /-
@[to_additive]
theorem finprod_mem_inter_mul_diff (t : Set α) (h : s.Finite) :
(∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i = ∏ᶠ i ∈ s, f i :=
finprod_mem_inter_mul_diff' _ <| h.inter_of_left _
#align finprod_mem_inter_mul_diff finprod_mem_inter_mul_diff
#align finsum_mem_inter_add_diff finsum_mem_inter_add_diff
+-/
+#print finprod_mem_mul_diff' /-
/-- A more general version of `finprod_mem_mul_diff` that requires `t ∩ mul_support f` rather than
`t` to be finite. -/
@[to_additive
@@ -968,7 +1137,9 @@ theorem finprod_mem_mul_diff' (hst : s ⊆ t) (ht : (t ∩ mulSupport f).Finite)
rw [← finprod_mem_inter_mul_diff' _ ht, inter_eq_self_of_subset_right hst]
#align finprod_mem_mul_diff' finprod_mem_mul_diff'
#align finsum_mem_add_diff' finsum_mem_add_diff'
+-/
+#print finprod_mem_mul_diff /-
/-- Given a finite set `t` and a subset `s` of `t`, the product of `f i` over `i ∈ s`
times the product of `f i` over `t \ s` equals the product of `f i` over `i ∈ t`. -/
@[to_additive
@@ -978,7 +1149,9 @@ theorem finprod_mem_mul_diff (hst : s ⊆ t) (ht : t.Finite) :
finprod_mem_mul_diff' hst (ht.inter_of_left _)
#align finprod_mem_mul_diff finprod_mem_mul_diff
#align finsum_mem_add_diff finsum_mem_add_diff
+-/
+#print finprod_mem_iUnion /-
/-- Given a family of pairwise disjoint finite sets `t i` indexed by a finite type, the product of
`f a` over the union `⋃ i, t i` is equal to the product over all indexes `i` of the products of
`f a` over `a ∈ t i`. -/
@@ -996,7 +1169,9 @@ theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoi
· exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)
#align finprod_mem_Union finprod_mem_iUnion
#align finsum_mem_Union finsum_mem_iUnion
+-/
+#print finprod_mem_biUnion /-
/-- Given a family of sets `t : ι → set α`, a finite set `I` in the index type such that all sets
`t i`, `i ∈ I`, are finite, if all `t i`, `i ∈ I`, are pairwise disjoint, then the product of `f a`
over `a ∈ ⋃ i ∈ I, t i` is equal to the product over `i ∈ I` of the products of `f a` over
@@ -1011,7 +1186,9 @@ theorem finprod_mem_biUnion {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisj
exacts [fun x y hxy => h x.2 y.2 (subtype.coe_injective.ne hxy), fun b => ht b b.2]
#align finprod_mem_bUnion finprod_mem_biUnion
#align finsum_mem_bUnion finsum_mem_biUnion
+-/
+#print finprod_mem_sUnion /-
/-- If `t` is a finite set of pairwise disjoint finite sets, then the product of `f a`
over `a ∈ ⋃₀ t` is the product over `s ∈ t` of the products of `f a` over `a ∈ s`. -/
@[to_additive
@@ -1021,8 +1198,10 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
rw [Set.sUnion_eq_biUnion]; exact finprod_mem_biUnion h ht₀ ht₁
#align finprod_mem_sUnion finprod_mem_sUnion
#align finsum_mem_sUnion finsum_mem_sUnion
+-/
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr ≠ » a) -/
+#print mul_finprod_cond_ne /-
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
f a * ∏ᶠ (i) (_ : i ≠ a), f i = ∏ᶠ i, f i := by
@@ -1041,7 +1220,9 @@ theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
apply Finset.prod_erase _ ha
#align mul_finprod_cond_ne mul_finprod_cond_ne
#align add_finsum_cond_ne add_finsum_cond_ne
+-/
+#print finprod_mem_comm /-
/-- If `s : set α` and `t : set β` are finite sets, then taking the product over `s` commutes with
taking the product over `t`. -/
@[to_additive
@@ -1054,7 +1235,9 @@ theorem finprod_mem_comm {s : Set α} {t : Set β} (f : α → β → M) (hs : s
exact Finset.prod_comm
#align finprod_mem_comm finprod_mem_comm
#align finsum_mem_comm finsum_mem_comm
+-/
+#print finprod_mem_induction /-
/-- To prove a property of a finite product, it suffices to prove that the property is
multiplicative and holds on factors. -/
@[to_additive
@@ -1064,12 +1247,16 @@ theorem finprod_mem_induction (p : M → Prop) (hp₀ : p 1) (hp₁ : ∀ x y, p
finprod_induction _ hp₀ hp₁ fun x => finprod_induction _ hp₀ hp₁ <| hp₂ x
#align finprod_mem_induction finprod_mem_induction
#align finsum_mem_induction finsum_mem_induction
+-/
+#print finprod_cond_nonneg /-
theorem finprod_cond_nonneg {R : Type _} [OrderedCommSemiring R] {p : α → Prop} {f : α → R}
(hf : ∀ x, p x → 0 ≤ f x) : 0 ≤ ∏ᶠ (x) (h : p x), f x :=
finprod_nonneg fun x => finprod_nonneg <| hf x
#align finprod_cond_nonneg finprod_cond_nonneg
+-/
+#print single_le_finprod /-
@[to_additive]
theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α → M}
(hf : (mulSupport f).Finite) (h : ∀ j, 1 ≤ f j) : f i ≤ ∏ᶠ j, f j := by
@@ -1080,7 +1267,9 @@ theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α
(finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm
#align single_le_finprod single_le_finprod
#align single_le_finsum single_le_finsum
+-/
+#print finprod_eq_zero /-
theorem finprod_eq_zero {M₀ : Type _} [CommMonoidWithZero M₀] (f : α → M₀) (x : α) (hx : f x = 0)
(hf : (mulSupport f).Finite) : ∏ᶠ x, f x = 0 :=
by
@@ -1089,7 +1278,9 @@ theorem finprod_eq_zero {M₀ : Type _} [CommMonoidWithZero M₀] (f : α → M
refine' Finset.prod_eq_zero (hf.mem_to_finset.2 _) hx
simp [hx]
#align finprod_eq_zero finprod_eq_zero
+-/
+#print finprod_prod_comm /-
@[to_additive]
theorem finprod_prod_comm (s : Finset β) (f : α → β → M)
(h : ∀ b ∈ s, (mulSupport fun a => f a b).Finite) :
@@ -1111,24 +1302,32 @@ theorem finprod_prod_comm (s : Finset β) (f : α → β → M)
exact ⟨b, hb, ha⟩
#align finprod_prod_comm finprod_prod_comm
#align finsum_sum_comm finsum_sum_comm
+-/
+#print prod_finprod_comm /-
@[to_additive]
theorem prod_finprod_comm (s : Finset α) (f : α → β → M) (h : ∀ a ∈ s, (mulSupport (f a)).Finite) :
∏ a in s, ∏ᶠ b : β, f a b = ∏ᶠ b : β, ∏ a in s, f a b :=
(finprod_prod_comm s (fun b a => f a b) h).symm
#align prod_finprod_comm prod_finprod_comm
#align sum_finsum_comm sum_finsum_comm
+-/
+#print mul_finsum /-
theorem mul_finsum {R : Type _} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
r * ∑ᶠ a : α, f a = ∑ᶠ a : α, r * f a :=
(AddMonoidHom.mulLeft r).map_finsum h
#align mul_finsum mul_finsum
+-/
+#print finsum_mul /-
theorem finsum_mul {R : Type _} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
(∑ᶠ a : α, f a) * r = ∑ᶠ a : α, f a * r :=
(AddMonoidHom.mulRight r).map_finsum h
#align finsum_mul finsum_mul
+-/
+#print Finset.mulSupport_of_fiberwise_prod_subset_image /-
@[to_additive]
theorem Finset.mulSupport_of_fiberwise_prod_subset_image [DecidableEq β] (s : Finset α) (f : α → M)
(g : α → β) : (mulSupport fun b => (s.filterₓ fun a => g a = b).Prod f) ⊆ s.image g :=
@@ -1140,8 +1339,10 @@ theorem Finset.mulSupport_of_fiberwise_prod_subset_image [DecidableEq β] (s : F
exact Finset.nonempty_of_prod_ne_one h
#align finset.mul_support_of_fiberwise_prod_subset_image Finset.mulSupport_of_fiberwise_prod_subset_image
#align finset.support_of_fiberwise_sum_subset_image Finset.support_of_fiberwise_sum_subset_image
+-/
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
+#print finprod_mem_finset_product' /-
/-- Note that `b ∈ (s.filter (λ ab, prod.fst ab = a)).image prod.snd` iff `(a, b) ∈ s` so we can
simplify the right hand side of this lemma. However the form stated here is more useful for
iterating this lemma, e.g., if we have `f : α × β × γ → M`. -/
@@ -1172,8 +1373,10 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
exact fun x hx => ⟨x, hx, rfl⟩
#align finprod_mem_finset_product' finprod_mem_finset_product'
#align finsum_mem_finset_product' finsum_mem_finset_product'
+-/
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
+#print finprod_mem_finset_product /-
/-- See also `finprod_mem_finset_product'`. -/
@[to_additive "See also `finsum_mem_finset_product'`."]
theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M) :
@@ -1183,8 +1386,10 @@ theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M)
simp
#align finprod_mem_finset_product finprod_mem_finset_product
#align finsum_mem_finset_product finsum_mem_finset_product
+-/
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b c) -/
+#print finprod_mem_finset_product₃ /-
@[to_additive]
theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)) (f : α × β × γ → M) :
∏ᶠ (abc) (h : abc ∈ s), f abc = ∏ᶠ (a) (b) (c) (h : (a, b, c) ∈ s), f (a, b, c) := by
@@ -1194,8 +1399,10 @@ theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)
simp
#align finprod_mem_finset_product₃ finprod_mem_finset_product₃
#align finsum_mem_finset_product₃ finsum_mem_finset_product₃
+-/
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
+#print finprod_curry /-
@[to_additive]
theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
∏ᶠ ab, f ab = ∏ᶠ (a) (b), f (a, b) :=
@@ -1205,22 +1412,28 @@ theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
simp_rw [h₂, finprod_mem_finset_product, h₁]
#align finprod_curry finprod_curry
#align finsum_curry finsum_curry
+-/
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b c) -/
+#print finprod_curry₃ /-
@[to_additive]
theorem finprod_curry₃ {γ : Type _} (f : α × β × γ → M) (h : (mulSupport f).Finite) :
∏ᶠ abc, f abc = ∏ᶠ (a) (b) (c), f (a, b, c) := by rw [finprod_curry f h]; congr; ext a;
rw [finprod_curry]; simp [h]
#align finprod_curry₃ finprod_curry₃
#align finsum_curry₃ finsum_curry₃
+-/
+#print finprod_dmem /-
@[to_additive]
theorem finprod_dmem {s : Set α} [DecidablePred (· ∈ s)] (f : ∀ a : α, a ∈ s → M) :
∏ᶠ (a : α) (h : a ∈ s), f a h = ∏ᶠ (a : α) (h : a ∈ s), if h' : a ∈ s then f a h' else 1 :=
finprod_congr fun a => finprod_congr fun ha => (dif_pos ha).symm
#align finprod_dmem finprod_dmem
#align finsum_dmem finsum_dmem
+-/
+#print finprod_emb_domain' /-
@[to_additive]
theorem finprod_emb_domain' {f : α → β} (hf : Injective f) [DecidablePred (· ∈ Set.range f)]
(g : α → M) :
@@ -1231,13 +1444,16 @@ theorem finprod_emb_domain' {f : α → β} (hf : Injective f) [DecidablePred (
rw [dif_pos (Set.mem_range_self a), hf (Classical.choose_spec (Set.mem_range_self a))]
#align finprod_emb_domain' finprod_emb_domain'
#align finsum_emb_domain' finsum_emb_domain'
+-/
+#print finprod_emb_domain /-
@[to_additive]
theorem finprod_emb_domain (f : α ↪ β) [DecidablePred (· ∈ Set.range f)] (g : α → M) :
(∏ᶠ b : β, if h : b ∈ Set.range f then g (Classical.choose h) else 1) = ∏ᶠ a : α, g a :=
finprod_emb_domain' f.Injective g
#align finprod_emb_domain finprod_emb_domain
#align finsum_emb_domain finsum_emb_domain
+-/
end Type
mathlib commit https://github.com/leanprover-community/mathlib/commit/a3e83f0fa4391c8740f7d773a7a9b74e311ae2a3
@@ -116,16 +116,15 @@ noncomputable irreducible_def finprod (f : α → M) : M :=
end
-- mathport name: finsum
-scoped[BigOperators] notation3"∑ᶠ "(...)", "r:(scoped f => finsum f) => r
+scoped[BigOperators] notation3"∑ᶠ "(...)", "r:67:(scoped f => finsum f) => r
-- mathport name: finprod
-scoped[BigOperators] notation3"∏ᶠ "(...)", "r:(scoped f => finprod f) => r
+scoped[BigOperators] notation3"∏ᶠ "(...)", "r:67:(scoped f => finprod f) => r
@[to_additive]
theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
(hf : (mulSupport (f ∘ PLift.down)).Finite) {s : Finset (PLift α)} (hs : hf.toFinset ⊆ s) :
- (∏ᶠ i, f i) = ∏ i in s, f i.down :=
- by
+ ∏ᶠ i, f i = ∏ i in s, f i.down := by
rw [finprod, dif_pos]
refine' Finset.prod_subset hs fun x hx hxf => _
rwa [hf.mem_to_finset, nmem_mul_support] at hxf
@@ -134,14 +133,14 @@ theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
@[to_additive]
theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
- (hs : mulSupport (f ∘ PLift.down) ⊆ s) : (∏ᶠ i, f i) = ∏ i in s, f i.down :=
+ (hs : mulSupport (f ∘ PLift.down) ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i.down :=
finprod_eq_prod_pLift_of_mulSupport_toFinset_subset (s.finite_toSet.Subset hs) fun x hx => by
rw [finite.mem_to_finset] at hx ; exact hs hx
#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_pLift_of_mulSupport_subset
#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_pLift_of_support_subset
@[simp, to_additive]
-theorem finprod_one : (∏ᶠ i : α, (1 : M)) = 1 :=
+theorem finprod_one : ∏ᶠ i : α, (1 : M) = 1 :=
by
have : (mul_support fun x : PLift α => (fun _ => 1 : α → M) x.down) ⊆ (∅ : Finset (PLift α)) :=
fun x h => h rfl
@@ -150,20 +149,19 @@ theorem finprod_one : (∏ᶠ i : α, (1 : M)) = 1 :=
#align finsum_zero finsum_zero
@[to_additive]
-theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : (∏ᶠ i, f i) = 1 := by rw [← finprod_one]; congr
+theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : ∏ᶠ i, f i = 1 := by rw [← finprod_one]; congr
#align finprod_of_is_empty finprod_of_isEmpty
#align finsum_of_is_empty finsum_of_isEmpty
@[simp, to_additive]
-theorem finprod_false (f : False → M) : (∏ᶠ i, f i) = 1 :=
+theorem finprod_false (f : False → M) : ∏ᶠ i, f i = 1 :=
finprod_of_isEmpty _
#align finprod_false finprod_false
#align finsum_false finsum_false
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x «expr ≠ » a) -/
@[to_additive]
-theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) :
- (∏ᶠ x, f x) = f a :=
+theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) : ∏ᶠ x, f x = f a :=
by
have : mul_support (f ∘ PLift.down) ⊆ ({PLift.up a} : Finset (PLift α)) :=
by
@@ -175,7 +173,7 @@ theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f
#print finprod_unique /-
@[to_additive]
-theorem finprod_unique [Unique α] (f : α → M) : (∏ᶠ i, f i) = f default :=
+theorem finprod_unique [Unique α] (f : α → M) : ∏ᶠ i, f i = f default :=
finprod_eq_single f default fun x hx => (hx <| Unique.eq_default _).elim
#align finprod_unique finprod_unique
#align finsum_unique finsum_unique
@@ -183,7 +181,7 @@ theorem finprod_unique [Unique α] (f : α → M) : (∏ᶠ i, f i) = f default
#print finprod_true /-
@[simp, to_additive]
-theorem finprod_true (f : True → M) : (∏ᶠ i, f i) = f trivial :=
+theorem finprod_true (f : True → M) : ∏ᶠ i, f i = f trivial :=
@finprod_unique M True _ ⟨⟨trivial⟩, fun _ => rfl⟩ f
#align finprod_true finprod_true
#align finsum_true finsum_true
@@ -191,8 +189,7 @@ theorem finprod_true (f : True → M) : (∏ᶠ i, f i) = f trivial :=
@[to_additive]
theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
- (∏ᶠ i, f i) = if h : p then f h else 1 :=
- by
+ ∏ᶠ i, f i = if h : p then f h else 1 := by
split_ifs
· haveI : Unique p := ⟨⟨h⟩, fun _ => rfl⟩; exact finprod_unique f
· haveI : IsEmpty p := ⟨h⟩; exact finprod_of_isEmpty f
@@ -200,7 +197,7 @@ theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
#align finsum_eq_dif finsum_eq_dif
@[to_additive]
-theorem finprod_eq_if {p : Prop} [Decidable p] {x : M} : (∏ᶠ i : p, x) = if p then x else 1 :=
+theorem finprod_eq_if {p : Prop} [Decidable p] {x : M} : ∏ᶠ i : p, x = if p then x else 1 :=
finprod_eq_dif fun _ => x
#align finprod_eq_if finprod_eq_if
#align finsum_eq_if finsum_eq_if
@@ -296,14 +293,14 @@ theorem finsum_smul {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZer
#align finsum_smul finsum_smul
theorem smul_finsum {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
- (c : R) (f : ι → M) : (c • ∑ᶠ i, f i) = ∑ᶠ i, c • f i :=
+ (c : R) (f : ι → M) : c • ∑ᶠ i, f i = ∑ᶠ i, c • f i :=
by
rcases eq_or_ne c 0 with (rfl | hc); · simp
exact (smulAddHom R M c).map_finsum_of_injective (smul_right_injective M hc) _
#align smul_finsum smul_finsum
@[to_additive]
-theorem finprod_inv_distrib [DivisionCommMonoid G] (f : α → G) : (∏ᶠ x, (f x)⁻¹) = (∏ᶠ x, f x)⁻¹ :=
+theorem finprod_inv_distrib [DivisionCommMonoid G] (f : α → G) : ∏ᶠ x, (f x)⁻¹ = (∏ᶠ x, f x)⁻¹ :=
((MulEquiv.inv G).map_finprod f).symm
#align finprod_inv_distrib finprod_inv_distrib
#align finsum_neg_distrib finsum_neg_distrib
@@ -318,25 +315,25 @@ open scoped BigOperators
@[to_additive]
theorem finprod_eq_mulIndicator_apply (s : Set α) (f : α → M) (a : α) :
- (∏ᶠ h : a ∈ s, f a) = mulIndicator s f a := by convert finprod_eq_if
+ ∏ᶠ h : a ∈ s, f a = mulIndicator s f a := by convert finprod_eq_if
#align finprod_eq_mul_indicator_apply finprod_eq_mulIndicator_apply
#align finsum_eq_indicator_apply finsum_eq_indicator_apply
@[simp, to_additive]
-theorem finprod_mem_mulSupport (f : α → M) (a : α) : (∏ᶠ h : f a ≠ 1, f a) = f a := by
+theorem finprod_mem_mulSupport (f : α → M) (a : α) : ∏ᶠ h : f a ≠ 1, f a = f a := by
rw [← mem_mul_support, finprod_eq_mulIndicator_apply, mul_indicator_mul_support]
#align finprod_mem_mul_support finprod_mem_mulSupport
#align finsum_mem_support finsum_mem_support
@[to_additive]
-theorem finprod_mem_def (s : Set α) (f : α → M) : (∏ᶠ a ∈ s, f a) = ∏ᶠ a, mulIndicator s f a :=
+theorem finprod_mem_def (s : Set α) (f : α → M) : ∏ᶠ a ∈ s, f a = ∏ᶠ a, mulIndicator s f a :=
finprod_congr <| finprod_eq_mulIndicator_apply s f
#align finprod_mem_def finprod_mem_def
#align finsum_mem_def finsum_mem_def
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h : mulSupport f ⊆ s) :
- (∏ᶠ i, f i) = ∏ i in s, f i :=
+ ∏ᶠ i, f i = ∏ i in s, f i :=
by
have A : mul_support (f ∘ PLift.down) = equiv.plift.symm '' mul_support f :=
by
@@ -351,14 +348,14 @@ theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h :
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_toFinset_subset (f : α → M) (hf : (mulSupport f).Finite)
- {s : Finset α} (h : hf.toFinset ⊆ s) : (∏ᶠ i, f i) = ∏ i in s, f i :=
+ {s : Finset α} (h : hf.toFinset ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i :=
finprod_eq_prod_of_mulSupport_subset _ fun x hx => h <| hf.mem_toFinset.2 hx
#align finprod_eq_prod_of_mul_support_to_finset_subset finprod_eq_prod_of_mulSupport_toFinset_subset
#align finsum_eq_sum_of_support_to_finset_subset finsum_eq_sum_of_support_toFinset_subset
@[to_additive]
theorem finprod_eq_finset_prod_of_mulSupport_subset (f : α → M) {s : Finset α}
- (h : mulSupport f ⊆ (s : Set α)) : (∏ᶠ i, f i) = ∏ i in s, f i :=
+ (h : mulSupport f ⊆ (s : Set α)) : ∏ᶠ i, f i = ∏ i in s, f i :=
haveI h' : (s.finite_to_set.subset h).toFinset ⊆ s := by
simpa [← Finset.coe_subset, Set.coe_toFinset]
finprod_eq_prod_of_mulSupport_toFinset_subset _ _ h'
@@ -367,7 +364,7 @@ theorem finprod_eq_finset_prod_of_mulSupport_subset (f : α → M) {s : Finset
@[to_additive]
theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
- (∏ᶠ i : α, f i) = if h : (mulSupport f).Finite then ∏ i in h.toFinset, f i else 1 :=
+ ∏ᶠ i : α, f i = if h : (mulSupport f).Finite then ∏ i in h.toFinset, f i else 1 :=
by
split_ifs
· exact finprod_eq_prod_of_mulSupport_toFinset_subset _ h (Finset.Subset.refl _)
@@ -378,26 +375,26 @@ theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
#align finsum_def finsum_def
@[to_additive]
-theorem finprod_of_infinite_mulSupport {f : α → M} (hf : (mulSupport f).Infinite) :
- (∏ᶠ i, f i) = 1 := by classical rw [finprod_def, dif_neg hf]
+theorem finprod_of_infinite_mulSupport {f : α → M} (hf : (mulSupport f).Infinite) : ∏ᶠ i, f i = 1 :=
+ by classical rw [finprod_def, dif_neg hf]
#align finprod_of_infinite_mul_support finprod_of_infinite_mulSupport
#align finsum_of_infinite_support finsum_of_infinite_support
@[to_additive]
theorem finprod_eq_prod (f : α → M) (hf : (mulSupport f).Finite) :
- (∏ᶠ i : α, f i) = ∏ i in hf.toFinset, f i := by classical rw [finprod_def, dif_pos hf]
+ ∏ᶠ i : α, f i = ∏ i in hf.toFinset, f i := by classical rw [finprod_def, dif_pos hf]
#align finprod_eq_prod finprod_eq_prod
#align finsum_eq_sum finsum_eq_sum
@[to_additive]
-theorem finprod_eq_prod_of_fintype [Fintype α] (f : α → M) : (∏ᶠ i : α, f i) = ∏ i, f i :=
+theorem finprod_eq_prod_of_fintype [Fintype α] (f : α → M) : ∏ᶠ i : α, f i = ∏ i, f i :=
finprod_eq_prod_of_mulSupport_toFinset_subset _ (Set.toFinite _) <| Finset.subset_univ _
#align finprod_eq_prod_of_fintype finprod_eq_prod_of_fintype
#align finsum_eq_sum_of_fintype finsum_eq_sum_of_fintype
@[to_additive]
theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : Finset α}
- (h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : (∏ᶠ (i) (hi : p i), f i) = ∏ i in t, f i :=
+ (h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : ∏ᶠ (i) (hi : p i), f i = ∏ i in t, f i :=
by
set s := {x | p x}
have : mul_support (s.mul_indicator f) ⊆ t := by rw [Set.mulSupport_mulIndicator]; intro x hx;
@@ -412,7 +409,7 @@ theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : F
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr ≠ » a) -/
@[to_additive]
theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSupport f).Finite) :
- (∏ᶠ (i) (_ : i ≠ a), f i) = ∏ i in hf.toFinset.eraseₓ a, f i :=
+ ∏ᶠ (i) (_ : i ≠ a), f i = ∏ i in hf.toFinset.eraseₓ a, f i :=
by
apply finprod_cond_eq_prod_of_cond_iff
intro x hx
@@ -423,63 +420,62 @@ theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSuppo
@[to_additive]
theorem finprod_mem_eq_prod_of_inter_mulSupport_eq (f : α → M) {s : Set α} {t : Finset α}
- (h : s ∩ mulSupport f = t ∩ mulSupport f) : (∏ᶠ i ∈ s, f i) = ∏ i in t, f i :=
+ (h : s ∩ mulSupport f = t ∩ mulSupport f) : ∏ᶠ i ∈ s, f i = ∏ i in t, f i :=
finprod_cond_eq_prod_of_cond_iff _ <| by simpa [Set.ext_iff] using h
#align finprod_mem_eq_prod_of_inter_mul_support_eq finprod_mem_eq_prod_of_inter_mulSupport_eq
#align finsum_mem_eq_sum_of_inter_support_eq finsum_mem_eq_sum_of_inter_support_eq
@[to_additive]
theorem finprod_mem_eq_prod_of_subset (f : α → M) {s : Set α} {t : Finset α}
- (h₁ : s ∩ mulSupport f ⊆ t) (h₂ : ↑t ⊆ s) : (∏ᶠ i ∈ s, f i) = ∏ i in t, f i :=
+ (h₁ : s ∩ mulSupport f ⊆ t) (h₂ : ↑t ⊆ s) : ∏ᶠ i ∈ s, f i = ∏ i in t, f i :=
finprod_cond_eq_prod_of_cond_iff _ fun x hx => ⟨fun h => h₁ ⟨h, hx⟩, fun h => h₂ h⟩
#align finprod_mem_eq_prod_of_subset finprod_mem_eq_prod_of_subset
#align finsum_mem_eq_sum_of_subset finsum_mem_eq_sum_of_subset
@[to_additive]
theorem finprod_mem_eq_prod (f : α → M) {s : Set α} (hf : (s ∩ mulSupport f).Finite) :
- (∏ᶠ i ∈ s, f i) = ∏ i in hf.toFinset, f i :=
+ ∏ᶠ i ∈ s, f i = ∏ i in hf.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by simp [inter_assoc]
#align finprod_mem_eq_prod finprod_mem_eq_prod
#align finsum_mem_eq_sum finsum_mem_eq_sum
@[to_additive]
theorem finprod_mem_eq_prod_filter (f : α → M) (s : Set α) [DecidablePred (· ∈ s)]
- (hf : (mulSupport f).Finite) :
- (∏ᶠ i ∈ s, f i) = ∏ i in Finset.filter (· ∈ s) hf.toFinset, f i :=
+ (hf : (mulSupport f).Finite) : ∏ᶠ i ∈ s, f i = ∏ i in Finset.filter (· ∈ s) hf.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by simp [inter_comm, inter_left_comm]
#align finprod_mem_eq_prod_filter finprod_mem_eq_prod_filter
#align finsum_mem_eq_sum_filter finsum_mem_eq_sum_filter
@[to_additive]
theorem finprod_mem_eq_toFinset_prod (f : α → M) (s : Set α) [Fintype s] :
- (∏ᶠ i ∈ s, f i) = ∏ i in s.toFinset, f i :=
+ ∏ᶠ i ∈ s, f i = ∏ i in s.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by rw [coe_to_finset]
#align finprod_mem_eq_to_finset_prod finprod_mem_eq_toFinset_prod
#align finsum_mem_eq_to_finset_sum finsum_mem_eq_toFinset_sum
@[to_additive]
theorem finprod_mem_eq_finite_toFinset_prod (f : α → M) {s : Set α} (hs : s.Finite) :
- (∏ᶠ i ∈ s, f i) = ∏ i in hs.toFinset, f i :=
+ ∏ᶠ i ∈ s, f i = ∏ i in hs.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by rw [hs.coe_to_finset]
#align finprod_mem_eq_finite_to_finset_prod finprod_mem_eq_finite_toFinset_prod
#align finsum_mem_eq_finite_to_finset_sum finsum_mem_eq_finite_toFinset_sum
@[to_additive]
-theorem finprod_mem_finset_eq_prod (f : α → M) (s : Finset α) : (∏ᶠ i ∈ s, f i) = ∏ i in s, f i :=
+theorem finprod_mem_finset_eq_prod (f : α → M) (s : Finset α) : ∏ᶠ i ∈ s, f i = ∏ i in s, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ rfl
#align finprod_mem_finset_eq_prod finprod_mem_finset_eq_prod
#align finsum_mem_finset_eq_sum finsum_mem_finset_eq_sum
@[to_additive]
theorem finprod_mem_coe_finset (f : α → M) (s : Finset α) :
- (∏ᶠ i ∈ (s : Set α), f i) = ∏ i in s, f i :=
+ ∏ᶠ i ∈ (s : Set α), f i = ∏ i in s, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ rfl
#align finprod_mem_coe_finset finprod_mem_coe_finset
#align finsum_mem_coe_finset finsum_mem_coe_finset
@[to_additive]
theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩ mulSupport f).Infinite) :
- (∏ᶠ i ∈ s, f i) = 1 := by
+ ∏ᶠ i ∈ s, f i = 1 := by
rw [finprod_mem_def]
apply finprod_of_infinite_mulSupport
rwa [← mul_support_mul_indicator] at hs
@@ -488,27 +484,27 @@ theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩
@[to_additive]
theorem finprod_mem_eq_one_of_forall_eq_one {f : α → M} {s : Set α} (h : ∀ x ∈ s, f x = 1) :
- (∏ᶠ i ∈ s, f i) = 1 := by simp (config := { contextual := true }) [h]
+ ∏ᶠ i ∈ s, f i = 1 := by simp (config := { contextual := true }) [h]
#align finprod_mem_eq_one_of_forall_eq_one finprod_mem_eq_one_of_forall_eq_one
#align finsum_mem_eq_zero_of_forall_eq_zero finsum_mem_eq_zero_of_forall_eq_zero
@[to_additive]
theorem finprod_mem_inter_mulSupport (f : α → M) (s : Set α) :
- (∏ᶠ i ∈ s ∩ mulSupport f, f i) = ∏ᶠ i ∈ s, f i := by
+ ∏ᶠ i ∈ s ∩ mulSupport f, f i = ∏ᶠ i ∈ s, f i := by
rw [finprod_mem_def, finprod_mem_def, mul_indicator_inter_mul_support]
#align finprod_mem_inter_mul_support finprod_mem_inter_mulSupport
#align finsum_mem_inter_support finsum_mem_inter_support
@[to_additive]
theorem finprod_mem_inter_mulSupport_eq (f : α → M) (s t : Set α)
- (h : s ∩ mulSupport f = t ∩ mulSupport f) : (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ t, f i := by
+ (h : s ∩ mulSupport f = t ∩ mulSupport f) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_inter_mulSupport, h, finprod_mem_inter_mulSupport]
#align finprod_mem_inter_mul_support_eq finprod_mem_inter_mulSupport_eq
#align finsum_mem_inter_support_eq finsum_mem_inter_support_eq
@[to_additive]
theorem finprod_mem_inter_mulSupport_eq' (f : α → M) (s t : Set α)
- (h : ∀ x ∈ mulSupport f, x ∈ s ↔ x ∈ t) : (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ t, f i :=
+ (h : ∀ x ∈ mulSupport f, x ∈ s ↔ x ∈ t) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, f i :=
by
apply finprod_mem_inter_mulSupport_eq
ext x
@@ -518,7 +514,7 @@ theorem finprod_mem_inter_mulSupport_eq' (f : α → M) (s t : Set α)
#print finprod_mem_univ /-
@[to_additive]
-theorem finprod_mem_univ (f : α → M) : (∏ᶠ i ∈ @Set.univ α, f i) = ∏ᶠ i : α, f i :=
+theorem finprod_mem_univ (f : α → M) : ∏ᶠ i ∈ @Set.univ α, f i = ∏ᶠ i : α, f i :=
finprod_congr fun i => finprod_true _
#align finprod_mem_univ finprod_mem_univ
#align finsum_mem_univ finsum_mem_univ
@@ -527,14 +523,13 @@ theorem finprod_mem_univ (f : α → M) : (∏ᶠ i ∈ @Set.univ α, f i) = ∏
variable {f g : α → M} {a b : α} {s t : Set α}
@[to_additive]
-theorem finprod_mem_congr (h₀ : s = t) (h₁ : ∀ x ∈ t, f x = g x) :
- (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ t, g i :=
+theorem finprod_mem_congr (h₀ : s = t) (h₁ : ∀ x ∈ t, f x = g x) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, g i :=
h₀.symm ▸ finprod_congr fun i => finprod_congr_Prop rfl (h₁ i)
#align finprod_mem_congr finprod_mem_congr
#align finsum_mem_congr finsum_mem_congr
@[to_additive]
-theorem finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) : (∏ᶠ i, f i) = 1 := by
+theorem finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) : ∏ᶠ i, f i = 1 := by
simp (config := { contextual := true }) [h]
#align finprod_eq_one_of_forall_eq_one finprod_eq_one_of_forall_eq_one
#align finsum_eq_zero_of_forall_eq_zero finsum_eq_zero_of_forall_eq_zero
@@ -549,7 +544,7 @@ the product of `f i` multiplied by the product of `g i`. -/
@[to_additive
"If the additive supports of `f` and `g` are finite, then the sum of `f i + g i`\nequals the sum of `f i` plus the sum of `g i`."]
theorem finprod_mul_distrib (hf : (mulSupport f).Finite) (hg : (mulSupport g).Finite) :
- (∏ᶠ i, f i * g i) = (∏ᶠ i, f i) * ∏ᶠ i, g i := by
+ ∏ᶠ i, f i * g i = (∏ᶠ i, f i) * ∏ᶠ i, g i := by
classical
rw [finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_union_left _ _),
finprod_eq_prod_of_mulSupport_toFinset_subset _ hg (Finset.subset_union_right _ _), ←
@@ -564,7 +559,7 @@ equals the product of `f i` divided by the product of `g i`. -/
@[to_additive
"If the additive supports of `f` and `g` are finite, then the sum of `f i - g i`\nequals the sum of `f i` minus the sum of `g i`."]
theorem finprod_div_distrib [DivisionCommMonoid G] {f g : α → G} (hf : (mulSupport f).Finite)
- (hg : (mulSupport g).Finite) : (∏ᶠ i, f i / g i) = (∏ᶠ i, f i) / ∏ᶠ i, g i := by
+ (hg : (mulSupport g).Finite) : ∏ᶠ i, f i / g i = (∏ᶠ i, f i) / ∏ᶠ i, g i := by
simp only [div_eq_mul_inv, finprod_mul_distrib hf ((mul_support_inv g).symm.rec hg),
finprod_inv_distrib]
#align finprod_div_distrib finprod_div_distrib
@@ -575,7 +570,7 @@ theorem finprod_div_distrib [DivisionCommMonoid G] {f g : α → G} (hf : (mulSu
@[to_additive
"A more general version of `finsum_mem_add_distrib` that only requires `s ∩ support f`\nand `s ∩ support g` rather than `s` to be finite."]
theorem finprod_mem_mul_distrib' (hf : (s ∩ mulSupport f).Finite) (hg : (s ∩ mulSupport g).Finite) :
- (∏ᶠ i ∈ s, f i * g i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i :=
+ ∏ᶠ i ∈ s, f i * g i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i :=
by
rw [← mul_support_mul_indicator] at hf hg
simp only [finprod_mem_def, mul_indicator_mul, finprod_mul_distrib hf hg]
@@ -584,14 +579,14 @@ theorem finprod_mem_mul_distrib' (hf : (s ∩ mulSupport f).Finite) (hg : (s ∩
/-- The product of the constant function `1` over any set equals `1`. -/
@[to_additive "The product of the constant function `0` over any set equals `0`."]
-theorem finprod_mem_one (s : Set α) : (∏ᶠ i ∈ s, (1 : M)) = 1 := by simp
+theorem finprod_mem_one (s : Set α) : ∏ᶠ i ∈ s, (1 : M) = 1 := by simp
#align finprod_mem_one finprod_mem_one
#align finsum_mem_zero finsum_mem_zero
/-- If a function `f` equals `1` on a set `s`, then the product of `f i` over `i ∈ s` equals `1`. -/
@[to_additive
"If a function `f` equals `0` on a set `s`, then the product of `f i` over `i ∈ s`\nequals `0`."]
-theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : (∏ᶠ i ∈ s, f i) = 1 := by
+theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : ∏ᶠ i ∈ s, f i = 1 := by
rw [← finprod_mem_one s]; exact finprod_mem_congr rfl hf
#align finprod_mem_of_eq_on_one finprod_mem_of_eqOn_one
#align finsum_mem_of_eq_on_zero finsum_mem_of_eqOn_zero
@@ -600,7 +595,7 @@ theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : (∏ᶠ i ∈ s, f i) = 1 :=
`f x ≠ 1`. -/
@[to_additive
"If the product of `f i` over `i ∈ s` is not equal to `0`, then there is some `x ∈ s`\nsuch that `f x ≠ 0`."]
-theorem exists_ne_one_of_finprod_mem_ne_one (h : (∏ᶠ i ∈ s, f i) ≠ 1) : ∃ x ∈ s, f x ≠ 1 :=
+theorem exists_ne_one_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : ∃ x ∈ s, f x ≠ 1 :=
by
by_contra' h'
exact h (finprod_mem_of_eqOn_one h')
@@ -612,7 +607,7 @@ over `i ∈ s` times the product of `g i` over `i ∈ s`. -/
@[to_additive
"Given a finite set `s`, the sum of `f i + g i` over `i ∈ s` equals the sum of `f i`\nover `i ∈ s` plus the sum of `g i` over `i ∈ s`."]
theorem finprod_mem_mul_distrib (hs : s.Finite) :
- (∏ᶠ i ∈ s, f i * g i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i :=
+ ∏ᶠ i ∈ s, f i * g i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i :=
finprod_mem_mul_distrib' (hs.inter_of_left _) (hs.inter_of_left _)
#align finprod_mem_mul_distrib finprod_mem_mul_distrib
#align finsum_mem_add_distrib finsum_mem_add_distrib
@@ -662,7 +657,7 @@ theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs
@[to_additive]
theorem finprod_mem_inv_distrib [DivisionCommMonoid G] (f : α → G) (hs : s.Finite) :
- (∏ᶠ x ∈ s, (f x)⁻¹) = (∏ᶠ x ∈ s, f x)⁻¹ :=
+ ∏ᶠ x ∈ s, (f x)⁻¹ = (∏ᶠ x ∈ s, f x)⁻¹ :=
((MulEquiv.inv G).map_finprod_mem f hs).symm
#align finprod_mem_inv_distrib finprod_mem_inv_distrib
#align finsum_mem_neg_distrib finsum_mem_neg_distrib
@@ -672,7 +667,7 @@ over `i ∈ s` divided by the product of `g i` over `i ∈ s`. -/
@[to_additive
"Given a finite set `s`, the sum of `f i / g i` over `i ∈ s` equals the sum of `f i`\nover `i ∈ s` minus the sum of `g i` over `i ∈ s`."]
theorem finprod_mem_div_distrib [DivisionCommMonoid G] (f g : α → G) (hs : s.Finite) :
- (∏ᶠ i ∈ s, f i / g i) = (∏ᶠ i ∈ s, f i) / ∏ᶠ i ∈ s, g i := by
+ ∏ᶠ i ∈ s, f i / g i = (∏ᶠ i ∈ s, f i) / ∏ᶠ i ∈ s, g i := by
simp only [div_eq_mul_inv, finprod_mem_mul_distrib hs, finprod_mem_inv_distrib g hs]
#align finprod_mem_div_distrib finprod_mem_div_distrib
#align finsum_mem_sub_distrib finsum_mem_sub_distrib
@@ -684,13 +679,13 @@ theorem finprod_mem_div_distrib [DivisionCommMonoid G] (f g : α → G) (hs : s.
/-- The product of any function over an empty set is `1`. -/
@[to_additive "The sum of any function over an empty set is `0`."]
-theorem finprod_mem_empty : (∏ᶠ i ∈ (∅ : Set α), f i) = 1 := by simp
+theorem finprod_mem_empty : ∏ᶠ i ∈ (∅ : Set α), f i = 1 := by simp
#align finprod_mem_empty finprod_mem_empty
#align finsum_mem_empty finsum_mem_empty
/-- A set `s` is nonempty if the product of some function over `s` is not equal to `1`. -/
@[to_additive "A set `s` is nonempty if the sum of some function over `s` is not equal to `0`."]
-theorem nonempty_of_finprod_mem_ne_one (h : (∏ᶠ i ∈ s, f i) ≠ 1) : s.Nonempty :=
+theorem nonempty_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : s.Nonempty :=
nonempty_iff_ne_empty.2 fun h' => h <| h'.symm ▸ finprod_mem_empty
#align nonempty_of_finprod_mem_ne_one nonempty_of_finprod_mem_ne_one
#align nonempty_of_finsum_mem_ne_zero nonempty_of_finsum_mem_ne_zero
@@ -701,7 +696,7 @@ over `i ∈ t`. -/
@[to_additive
"Given finite sets `s` and `t`, the sum of `f i` over `i ∈ s ∪ t` plus the sum of\n`f i` over `i ∈ s ∩ t` equals the sum of `f i` over `i ∈ s` plus the sum of `f i` over `i ∈ t`."]
theorem finprod_mem_union_inter (hs : s.Finite) (ht : t.Finite) :
- ((∏ᶠ i ∈ s ∪ t, f i) * ∏ᶠ i ∈ s ∩ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i :=
+ (∏ᶠ i ∈ s ∪ t, f i) * ∏ᶠ i ∈ s ∩ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i :=
by
lift s to Finset α using hs; lift t to Finset α using ht
classical
@@ -715,7 +710,7 @@ theorem finprod_mem_union_inter (hs : s.Finite) (ht : t.Finite) :
@[to_additive
"A more general version of `finsum_mem_union_inter` that requires `s ∩ support f` and\n`t ∩ support f` rather than `s` and `t` to be finite."]
theorem finprod_mem_union_inter' (hs : (s ∩ mulSupport f).Finite) (ht : (t ∩ mulSupport f).Finite) :
- ((∏ᶠ i ∈ s ∪ t, f i) * ∏ᶠ i ∈ s ∩ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i :=
+ (∏ᶠ i ∈ s ∪ t, f i) * ∏ᶠ i ∈ s ∩ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i :=
by
rw [← finprod_mem_inter_mulSupport f s, ← finprod_mem_inter_mulSupport f t, ←
finprod_mem_union_inter hs ht, ← union_inter_distrib_right, finprod_mem_inter_mulSupport, ←
@@ -730,7 +725,7 @@ theorem finprod_mem_union_inter' (hs : (s ∩ mulSupport f).Finite) (ht : (t ∩
@[to_additive
"A more general version of `finsum_mem_union` that requires `s ∩ support f` and\n`t ∩ support f` rather than `s` and `t` to be finite."]
theorem finprod_mem_union' (hst : Disjoint s t) (hs : (s ∩ mulSupport f).Finite)
- (ht : (t ∩ mulSupport f).Finite) : (∏ᶠ i ∈ s ∪ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
+ (ht : (t ∩ mulSupport f).Finite) : ∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_union_inter' hs ht, disjoint_iff_inter_eq_empty.1 hst, finprod_mem_empty,
mul_one]
#align finprod_mem_union' finprod_mem_union'
@@ -741,7 +736,7 @@ product of `f i` over `i ∈ s` times the product of `f i` over `i ∈ t`. -/
@[to_additive
"Given two finite disjoint sets `s` and `t`, the sum of `f i` over `i ∈ s ∪ t` equals\nthe sum of `f i` over `i ∈ s` plus the sum of `f i` over `i ∈ t`."]
theorem finprod_mem_union (hst : Disjoint s t) (hs : s.Finite) (ht : t.Finite) :
- (∏ᶠ i ∈ s ∪ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i :=
+ ∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i :=
finprod_mem_union' hst (hs.inter_of_left _) (ht.inter_of_left _)
#align finprod_mem_union finprod_mem_union
#align finsum_mem_union finsum_mem_union
@@ -752,7 +747,7 @@ theorem finprod_mem_union (hst : Disjoint s t) (hs : s.Finite) (ht : t.Finite) :
"A more general version of `finsum_mem_union'` that requires `s ∩ support f` and\n`t ∩ support f` rather than `s` and `t` to be disjoint"]
theorem finprod_mem_union'' (hst : Disjoint (s ∩ mulSupport f) (t ∩ mulSupport f))
(hs : (s ∩ mulSupport f).Finite) (ht : (t ∩ mulSupport f).Finite) :
- (∏ᶠ i ∈ s ∪ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
+ ∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_inter_mulSupport f s, ← finprod_mem_inter_mulSupport f t, ←
finprod_mem_union hst hs ht, ← union_inter_distrib_right, finprod_mem_inter_mulSupport]
#align finprod_mem_union'' finprod_mem_union''
@@ -761,7 +756,7 @@ theorem finprod_mem_union'' (hst : Disjoint (s ∩ mulSupport f) (t ∩ mulSuppo
#print finprod_mem_singleton /-
/-- The product of `f i` over `i ∈ {a}` equals `f a`. -/
@[to_additive "The sum of `f i` over `i ∈ {a}` equals `f a`."]
-theorem finprod_mem_singleton : (∏ᶠ i ∈ ({a} : Set α), f i) = f a := by
+theorem finprod_mem_singleton : ∏ᶠ i ∈ ({a} : Set α), f i = f a := by
rw [← Finset.coe_singleton, finprod_mem_coe_finset, Finset.prod_singleton]
#align finprod_mem_singleton finprod_mem_singleton
#align finsum_mem_singleton finsum_mem_singleton
@@ -770,7 +765,7 @@ theorem finprod_mem_singleton : (∏ᶠ i ∈ ({a} : Set α), f i) = f a := by
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr = » a) -/
#print finprod_cond_eq_left /-
@[simp, to_additive]
-theorem finprod_cond_eq_left : (∏ᶠ (i) (_ : i = a), f i) = f a :=
+theorem finprod_cond_eq_left : ∏ᶠ (i) (_ : i = a), f i = f a :=
finprod_mem_singleton
#align finprod_cond_eq_left finprod_cond_eq_left
#align finsum_cond_eq_left finsum_cond_eq_left
@@ -778,7 +773,7 @@ theorem finprod_cond_eq_left : (∏ᶠ (i) (_ : i = a), f i) = f a :=
#print finprod_cond_eq_right /-
@[simp, to_additive]
-theorem finprod_cond_eq_right : (∏ᶠ (i) (hi : a = i), f i) = f a := by simp [@eq_comm _ a]
+theorem finprod_cond_eq_right : ∏ᶠ (i) (hi : a = i), f i = f a := by simp [@eq_comm _ a]
#align finprod_cond_eq_right finprod_cond_eq_right
#align finsum_cond_eq_right finsum_cond_eq_right
-/
@@ -788,7 +783,7 @@ to be finite. -/
@[to_additive
"A more general version of `finsum_mem_insert` that requires `s ∩ support f` rather\nthan `s` to be finite."]
theorem finprod_mem_insert' (f : α → M) (h : a ∉ s) (hs : (s ∩ mulSupport f).Finite) :
- (∏ᶠ i ∈ insert a s, f i) = f a * ∏ᶠ i ∈ s, f i :=
+ ∏ᶠ i ∈ insert a s, f i = f a * ∏ᶠ i ∈ s, f i :=
by
rw [insert_eq, finprod_mem_union' _ _ hs, finprod_mem_singleton]
· rwa [disjoint_singleton_left]
@@ -801,7 +796,7 @@ theorem finprod_mem_insert' (f : α → M) (h : a ∉ s) (hs : (s ∩ mulSupport
@[to_additive
"Given a finite set `s` and an element `a ∉ s`, the sum of `f i` over `i ∈ insert a s`\nequals `f a` plus the sum of `f i` over `i ∈ s`."]
theorem finprod_mem_insert (f : α → M) (h : a ∉ s) (hs : s.Finite) :
- (∏ᶠ i ∈ insert a s, f i) = f a * ∏ᶠ i ∈ s, f i :=
+ ∏ᶠ i ∈ insert a s, f i = f a * ∏ᶠ i ∈ s, f i :=
finprod_mem_insert' f h <| hs.inter_of_left _
#align finprod_mem_insert finprod_mem_insert
#align finsum_mem_insert finsum_mem_insert
@@ -811,7 +806,7 @@ theorem finprod_mem_insert (f : α → M) (h : a ∉ s) (hs : s.Finite) :
@[to_additive
"If `f a = 0` when `a ∉ s`, then the sum of `f i` over `i ∈ insert a s` equals the sum\nof `f i` over `i ∈ s`."]
theorem finprod_mem_insert_of_eq_one_if_not_mem (h : a ∉ s → f a = 1) :
- (∏ᶠ i ∈ insert a s, f i) = ∏ᶠ i ∈ s, f i :=
+ ∏ᶠ i ∈ insert a s, f i = ∏ᶠ i ∈ s, f i :=
by
refine' finprod_mem_inter_mulSupport_eq' _ _ _ fun x hx => ⟨_, Or.inr⟩
rintro (rfl | hxs)
@@ -823,7 +818,7 @@ theorem finprod_mem_insert_of_eq_one_if_not_mem (h : a ∉ s → f a = 1) :
`i ∈ s`. -/
@[to_additive
"If `f a = 0`, then the sum of `f i` over `i ∈ insert a s` equals the sum of `f i`\nover `i ∈ s`."]
-theorem finprod_mem_insert_one (h : f a = 1) : (∏ᶠ i ∈ insert a s, f i) = ∏ᶠ i ∈ s, f i :=
+theorem finprod_mem_insert_one (h : f a = 1) : ∏ᶠ i ∈ insert a s, f i = ∏ᶠ i ∈ s, f i :=
finprod_mem_insert_of_eq_one_if_not_mem fun _ => h
#align finprod_mem_insert_one finprod_mem_insert_one
#align finsum_mem_insert_zero finsum_mem_insert_zero
@@ -841,7 +836,7 @@ theorem finprod_mem_dvd {f : α → N} (a : α) (hf : (mulSupport f).Finite) : f
/-- The product of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a * f b`. -/
@[to_additive "The sum of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a + f b`."]
-theorem finprod_mem_pair (h : a ≠ b) : (∏ᶠ i ∈ ({a, b} : Set α), f i) = f a * f b := by
+theorem finprod_mem_pair (h : a ≠ b) : ∏ᶠ i ∈ ({a, b} : Set α), f i = f a * f b := by
rw [finprod_mem_insert, finprod_mem_singleton]; exacts [h, finite_singleton b]
#align finprod_mem_pair finprod_mem_pair
#align finsum_mem_pair finsum_mem_pair
@@ -851,7 +846,7 @@ provided that `g` is injective on `s ∩ mul_support (f ∘ g)`. -/
@[to_additive
"The sum of `f y` over `y ∈ g '' s` equals the sum of `f (g i)` over `s` provided that\n`g` is injective on `s ∩ support (f ∘ g)`."]
theorem finprod_mem_image' {s : Set β} {g : β → α} (hg : (s ∩ mulSupport (f ∘ g)).InjOn g) :
- (∏ᶠ i ∈ g '' s, f i) = ∏ᶠ j ∈ s, f (g j) := by
+ ∏ᶠ i ∈ g '' s, f i = ∏ᶠ j ∈ s, f (g j) := by
classical
by_cases hs : (s ∩ mul_support (f ∘ g)).Finite
· have hg : ∀ x ∈ hs.to_finset, ∀ y ∈ hs.to_finset, g x = g y → x = y := by
@@ -869,7 +864,7 @@ theorem finprod_mem_image' {s : Set β} {g : β → α} (hg : (s ∩ mulSupport
@[to_additive
"The sum of `f y` over `y ∈ g '' s` equals the sum of `f (g i)` over `s` provided that\n`g` is injective on `s`."]
theorem finprod_mem_image {s : Set β} {g : β → α} (hg : s.InjOn g) :
- (∏ᶠ i ∈ g '' s, f i) = ∏ᶠ j ∈ s, f (g j) :=
+ ∏ᶠ i ∈ g '' s, f i = ∏ᶠ j ∈ s, f (g j) :=
finprod_mem_image' <| hg.mono <| inter_subset_left _ _
#align finprod_mem_image finprod_mem_image
#align finsum_mem_image finsum_mem_image
@@ -879,7 +874,7 @@ provided that `g` is injective on `mul_support (f ∘ g)`. -/
@[to_additive
"The sum of `f y` over `y ∈ set.range g` equals the sum of `f (g i)` over all `i`\nprovided that `g` is injective on `support (f ∘ g)`."]
theorem finprod_mem_range' {g : β → α} (hg : (mulSupport (f ∘ g)).InjOn g) :
- (∏ᶠ i ∈ range g, f i) = ∏ᶠ j, f (g j) :=
+ ∏ᶠ i ∈ range g, f i = ∏ᶠ j, f (g j) :=
by
rw [← image_univ, finprod_mem_image', finprod_mem_univ]
rwa [univ_inter]
@@ -890,7 +885,7 @@ theorem finprod_mem_range' {g : β → α} (hg : (mulSupport (f ∘ g)).InjOn g)
provided that `g` is injective. -/
@[to_additive
"The sum of `f y` over `y ∈ set.range g` equals the sum of `f (g i)` over all `i`\nprovided that `g` is injective."]
-theorem finprod_mem_range {g : β → α} (hg : Injective g) : (∏ᶠ i ∈ range g, f i) = ∏ᶠ j, f (g j) :=
+theorem finprod_mem_range {g : β → α} (hg : Injective g) : ∏ᶠ i ∈ range g, f i = ∏ᶠ j, f (g j) :=
finprod_mem_range' (hg.InjOn _)
#align finprod_mem_range finprod_mem_range
#align finsum_mem_range finsum_mem_range
@@ -898,7 +893,7 @@ theorem finprod_mem_range {g : β → α} (hg : Injective g) : (∏ᶠ i ∈ ran
/-- See also `finset.prod_bij`. -/
@[to_additive "See also `finset.sum_bij`."]
theorem finprod_mem_eq_of_bijOn {s : Set α} {t : Set β} {f : α → M} {g : β → M} (e : α → β)
- (he₀ : s.BijOn e t) (he₁ : ∀ x ∈ s, f x = g (e x)) : (∏ᶠ i ∈ s, f i) = ∏ᶠ j ∈ t, g j :=
+ (he₀ : s.BijOn e t) (he₁ : ∀ x ∈ s, f x = g (e x)) : ∏ᶠ i ∈ s, f i = ∏ᶠ j ∈ t, g j :=
by
rw [← Set.BijOn.image_eq he₀, finprod_mem_image he₀.2.1]
exact finprod_mem_congr rfl he₁
@@ -908,7 +903,7 @@ theorem finprod_mem_eq_of_bijOn {s : Set α} {t : Set β} {f : α → M} {g : β
/-- See `finprod_comp`, `fintype.prod_bijective` and `finset.prod_bij`. -/
@[to_additive "See `finsum_comp`, `fintype.sum_bijective` and `finset.sum_bij`."]
theorem finprod_eq_of_bijective {f : α → M} {g : β → M} (e : α → β) (he₀ : Bijective e)
- (he₁ : ∀ x, f x = g (e x)) : (∏ᶠ i, f i) = ∏ᶠ j, g j :=
+ (he₁ : ∀ x, f x = g (e x)) : ∏ᶠ i, f i = ∏ᶠ j, g j :=
by
rw [← finprod_mem_univ f, ← finprod_mem_univ g]
exact finprod_mem_eq_of_bijOn _ (bijective_iff_bij_on_univ.mp he₀) fun x _ => he₁ x
@@ -918,19 +913,19 @@ theorem finprod_eq_of_bijective {f : α → M} {g : β → M} (e : α → β) (h
/-- See also `finprod_eq_of_bijective`, `fintype.prod_bijective` and `finset.prod_bij`. -/
@[to_additive "See also `finsum_eq_of_bijective`, `fintype.sum_bijective` and `finset.sum_bij`."]
theorem finprod_comp {g : β → M} (e : α → β) (he₀ : Function.Bijective e) :
- (∏ᶠ i, g (e i)) = ∏ᶠ j, g j :=
+ ∏ᶠ i, g (e i) = ∏ᶠ j, g j :=
finprod_eq_of_bijective e he₀ fun x => rfl
#align finprod_comp finprod_comp
#align finsum_comp finsum_comp
@[to_additive]
-theorem finprod_comp_equiv (e : α ≃ β) {f : β → M} : (∏ᶠ i, f (e i)) = ∏ᶠ i', f i' :=
+theorem finprod_comp_equiv (e : α ≃ β) {f : β → M} : ∏ᶠ i, f (e i) = ∏ᶠ i', f i' :=
finprod_comp e e.Bijective
#align finprod_comp_equiv finprod_comp_equiv
#align finsum_comp_equiv finsum_comp_equiv
@[to_additive]
-theorem finprod_set_coe_eq_finprod_mem (s : Set α) : (∏ᶠ j : s, f j) = ∏ᶠ i ∈ s, f i :=
+theorem finprod_set_coe_eq_finprod_mem (s : Set α) : ∏ᶠ j : s, f j = ∏ᶠ i ∈ s, f i :=
by
rw [← finprod_mem_range, Subtype.range_coe]
exact Subtype.coe_injective
@@ -940,7 +935,7 @@ theorem finprod_set_coe_eq_finprod_mem (s : Set α) : (∏ᶠ j : s, f j) = ∏
#print finprod_subtype_eq_finprod_cond /-
@[to_additive]
theorem finprod_subtype_eq_finprod_cond (p : α → Prop) :
- (∏ᶠ j : Subtype p, f j) = ∏ᶠ (i) (hi : p i), f i :=
+ ∏ᶠ j : Subtype p, f j = ∏ᶠ (i) (hi : p i), f i :=
finprod_set_coe_eq_finprod_mem {i | p i}
#align finprod_subtype_eq_finprod_cond finprod_subtype_eq_finprod_cond
#align finsum_subtype_eq_finsum_cond finsum_subtype_eq_finsum_cond
@@ -948,7 +943,7 @@ theorem finprod_subtype_eq_finprod_cond (p : α → Prop) :
@[to_additive]
theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finite) :
- ((∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i) = ∏ᶠ i ∈ s, f i :=
+ (∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i = ∏ᶠ i ∈ s, f i :=
by
rw [← finprod_mem_union', inter_union_diff]
rw [disjoint_iff_inf_le]
@@ -959,7 +954,7 @@ theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finit
@[to_additive]
theorem finprod_mem_inter_mul_diff (t : Set α) (h : s.Finite) :
- ((∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i) = ∏ᶠ i ∈ s, f i :=
+ (∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i = ∏ᶠ i ∈ s, f i :=
finprod_mem_inter_mul_diff' _ <| h.inter_of_left _
#align finprod_mem_inter_mul_diff finprod_mem_inter_mul_diff
#align finsum_mem_inter_add_diff finsum_mem_inter_add_diff
@@ -969,7 +964,7 @@ theorem finprod_mem_inter_mul_diff (t : Set α) (h : s.Finite) :
@[to_additive
"A more general version of `finsum_mem_add_diff` that requires `t ∩ support f` rather\nthan `t` to be finite."]
theorem finprod_mem_mul_diff' (hst : s ⊆ t) (ht : (t ∩ mulSupport f).Finite) :
- ((∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t \ s, f i) = ∏ᶠ i ∈ t, f i := by
+ (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t \ s, f i = ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_inter_mul_diff' _ ht, inter_eq_self_of_subset_right hst]
#align finprod_mem_mul_diff' finprod_mem_mul_diff'
#align finsum_mem_add_diff' finsum_mem_add_diff'
@@ -979,7 +974,7 @@ times the product of `f i` over `t \ s` equals the product of `f i` over `i ∈
@[to_additive
"Given a finite set `t` and a subset `s` of `t`, the sum of `f i` over `i ∈ s` plus\nthe sum of `f i` over `t \\ s` equals the sum of `f i` over `i ∈ t`."]
theorem finprod_mem_mul_diff (hst : s ⊆ t) (ht : t.Finite) :
- ((∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t \ s, f i) = ∏ᶠ i ∈ t, f i :=
+ (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t \ s, f i = ∏ᶠ i ∈ t, f i :=
finprod_mem_mul_diff' hst (ht.inter_of_left _)
#align finprod_mem_mul_diff finprod_mem_mul_diff
#align finsum_mem_add_diff finsum_mem_add_diff
@@ -990,7 +985,7 @@ theorem finprod_mem_mul_diff (hst : s ⊆ t) (ht : t.Finite) :
@[to_additive
"Given a family of pairwise disjoint finite sets `t i` indexed by a finite type, the\nsum of `f a` over the union `⋃ i, t i` is equal to the sum over all indexes `i` of the sums of `f a`\nover `a ∈ t i`."]
theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoint on t))
- (ht : ∀ i, (t i).Finite) : (∏ᶠ a ∈ ⋃ i : ι, t i, f a) = ∏ᶠ i, ∏ᶠ a ∈ t i, f a :=
+ (ht : ∀ i, (t i).Finite) : ∏ᶠ a ∈ ⋃ i : ι, t i, f a = ∏ᶠ i, ∏ᶠ a ∈ t i, f a :=
by
cases nonempty_fintype ι
lift t to ι → Finset α using ht
@@ -1009,7 +1004,7 @@ over `a ∈ ⋃ i ∈ I, t i` is equal to the product over `i ∈ I` of the prod
@[to_additive
"Given a family of sets `t : ι → set α`, a finite set `I` in the index type such that\nall sets `t i`, `i ∈ I`, are finite, if all `t i`, `i ∈ I`, are pairwise disjoint, then the sum of\n`f a` over `a ∈ ⋃ i ∈ I, t i` is equal to the sum over `i ∈ I` of the sums of `f a` over\n`a ∈ t i`."]
theorem finprod_mem_biUnion {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisjoint t) (hI : I.Finite)
- (ht : ∀ i ∈ I, (t i).Finite) : (∏ᶠ a ∈ ⋃ x ∈ I, t x, f a) = ∏ᶠ i ∈ I, ∏ᶠ j ∈ t i, f j :=
+ (ht : ∀ i ∈ I, (t i).Finite) : ∏ᶠ a ∈ ⋃ x ∈ I, t x, f a = ∏ᶠ i ∈ I, ∏ᶠ j ∈ t i, f j :=
by
haveI := hI.fintype
rw [bUnion_eq_Union, finprod_mem_iUnion, ← finprod_set_coe_eq_finprod_mem]
@@ -1022,7 +1017,7 @@ over `a ∈ ⋃₀ t` is the product over `s ∈ t` of the products of `f a` ove
@[to_additive
"If `t` is a finite set of pairwise disjoint finite sets, then the sum of `f a` over\n`a ∈ ⋃₀ t` is the sum over `s ∈ t` of the sums of `f a` over `a ∈ s`."]
theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀ : t.Finite)
- (ht₁ : ∀ x ∈ t, Set.Finite x) : (∏ᶠ a ∈ ⋃₀ t, f a) = ∏ᶠ s ∈ t, ∏ᶠ a ∈ s, f a := by
+ (ht₁ : ∀ x ∈ t, Set.Finite x) : ∏ᶠ a ∈ ⋃₀ t, f a = ∏ᶠ s ∈ t, ∏ᶠ a ∈ s, f a := by
rw [Set.sUnion_eq_biUnion]; exact finprod_mem_biUnion h ht₀ ht₁
#align finprod_mem_sUnion finprod_mem_sUnion
#align finsum_mem_sUnion finsum_mem_sUnion
@@ -1030,7 +1025,7 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr ≠ » a) -/
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
- (f a * ∏ᶠ (i) (_ : i ≠ a), f i) = ∏ᶠ i, f i := by
+ f a * ∏ᶠ (i) (_ : i ≠ a), f i = ∏ᶠ i, f i := by
classical
rw [finprod_eq_prod _ hf]
have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.to_finset \ {a}) :=
@@ -1052,7 +1047,7 @@ taking the product over `t`. -/
@[to_additive
"If `s : set α` and `t : set β` are finite sets, then summing over `s` commutes with\nsumming over `t`."]
theorem finprod_mem_comm {s : Set α} {t : Set β} (f : α → β → M) (hs : s.Finite) (ht : t.Finite) :
- (∏ᶠ i ∈ s, ∏ᶠ j ∈ t, f i j) = ∏ᶠ j ∈ t, ∏ᶠ i ∈ s, f i j :=
+ ∏ᶠ i ∈ s, ∏ᶠ j ∈ t, f i j = ∏ᶠ j ∈ t, ∏ᶠ i ∈ s, f i j :=
by
lift s to Finset α using hs; lift t to Finset β using ht
simp only [finprod_mem_coe_finset]
@@ -1087,7 +1082,7 @@ theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α
#align single_le_finsum single_le_finsum
theorem finprod_eq_zero {M₀ : Type _} [CommMonoidWithZero M₀] (f : α → M₀) (x : α) (hx : f x = 0)
- (hf : (mulSupport f).Finite) : (∏ᶠ x, f x) = 0 :=
+ (hf : (mulSupport f).Finite) : ∏ᶠ x, f x = 0 :=
by
nontriviality
rw [finprod_eq_prod f hf]
@@ -1098,7 +1093,7 @@ theorem finprod_eq_zero {M₀ : Type _} [CommMonoidWithZero M₀] (f : α → M
@[to_additive]
theorem finprod_prod_comm (s : Finset β) (f : α → β → M)
(h : ∀ b ∈ s, (mulSupport fun a => f a b).Finite) :
- (∏ᶠ a : α, ∏ b in s, f a b) = ∏ b in s, ∏ᶠ a : α, f a b :=
+ ∏ᶠ a : α, ∏ b in s, f a b = ∏ b in s, ∏ᶠ a : α, f a b :=
by
have hU :
(mul_support fun a => ∏ b in s, f a b) ⊆
@@ -1119,13 +1114,13 @@ theorem finprod_prod_comm (s : Finset β) (f : α → β → M)
@[to_additive]
theorem prod_finprod_comm (s : Finset α) (f : α → β → M) (h : ∀ a ∈ s, (mulSupport (f a)).Finite) :
- (∏ a in s, ∏ᶠ b : β, f a b) = ∏ᶠ b : β, ∏ a in s, f a b :=
+ ∏ a in s, ∏ᶠ b : β, f a b = ∏ᶠ b : β, ∏ a in s, f a b :=
(finprod_prod_comm s (fun b a => f a b) h).symm
#align prod_finprod_comm prod_finprod_comm
#align sum_finsum_comm sum_finsum_comm
theorem mul_finsum {R : Type _} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
- (r * ∑ᶠ a : α, f a) = ∑ᶠ a : α, r * f a :=
+ r * ∑ᶠ a : α, f a = ∑ᶠ a : α, r * f a :=
(AddMonoidHom.mulLeft r).map_finsum h
#align mul_finsum mul_finsum
@@ -1154,12 +1149,12 @@ iterating this lemma, e.g., if we have `f : α × β × γ → M`. -/
"Note that `b ∈ (s.filter (λ ab, prod.fst ab = a)).image prod.snd` iff `(a, b) ∈ s` so\nwe can simplify the right hand side of this lemma. However the form stated here is more useful for\niterating this lemma, e.g., if we have `f : α × β × γ → M`."]
theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finset (α × β))
(f : α × β → M) :
- (∏ᶠ (ab) (h : ab ∈ s), f ab) =
+ ∏ᶠ (ab) (h : ab ∈ s), f ab =
∏ᶠ (a) (b) (h : b ∈ (s.filterₓ fun ab => Prod.fst ab = a).image Prod.snd), f (a, b) :=
by
have :
∀ a,
- (∏ i : β in (s.filter fun ab => Prod.fst ab = a).image Prod.snd, f (a, i)) =
+ ∏ i : β in (s.filter fun ab => Prod.fst ab = a).image Prod.snd, f (a, i) =
(Finset.filter (fun ab => Prod.fst ab = a) s).Prod f :=
by
refine' fun a => Finset.prod_bij (fun b _ => (a, b)) _ _ _ _ <;>-- `finish` closes these goals
@@ -1182,7 +1177,7 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
/-- See also `finprod_mem_finset_product'`. -/
@[to_additive "See also `finsum_mem_finset_product'`."]
theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M) :
- (∏ᶠ (ab) (h : ab ∈ s), f ab) = ∏ᶠ (a) (b) (h : (a, b) ∈ s), f (a, b) := by
+ ∏ᶠ (ab) (h : ab ∈ s), f ab = ∏ᶠ (a) (b) (h : (a, b) ∈ s), f (a, b) := by
classical
rw [finprod_mem_finset_product']
simp
@@ -1192,7 +1187,7 @@ theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M)
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b c) -/
@[to_additive]
theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)) (f : α × β × γ → M) :
- (∏ᶠ (abc) (h : abc ∈ s), f abc) = ∏ᶠ (a) (b) (c) (h : (a, b, c) ∈ s), f (a, b, c) := by
+ ∏ᶠ (abc) (h : abc ∈ s), f abc = ∏ᶠ (a) (b) (c) (h : (a, b, c) ∈ s), f (a, b, c) := by
classical
rw [finprod_mem_finset_product']
simp_rw [finprod_mem_finset_product']
@@ -1203,10 +1198,10 @@ theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
@[to_additive]
theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
- (∏ᶠ ab, f ab) = ∏ᶠ (a) (b), f (a, b) :=
+ ∏ᶠ ab, f ab = ∏ᶠ (a) (b), f (a, b) :=
by
- have h₁ : ∀ a, (∏ᶠ h : a ∈ hf.to_finset, f a) = f a := by simp
- have h₂ : (∏ᶠ a, f a) = ∏ᶠ (a) (h : a ∈ hf.to_finset), f a := by simp
+ have h₁ : ∀ a, ∏ᶠ h : a ∈ hf.to_finset, f a = f a := by simp
+ have h₂ : ∏ᶠ a, f a = ∏ᶠ (a) (h : a ∈ hf.to_finset), f a := by simp
simp_rw [h₂, finprod_mem_finset_product, h₁]
#align finprod_curry finprod_curry
#align finsum_curry finsum_curry
@@ -1214,14 +1209,14 @@ theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b c) -/
@[to_additive]
theorem finprod_curry₃ {γ : Type _} (f : α × β × γ → M) (h : (mulSupport f).Finite) :
- (∏ᶠ abc, f abc) = ∏ᶠ (a) (b) (c), f (a, b, c) := by rw [finprod_curry f h]; congr; ext a;
+ ∏ᶠ abc, f abc = ∏ᶠ (a) (b) (c), f (a, b, c) := by rw [finprod_curry f h]; congr; ext a;
rw [finprod_curry]; simp [h]
#align finprod_curry₃ finprod_curry₃
#align finsum_curry₃ finsum_curry₃
@[to_additive]
theorem finprod_dmem {s : Set α} [DecidablePred (· ∈ s)] (f : ∀ a : α, a ∈ s → M) :
- (∏ᶠ (a : α) (h : a ∈ s), f a h) = ∏ᶠ (a : α) (h : a ∈ s), if h' : a ∈ s then f a h' else 1 :=
+ ∏ᶠ (a : α) (h : a ∈ s), f a h = ∏ᶠ (a : α) (h : a ∈ s), if h' : a ∈ s then f a h' else 1 :=
finprod_congr fun a => finprod_congr fun ha => (dif_pos ha).symm
#align finprod_dmem finprod_dmem
#align finsum_dmem finsum_dmem
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -1083,7 +1083,6 @@ theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α
Finset.single_le_prod' (fun j hj => h j) (Finset.mem_insert_self _ _)
_ = ∏ᶠ j, f j :=
(finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm
-
#align single_le_finprod single_le_finprod
#align single_le_finsum single_le_finsum
mathlib commit https://github.com/leanprover-community/mathlib/commit/31c24aa72e7b3e5ed97a8412470e904f82b81004
@@ -160,7 +160,7 @@ theorem finprod_false (f : False → M) : (∏ᶠ i, f i) = 1 :=
#align finprod_false finprod_false
#align finsum_false finsum_false
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x «expr ≠ » a) -/
@[to_additive]
theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) :
(∏ᶠ x, f x) = f a :=
@@ -409,7 +409,7 @@ theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : F
#align finprod_cond_eq_prod_of_cond_iff finprod_cond_eq_prod_of_cond_iff
#align finsum_cond_eq_sum_of_cond_iff finsum_cond_eq_sum_of_cond_iff
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr ≠ » a) -/
@[to_additive]
theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSupport f).Finite) :
(∏ᶠ (i) (_ : i ≠ a), f i) = ∏ i in hf.toFinset.eraseₓ a, f i :=
@@ -767,7 +767,7 @@ theorem finprod_mem_singleton : (∏ᶠ i ∈ ({a} : Set α), f i) = f a := by
#align finsum_mem_singleton finsum_mem_singleton
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr = » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr = » a) -/
#print finprod_cond_eq_left /-
@[simp, to_additive]
theorem finprod_cond_eq_left : (∏ᶠ (i) (_ : i = a), f i) = f a :=
@@ -1027,7 +1027,7 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
#align finprod_mem_sUnion finprod_mem_sUnion
#align finsum_mem_sUnion finsum_mem_sUnion
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i «expr ≠ » a) -/
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
(f a * ∏ᶠ (i) (_ : i ≠ a), f i) = ∏ᶠ i, f i := by
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -399,7 +399,7 @@ theorem finprod_eq_prod_of_fintype [Fintype α] (f : α → M) : (∏ᶠ i : α,
theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : Finset α}
(h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : (∏ᶠ (i) (hi : p i), f i) = ∏ i in t, f i :=
by
- set s := { x | p x }
+ set s := {x | p x}
have : mul_support (s.mul_indicator f) ⊆ t := by rw [Set.mulSupport_mulIndicator]; intro x hx;
exact (h hx.2).1 hx.1
erw [finprod_mem_def, finprod_eq_prod_of_mulSupport_subset _ this]
@@ -551,11 +551,11 @@ the product of `f i` multiplied by the product of `g i`. -/
theorem finprod_mul_distrib (hf : (mulSupport f).Finite) (hg : (mulSupport g).Finite) :
(∏ᶠ i, f i * g i) = (∏ᶠ i, f i) * ∏ᶠ i, g i := by
classical
- rw [finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_union_left _ _),
- finprod_eq_prod_of_mulSupport_toFinset_subset _ hg (Finset.subset_union_right _ _), ←
- Finset.prod_mul_distrib]
- refine' finprod_eq_prod_of_mulSupport_subset _ _
- simp [mul_support_mul]
+ rw [finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_union_left _ _),
+ finprod_eq_prod_of_mulSupport_toFinset_subset _ hg (Finset.subset_union_right _ _), ←
+ Finset.prod_mul_distrib]
+ refine' finprod_eq_prod_of_mulSupport_subset _ _
+ simp [mul_support_mul]
#align finprod_mul_distrib finprod_mul_distrib
#align finsum_add_distrib finsum_add_distrib
@@ -705,8 +705,8 @@ theorem finprod_mem_union_inter (hs : s.Finite) (ht : t.Finite) :
by
lift s to Finset α using hs; lift t to Finset α using ht
classical
- rw [← Finset.coe_union, ← Finset.coe_inter]
- simp only [finprod_mem_coe_finset, Finset.prod_union_inter]
+ rw [← Finset.coe_union, ← Finset.coe_inter]
+ simp only [finprod_mem_coe_finset, Finset.prod_union_inter]
#align finprod_mem_union_inter finprod_mem_union_inter
#align finsum_mem_union_inter finsum_mem_union_inter
@@ -853,14 +853,14 @@ provided that `g` is injective on `s ∩ mul_support (f ∘ g)`. -/
theorem finprod_mem_image' {s : Set β} {g : β → α} (hg : (s ∩ mulSupport (f ∘ g)).InjOn g) :
(∏ᶠ i ∈ g '' s, f i) = ∏ᶠ j ∈ s, f (g j) := by
classical
- by_cases hs : (s ∩ mul_support (f ∘ g)).Finite
- · have hg : ∀ x ∈ hs.to_finset, ∀ y ∈ hs.to_finset, g x = g y → x = y := by
- simpa only [hs.mem_to_finset]
- rw [finprod_mem_eq_prod _ hs, ← Finset.prod_image hg]
- refine' finprod_mem_eq_prod_of_inter_mulSupport_eq f _
- rw [Finset.coe_image, hs.coe_to_finset, ← image_inter_mul_support_eq, inter_assoc, inter_self]
- · rw [finprod_mem_eq_one_of_infinite hs, finprod_mem_eq_one_of_infinite]
- rwa [image_inter_mul_support_eq, infinite_image_iff hg]
+ by_cases hs : (s ∩ mul_support (f ∘ g)).Finite
+ · have hg : ∀ x ∈ hs.to_finset, ∀ y ∈ hs.to_finset, g x = g y → x = y := by
+ simpa only [hs.mem_to_finset]
+ rw [finprod_mem_eq_prod _ hs, ← Finset.prod_image hg]
+ refine' finprod_mem_eq_prod_of_inter_mulSupport_eq f _
+ rw [Finset.coe_image, hs.coe_to_finset, ← image_inter_mul_support_eq, inter_assoc, inter_self]
+ · rw [finprod_mem_eq_one_of_infinite hs, finprod_mem_eq_one_of_infinite]
+ rwa [image_inter_mul_support_eq, infinite_image_iff hg]
#align finprod_mem_image' finprod_mem_image'
#align finsum_mem_image' finsum_mem_image'
@@ -941,7 +941,7 @@ theorem finprod_set_coe_eq_finprod_mem (s : Set α) : (∏ᶠ j : s, f j) = ∏
@[to_additive]
theorem finprod_subtype_eq_finprod_cond (p : α → Prop) :
(∏ᶠ j : Subtype p, f j) = ∏ᶠ (i) (hi : p i), f i :=
- finprod_set_coe_eq_finprod_mem { i | p i }
+ finprod_set_coe_eq_finprod_mem {i | p i}
#align finprod_subtype_eq_finprod_cond finprod_subtype_eq_finprod_cond
#align finsum_subtype_eq_finsum_cond finsum_subtype_eq_finsum_cond
-/
@@ -995,10 +995,10 @@ theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoi
cases nonempty_fintype ι
lift t to ι → Finset α using ht
classical
- rw [← bUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset,
- Finset.prod_biUnion]
- · simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype]
- · exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)
+ rw [← bUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset,
+ Finset.prod_biUnion]
+ · simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype]
+ · exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)
#align finprod_mem_Union finprod_mem_iUnion
#align finsum_mem_Union finsum_mem_iUnion
@@ -1032,18 +1032,18 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
(f a * ∏ᶠ (i) (_ : i ≠ a), f i) = ∏ᶠ i, f i := by
classical
- rw [finprod_eq_prod _ hf]
- have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.to_finset \ {a}) :=
- by
- intro x hx
- rw [Finset.mem_sdiff, Finset.mem_singleton, finite.mem_to_finset, mem_mul_support]
- exact ⟨fun h => And.intro hx h, fun h => h.2⟩
- rw [finprod_cond_eq_prod_of_cond_iff f h, Finset.sdiff_singleton_eq_erase]
- by_cases ha : a ∈ mul_support f
- · apply Finset.mul_prod_erase _ _ ((finite.mem_to_finset _).mpr ha)
- · rw [mem_mul_support, Classical.not_not] at ha
- rw [ha, one_mul]
- apply Finset.prod_erase _ ha
+ rw [finprod_eq_prod _ hf]
+ have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.to_finset \ {a}) :=
+ by
+ intro x hx
+ rw [Finset.mem_sdiff, Finset.mem_singleton, finite.mem_to_finset, mem_mul_support]
+ exact ⟨fun h => And.intro hx h, fun h => h.2⟩
+ rw [finprod_cond_eq_prod_of_cond_iff f h, Finset.sdiff_singleton_eq_erase]
+ by_cases ha : a ∈ mul_support f
+ · apply Finset.mul_prod_erase _ _ ((finite.mem_to_finset _).mpr ha)
+ · rw [mem_mul_support, Classical.not_not] at ha
+ rw [ha, one_mul]
+ apply Finset.prod_erase _ ha
#align mul_finprod_cond_ne mul_finprod_cond_ne
#align add_finsum_cond_ne add_finsum_cond_ne
@@ -1079,11 +1079,11 @@ theorem finprod_cond_nonneg {R : Type _} [OrderedCommSemiring R] {p : α → Pro
theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α → M}
(hf : (mulSupport f).Finite) (h : ∀ j, 1 ≤ f j) : f i ≤ ∏ᶠ j, f j := by
classical calc
- f i ≤ ∏ j in insert i hf.to_finset, f j :=
- Finset.single_le_prod' (fun j hj => h j) (Finset.mem_insert_self _ _)
- _ = ∏ᶠ j, f j :=
- (finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm
-
+ f i ≤ ∏ j in insert i hf.to_finset, f j :=
+ Finset.single_le_prod' (fun j hj => h j) (Finset.mem_insert_self _ _)
+ _ = ∏ᶠ j, f j :=
+ (finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm
+
#align single_le_finprod single_le_finprod
#align single_le_finsum single_le_finsum
@@ -1185,8 +1185,8 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M) :
(∏ᶠ (ab) (h : ab ∈ s), f ab) = ∏ᶠ (a) (b) (h : (a, b) ∈ s), f (a, b) := by
classical
- rw [finprod_mem_finset_product']
- simp
+ rw [finprod_mem_finset_product']
+ simp
#align finprod_mem_finset_product finprod_mem_finset_product
#align finsum_mem_finset_product finsum_mem_finset_product
@@ -1195,9 +1195,9 @@ theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M)
theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)) (f : α × β × γ → M) :
(∏ᶠ (abc) (h : abc ∈ s), f abc) = ∏ᶠ (a) (b) (c) (h : (a, b, c) ∈ s), f (a, b, c) := by
classical
- rw [finprod_mem_finset_product']
- simp_rw [finprod_mem_finset_product']
- simp
+ rw [finprod_mem_finset_product']
+ simp_rw [finprod_mem_finset_product']
+ simp
#align finprod_mem_finset_product₃ finprod_mem_finset_product₃
#align finsum_mem_finset_product₃ finsum_mem_finset_product₃
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -128,7 +128,7 @@ theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
by
rw [finprod, dif_pos]
refine' Finset.prod_subset hs fun x hx hxf => _
- rwa [hf.mem_to_finset, nmem_mul_support] at hxf
+ rwa [hf.mem_to_finset, nmem_mul_support] at hxf
#align finprod_eq_prod_plift_of_mul_support_to_finset_subset finprod_eq_prod_pLift_of_mulSupport_toFinset_subset
#align finsum_eq_sum_plift_of_support_to_finset_subset finsum_eq_sum_pLift_of_support_toFinset_subset
@@ -136,7 +136,7 @@ theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
(hs : mulSupport (f ∘ PLift.down) ⊆ s) : (∏ᶠ i, f i) = ∏ i in s, f i.down :=
finprod_eq_prod_pLift_of_mulSupport_toFinset_subset (s.finite_toSet.Subset hs) fun x hx => by
- rw [finite.mem_to_finset] at hx; exact hs hx
+ rw [finite.mem_to_finset] at hx ; exact hs hx
#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_pLift_of_mulSupport_subset
#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_pLift_of_support_subset
@@ -231,7 +231,7 @@ theorem finprod_induction {f : α → M} (p : M → Prop) (hp₀ : p 1)
by
rw [finprod]
split_ifs
- exacts[Finset.prod_induction _ _ hp₁ hp₀ fun i hi => hp₂ _, hp₀]
+ exacts [Finset.prod_induction _ _ hp₁ hp₀ fun i hi => hp₂ _, hp₀]
#align finprod_induction finprod_induction
#align finsum_induction finsum_induction
@@ -271,7 +271,7 @@ theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x =
by
by_cases hg : (mul_support <| g ∘ PLift.down).Finite; · exact f.map_finprod_plift g hg
rw [finprod, dif_neg, f.map_one, finprod, dif_neg]
- exacts[infinite.mono (fun x hx => mt (hf (g x.down)) hx) hg, hg]
+ exacts [infinite.mono (fun x hx => mt (hf (g x.down)) hx) hg, hg]
#align monoid_hom.map_finprod_of_preimage_one MonoidHom.map_finprod_of_preimage_one
#align add_monoid_hom.map_finsum_of_preimage_zero AddMonoidHom.map_finsum_of_preimage_zero
@@ -482,7 +482,7 @@ theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩
(∏ᶠ i ∈ s, f i) = 1 := by
rw [finprod_mem_def]
apply finprod_of_infinite_mulSupport
- rwa [← mul_support_mul_indicator] at hs
+ rwa [← mul_support_mul_indicator] at hs
#align finprod_mem_eq_one_of_infinite finprod_mem_eq_one_of_infinite
#align finsum_mem_eq_zero_of_infinite finsum_mem_eq_zero_of_infinite
@@ -577,7 +577,7 @@ theorem finprod_div_distrib [DivisionCommMonoid G] {f g : α → G} (hf : (mulSu
theorem finprod_mem_mul_distrib' (hf : (s ∩ mulSupport f).Finite) (hg : (s ∩ mulSupport g).Finite) :
(∏ᶠ i ∈ s, f i * g i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i :=
by
- rw [← mul_support_mul_indicator] at hf hg
+ rw [← mul_support_mul_indicator] at hf hg
simp only [finprod_mem_def, mul_indicator_mul, finprod_mul_distrib hf hg]
#align finprod_mem_mul_distrib' finprod_mem_mul_distrib'
#align finsum_mem_add_distrib' finsum_mem_add_distrib'
@@ -815,7 +815,7 @@ theorem finprod_mem_insert_of_eq_one_if_not_mem (h : a ∉ s → f a = 1) :
by
refine' finprod_mem_inter_mulSupport_eq' _ _ _ fun x hx => ⟨_, Or.inr⟩
rintro (rfl | hxs)
- exacts[not_imp_comm.1 h hx, hxs]
+ exacts [not_imp_comm.1 h hx, hxs]
#align finprod_mem_insert_of_eq_one_if_not_mem finprod_mem_insert_of_eq_one_if_not_mem
#align finsum_mem_insert_of_eq_zero_if_not_mem finsum_mem_insert_of_eq_zero_if_not_mem
@@ -842,7 +842,7 @@ theorem finprod_mem_dvd {f : α → N} (a : α) (hf : (mulSupport f).Finite) : f
/-- The product of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a * f b`. -/
@[to_additive "The sum of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a + f b`."]
theorem finprod_mem_pair (h : a ≠ b) : (∏ᶠ i ∈ ({a, b} : Set α), f i) = f a * f b := by
- rw [finprod_mem_insert, finprod_mem_singleton]; exacts[h, finite_singleton b]
+ rw [finprod_mem_insert, finprod_mem_singleton]; exacts [h, finite_singleton b]
#align finprod_mem_pair finprod_mem_pair
#align finsum_mem_pair finsum_mem_pair
@@ -952,7 +952,7 @@ theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finit
by
rw [← finprod_mem_union', inter_union_diff]
rw [disjoint_iff_inf_le]
- exacts[fun x hx => hx.2.2 hx.1.2, h.subset fun x hx => ⟨hx.1.1, hx.2⟩,
+ exacts [fun x hx => hx.2.2 hx.1.2, h.subset fun x hx => ⟨hx.1.1, hx.2⟩,
h.subset fun x hx => ⟨hx.1.1, hx.2⟩]
#align finprod_mem_inter_mul_diff' finprod_mem_inter_mul_diff'
#align finsum_mem_inter_add_diff' finsum_mem_inter_add_diff'
@@ -1013,7 +1013,7 @@ theorem finprod_mem_biUnion {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisj
by
haveI := hI.fintype
rw [bUnion_eq_Union, finprod_mem_iUnion, ← finprod_set_coe_eq_finprod_mem]
- exacts[fun x y hxy => h x.2 y.2 (subtype.coe_injective.ne hxy), fun b => ht b b.2]
+ exacts [fun x y hxy => h x.2 y.2 (subtype.coe_injective.ne hxy), fun b => ht b b.2]
#align finprod_mem_bUnion finprod_mem_biUnion
#align finsum_mem_bUnion finsum_mem_biUnion
@@ -1041,7 +1041,7 @@ theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
rw [finprod_cond_eq_prod_of_cond_iff f h, Finset.sdiff_singleton_eq_erase]
by_cases ha : a ∈ mul_support f
· apply Finset.mul_prod_erase _ _ ((finite.mem_to_finset _).mpr ha)
- · rw [mem_mul_support, Classical.not_not] at ha
+ · rw [mem_mul_support, Classical.not_not] at ha
rw [ha, one_mul]
apply Finset.prod_erase _ ha
#align mul_finprod_cond_ne mul_finprod_cond_ne
@@ -1215,7 +1215,7 @@ theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b c) -/
@[to_additive]
theorem finprod_curry₃ {γ : Type _} (f : α × β × γ → M) (h : (mulSupport f).Finite) :
- (∏ᶠ abc, f abc) = ∏ᶠ (a) (b) (c), f (a, b, c) := by rw [finprod_curry f h]; congr ; ext a;
+ (∏ᶠ abc, f abc) = ∏ᶠ (a) (b) (c), f (a, b, c) := by rw [finprod_curry f h]; congr; ext a;
rw [finprod_curry]; simp [h]
#align finprod_curry₃ finprod_curry₃
#align finsum_curry₃ finsum_curry₃
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -87,13 +87,13 @@ section Sort
variable {G M N : Type _} {α β ι : Sort _} [CommMonoid M] [CommMonoid N]
-open BigOperators
+open scoped BigOperators
section
/- Note: we use classical logic only for these definitions, to ensure that we do not write lemmas
with `classical.dec` in their statement. -/
-open Classical
+open scoped Classical
#print finsum /-
/-- Sum of `f x` as `x` ranges over the elements of the support of `f`, if it's finite. Zero
@@ -314,7 +314,7 @@ section Type
variable {α β ι G M N : Type _} [CommMonoid M] [CommMonoid N]
-open BigOperators
+open scoped BigOperators
@[to_additive]
theorem finprod_eq_mulIndicator_apply (s : Set α) (f : α → M) (a : α) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -121,12 +121,6 @@ scoped[BigOperators] notation3"∑ᶠ "(...)", "r:(scoped f => finsum f) => r
-- mathport name: finprod
scoped[BigOperators] notation3"∏ᶠ "(...)", "r:(scoped f => finprod f) => r
-/- warning: finprod_eq_prod_plift_of_mul_support_to_finset_subset -> finprod_eq_prod_pLift_of_mulSupport_toFinset_subset is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} (hf : Set.Finite.{u2} (PLift.{u2} α) (Function.mulSupport.{u2, u1} (PLift.{u2} α) M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (Function.comp.{succ u2, u2, succ u1} (PLift.{u2} α) α M f (PLift.down.{u2} α)))) {s : Finset.{u2} (PLift.{u2} α)}, (HasSubset.Subset.{u2} (Finset.{u2} (PLift.{u2} α)) (Finset.hasSubset.{u2} (PLift.{u2} α)) (Set.Finite.toFinset.{u2} (PLift.{u2} α) (Function.mulSupport.{u2, u1} (PLift.{u2} α) M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (Function.comp.{succ u2, u2, succ u1} (PLift.{u2} α) α M f (PLift.down.{u2} α))) hf) s) -> (Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u1, u2} M (PLift.{u2} α) _inst_1 s (fun (i : PLift.{u2} α) => f (PLift.down.{u2} α i))))
-but is expected to have type
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} (hf : Set.Finite.{u2} (PLift.{u2} α) (Function.mulSupport.{u2, u1} (PLift.{u2} α) M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Function.comp.{succ u2, u2, succ u1} (PLift.{u2} α) α M f (PLift.down.{u2} α)))) {s : Finset.{u2} (PLift.{u2} α)}, (HasSubset.Subset.{u2} (Finset.{u2} (PLift.{u2} α)) (Finset.instHasSubsetFinset.{u2} (PLift.{u2} α)) (Set.Finite.toFinset.{u2} (PLift.{u2} α) (Function.mulSupport.{u2, u1} (PLift.{u2} α) M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Function.comp.{succ u2, u2, succ u1} (PLift.{u2} α) α M f (PLift.down.{u2} α))) hf) s) -> (Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u1, u2} M (PLift.{u2} α) _inst_1 s (fun (i : PLift.{u2} α) => f (PLift.down.{u2} α i))))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_prod_plift_of_mul_support_to_finset_subset finprod_eq_prod_pLift_of_mulSupport_toFinset_subsetₓ'. -/
@[to_additive]
theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
(hf : (mulSupport (f ∘ PLift.down)).Finite) {s : Finset (PLift α)} (hs : hf.toFinset ⊆ s) :
@@ -138,12 +132,6 @@ theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
#align finprod_eq_prod_plift_of_mul_support_to_finset_subset finprod_eq_prod_pLift_of_mulSupport_toFinset_subset
#align finsum_eq_sum_plift_of_support_to_finset_subset finsum_eq_sum_pLift_of_support_toFinset_subset
-/- warning: finprod_eq_prod_plift_of_mul_support_subset -> finprod_eq_prod_pLift_of_mulSupport_subset is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Finset.{u2} (PLift.{u2} α)}, (HasSubset.Subset.{u2} (Set.{u2} (PLift.{u2} α)) (Set.hasSubset.{u2} (PLift.{u2} α)) (Function.mulSupport.{u2, u1} (PLift.{u2} α) M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (Function.comp.{succ u2, u2, succ u1} (PLift.{u2} α) α M f (PLift.down.{u2} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} (PLift.{u2} α)) (Set.{u2} (PLift.{u2} α)) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} (PLift.{u2} α)) (Set.{u2} (PLift.{u2} α)) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} (PLift.{u2} α)) (Set.{u2} (PLift.{u2} α)) (Finset.Set.hasCoeT.{u2} (PLift.{u2} α)))) s)) -> (Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u1, u2} M (PLift.{u2} α) _inst_1 s (fun (i : PLift.{u2} α) => f (PLift.down.{u2} α i))))
-but is expected to have type
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Finset.{u2} (PLift.{u2} α)}, (HasSubset.Subset.{u2} (Set.{u2} (PLift.{u2} α)) (Set.instHasSubsetSet.{u2} (PLift.{u2} α)) (Function.mulSupport.{u2, u1} (PLift.{u2} α) M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Function.comp.{succ u2, u2, succ u1} (PLift.{u2} α) α M f (PLift.down.{u2} α))) (Finset.toSet.{u2} (PLift.{u2} α) s)) -> (Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u1, u2} M (PLift.{u2} α) _inst_1 s (fun (i : PLift.{u2} α) => f (PLift.down.{u2} α i))))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_pLift_of_mulSupport_subsetₓ'. -/
@[to_additive]
theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
(hs : mulSupport (f ∘ PLift.down) ⊆ s) : (∏ᶠ i, f i) = ∏ i in s, f i.down :=
@@ -152,12 +140,6 @@ theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (P
#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_pLift_of_mulSupport_subset
#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_pLift_of_support_subset
-/- warning: finprod_one -> finprod_one is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M], Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (i : α) => OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))))) (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))))
-but is expected to have type
- forall {M : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u2} M], Eq.{succ u2} M (finprod.{u2, u1} M α _inst_1 (fun (i : α) => OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))
-Case conversion may be inaccurate. Consider using '#align finprod_one finprod_oneₓ'. -/
@[simp, to_additive]
theorem finprod_one : (∏ᶠ i : α, (1 : M)) = 1 :=
by
@@ -167,35 +149,17 @@ theorem finprod_one : (∏ᶠ i : α, (1 : M)) = 1 :=
#align finprod_one finprod_one
#align finsum_zero finsum_zero
-/- warning: finprod_of_is_empty -> finprod_of_isEmpty is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] [_inst_3 : IsEmpty.{u2} α] (f : α -> M), Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (i : α) => f i)) (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))))
-but is expected to have type
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] [_inst_3 : IsEmpty.{u2} α] (f : α -> M), Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (i : α) => f i)) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))
-Case conversion may be inaccurate. Consider using '#align finprod_of_is_empty finprod_of_isEmptyₓ'. -/
@[to_additive]
theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : (∏ᶠ i, f i) = 1 := by rw [← finprod_one]; congr
#align finprod_of_is_empty finprod_of_isEmpty
#align finsum_of_is_empty finsum_of_isEmpty
-/- warning: finprod_false -> finprod_false is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : False -> M), Eq.{succ u1} M (finprod.{u1, 0} M False _inst_1 (fun (i : False) => f i)) (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))))
-but is expected to have type
- forall {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : False -> M), Eq.{succ u1} M (finprod.{u1, 0} M False _inst_1 (fun (i : False) => f i)) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))
-Case conversion may be inaccurate. Consider using '#align finprod_false finprod_falseₓ'. -/
@[simp, to_additive]
theorem finprod_false (f : False → M) : (∏ᶠ i, f i) = 1 :=
finprod_of_isEmpty _
#align finprod_false finprod_false
#align finsum_false finsum_false
-/- warning: finprod_eq_single -> finprod_eq_single is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (a : α), (forall (x : α), (Ne.{u2} α x a) -> (Eq.{succ u1} M (f x) (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))))) -> (Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (x : α) => f x)) (f a))
-but is expected to have type
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (a : α), (forall (x : α), (Ne.{u2} α x a) -> (Eq.{succ u1} M (f x) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))) -> (Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (x : α) => f x)) (f a))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_single finprod_eq_singleₓ'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ≠ » a) -/
@[to_additive]
theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) :
@@ -225,12 +189,6 @@ theorem finprod_true (f : True → M) : (∏ᶠ i, f i) = f trivial :=
#align finsum_true finsum_true
-/
-/- warning: finprod_eq_dif -> finprod_eq_dif is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {p : Prop} [_inst_3 : Decidable p] (f : p -> M), Eq.{succ u1} M (finprod.{u1, 0} M p _inst_1 (fun (i : p) => f i)) (dite.{succ u1} M p _inst_3 (fun (h : p) => f h) (fun (h : Not p) => OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))))
-but is expected to have type
- forall {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {p : Prop} [_inst_3 : Decidable p] (f : p -> M), Eq.{succ u1} M (finprod.{u1, 0} M p _inst_1 (fun (i : p) => f i)) (dite.{succ u1} M p _inst_3 (fun (h : p) => f h) (fun (h : Not p) => OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_dif finprod_eq_difₓ'. -/
@[to_additive]
theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
(∏ᶠ i, f i) = if h : p then f h else 1 :=
@@ -241,24 +199,12 @@ theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
#align finprod_eq_dif finprod_eq_dif
#align finsum_eq_dif finsum_eq_dif
-/- warning: finprod_eq_if -> finprod_eq_if is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {p : Prop} [_inst_3 : Decidable p] {x : M}, Eq.{succ u1} M (finprod.{u1, 0} M p _inst_1 (fun (i : p) => x)) (ite.{succ u1} M p _inst_3 x (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))))
-but is expected to have type
- forall {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {p : Prop} [_inst_3 : Decidable p] {x : M}, Eq.{succ u1} M (finprod.{u1, 0} M p _inst_1 (fun (i : p) => x)) (ite.{succ u1} M p _inst_3 x (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_if finprod_eq_ifₓ'. -/
@[to_additive]
theorem finprod_eq_if {p : Prop} [Decidable p] {x : M} : (∏ᶠ i : p, x) = if p then x else 1 :=
finprod_eq_dif fun _ => x
#align finprod_eq_if finprod_eq_if
#align finsum_eq_if finsum_eq_if
-/- warning: finprod_congr -> finprod_congr is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {g : α -> M}, (forall (x : α), Eq.{succ u1} M (f x) (g x)) -> (Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 f) (finprod.{u1, u2} M α _inst_1 g))
-but is expected to have type
- forall {M : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {g : α -> M}, (forall (x : α), Eq.{succ u2} M (f x) (g x)) -> (Eq.{succ u2} M (finprod.{u2, u1} M α _inst_1 f) (finprod.{u2, u1} M α _inst_1 g))
-Case conversion may be inaccurate. Consider using '#align finprod_congr finprod_congrₓ'. -/
@[to_additive]
theorem finprod_congr {f g : α → M} (h : ∀ x, f x = g x) : finprod f = finprod g :=
congr_arg _ <| funext h
@@ -276,12 +222,6 @@ theorem finprod_congr_Prop {p q : Prop} {f : p → M} {g : q → M} (hpq : p = q
attribute [congr] finsum_congr_Prop
-/- warning: finprod_induction -> finprod_induction is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} (p : M -> Prop), (p (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))))) -> (forall (x : M) (y : M), (p x) -> (p y) -> (p (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) x y))) -> (forall (i : α), p (f i)) -> (p (finprod.{u1, u2} M α _inst_1 (fun (i : α) => f i)))
-but is expected to have type
- forall {M : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} (p : M -> Prop), (p (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))) -> (forall (x : M) (y : M), (p x) -> (p y) -> (p (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) x y))) -> (forall (i : α), p (f i)) -> (p (finprod.{u2, u1} M α _inst_1 (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align finprod_induction finprod_inductionₓ'. -/
/-- To prove a property of a finite product, it suffices to prove that the property is
multiplicative and holds on the factors. -/
@[to_additive
@@ -295,23 +235,11 @@ theorem finprod_induction {f : α → M} (p : M → Prop) (hp₀ : p 1)
#align finprod_induction finprod_induction
#align finsum_induction finsum_induction
-/- warning: finprod_nonneg -> finprod_nonneg is a dubious translation:
-lean 3 declaration is
- forall {α : Sort.{u1}} {R : Type.{u2}} [_inst_3 : OrderedCommSemiring.{u2} R] {f : α -> R}, (forall (x : α), LE.le.{u2} R (Preorder.toHasLe.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (f x)) -> (LE.le.{u2} R (Preorder.toHasLe.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (finprod.{u2, u1} R α (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (x : α) => f x)))
-but is expected to have type
- forall {α : Sort.{u1}} {R : Type.{u2}} [_inst_3 : OrderedCommSemiring.{u2} R] {f : α -> R}, (forall (x : α), LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedSemiring.toPartialOrder.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3)))) (OfNat.ofNat.{u2} R 0 (Zero.toOfNat0.{u2} R (CommMonoidWithZero.toZero.{u2} R (CommSemiring.toCommMonoidWithZero.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3))))) (f x)) -> (LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedSemiring.toPartialOrder.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3)))) (OfNat.ofNat.{u2} R 0 (Zero.toOfNat0.{u2} R (CommMonoidWithZero.toZero.{u2} R (CommSemiring.toCommMonoidWithZero.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3))))) (finprod.{u2, u1} R α (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (x : α) => f x)))
-Case conversion may be inaccurate. Consider using '#align finprod_nonneg finprod_nonnegₓ'. -/
theorem finprod_nonneg {R : Type _} [OrderedCommSemiring R] {f : α → R} (hf : ∀ x, 0 ≤ f x) :
0 ≤ ∏ᶠ x, f x :=
finprod_induction (fun x => 0 ≤ x) zero_le_one (fun x y => mul_nonneg) hf
#align finprod_nonneg finprod_nonneg
-/- warning: one_le_finprod' -> one_le_finprod' is a dubious translation:
-lean 3 declaration is
- forall {α : Sort.{u1}} {M : Type.{u2}} [_inst_3 : OrderedCommMonoid.{u2} M] {f : α -> M}, (forall (i : α), LE.le.{u2} M (Preorder.toHasLe.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))))) (f i)) -> (LE.le.{u2} M (Preorder.toHasLe.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))))) (finprod.{u2, u1} M α (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3) (fun (i : α) => f i)))
-but is expected to have type
- forall {α : Sort.{u1}} {M : Type.{u2}} [_inst_3 : OrderedCommMonoid.{u2} M] {f : α -> M}, (forall (i : α), LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))) (f i)) -> (LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))) (finprod.{u2, u1} M α (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3) (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align one_le_finprod' one_le_finprod'ₓ'. -/
@[to_additive finsum_nonneg]
theorem one_le_finprod' {M : Type _} [OrderedCommMonoid M] {f : α → M} (hf : ∀ i, 1 ≤ f i) :
1 ≤ ∏ᶠ i, f i :=
@@ -319,12 +247,6 @@ theorem one_le_finprod' {M : Type _} [OrderedCommMonoid M] {f : α → M} (hf :
#align one_le_finprod' one_le_finprod'
#align finsum_nonneg finsum_nonneg
-/- warning: monoid_hom.map_finprod_plift -> MonoidHom.map_finprod_pLift is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u3} (PLift.{u3} α) (Function.mulSupport.{u3, u1} (PLift.{u3} α) M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (Function.comp.{succ u3, u3, succ u1} (PLift.{u3} α) α M g (PLift.down.{u3} α)))) -> (Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, u3} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u3} N α _inst_2 (fun (x : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g x))))
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u1} (PLift.{u1} α) (Function.mulSupport.{u1, u3} (PLift.{u1} α) M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Function.comp.{succ u1, u1, succ u3} (PLift.{u1} α) α M g (PLift.down.{u1} α)))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u1} N α _inst_2 (fun (x : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g x))))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_pLiftₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
(h : (mulSupport <| g ∘ PLift.down).Finite) : f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) :=
@@ -336,12 +258,6 @@ theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_pLift
#align add_monoid_hom.map_finsum_plift AddMonoidHom.map_finsum_pLift
-/- warning: monoid_hom.map_finprod_Prop -> MonoidHom.map_finprod_Prop is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] {p : Prop} (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : p -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u2, 0} N p _inst_2 (fun (x : p) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g x)))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u1} N] {p : Prop} (f : MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (g : p -> M), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u1, 0} N p _inst_2 (fun (x : p) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (g x)))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_Prop MonoidHom.map_finprod_Propₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) :=
@@ -349,12 +265,6 @@ theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
#align monoid_hom.map_finprod_Prop MonoidHom.map_finprod_Prop
#align add_monoid_hom.map_finsum_Prop AddMonoidHom.map_finsum_Prop
-/- warning: monoid_hom.map_finprod_of_preimage_one -> MonoidHom.map_finprod_of_preimage_one is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f x) (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) -> (Eq.{succ u1} M x (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))))) -> (forall (g : α -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, u3} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g i))))
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f x) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) 1 (One.toOfNat1.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) (Monoid.toOne.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) (CommMonoid.toMonoid.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) _inst_2))))) -> (Eq.{succ u3} M x (OfNat.ofNat.{u3} M 1 (One.toOfNat1.{u3} M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)))))) -> (forall (g : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g i))))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_of_preimage_one MonoidHom.map_finprod_of_preimage_oneₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x = 1 → x = 1) (g : α → M) :
f (∏ᶠ i, g i) = ∏ᶠ i, f (g i) :=
@@ -365,12 +275,6 @@ theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x =
#align monoid_hom.map_finprod_of_preimage_one MonoidHom.map_finprod_of_preimage_one
#align add_monoid_hom.map_finsum_of_preimage_zero AddMonoidHom.map_finsum_of_preimage_zero
-/- warning: monoid_hom.map_finprod_of_injective -> MonoidHom.map_finprod_of_injective is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u1, succ u2} M N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g)) -> (forall (f : α -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g (finprod.{u1, u3} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g (f i))))
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u3, succ u2} M N (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g)) -> (forall (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_of_injective MonoidHom.map_finprod_of_injectiveₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_of_injective (g : M →* N) (hg : Injective g) (f : α → M) :
g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
@@ -378,24 +282,12 @@ theorem MonoidHom.map_finprod_of_injective (g : M →* N) (hg : Injective g) (f
#align monoid_hom.map_finprod_of_injective MonoidHom.map_finprod_of_injective
#align add_monoid_hom.map_finsum_of_injective AddMonoidHom.map_finsum_of_injective
-/- warning: mul_equiv.map_finprod -> MulEquiv.map_finprod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} N (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (fun (_x : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) g (finprod.{u1, u3} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (fun (_x : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) g (f i)))
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (EquivLike.toEmbeddingLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulEquivClass.toEquivLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (EquivLike.toEmbeddingLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulEquivClass.toEquivLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))
-Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod MulEquiv.map_finprodₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod (g : M ≃* N) (f : α → M) : g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
g.toMonoidHom.map_finprod_of_injective g.Injective f
#align mul_equiv.map_finprod MulEquiv.map_finprod
#align add_equiv.map_finsum AddEquiv.map_finsum
-/- warning: finsum_smul -> finsum_smul is a dubious translation:
-lean 3 declaration is
- forall {ι : Sort.{u1}} {R : Type.{u2}} {M : Type.{u3}} [_inst_3 : Ring.{u2} R] [_inst_4 : AddCommGroup.{u3} M] [_inst_5 : Module.{u2, u3} R M (Ring.toSemiring.{u2} R _inst_3) (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)] [_inst_6 : NoZeroSMulDivisors.{u2, u3} R M (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonUnitalNonAssocRing.{u2} R (Ring.toNonAssocRing.{u2} R _inst_3))))) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (SubNegMonoid.toAddMonoid.{u3} M (AddGroup.toSubNegMonoid.{u3} M (AddCommGroup.toAddGroup.{u3} M _inst_4))))) (SMulZeroClass.toHasSmul.{u2, u3} R M (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (SMulWithZero.toSmulZeroClass.{u2, u3} R M (MulZeroClass.toHasZero.{u2} R (MulZeroOneClass.toMulZeroClass.{u2} R (MonoidWithZero.toMulZeroOneClass.{u2} R (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3))))) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (MulActionWithZero.toSMulWithZero.{u2, u3} R M (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3)) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (Module.toMulActionWithZero.{u2, u3} R M (Ring.toSemiring.{u2} R _inst_3) (AddCommGroup.toAddCommMonoid.{u3} M _inst_4) _inst_5))))] (f : ι -> R) (x : M), Eq.{succ u3} M (SMul.smul.{u2, u3} R M (SMulZeroClass.toHasSmul.{u2, u3} R M (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (SMulWithZero.toSmulZeroClass.{u2, u3} R M (MulZeroClass.toHasZero.{u2} R (MulZeroOneClass.toMulZeroClass.{u2} R (MonoidWithZero.toMulZeroOneClass.{u2} R (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3))))) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (MulActionWithZero.toSMulWithZero.{u2, u3} R M (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3)) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (Module.toMulActionWithZero.{u2, u3} R M (Ring.toSemiring.{u2} R _inst_3) (AddCommGroup.toAddCommMonoid.{u3} M _inst_4) _inst_5)))) (finsum.{u2, u1} R ι (AddCommGroup.toAddCommMonoid.{u2} R (NonUnitalNonAssocRing.toAddCommGroup.{u2} R (NonAssocRing.toNonUnitalNonAssocRing.{u2} R (Ring.toNonAssocRing.{u2} R _inst_3)))) (fun (i : ι) => f i)) x) (finsum.{u3, u1} M ι (AddCommGroup.toAddCommMonoid.{u3} M _inst_4) (fun (i : ι) => SMul.smul.{u2, u3} R M (SMulZeroClass.toHasSmul.{u2, u3} R M (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (SMulWithZero.toSmulZeroClass.{u2, u3} R M (MulZeroClass.toHasZero.{u2} R (MulZeroOneClass.toMulZeroClass.{u2} R (MonoidWithZero.toMulZeroOneClass.{u2} R (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3))))) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (MulActionWithZero.toSMulWithZero.{u2, u3} R M (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3)) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (Module.toMulActionWithZero.{u2, u3} R M (Ring.toSemiring.{u2} R _inst_3) (AddCommGroup.toAddCommMonoid.{u3} M _inst_4) _inst_5)))) (f i) x))
-but is expected to have type
- forall {ι : Sort.{u1}} {R : Type.{u3}} {M : Type.{u2}} [_inst_3 : Ring.{u3} R] [_inst_4 : AddCommGroup.{u2} M] [_inst_5 : Module.{u3, u2} R M (Ring.toSemiring.{u3} R _inst_3) (AddCommGroup.toAddCommMonoid.{u2} M _inst_4)] [_inst_6 : NoZeroSMulDivisors.{u3, u2} R M (MonoidWithZero.toZero.{u3} R (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3))) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (SMulZeroClass.toSMul.{u3, u2} R M (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} R M (MonoidWithZero.toZero.{u3} R (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3))) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (MulActionWithZero.toSMulWithZero.{u3, u2} R M (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3)) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (Module.toMulActionWithZero.{u3, u2} R M (Ring.toSemiring.{u3} R _inst_3) (AddCommGroup.toAddCommMonoid.{u2} M _inst_4) _inst_5))))] (f : ι -> R) (x : M), Eq.{succ u2} M (HSMul.hSMul.{u3, u2, u2} R M M (instHSMul.{u3, u2} R M (SMulZeroClass.toSMul.{u3, u2} R M (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} R M (MonoidWithZero.toZero.{u3} R (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3))) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (MulActionWithZero.toSMulWithZero.{u3, u2} R M (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3)) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (Module.toMulActionWithZero.{u3, u2} R M (Ring.toSemiring.{u3} R _inst_3) (AddCommGroup.toAddCommMonoid.{u2} M _inst_4) _inst_5))))) (finsum.{u3, u1} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u3} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} R (NonAssocRing.toNonUnitalNonAssocRing.{u3} R (Ring.toNonAssocRing.{u3} R _inst_3)))) (fun (i : ι) => f i)) x) (finsum.{u2, u1} M ι (AddCommGroup.toAddCommMonoid.{u2} M _inst_4) (fun (i : ι) => HSMul.hSMul.{u3, u2, u2} R M M (instHSMul.{u3, u2} R M (SMulZeroClass.toSMul.{u3, u2} R M (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} R M (MonoidWithZero.toZero.{u3} R (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3))) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (MulActionWithZero.toSMulWithZero.{u3, u2} R M (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3)) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (Module.toMulActionWithZero.{u3, u2} R M (Ring.toSemiring.{u3} R _inst_3) (AddCommGroup.toAddCommMonoid.{u2} M _inst_4) _inst_5))))) (f i) x))
-Case conversion may be inaccurate. Consider using '#align finsum_smul finsum_smulₓ'. -/
theorem finsum_smul {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(f : ι → R) (x : M) : (∑ᶠ i, f i) • x = ∑ᶠ i, f i • x :=
by
@@ -403,12 +295,6 @@ theorem finsum_smul {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZer
exact ((smulAddHom R M).flip x).map_finsum_of_injective (smul_left_injective R hx) _
#align finsum_smul finsum_smul
-/- warning: smul_finsum -> smul_finsum is a dubious translation:
-lean 3 declaration is
- forall {ι : Sort.{u1}} {R : Type.{u2}} {M : Type.{u3}} [_inst_3 : Ring.{u2} R] [_inst_4 : AddCommGroup.{u3} M] [_inst_5 : Module.{u2, u3} R M (Ring.toSemiring.{u2} R _inst_3) (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)] [_inst_6 : NoZeroSMulDivisors.{u2, u3} R M (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonUnitalNonAssocRing.{u2} R (Ring.toNonAssocRing.{u2} R _inst_3))))) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (SubNegMonoid.toAddMonoid.{u3} M (AddGroup.toSubNegMonoid.{u3} M (AddCommGroup.toAddGroup.{u3} M _inst_4))))) (SMulZeroClass.toHasSmul.{u2, u3} R M (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (SMulWithZero.toSmulZeroClass.{u2, u3} R M (MulZeroClass.toHasZero.{u2} R (MulZeroOneClass.toMulZeroClass.{u2} R (MonoidWithZero.toMulZeroOneClass.{u2} R (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3))))) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (MulActionWithZero.toSMulWithZero.{u2, u3} R M (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3)) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (Module.toMulActionWithZero.{u2, u3} R M (Ring.toSemiring.{u2} R _inst_3) (AddCommGroup.toAddCommMonoid.{u3} M _inst_4) _inst_5))))] (c : R) (f : ι -> M), Eq.{succ u3} M (SMul.smul.{u2, u3} R M (SMulZeroClass.toHasSmul.{u2, u3} R M (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (SMulWithZero.toSmulZeroClass.{u2, u3} R M (MulZeroClass.toHasZero.{u2} R (MulZeroOneClass.toMulZeroClass.{u2} R (MonoidWithZero.toMulZeroOneClass.{u2} R (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3))))) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (MulActionWithZero.toSMulWithZero.{u2, u3} R M (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3)) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (Module.toMulActionWithZero.{u2, u3} R M (Ring.toSemiring.{u2} R _inst_3) (AddCommGroup.toAddCommMonoid.{u3} M _inst_4) _inst_5)))) c (finsum.{u3, u1} M ι (AddCommGroup.toAddCommMonoid.{u3} M _inst_4) (fun (i : ι) => f i))) (finsum.{u3, u1} M ι (AddCommGroup.toAddCommMonoid.{u3} M _inst_4) (fun (i : ι) => SMul.smul.{u2, u3} R M (SMulZeroClass.toHasSmul.{u2, u3} R M (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (SMulWithZero.toSmulZeroClass.{u2, u3} R M (MulZeroClass.toHasZero.{u2} R (MulZeroOneClass.toMulZeroClass.{u2} R (MonoidWithZero.toMulZeroOneClass.{u2} R (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3))))) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (MulActionWithZero.toSMulWithZero.{u2, u3} R M (Semiring.toMonoidWithZero.{u2} R (Ring.toSemiring.{u2} R _inst_3)) (AddZeroClass.toHasZero.{u3} M (AddMonoid.toAddZeroClass.{u3} M (AddCommMonoid.toAddMonoid.{u3} M (AddCommGroup.toAddCommMonoid.{u3} M _inst_4)))) (Module.toMulActionWithZero.{u2, u3} R M (Ring.toSemiring.{u2} R _inst_3) (AddCommGroup.toAddCommMonoid.{u3} M _inst_4) _inst_5)))) c (f i)))
-but is expected to have type
- forall {ι : Sort.{u1}} {R : Type.{u3}} {M : Type.{u2}} [_inst_3 : Ring.{u3} R] [_inst_4 : AddCommGroup.{u2} M] [_inst_5 : Module.{u3, u2} R M (Ring.toSemiring.{u3} R _inst_3) (AddCommGroup.toAddCommMonoid.{u2} M _inst_4)] [_inst_6 : NoZeroSMulDivisors.{u3, u2} R M (MonoidWithZero.toZero.{u3} R (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3))) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (SMulZeroClass.toSMul.{u3, u2} R M (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} R M (MonoidWithZero.toZero.{u3} R (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3))) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (MulActionWithZero.toSMulWithZero.{u3, u2} R M (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3)) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (Module.toMulActionWithZero.{u3, u2} R M (Ring.toSemiring.{u3} R _inst_3) (AddCommGroup.toAddCommMonoid.{u2} M _inst_4) _inst_5))))] (c : R) (f : ι -> M), Eq.{succ u2} M (HSMul.hSMul.{u3, u2, u2} R M M (instHSMul.{u3, u2} R M (SMulZeroClass.toSMul.{u3, u2} R M (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} R M (MonoidWithZero.toZero.{u3} R (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3))) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (MulActionWithZero.toSMulWithZero.{u3, u2} R M (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3)) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (Module.toMulActionWithZero.{u3, u2} R M (Ring.toSemiring.{u3} R _inst_3) (AddCommGroup.toAddCommMonoid.{u2} M _inst_4) _inst_5))))) c (finsum.{u2, u1} M ι (AddCommGroup.toAddCommMonoid.{u2} M _inst_4) (fun (i : ι) => f i))) (finsum.{u2, u1} M ι (AddCommGroup.toAddCommMonoid.{u2} M _inst_4) (fun (i : ι) => HSMul.hSMul.{u3, u2, u2} R M M (instHSMul.{u3, u2} R M (SMulZeroClass.toSMul.{u3, u2} R M (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} R M (MonoidWithZero.toZero.{u3} R (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3))) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (MulActionWithZero.toSMulWithZero.{u3, u2} R M (Semiring.toMonoidWithZero.{u3} R (Ring.toSemiring.{u3} R _inst_3)) (NegZeroClass.toZero.{u2} M (SubNegZeroMonoid.toNegZeroClass.{u2} M (SubtractionMonoid.toSubNegZeroMonoid.{u2} M (SubtractionCommMonoid.toSubtractionMonoid.{u2} M (AddCommGroup.toDivisionAddCommMonoid.{u2} M _inst_4))))) (Module.toMulActionWithZero.{u3, u2} R M (Ring.toSemiring.{u3} R _inst_3) (AddCommGroup.toAddCommMonoid.{u2} M _inst_4) _inst_5))))) c (f i)))
-Case conversion may be inaccurate. Consider using '#align smul_finsum smul_finsumₓ'. -/
theorem smul_finsum {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(c : R) (f : ι → M) : (c • ∑ᶠ i, f i) = ∑ᶠ i, c • f i :=
by
@@ -416,12 +302,6 @@ theorem smul_finsum {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZer
exact (smulAddHom R M c).map_finsum_of_injective (smul_right_injective M hc) _
#align smul_finsum smul_finsum
-/- warning: finprod_inv_distrib -> finprod_inv_distrib is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {α : Sort.{u2}} [_inst_3 : DivisionCommMonoid.{u1} G] (f : α -> G), Eq.{succ u1} G (finprod.{u1, u2} G α (DivisionCommMonoid.toCommMonoid.{u1} G _inst_3) (fun (x : α) => Inv.inv.{u1} G (DivInvMonoid.toHasInv.{u1} G (DivisionMonoid.toDivInvMonoid.{u1} G (DivisionCommMonoid.toDivisionMonoid.{u1} G _inst_3))) (f x))) (Inv.inv.{u1} G (DivInvMonoid.toHasInv.{u1} G (DivisionMonoid.toDivInvMonoid.{u1} G (DivisionCommMonoid.toDivisionMonoid.{u1} G _inst_3))) (finprod.{u1, u2} G α (DivisionCommMonoid.toCommMonoid.{u1} G _inst_3) (fun (x : α) => f x)))
-but is expected to have type
- forall {G : Type.{u2}} {α : Sort.{u1}} [_inst_3 : DivisionCommMonoid.{u2} G] (f : α -> G), Eq.{succ u2} G (finprod.{u2, u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (x : α) => Inv.inv.{u2} G (InvOneClass.toInv.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (f x))) (Inv.inv.{u2} G (InvOneClass.toInv.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (finprod.{u2, u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (x : α) => f x)))
-Case conversion may be inaccurate. Consider using '#align finprod_inv_distrib finprod_inv_distribₓ'. -/
@[to_additive]
theorem finprod_inv_distrib [DivisionCommMonoid G] (f : α → G) : (∏ᶠ x, (f x)⁻¹) = (∏ᶠ x, f x)⁻¹ :=
((MulEquiv.inv G).map_finprod f).symm
@@ -436,48 +316,24 @@ variable {α β ι G M N : Type _} [CommMonoid M] [CommMonoid N]
open BigOperators
-/- warning: finprod_eq_mul_indicator_apply -> finprod_eq_mulIndicator_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (s : Set.{u1} α) (f : α -> M) (a : α), Eq.{succ u2} M (finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_1 (fun (h : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)) (Set.mulIndicator.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) s f a)
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (s : Set.{u2} α) (f : α -> M) (a : α), Eq.{succ u1} M (finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) _inst_1 (fun (h : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) => f a)) (Set.mulIndicator.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) s f a)
-Case conversion may be inaccurate. Consider using '#align finprod_eq_mul_indicator_apply finprod_eq_mulIndicator_applyₓ'. -/
@[to_additive]
theorem finprod_eq_mulIndicator_apply (s : Set α) (f : α → M) (a : α) :
(∏ᶠ h : a ∈ s, f a) = mulIndicator s f a := by convert finprod_eq_if
#align finprod_eq_mul_indicator_apply finprod_eq_mulIndicator_apply
#align finsum_eq_indicator_apply finsum_eq_indicator_apply
-/- warning: finprod_mem_mul_support -> finprod_mem_mulSupport is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (a : α), Eq.{succ u2} M (finprod.{u2, 0} M (Ne.{succ u2} M (f a) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))) _inst_1 (fun (h : Ne.{succ u2} M (f a) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))) => f a)) (f a)
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (a : α), Eq.{succ u1} M (finprod.{u1, 0} M (Ne.{succ u1} M (f a) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))) _inst_1 (fun (h : Ne.{succ u1} M (f a) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))) => f a)) (f a)
-Case conversion may be inaccurate. Consider using '#align finprod_mem_mul_support finprod_mem_mulSupportₓ'. -/
@[simp, to_additive]
theorem finprod_mem_mulSupport (f : α → M) (a : α) : (∏ᶠ h : f a ≠ 1, f a) = f a := by
rw [← mem_mul_support, finprod_eq_mulIndicator_apply, mul_indicator_mul_support]
#align finprod_mem_mul_support finprod_mem_mulSupport
#align finsum_mem_support finsum_mem_support
-/- warning: finprod_mem_def -> finprod_mem_def is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (s : Set.{u1} α) (f : α -> M), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (a : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (finprod.{u2, succ u1} M α _inst_1 (fun (a : α) => Set.mulIndicator.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) s f a))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (s : Set.{u2} α) (f : α -> M), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) => f a))) (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => Set.mulIndicator.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) s f a))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_def finprod_mem_defₓ'. -/
@[to_additive]
theorem finprod_mem_def (s : Set α) (f : α → M) : (∏ᶠ a ∈ s, f a) = ∏ᶠ a, mulIndicator s f a :=
finprod_congr <| finprod_eq_mulIndicator_apply s f
#align finprod_mem_def finprod_mem_def
#align finsum_mem_def finsum_mem_def
-/- warning: finprod_eq_prod_of_mul_support_subset -> finprod_eq_prod_of_mulSupport_subset is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) {s : Finset.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) s)) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u2, u1} M α _inst_1 s (fun (i : α) => f i)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) {s : Finset.{u2} α}, (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f) (Finset.toSet.{u2} α s)) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u1, u2} M α _inst_1 s (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_prod_of_mul_support_subset finprod_eq_prod_of_mulSupport_subsetₓ'. -/
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h : mulSupport f ⊆ s) :
(∏ᶠ i, f i) = ∏ i in s, f i :=
@@ -493,12 +349,6 @@ theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h :
#align finprod_eq_prod_of_mul_support_subset finprod_eq_prod_of_mulSupport_subset
#align finsum_eq_sum_of_support_subset finsum_eq_sum_of_support_subset
-/- warning: finprod_eq_prod_of_mul_support_to_finset_subset -> finprod_eq_prod_of_mulSupport_toFinset_subset is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (hf : Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) {s : Finset.{u1} α}, (HasSubset.Subset.{u1} (Finset.{u1} α) (Finset.hasSubset.{u1} α) (Set.Finite.toFinset.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f) hf) s) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u2, u1} M α _inst_1 s (fun (i : α) => f i)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (hf : Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) {s : Finset.{u2} α}, (HasSubset.Subset.{u2} (Finset.{u2} α) (Finset.instHasSubsetFinset.{u2} α) (Set.Finite.toFinset.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f) hf) s) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u1, u2} M α _inst_1 s (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_prod_of_mul_support_to_finset_subset finprod_eq_prod_of_mulSupport_toFinset_subsetₓ'. -/
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_toFinset_subset (f : α → M) (hf : (mulSupport f).Finite)
{s : Finset α} (h : hf.toFinset ⊆ s) : (∏ᶠ i, f i) = ∏ i in s, f i :=
@@ -506,12 +356,6 @@ theorem finprod_eq_prod_of_mulSupport_toFinset_subset (f : α → M) (hf : (mulS
#align finprod_eq_prod_of_mul_support_to_finset_subset finprod_eq_prod_of_mulSupport_toFinset_subset
#align finsum_eq_sum_of_support_to_finset_subset finsum_eq_sum_of_support_toFinset_subset
-/- warning: finprod_eq_finset_prod_of_mul_support_subset -> finprod_eq_finset_prod_of_mulSupport_subset is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) {s : Finset.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) s)) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u2, u1} M α _inst_1 s (fun (i : α) => f i)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) {s : Finset.{u2} α}, (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f) (Finset.toSet.{u2} α s)) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u1, u2} M α _inst_1 s (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_finset_prod_of_mul_support_subset finprod_eq_finset_prod_of_mulSupport_subsetₓ'. -/
@[to_additive]
theorem finprod_eq_finset_prod_of_mulSupport_subset (f : α → M) {s : Finset α}
(h : mulSupport f ⊆ (s : Set α)) : (∏ᶠ i, f i) = ∏ i in s, f i :=
@@ -521,12 +365,6 @@ theorem finprod_eq_finset_prod_of_mulSupport_subset (f : α → M) {s : Finset
#align finprod_eq_finset_prod_of_mul_support_subset finprod_eq_finset_prod_of_mulSupport_subset
#align finsum_eq_finset_sum_of_support_subset finsum_eq_finset_sum_of_support_subset
-/- warning: finprod_def -> finprod_def is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) [_inst_3 : Decidable (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))], Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) (dite.{succ u2} M (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) _inst_3 (fun (h : Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) => Finset.prod.{u2, u1} M α _inst_1 (Set.Finite.toFinset.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f) h) (fun (i : α) => f i)) (fun (h : Not (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) => OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) [_inst_3 : Decidable (Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))], Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)) (dite.{succ u1} M (Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) _inst_3 (fun (h : Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) => Finset.prod.{u1, u2} M α _inst_1 (Set.Finite.toFinset.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f) h) (fun (i : α) => f i)) (fun (h : Not (Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) => OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align finprod_def finprod_defₓ'. -/
@[to_additive]
theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
(∏ᶠ i : α, f i) = if h : (mulSupport f).Finite then ∏ i in h.toFinset, f i else 1 :=
@@ -539,48 +377,24 @@ theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
#align finprod_def finprod_def
#align finsum_def finsum_def
-/- warning: finprod_of_infinite_mul_support -> finprod_of_infinite_mulSupport is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M}, (Set.Infinite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M}, (Set.Infinite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align finprod_of_infinite_mul_support finprod_of_infinite_mulSupportₓ'. -/
@[to_additive]
theorem finprod_of_infinite_mulSupport {f : α → M} (hf : (mulSupport f).Infinite) :
(∏ᶠ i, f i) = 1 := by classical rw [finprod_def, dif_neg hf]
#align finprod_of_infinite_mul_support finprod_of_infinite_mulSupport
#align finsum_of_infinite_support finsum_of_infinite_support
-/- warning: finprod_eq_prod -> finprod_eq_prod is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (hf : Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u2, u1} M α _inst_1 (Set.Finite.toFinset.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f) hf) (fun (i : α) => f i))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (hf : Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u1, u2} M α _inst_1 (Set.Finite.toFinset.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f) hf) (fun (i : α) => f i))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_prod finprod_eq_prodₓ'. -/
@[to_additive]
theorem finprod_eq_prod (f : α → M) (hf : (mulSupport f).Finite) :
(∏ᶠ i : α, f i) = ∏ i in hf.toFinset, f i := by classical rw [finprod_def, dif_pos hf]
#align finprod_eq_prod finprod_eq_prod
#align finsum_eq_sum finsum_eq_sum
-/- warning: finprod_eq_prod_of_fintype -> finprod_eq_prod_of_fintype is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] [_inst_3 : Fintype.{u1} α] (f : α -> M), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u2, u1} M α _inst_1 (Finset.univ.{u1} α _inst_3) (fun (i : α) => f i))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] [_inst_3 : Fintype.{u2} α] (f : α -> M), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)) (Finset.prod.{u1, u2} M α _inst_1 (Finset.univ.{u2} α _inst_3) (fun (i : α) => f i))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_prod_of_fintype finprod_eq_prod_of_fintypeₓ'. -/
@[to_additive]
theorem finprod_eq_prod_of_fintype [Fintype α] (f : α → M) : (∏ᶠ i : α, f i) = ∏ i, f i :=
finprod_eq_prod_of_mulSupport_toFinset_subset _ (Set.toFinite _) <| Finset.subset_univ _
#align finprod_eq_prod_of_fintype finprod_eq_prod_of_fintype
#align finsum_eq_sum_of_fintype finsum_eq_sum_of_fintype
-/- warning: finprod_cond_eq_prod_of_cond_iff -> finprod_cond_eq_prod_of_cond_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) {p : α -> Prop} {t : Finset.{u1} α}, (forall {x : α}, (Ne.{succ u2} M (f x) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))) -> (Iff (p x) (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) x t))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (p i) _inst_1 (fun (hi : p i) => f i))) (Finset.prod.{u2, u1} M α _inst_1 t (fun (i : α) => f i)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) {p : α -> Prop} {t : Finset.{u2} α}, (forall {x : α}, (Ne.{succ u1} M (f x) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))) -> (Iff (p x) (Membership.mem.{u2, u2} α (Finset.{u2} α) (Finset.instMembershipFinset.{u2} α) x t))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (p i) _inst_1 (fun (hi : p i) => f i))) (Finset.prod.{u1, u2} M α _inst_1 t (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align finprod_cond_eq_prod_of_cond_iff finprod_cond_eq_prod_of_cond_iffₓ'. -/
@[to_additive]
theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : Finset α}
(h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : (∏ᶠ (i) (hi : p i), f i) = ∏ i in t, f i :=
@@ -595,12 +409,6 @@ theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : F
#align finprod_cond_eq_prod_of_cond_iff finprod_cond_eq_prod_of_cond_iff
#align finsum_cond_eq_sum_of_cond_iff finsum_cond_eq_sum_of_cond_iff
-/- warning: finprod_cond_ne -> finprod_cond_ne is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (a : α) [_inst_3 : DecidableEq.{succ u1} α] (hf : Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Ne.{succ u1} α i a) _inst_1 (fun (H : Ne.{succ u1} α i a) => f i))) (Finset.prod.{u2, u1} M α _inst_1 (Finset.erase.{u1} α (fun (a : α) (b : α) => _inst_3 a b) (Set.Finite.toFinset.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f) hf) a) (fun (i : α) => f i))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (a : α) [_inst_3 : DecidableEq.{succ u2} α] (hf : Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Ne.{succ u2} α i a) _inst_1 (fun (H : Ne.{succ u2} α i a) => f i))) (Finset.prod.{u1, u2} M α _inst_1 (Finset.erase.{u2} α (fun (a : α) (b : α) => _inst_3 a b) (Set.Finite.toFinset.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f) hf) a) (fun (i : α) => f i))
-Case conversion may be inaccurate. Consider using '#align finprod_cond_ne finprod_cond_neₓ'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr ≠ » a) -/
@[to_additive]
theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSupport f).Finite) :
@@ -613,12 +421,6 @@ theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSuppo
#align finprod_cond_ne finprod_cond_ne
#align finsum_cond_ne finsum_cond_ne
-/- warning: finprod_mem_eq_prod_of_inter_mul_support_eq -> finprod_mem_eq_prod_of_inter_mulSupport_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) {s : Set.{u1} α} {t : Finset.{u1} α}, (Eq.{succ u1} (Set.{u1} α) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) t) (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (Finset.prod.{u2, u1} M α _inst_1 t (fun (i : α) => f i)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) {s : Set.{u2} α} {t : Finset.{u2} α}, (Eq.{succ u2} (Set.{u2} α) (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) (Finset.toSet.{u2} α t) (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (Finset.prod.{u1, u2} M α _inst_1 t (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_eq_prod_of_inter_mul_support_eq finprod_mem_eq_prod_of_inter_mulSupport_eqₓ'. -/
@[to_additive]
theorem finprod_mem_eq_prod_of_inter_mulSupport_eq (f : α → M) {s : Set α} {t : Finset α}
(h : s ∩ mulSupport f = t ∩ mulSupport f) : (∏ᶠ i ∈ s, f i) = ∏ i in t, f i :=
@@ -626,12 +428,6 @@ theorem finprod_mem_eq_prod_of_inter_mulSupport_eq (f : α → M) {s : Set α} {
#align finprod_mem_eq_prod_of_inter_mul_support_eq finprod_mem_eq_prod_of_inter_mulSupport_eq
#align finsum_mem_eq_sum_of_inter_support_eq finsum_mem_eq_sum_of_inter_support_eq
-/- warning: finprod_mem_eq_prod_of_subset -> finprod_mem_eq_prod_of_subset is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) {s : Set.{u1} α} {t : Finset.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) t)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) t) s) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (Finset.prod.{u2, u1} M α _inst_1 t (fun (i : α) => f i)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) {s : Set.{u2} α} {t : Finset.{u2} α}, (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) (Finset.toSet.{u2} α t)) -> (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) (Finset.toSet.{u2} α t) s) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (Finset.prod.{u1, u2} M α _inst_1 t (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_eq_prod_of_subset finprod_mem_eq_prod_of_subsetₓ'. -/
@[to_additive]
theorem finprod_mem_eq_prod_of_subset (f : α → M) {s : Set α} {t : Finset α}
(h₁ : s ∩ mulSupport f ⊆ t) (h₂ : ↑t ⊆ s) : (∏ᶠ i ∈ s, f i) = ∏ i in t, f i :=
@@ -639,12 +435,6 @@ theorem finprod_mem_eq_prod_of_subset (f : α → M) {s : Set α} {t : Finset α
#align finprod_mem_eq_prod_of_subset finprod_mem_eq_prod_of_subset
#align finsum_mem_eq_sum_of_subset finsum_mem_eq_sum_of_subset
-/- warning: finprod_mem_eq_prod -> finprod_mem_eq_prod is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) {s : Set.{u1} α} (hf : Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (Finset.prod.{u2, u1} M α _inst_1 (Set.Finite.toFinset.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) hf) (fun (i : α) => f i))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) {s : Set.{u2} α} (hf : Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (Finset.prod.{u1, u2} M α _inst_1 (Set.Finite.toFinset.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) hf) (fun (i : α) => f i))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_eq_prod finprod_mem_eq_prodₓ'. -/
@[to_additive]
theorem finprod_mem_eq_prod (f : α → M) {s : Set α} (hf : (s ∩ mulSupport f).Finite) :
(∏ᶠ i ∈ s, f i) = ∏ i in hf.toFinset, f i :=
@@ -652,12 +442,6 @@ theorem finprod_mem_eq_prod (f : α → M) {s : Set α} (hf : (s ∩ mulSupport
#align finprod_mem_eq_prod finprod_mem_eq_prod
#align finsum_mem_eq_sum finsum_mem_eq_sum
-/- warning: finprod_mem_eq_prod_filter -> finprod_mem_eq_prod_filter is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (s : Set.{u1} α) [_inst_3 : DecidablePred.{succ u1} α (fun (_x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) _x s)] (hf : Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (Finset.prod.{u2, u1} M α _inst_1 (Finset.filter.{u1} α (fun (_x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) _x s) (fun (a : α) => _inst_3 a) (Set.Finite.toFinset.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f) hf)) (fun (i : α) => f i))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (s : Set.{u2} α) [_inst_3 : DecidablePred.{succ u2} α (fun (_x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) _x s)] (hf : Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (Finset.prod.{u1, u2} M α _inst_1 (Finset.filter.{u2} α (fun (_x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) _x s) (fun (a : α) => _inst_3 a) (Set.Finite.toFinset.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f) hf)) (fun (i : α) => f i))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_eq_prod_filter finprod_mem_eq_prod_filterₓ'. -/
@[to_additive]
theorem finprod_mem_eq_prod_filter (f : α → M) (s : Set α) [DecidablePred (· ∈ s)]
(hf : (mulSupport f).Finite) :
@@ -666,12 +450,6 @@ theorem finprod_mem_eq_prod_filter (f : α → M) (s : Set α) [DecidablePred (
#align finprod_mem_eq_prod_filter finprod_mem_eq_prod_filter
#align finsum_mem_eq_sum_filter finsum_mem_eq_sum_filter
-/- warning: finprod_mem_eq_to_finset_prod -> finprod_mem_eq_toFinset_prod is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (s : Set.{u1} α) [_inst_3 : Fintype.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)], Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (Finset.prod.{u2, u1} M α _inst_1 (Set.toFinset.{u1} α s _inst_3) (fun (i : α) => f i))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (s : Set.{u2} α) [_inst_3 : Fintype.{u2} (Set.Elem.{u2} α s)], Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (Finset.prod.{u1, u2} M α _inst_1 (Set.toFinset.{u2} α s _inst_3) (fun (i : α) => f i))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_eq_to_finset_prod finprod_mem_eq_toFinset_prodₓ'. -/
@[to_additive]
theorem finprod_mem_eq_toFinset_prod (f : α → M) (s : Set α) [Fintype s] :
(∏ᶠ i ∈ s, f i) = ∏ i in s.toFinset, f i :=
@@ -679,12 +457,6 @@ theorem finprod_mem_eq_toFinset_prod (f : α → M) (s : Set α) [Fintype s] :
#align finprod_mem_eq_to_finset_prod finprod_mem_eq_toFinset_prod
#align finsum_mem_eq_to_finset_sum finsum_mem_eq_toFinset_sum
-/- warning: finprod_mem_eq_finite_to_finset_prod -> finprod_mem_eq_finite_toFinset_prod is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) {s : Set.{u1} α} (hs : Set.Finite.{u1} α s), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (Finset.prod.{u2, u1} M α _inst_1 (Set.Finite.toFinset.{u1} α s hs) (fun (i : α) => f i))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) {s : Set.{u2} α} (hs : Set.Finite.{u2} α s), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (Finset.prod.{u1, u2} M α _inst_1 (Set.Finite.toFinset.{u2} α s hs) (fun (i : α) => f i))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_eq_finite_to_finset_prod finprod_mem_eq_finite_toFinset_prodₓ'. -/
@[to_additive]
theorem finprod_mem_eq_finite_toFinset_prod (f : α → M) {s : Set α} (hs : s.Finite) :
(∏ᶠ i ∈ s, f i) = ∏ i in hs.toFinset, f i :=
@@ -692,24 +464,12 @@ theorem finprod_mem_eq_finite_toFinset_prod (f : α → M) {s : Set α} (hs : s.
#align finprod_mem_eq_finite_to_finset_prod finprod_mem_eq_finite_toFinset_prod
#align finsum_mem_eq_finite_to_finset_sum finsum_mem_eq_finite_toFinset_sum
-/- warning: finprod_mem_finset_eq_prod -> finprod_mem_finset_eq_prod is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (s : Finset.{u1} α), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) i s) => f i))) (Finset.prod.{u2, u1} M α _inst_1 s (fun (i : α) => f i))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (s : Finset.{u2} α), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Finset.{u2} α) (Finset.instMembershipFinset.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Finset.{u2} α) (Finset.instMembershipFinset.{u2} α) i s) => f i))) (Finset.prod.{u1, u2} M α _inst_1 s (fun (i : α) => f i))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_finset_eq_prod finprod_mem_finset_eq_prodₓ'. -/
@[to_additive]
theorem finprod_mem_finset_eq_prod (f : α → M) (s : Finset α) : (∏ᶠ i ∈ s, f i) = ∏ i in s, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ rfl
#align finprod_mem_finset_eq_prod finprod_mem_finset_eq_prod
#align finsum_mem_finset_eq_sum finsum_mem_finset_eq_sum
-/- warning: finprod_mem_coe_finset -> finprod_mem_coe_finset is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (s : Finset.{u1} α), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) s)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) s)) => f i))) (Finset.prod.{u2, u1} M α _inst_1 s (fun (i : α) => f i))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (s : Finset.{u2} α), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Finset.toSet.{u2} α s)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Finset.toSet.{u2} α s)) => f i))) (Finset.prod.{u1, u2} M α _inst_1 s (fun (i : α) => f i))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_coe_finset finprod_mem_coe_finsetₓ'. -/
@[to_additive]
theorem finprod_mem_coe_finset (f : α → M) (s : Finset α) :
(∏ᶠ i ∈ (s : Set α), f i) = ∏ i in s, f i :=
@@ -717,12 +477,6 @@ theorem finprod_mem_coe_finset (f : α → M) (s : Finset α) :
#align finprod_mem_coe_finset finprod_mem_coe_finset
#align finsum_mem_coe_finset finsum_mem_coe_finset
-/- warning: finprod_mem_eq_one_of_infinite -> finprod_mem_eq_one_of_infinite is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α}, (Set.Infinite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α}, (Set.Infinite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_eq_one_of_infinite finprod_mem_eq_one_of_infiniteₓ'. -/
@[to_additive]
theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩ mulSupport f).Infinite) :
(∏ᶠ i ∈ s, f i) = 1 := by
@@ -732,24 +486,12 @@ theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩
#align finprod_mem_eq_one_of_infinite finprod_mem_eq_one_of_infinite
#align finsum_mem_eq_zero_of_infinite finsum_mem_eq_zero_of_infinite
-/- warning: finprod_mem_eq_one_of_forall_eq_one -> finprod_mem_eq_one_of_forall_eq_one is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Eq.{succ u2} M (f x) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α}, (forall (x : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) -> (Eq.{succ u1} M (f x) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_eq_one_of_forall_eq_one finprod_mem_eq_one_of_forall_eq_oneₓ'. -/
@[to_additive]
theorem finprod_mem_eq_one_of_forall_eq_one {f : α → M} {s : Set α} (h : ∀ x ∈ s, f x = 1) :
(∏ᶠ i ∈ s, f i) = 1 := by simp (config := { contextual := true }) [h]
#align finprod_mem_eq_one_of_forall_eq_one finprod_mem_eq_one_of_forall_eq_one
#align finsum_mem_eq_zero_of_forall_eq_zero finsum_mem_eq_zero_of_forall_eq_zero
-/- warning: finprod_mem_inter_mul_support -> finprod_mem_inter_mulSupport is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (s : Set.{u1} α), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (s : Set.{u2} α), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i)))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_inter_mul_support finprod_mem_inter_mulSupportₓ'. -/
@[to_additive]
theorem finprod_mem_inter_mulSupport (f : α → M) (s : Set α) :
(∏ᶠ i ∈ s ∩ mulSupport f, f i) = ∏ᶠ i ∈ s, f i := by
@@ -757,12 +499,6 @@ theorem finprod_mem_inter_mulSupport (f : α → M) (s : Set α) :
#align finprod_mem_inter_mul_support finprod_mem_inter_mulSupport
#align finsum_mem_inter_support finsum_mem_inter_support
-/- warning: finprod_mem_inter_mul_support_eq -> finprod_mem_inter_mulSupport_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (s : Set.{u1} α) (t : Set.{u1} α), (Eq.{succ u1} (Set.{u1} α) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) => f i))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (s : Set.{u2} α) (t : Set.{u2} α), (Eq.{succ u2} (Set.{u2} α) (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) t (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) => f i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_inter_mul_support_eq finprod_mem_inter_mulSupport_eqₓ'. -/
@[to_additive]
theorem finprod_mem_inter_mulSupport_eq (f : α → M) (s t : Set α)
(h : s ∩ mulSupport f = t ∩ mulSupport f) : (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ t, f i := by
@@ -770,12 +506,6 @@ theorem finprod_mem_inter_mulSupport_eq (f : α → M) (s t : Set α)
#align finprod_mem_inter_mul_support_eq finprod_mem_inter_mulSupport_eq
#align finsum_mem_inter_support_eq finsum_mem_inter_support_eq
-/- warning: finprod_mem_inter_mul_support_eq' -> finprod_mem_inter_mulSupport_eq' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (f : α -> M) (s : Set.{u1} α) (t : Set.{u1} α), (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) -> (Iff (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) => f i))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (s : Set.{u2} α) (t : Set.{u2} α), (forall (x : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) -> (Iff (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x t))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) => f i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_inter_mul_support_eq' finprod_mem_inter_mulSupport_eq'ₓ'. -/
@[to_additive]
theorem finprod_mem_inter_mulSupport_eq' (f : α → M) (s t : Set α)
(h : ∀ x ∈ mulSupport f, x ∈ s ↔ x ∈ t) : (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ t, f i :=
@@ -796,12 +526,6 @@ theorem finprod_mem_univ (f : α → M) : (∏ᶠ i ∈ @Set.univ α, f i) = ∏
variable {f g : α → M} {a b : α} {s t : Set α}
-/- warning: finprod_mem_congr -> finprod_mem_congr is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {g : α -> M} {s : Set.{u1} α} {t : Set.{u1} α}, (Eq.{succ u1} (Set.{u1} α) s t) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x t) -> (Eq.{succ u2} M (f x) (g x))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) => g i))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {g : α -> M} {s : Set.{u2} α} {t : Set.{u2} α}, (Eq.{succ u2} (Set.{u2} α) s t) -> (forall (x : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x t) -> (Eq.{succ u1} M (f x) (g x))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) => g i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_congr finprod_mem_congrₓ'. -/
@[to_additive]
theorem finprod_mem_congr (h₀ : s = t) (h₁ : ∀ x ∈ t, f x = g x) :
(∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ t, g i :=
@@ -809,12 +533,6 @@ theorem finprod_mem_congr (h₀ : s = t) (h₁ : ∀ x ∈ t, f x = g x) :
#align finprod_mem_congr finprod_mem_congr
#align finsum_mem_congr finsum_mem_congr
-/- warning: finprod_eq_one_of_forall_eq_one -> finprod_eq_one_of_forall_eq_one is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M}, (forall (x : α), Eq.{succ u2} M (f x) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M}, (forall (x : α), Eq.{succ u2} M (f x) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_one_of_forall_eq_one finprod_eq_one_of_forall_eq_oneₓ'. -/
@[to_additive]
theorem finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) : (∏ᶠ i, f i) = 1 := by
simp (config := { contextual := true }) [h]
@@ -826,12 +544,6 @@ theorem finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) : (
-/
-/- warning: finprod_mul_distrib -> finprod_mul_distrib is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {g : α -> M}, (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) -> (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) g)) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (f i) (g i))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => g i))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {g : α -> M}, (Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) -> (Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) g)) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (f i) (g i))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => g i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mul_distrib finprod_mul_distribₓ'. -/
/-- If the multiplicative supports of `f` and `g` are finite, then the product of `f i * g i` equals
the product of `f i` multiplied by the product of `g i`. -/
@[to_additive
@@ -847,12 +559,6 @@ theorem finprod_mul_distrib (hf : (mulSupport f).Finite) (hg : (mulSupport g).Fi
#align finprod_mul_distrib finprod_mul_distrib
#align finsum_add_distrib finsum_add_distrib
-/- warning: finprod_div_distrib -> finprod_div_distrib is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {G : Type.{u2}} [_inst_3 : DivisionCommMonoid.{u2} G] {f : α -> G} {g : α -> G}, (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3))))) f)) -> (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α G (MulOneClass.toHasOne.{u2} G (Monoid.toMulOneClass.{u2} G (DivInvMonoid.toMonoid.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3))))) g)) -> (Eq.{succ u2} G (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => HDiv.hDiv.{u2, u2, u2} G G G (instHDiv.{u2} G (DivInvMonoid.toHasDiv.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (f i) (g i))) (HDiv.hDiv.{u2, u2, u2} G G G (instHDiv.{u2} G (DivInvMonoid.toHasDiv.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => f i)) (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => g i))))
-but is expected to have type
- forall {α : Type.{u1}} {G : Type.{u2}} [_inst_3 : DivisionCommMonoid.{u2} G] {f : α -> G} {g : α -> G}, (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) f)) -> (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) g)) -> (Eq.{succ u2} G (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => HDiv.hDiv.{u2, u2, u2} G G G (instHDiv.{u2} G (DivInvMonoid.toDiv.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (f i) (g i))) (HDiv.hDiv.{u2, u2, u2} G G G (instHDiv.{u2} G (DivInvMonoid.toDiv.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => f i)) (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => g i))))
-Case conversion may be inaccurate. Consider using '#align finprod_div_distrib finprod_div_distribₓ'. -/
/-- If the multiplicative supports of `f` and `g` are finite, then the product of `f i / g i`
equals the product of `f i` divided by the product of `g i`. -/
@[to_additive
@@ -864,12 +570,6 @@ theorem finprod_div_distrib [DivisionCommMonoid G] {f g : α → G} (hf : (mulSu
#align finprod_div_distrib finprod_div_distrib
#align finsum_sub_distrib finsum_sub_distrib
-/- warning: finprod_mem_mul_distrib' -> finprod_mem_mul_distrib' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {g : α -> M} {s : Set.{u1} α}, (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) g))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (f i) (g i)))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => g i)))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {g : α -> M} {s : Set.{u2} α}, (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) g))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (f i) (g i)))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => g i)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_mul_distrib' finprod_mem_mul_distrib'ₓ'. -/
/-- A more general version of `finprod_mem_mul_distrib` that only requires `s ∩ mul_support f` and
`s ∩ mul_support g` rather than `s` to be finite. -/
@[to_additive
@@ -882,24 +582,12 @@ theorem finprod_mem_mul_distrib' (hf : (s ∩ mulSupport f).Finite) (hg : (s ∩
#align finprod_mem_mul_distrib' finprod_mem_mul_distrib'
#align finsum_mem_add_distrib' finsum_mem_add_distrib'
-/- warning: finprod_mem_one -> finprod_mem_one is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] (s : Set.{u1} α), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (s : Set.{u2} α), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_one finprod_mem_oneₓ'. -/
/-- The product of the constant function `1` over any set equals `1`. -/
@[to_additive "The product of the constant function `0` over any set equals `0`."]
theorem finprod_mem_one (s : Set α) : (∏ᶠ i ∈ s, (1 : M)) = 1 := by simp
#align finprod_mem_one finprod_mem_one
#align finsum_mem_zero finsum_mem_zero
-/- warning: finprod_mem_of_eq_on_one -> finprod_mem_of_eqOn_one is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α}, (Set.EqOn.{u1, u2} α M f (OfNat.ofNat.{max u1 u2} (α -> M) 1 (OfNat.mk.{max u1 u2} (α -> M) 1 (One.one.{max u1 u2} (α -> M) (Pi.instOne.{u1, u2} α (fun (ᾰ : α) => M) (fun (i : α) => MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))) s) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α}, (Set.EqOn.{u2, u1} α M f (OfNat.ofNat.{max u2 u1} (α -> M) 1 (One.toOfNat1.{max u2 u1} (α -> M) (Pi.instOne.{u2, u1} α (fun (a._@.Mathlib.Data.Set.Function._hyg.1349 : α) => M) (fun (i : α) => Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))) s) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_of_eq_on_one finprod_mem_of_eqOn_oneₓ'. -/
/-- If a function `f` equals `1` on a set `s`, then the product of `f i` over `i ∈ s` equals `1`. -/
@[to_additive
"If a function `f` equals `0` on a set `s`, then the product of `f i` over `i ∈ s`\nequals `0`."]
@@ -908,12 +596,6 @@ theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : (∏ᶠ i ∈ s, f i) = 1 :=
#align finprod_mem_of_eq_on_one finprod_mem_of_eqOn_one
#align finsum_mem_of_eq_on_zero finsum_mem_of_eqOn_zero
-/- warning: exists_ne_one_of_finprod_mem_ne_one -> exists_ne_one_of_finprod_mem_ne_one is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α}, (Ne.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))) -> (Exists.{succ u1} α (fun (x : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => Ne.{succ u2} M (f x) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))))
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α}, (Ne.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))) -> (Exists.{succ u1} α (fun (x : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (Ne.{succ u2} M (f x) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align exists_ne_one_of_finprod_mem_ne_one exists_ne_one_of_finprod_mem_ne_oneₓ'. -/
/-- If the product of `f i` over `i ∈ s` is not equal to `1`, then there is some `x ∈ s` such that
`f x ≠ 1`. -/
@[to_additive
@@ -925,12 +607,6 @@ theorem exists_ne_one_of_finprod_mem_ne_one (h : (∏ᶠ i ∈ s, f i) ≠ 1) :
#align exists_ne_one_of_finprod_mem_ne_one exists_ne_one_of_finprod_mem_ne_one
#align exists_ne_zero_of_finsum_mem_ne_zero exists_ne_zero_of_finsum_mem_ne_zero
-/- warning: finprod_mem_mul_distrib -> finprod_mem_mul_distrib is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {g : α -> M} {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (f i) (g i)))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => g i)))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {g : α -> M} {s : Set.{u2} α}, (Set.Finite.{u2} α s) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (f i) (g i)))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => g i)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_mul_distrib finprod_mem_mul_distribₓ'. -/
/-- Given a finite set `s`, the product of `f i * g i` over `i ∈ s` equals the product of `f i`
over `i ∈ s` times the product of `g i` over `i ∈ s`. -/
@[to_additive
@@ -941,12 +617,6 @@ theorem finprod_mem_mul_distrib (hs : s.Finite) :
#align finprod_mem_mul_distrib finprod_mem_mul_distrib
#align finsum_mem_add_distrib finsum_mem_add_distrib
-/- warning: monoid_hom.map_finprod -> MonoidHom.map_finprod is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i))))
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f)) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod MonoidHom.map_finprodₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod {f : α → M} (g : M →* N) (hf : (mulSupport f).Finite) :
g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
@@ -954,24 +624,12 @@ theorem MonoidHom.map_finprod {f : α → M} (g : M →* N) (hf : (mulSupport f)
#align monoid_hom.map_finprod MonoidHom.map_finprod
#align add_monoid_hom.map_finsum AddMonoidHom.map_finsum
-/- warning: finprod_pow -> finprod_pow is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M}, (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) -> (forall (n : Nat), Eq.{succ u2} M (HPow.hPow.{u2, 0, u2} M Nat M (instHPow.{u2, 0} M Nat (Monoid.Pow.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)) n) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => HPow.hPow.{u2, 0, u2} M Nat M (instHPow.{u2, 0} M Nat (Monoid.Pow.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (f i) n)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M}, (Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) -> (forall (n : Nat), Eq.{succ u1} M (HPow.hPow.{u1, 0, u1} M Nat M (instHPow.{u1, 0} M Nat (Monoid.Pow.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)) n) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => HPow.hPow.{u1, 0, u1} M Nat M (instHPow.{u1, 0} M Nat (Monoid.Pow.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (f i) n)))
-Case conversion may be inaccurate. Consider using '#align finprod_pow finprod_powₓ'. -/
@[to_additive]
theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n = ∏ᶠ i, f i ^ n :=
(powMonoidHom n).map_finprod hf
#align finprod_pow finprod_pow
#align finsum_nsmul finsum_nsmul
-/- warning: monoid_hom.map_finprod_mem' -> MonoidHom.map_finprod_mem' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7611 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem' MonoidHom.map_finprod_mem'ₓ'. -/
/-- A more general version of `monoid_hom.map_finprod_mem` that requires `s ∩ mul_support f` rather
than `s` to be finite. -/
@[to_additive
@@ -985,12 +643,6 @@ theorem MonoidHom.map_finprod_mem' {f : α → M} (g : M →* N) (h₀ : (s ∩
#align monoid_hom.map_finprod_mem' MonoidHom.map_finprod_mem'
#align add_monoid_hom.map_finsum_mem' AddMonoidHom.map_finsum_mem'
-/- warning: monoid_hom.map_finprod_mem -> MonoidHom.map_finprod_mem is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7758 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem MonoidHom.map_finprod_memₓ'. -/
/-- Given a monoid homomorphism `g : M →* N` and a function `f : α → M`, the value of `g` at the
product of `f i` over `i ∈ s` equals the product of `g (f i)` over `s`. -/
@[to_additive
@@ -1001,9 +653,6 @@ theorem MonoidHom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.Finite)
#align monoid_hom.map_finprod_mem MonoidHom.map_finprod_mem
#align add_monoid_hom.map_finsum_mem AddMonoidHom.map_finsum_mem
-/- warning: mul_equiv.map_finprod_mem -> MulEquiv.map_finprod_mem is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod_mem MulEquiv.map_finprod_memₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs : s.Finite) :
g (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ s, g (f i) :=
@@ -1011,12 +660,6 @@ theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs
#align mul_equiv.map_finprod_mem MulEquiv.map_finprod_mem
#align add_equiv.map_finsum_mem AddEquiv.map_finsum_mem
-/- warning: finprod_mem_inv_distrib -> finprod_mem_inv_distrib is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {G : Type.{u2}} {s : Set.{u1} α} [_inst_3 : DivisionCommMonoid.{u2} G] (f : α -> G), (Set.Finite.{u1} α s) -> (Eq.{succ u2} G (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (x : α) => finprod.{u2, 0} G (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => Inv.inv.{u2} G (DivInvMonoid.toHasInv.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3))) (f x)))) (Inv.inv.{u2} G (DivInvMonoid.toHasInv.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3))) (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (x : α) => finprod.{u2, 0} G (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => f x)))))
-but is expected to have type
- forall {α : Type.{u1}} {G : Type.{u2}} {s : Set.{u1} α} [_inst_3 : DivisionCommMonoid.{u2} G] (f : α -> G), (Set.Finite.{u1} α s) -> (Eq.{succ u2} G (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (x : α) => finprod.{u2, 0} G (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => Inv.inv.{u2} G (InvOneClass.toInv.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (f x)))) (Inv.inv.{u2} G (InvOneClass.toInv.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (x : α) => finprod.{u2, 0} G (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => f x)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_inv_distrib finprod_mem_inv_distribₓ'. -/
@[to_additive]
theorem finprod_mem_inv_distrib [DivisionCommMonoid G] (f : α → G) (hs : s.Finite) :
(∏ᶠ x ∈ s, (f x)⁻¹) = (∏ᶠ x ∈ s, f x)⁻¹ :=
@@ -1024,12 +667,6 @@ theorem finprod_mem_inv_distrib [DivisionCommMonoid G] (f : α → G) (hs : s.Fi
#align finprod_mem_inv_distrib finprod_mem_inv_distrib
#align finsum_mem_neg_distrib finsum_mem_neg_distrib
-/- warning: finprod_mem_div_distrib -> finprod_mem_div_distrib is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {G : Type.{u2}} {s : Set.{u1} α} [_inst_3 : DivisionCommMonoid.{u2} G] (f : α -> G) (g : α -> G), (Set.Finite.{u1} α s) -> (Eq.{succ u2} G (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => finprod.{u2, 0} G (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => HDiv.hDiv.{u2, u2, u2} G G G (instHDiv.{u2} G (DivInvMonoid.toHasDiv.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (f i) (g i)))) (HDiv.hDiv.{u2, u2, u2} G G G (instHDiv.{u2} G (DivInvMonoid.toHasDiv.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => finprod.{u2, 0} G (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => finprod.{u2, 0} G (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => g i)))))
-but is expected to have type
- forall {α : Type.{u1}} {G : Type.{u2}} {s : Set.{u1} α} [_inst_3 : DivisionCommMonoid.{u2} G] (f : α -> G) (g : α -> G), (Set.Finite.{u1} α s) -> (Eq.{succ u2} G (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => finprod.{u2, 0} G (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => HDiv.hDiv.{u2, u2, u2} G G G (instHDiv.{u2} G (DivInvMonoid.toDiv.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (f i) (g i)))) (HDiv.hDiv.{u2, u2, u2} G G G (instHDiv.{u2} G (DivInvMonoid.toDiv.{u2} G (DivisionMonoid.toDivInvMonoid.{u2} G (DivisionCommMonoid.toDivisionMonoid.{u2} G _inst_3)))) (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => finprod.{u2, 0} G (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i))) (finprod.{u2, succ u1} G α (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (i : α) => finprod.{u2, 0} G (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) (DivisionCommMonoid.toCommMonoid.{u2} G _inst_3) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => g i)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_div_distrib finprod_mem_div_distribₓ'. -/
/-- Given a finite set `s`, the product of `f i / g i` over `i ∈ s` equals the product of `f i`
over `i ∈ s` divided by the product of `g i` over `i ∈ s`. -/
@[to_additive
@@ -1045,24 +682,12 @@ theorem finprod_mem_div_distrib [DivisionCommMonoid G] (f g : α → G) (hs : s.
-/
-/- warning: finprod_mem_empty -> finprod_mem_empty is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M}, Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) => f i))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M}, Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) => f i))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_empty finprod_mem_emptyₓ'. -/
/-- The product of any function over an empty set is `1`. -/
@[to_additive "The sum of any function over an empty set is `0`."]
theorem finprod_mem_empty : (∏ᶠ i ∈ (∅ : Set α), f i) = 1 := by simp
#align finprod_mem_empty finprod_mem_empty
#align finsum_mem_empty finsum_mem_empty
-/- warning: nonempty_of_finprod_mem_ne_one -> nonempty_of_finprod_mem_ne_one is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α}, (Ne.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))) -> (Set.Nonempty.{u1} α s)
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α}, (Ne.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))) -> (Set.Nonempty.{u1} α s)
-Case conversion may be inaccurate. Consider using '#align nonempty_of_finprod_mem_ne_one nonempty_of_finprod_mem_ne_oneₓ'. -/
/-- A set `s` is nonempty if the product of some function over `s` is not equal to `1`. -/
@[to_additive "A set `s` is nonempty if the sum of some function over `s` is not equal to `0`."]
theorem nonempty_of_finprod_mem_ne_one (h : (∏ᶠ i ∈ s, f i) ≠ 1) : s.Nonempty :=
@@ -1070,12 +695,6 @@ theorem nonempty_of_finprod_mem_ne_one (h : (∏ᶠ i ∈ s, f i) ≠ 1) : s.Non
#align nonempty_of_finprod_mem_ne_one nonempty_of_finprod_mem_ne_one
#align nonempty_of_finsum_mem_ne_zero nonempty_of_finsum_mem_ne_zero
-/- warning: finprod_mem_union_inter -> finprod_mem_union_inter is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Set.Finite.{u1} α t) -> (Eq.{succ u2} M (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) => f i)))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) => f i)))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α} {t : Set.{u2} α}, (Set.Finite.{u2} α s) -> (Set.Finite.{u2} α t) -> (Eq.{succ u1} M (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) => f i)))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) => f i)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_union_inter finprod_mem_union_interₓ'. -/
/-- Given finite sets `s` and `t`, the product of `f i` over `i ∈ s ∪ t` times the product of
`f i` over `i ∈ s ∩ t` equals the product of `f i` over `i ∈ s` times the product of `f i`
over `i ∈ t`. -/
@@ -1091,12 +710,6 @@ theorem finprod_mem_union_inter (hs : s.Finite) (ht : t.Finite) :
#align finprod_mem_union_inter finprod_mem_union_inter
#align finsum_mem_union_inter finsum_mem_union_inter
-/- warning: finprod_mem_union_inter' -> finprod_mem_union_inter' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u2} M (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) => f i)))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) => f i)))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α} {t : Set.{u2} α}, (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) t (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Eq.{succ u1} M (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) => f i)))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) => f i)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_union_inter' finprod_mem_union_inter'ₓ'. -/
/-- A more general version of `finprod_mem_union_inter` that requires `s ∩ mul_support f` and
`t ∩ mul_support f` rather than `s` and `t` to be finite. -/
@[to_additive
@@ -1112,12 +725,6 @@ theorem finprod_mem_union_inter' (hs : (s ∩ mulSupport f).Finite) (ht : (t ∩
#align finprod_mem_union_inter' finprod_mem_union_inter'
#align finsum_mem_union_inter' finsum_mem_union_inter'
-/- warning: finprod_mem_union' -> finprod_mem_union' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s t) -> (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) => f i))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) => f i)))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α} {t : Set.{u2} α}, (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) s t) -> (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) t (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) => f i))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) => f i)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_union' finprod_mem_union'ₓ'. -/
/-- A more general version of `finprod_mem_union` that requires `s ∩ mul_support f` and
`t ∩ mul_support f` rather than `s` and `t` to be finite. -/
@[to_additive
@@ -1129,12 +736,6 @@ theorem finprod_mem_union' (hst : Disjoint s t) (hs : (s ∩ mulSupport f).Finit
#align finprod_mem_union' finprod_mem_union'
#align finsum_mem_union' finsum_mem_union'
-/- warning: finprod_mem_union -> finprod_mem_union is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s t) -> (Set.Finite.{u1} α s) -> (Set.Finite.{u1} α t) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) => f i))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) => f i)))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α} {t : Set.{u2} α}, (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) s t) -> (Set.Finite.{u2} α s) -> (Set.Finite.{u2} α t) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) => f i))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) => f i)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_union finprod_mem_unionₓ'. -/
/-- Given two finite disjoint sets `s` and `t`, the product of `f i` over `i ∈ s ∪ t` equals the
product of `f i` over `i ∈ s` times the product of `f i` over `i ∈ t`. -/
@[to_additive
@@ -1145,12 +746,6 @@ theorem finprod_mem_union (hst : Disjoint s t) (hs : s.Finite) (ht : t.Finite) :
#align finprod_mem_union finprod_mem_union
#align finsum_mem_union finsum_mem_union
-/- warning: finprod_mem_union'' -> finprod_mem_union'' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) => f i))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) => f i)))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α} {t : Set.{u2} α}, (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) t (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) t (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) => f i))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) => f i)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_union'' finprod_mem_union''ₓ'. -/
/-- A more general version of `finprod_mem_union'` that requires `s ∩ mul_support f` and
`t ∩ mul_support f` rather than `s` and `t` to be disjoint -/
@[to_additive
@@ -1188,12 +783,6 @@ theorem finprod_cond_eq_right : (∏ᶠ (i) (hi : a = i), f i) = f a := by simp
#align finsum_cond_eq_right finsum_cond_eq_right
-/
-/- warning: finprod_mem_insert' -> finprod_mem_insert' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {a : α} {s : Set.{u1} α} (f : α -> M), (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s)) -> (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) => f i))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (f a) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {a : α} {s : Set.{u2} α} (f : α -> M), (Not (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s)) -> (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Insert.insert.{u2, u2} α (Set.{u2} α) (Set.instInsertSet.{u2} α) a s)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Insert.insert.{u2, u2} α (Set.{u2} α) (Set.instInsertSet.{u2} α) a s)) => f i))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (f a) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_insert' finprod_mem_insert'ₓ'. -/
/-- A more general version of `finprod_mem_insert` that requires `s ∩ mul_support f` rather than `s`
to be finite. -/
@[to_additive
@@ -1207,12 +796,6 @@ theorem finprod_mem_insert' (f : α → M) (h : a ∉ s) (hs : (s ∩ mulSupport
#align finprod_mem_insert' finprod_mem_insert'
#align finsum_mem_insert' finsum_mem_insert'
-/- warning: finprod_mem_insert -> finprod_mem_insert is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {a : α} {s : Set.{u1} α} (f : α -> M), (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s)) -> (Set.Finite.{u1} α s) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) => f i))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (f a) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {a : α} {s : Set.{u2} α} (f : α -> M), (Not (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s)) -> (Set.Finite.{u2} α s) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Insert.insert.{u2, u2} α (Set.{u2} α) (Set.instInsertSet.{u2} α) a s)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Insert.insert.{u2, u2} α (Set.{u2} α) (Set.instInsertSet.{u2} α) a s)) => f i))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (f a) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_insert finprod_mem_insertₓ'. -/
/-- Given a finite set `s` and an element `a ∉ s`, the product of `f i` over `i ∈ insert a s` equals
`f a` times the product of `f i` over `i ∈ s`. -/
@[to_additive
@@ -1223,12 +806,6 @@ theorem finprod_mem_insert (f : α → M) (h : a ∉ s) (hs : s.Finite) :
#align finprod_mem_insert finprod_mem_insert
#align finsum_mem_insert finsum_mem_insert
-/- warning: finprod_mem_insert_of_eq_one_if_not_mem -> finprod_mem_insert_of_eq_one_if_not_mem is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {a : α} {s : Set.{u1} α}, ((Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s)) -> (Eq.{succ u2} M (f a) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {a : α} {s : Set.{u2} α}, ((Not (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s)) -> (Eq.{succ u1} M (f a) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Insert.insert.{u2, u2} α (Set.{u2} α) (Set.instInsertSet.{u2} α) a s)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Insert.insert.{u2, u2} α (Set.{u2} α) (Set.instInsertSet.{u2} α) a s)) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_insert_of_eq_one_if_not_mem finprod_mem_insert_of_eq_one_if_not_memₓ'. -/
/-- If `f a = 1` when `a ∉ s`, then the product of `f i` over `i ∈ insert a s` equals the product of
`f i` over `i ∈ s`. -/
@[to_additive
@@ -1242,12 +819,6 @@ theorem finprod_mem_insert_of_eq_one_if_not_mem (h : a ∉ s → f a = 1) :
#align finprod_mem_insert_of_eq_one_if_not_mem finprod_mem_insert_of_eq_one_if_not_mem
#align finsum_mem_insert_of_eq_zero_if_not_mem finsum_mem_insert_of_eq_zero_if_not_mem
-/- warning: finprod_mem_insert_one -> finprod_mem_insert_one is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {a : α} {s : Set.{u1} α}, (Eq.{succ u2} M (f a) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))))
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {a : α} {s : Set.{u1} α}, (Eq.{succ u2} M (f a) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_insert_one finprod_mem_insert_oneₓ'. -/
/-- If `f a = 1`, then the product of `f i` over `i ∈ insert a s` equals the product of `f i` over
`i ∈ s`. -/
@[to_additive
@@ -1257,12 +828,6 @@ theorem finprod_mem_insert_one (h : f a = 1) : (∏ᶠ i ∈ insert a s, f i) =
#align finprod_mem_insert_one finprod_mem_insert_one
#align finsum_mem_insert_zero finsum_mem_insert_zero
-/- warning: finprod_mem_dvd -> finprod_mem_dvd is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {N : Type.{u2}} [_inst_2 : CommMonoid.{u2} N] {f : α -> N} (a : α), (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α N (MulOneClass.toHasOne.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f)) -> (Dvd.Dvd.{u2} N (semigroupDvd.{u2} N (Monoid.toSemigroup.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (f a) (finprod.{u2, succ u1} N α _inst_2 f))
-but is expected to have type
- forall {α : Type.{u2}} {N : Type.{u1}} [_inst_2 : CommMonoid.{u1} N] {f : α -> N} (a : α), (Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α N (Monoid.toOne.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) f)) -> (Dvd.dvd.{u1} N (semigroupDvd.{u1} N (Monoid.toSemigroup.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (f a) (finprod.{u1, succ u2} N α _inst_2 f))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_dvd finprod_mem_dvdₓ'. -/
/-- If the multiplicative support of `f` is finite, then for every `x` in the domain of `f`, `f x`
divides `finprod f`. -/
theorem finprod_mem_dvd {f : α → N} (a : α) (hf : (mulSupport f).Finite) : f a ∣ finprod f :=
@@ -1274,12 +839,6 @@ theorem finprod_mem_dvd {f : α → N} (a : α) (hf : (mulSupport f).Finite) : f
exact one_dvd (finprod f)
#align finprod_mem_dvd finprod_mem_dvd
-/- warning: finprod_mem_pair -> finprod_mem_pair is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {a : α} {b : α}, (Ne.{succ u1} α a b) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) => f i))) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (f a) (f b)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {a : α} {b : α}, (Ne.{succ u2} α a b) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Insert.insert.{u2, u2} α (Set.{u2} α) (Set.instInsertSet.{u2} α) a (Singleton.singleton.{u2, u2} α (Set.{u2} α) (Set.instSingletonSet.{u2} α) b))) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Insert.insert.{u2, u2} α (Set.{u2} α) (Set.instInsertSet.{u2} α) a (Singleton.singleton.{u2, u2} α (Set.{u2} α) (Set.instSingletonSet.{u2} α) b))) => f i))) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (f a) (f b)))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_pair finprod_mem_pairₓ'. -/
/-- The product of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a * f b`. -/
@[to_additive "The sum of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a + f b`."]
theorem finprod_mem_pair (h : a ≠ b) : (∏ᶠ i ∈ ({a, b} : Set α), f i) = f a * f b := by
@@ -1287,12 +846,6 @@ theorem finprod_mem_pair (h : a ≠ b) : (∏ᶠ i ∈ ({a, b} : Set α), f i) =
#align finprod_mem_pair finprod_mem_pair
#align finsum_mem_pair finsum_mem_pair
-/- warning: finprod_mem_image' -> finprod_mem_image' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} {s : Set.{u2} β} {g : β -> α}, (Set.InjOn.{u2, u1} β α g (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) s (Function.mulSupport.{u2, u3} β M (MulOneClass.toHasOne.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (Function.comp.{succ u2, succ u1, succ u3} β α M f g)))) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Set.image.{u2, u1} β α g s)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Set.image.{u2, u1} β α g s)) => f i))) (finprod.{u3, succ u2} M β _inst_1 (fun (j : β) => finprod.{u3, 0} M (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) j s) _inst_1 (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) j s) => f (g j)))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u3} β} {g : β -> α}, (Set.InjOn.{u3, u2} β α g (Inter.inter.{u3} (Set.{u3} β) (Set.instInterSet.{u3} β) s (Function.mulSupport.{u3, u1} β M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Function.comp.{succ u3, succ u2, succ u1} β α M f g)))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Set.image.{u3, u2} β α g s)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Set.image.{u3, u2} β α g s)) => f i))) (finprod.{u1, succ u3} M β _inst_1 (fun (j : β) => finprod.{u1, 0} M (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) j s) _inst_1 (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) j s) => f (g j)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_image' finprod_mem_image'ₓ'. -/
/-- The product of `f y` over `y ∈ g '' s` equals the product of `f (g i)` over `s`
provided that `g` is injective on `s ∩ mul_support (f ∘ g)`. -/
@[to_additive
@@ -1311,12 +864,6 @@ theorem finprod_mem_image' {s : Set β} {g : β → α} (hg : (s ∩ mulSupport
#align finprod_mem_image' finprod_mem_image'
#align finsum_mem_image' finsum_mem_image'
-/- warning: finprod_mem_image -> finprod_mem_image is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} {s : Set.{u2} β} {g : β -> α}, (Set.InjOn.{u2, u1} β α g s) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Set.image.{u2, u1} β α g s)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Set.image.{u2, u1} β α g s)) => f i))) (finprod.{u3, succ u2} M β _inst_1 (fun (j : β) => finprod.{u3, 0} M (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) j s) _inst_1 (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) j s) => f (g j)))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u3} β} {g : β -> α}, (Set.InjOn.{u3, u2} β α g s) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Set.image.{u3, u2} β α g s)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Set.image.{u3, u2} β α g s)) => f i))) (finprod.{u1, succ u3} M β _inst_1 (fun (j : β) => finprod.{u1, 0} M (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) j s) _inst_1 (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) j s) => f (g j)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_image finprod_mem_imageₓ'. -/
/-- The product of `f y` over `y ∈ g '' s` equals the product of `f (g i)` over `s` provided that
`g` is injective on `s`. -/
@[to_additive
@@ -1327,12 +874,6 @@ theorem finprod_mem_image {s : Set β} {g : β → α} (hg : s.InjOn g) :
#align finprod_mem_image finprod_mem_image
#align finsum_mem_image finsum_mem_image
-/- warning: finprod_mem_range' -> finprod_mem_range' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} {g : β -> α}, (Set.InjOn.{u2, u1} β α g (Function.mulSupport.{u2, u3} β M (MulOneClass.toHasOne.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (Function.comp.{succ u2, succ u1, succ u3} β α M f g))) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Set.range.{u1, succ u2} α β g)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Set.range.{u1, succ u2} α β g)) => f i))) (finprod.{u3, succ u2} M β _inst_1 (fun (j : β) => f (g j))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {g : β -> α}, (Set.InjOn.{u3, u2} β α g (Function.mulSupport.{u3, u1} β M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Function.comp.{succ u3, succ u2, succ u1} β α M f g))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Set.range.{u2, succ u3} α β g)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Set.range.{u2, succ u3} α β g)) => f i))) (finprod.{u1, succ u3} M β _inst_1 (fun (j : β) => f (g j))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_range' finprod_mem_range'ₓ'. -/
/-- The product of `f y` over `y ∈ set.range g` equals the product of `f (g i)` over all `i`
provided that `g` is injective on `mul_support (f ∘ g)`. -/
@[to_additive
@@ -1345,12 +886,6 @@ theorem finprod_mem_range' {g : β → α} (hg : (mulSupport (f ∘ g)).InjOn g)
#align finprod_mem_range' finprod_mem_range'
#align finsum_mem_range' finsum_mem_range'
-/- warning: finprod_mem_range -> finprod_mem_range is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} {g : β -> α}, (Function.Injective.{succ u2, succ u1} β α g) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Set.range.{u1, succ u2} α β g)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Set.range.{u1, succ u2} α β g)) => f i))) (finprod.{u3, succ u2} M β _inst_1 (fun (j : β) => f (g j))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {g : β -> α}, (Function.Injective.{succ u3, succ u2} β α g) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Set.range.{u2, succ u3} α β g)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Set.range.{u2, succ u3} α β g)) => f i))) (finprod.{u1, succ u3} M β _inst_1 (fun (j : β) => f (g j))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_range finprod_mem_rangeₓ'. -/
/-- The product of `f y` over `y ∈ set.range g` equals the product of `f (g i)` over all `i`
provided that `g` is injective. -/
@[to_additive
@@ -1360,12 +895,6 @@ theorem finprod_mem_range {g : β → α} (hg : Injective g) : (∏ᶠ i ∈ ran
#align finprod_mem_range finprod_mem_range
#align finsum_mem_range finsum_mem_range
-/- warning: finprod_mem_eq_of_bij_on -> finprod_mem_eq_of_bijOn is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {s : Set.{u1} α} {t : Set.{u2} β} {f : α -> M} {g : β -> M} (e : α -> β), (Set.BijOn.{u1, u2} α β e s t) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Eq.{succ u3} M (f x) (g (e x)))) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u3, succ u2} M β _inst_1 (fun (j : β) => finprod.{u3, 0} M (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) j t) _inst_1 (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) j t) => g j))))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {s : Set.{u3} α} {t : Set.{u2} β} {f : α -> M} {g : β -> M} (e : α -> β), (Set.BijOn.{u3, u2} α β e s t) -> (forall (x : α), (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) x s) -> (Eq.{succ u1} M (f x) (g (e x)))) -> (Eq.{succ u1} M (finprod.{u1, succ u3} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) i s) _inst_1 (fun (H : Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) i s) => f i))) (finprod.{u1, succ u2} M β _inst_1 (fun (j : β) => finprod.{u1, 0} M (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) j t) _inst_1 (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) j t) => g j))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_eq_of_bij_on finprod_mem_eq_of_bijOnₓ'. -/
/-- See also `finset.prod_bij`. -/
@[to_additive "See also `finset.sum_bij`."]
theorem finprod_mem_eq_of_bijOn {s : Set α} {t : Set β} {f : α → M} {g : β → M} (e : α → β)
@@ -1376,12 +905,6 @@ theorem finprod_mem_eq_of_bijOn {s : Set α} {t : Set β} {f : α → M} {g : β
#align finprod_mem_eq_of_bij_on finprod_mem_eq_of_bijOn
#align finsum_mem_eq_of_bij_on finsum_mem_eq_of_bijOn
-/- warning: finprod_eq_of_bijective -> finprod_eq_of_bijective is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} {g : β -> M} (e : α -> β), (Function.Bijective.{succ u1, succ u2} α β e) -> (forall (x : α), Eq.{succ u3} M (f x) (g (e x))) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i)) (finprod.{u3, succ u2} M β _inst_1 (fun (j : β) => g j)))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {g : β -> M} (e : α -> β), (Function.Bijective.{succ u3, succ u2} α β e) -> (forall (x : α), Eq.{succ u1} M (f x) (g (e x))) -> (Eq.{succ u1} M (finprod.{u1, succ u3} M α _inst_1 (fun (i : α) => f i)) (finprod.{u1, succ u2} M β _inst_1 (fun (j : β) => g j)))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_of_bijective finprod_eq_of_bijectiveₓ'. -/
/-- See `finprod_comp`, `fintype.prod_bijective` and `finset.prod_bij`. -/
@[to_additive "See `finsum_comp`, `fintype.sum_bijective` and `finset.sum_bij`."]
theorem finprod_eq_of_bijective {f : α → M} {g : β → M} (e : α → β) (he₀ : Bijective e)
@@ -1392,12 +915,6 @@ theorem finprod_eq_of_bijective {f : α → M} {g : β → M} (e : α → β) (h
#align finprod_eq_of_bijective finprod_eq_of_bijective
#align finsum_eq_of_bijective finsum_eq_of_bijective
-/- warning: finprod_comp -> finprod_comp is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {g : β -> M} (e : α -> β), (Function.Bijective.{succ u1, succ u2} α β e) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => g (e i))) (finprod.{u3, succ u2} M β _inst_1 (fun (j : β) => g j)))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {g : β -> M} (e : α -> β), (Function.Bijective.{succ u3, succ u2} α β e) -> (Eq.{succ u1} M (finprod.{u1, succ u3} M α _inst_1 (fun (i : α) => g (e i))) (finprod.{u1, succ u2} M β _inst_1 (fun (j : β) => g j)))
-Case conversion may be inaccurate. Consider using '#align finprod_comp finprod_compₓ'. -/
/-- See also `finprod_eq_of_bijective`, `fintype.prod_bijective` and `finset.prod_bij`. -/
@[to_additive "See also `finsum_eq_of_bijective`, `fintype.sum_bijective` and `finset.sum_bij`."]
theorem finprod_comp {g : β → M} (e : α → β) (he₀ : Function.Bijective e) :
@@ -1406,24 +923,12 @@ theorem finprod_comp {g : β → M} (e : α → β) (he₀ : Function.Bijective
#align finprod_comp finprod_comp
#align finsum_comp finsum_comp
-/- warning: finprod_comp_equiv -> finprod_comp_equiv is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] (e : Equiv.{succ u1, succ u2} α β) {f : β -> M}, Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e i))) (finprod.{u3, succ u2} M β _inst_1 (fun (i' : β) => f i'))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (e : Equiv.{succ u3, succ u2} α β) {f : β -> M}, Eq.{succ u1} M (finprod.{u1, succ u3} M α _inst_1 (fun (i : α) => f (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} α β) e i))) (finprod.{u1, succ u2} M β _inst_1 (fun (i' : β) => f i'))
-Case conversion may be inaccurate. Consider using '#align finprod_comp_equiv finprod_comp_equivₓ'. -/
@[to_additive]
theorem finprod_comp_equiv (e : α ≃ β) {f : β → M} : (∏ᶠ i, f (e i)) = ∏ᶠ i', f i' :=
finprod_comp e e.Bijective
#align finprod_comp_equiv finprod_comp_equiv
#align finsum_comp_equiv finsum_comp_equiv
-/- warning: finprod_set_coe_eq_finprod_mem -> finprod_set_coe_eq_finprod_mem is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} (s : Set.{u1} α), Eq.{succ u2} M (finprod.{u2, succ u1} M (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) _inst_1 (fun (j : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) j))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} (s : Set.{u2} α), Eq.{succ u1} M (finprod.{u1, succ u2} M (Set.Elem.{u2} α s) _inst_1 (fun (j : Set.Elem.{u2} α s) => f (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) j))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i)))
-Case conversion may be inaccurate. Consider using '#align finprod_set_coe_eq_finprod_mem finprod_set_coe_eq_finprod_memₓ'. -/
@[to_additive]
theorem finprod_set_coe_eq_finprod_mem (s : Set α) : (∏ᶠ j : s, f j) = ∏ᶠ i ∈ s, f i :=
by
@@ -1441,12 +946,6 @@ theorem finprod_subtype_eq_finprod_cond (p : α → Prop) :
#align finsum_subtype_eq_finsum_cond finsum_subtype_eq_finsum_cond
-/
-/- warning: finprod_mem_inter_mul_diff' -> finprod_mem_inter_mul_diff' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} (t : Set.{u1} α), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u2} M (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t)) => f i)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α} (t : Set.{u2} α), (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Eq.{succ u1} M (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (SDiff.sdiff.{u2} (Set.{u2} α) (Set.instSDiffSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (SDiff.sdiff.{u2} (Set.{u2} α) (Set.instSDiffSet.{u2} α) s t)) => f i)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_inter_mul_diff' finprod_mem_inter_mul_diff'ₓ'. -/
@[to_additive]
theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finite) :
((∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i) = ∏ᶠ i ∈ s, f i :=
@@ -1458,12 +957,6 @@ theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finit
#align finprod_mem_inter_mul_diff' finprod_mem_inter_mul_diff'
#align finsum_mem_inter_add_diff' finsum_mem_inter_add_diff'
-/- warning: finprod_mem_inter_mul_diff -> finprod_mem_inter_mul_diff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} (t : Set.{u1} α), (Set.Finite.{u1} α s) -> (Eq.{succ u2} M (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t)) => f i)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α} (t : Set.{u2} α), (Set.Finite.{u2} α s) -> (Eq.{succ u1} M (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (SDiff.sdiff.{u2} (Set.{u2} α) (Set.instSDiffSet.{u2} α) s t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (SDiff.sdiff.{u2} (Set.{u2} α) (Set.instSDiffSet.{u2} α) s t)) => f i)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_inter_mul_diff finprod_mem_inter_mul_diffₓ'. -/
@[to_additive]
theorem finprod_mem_inter_mul_diff (t : Set α) (h : s.Finite) :
((∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i) = ∏ᶠ i ∈ s, f i :=
@@ -1471,12 +964,6 @@ theorem finprod_mem_inter_mul_diff (t : Set α) (h : s.Finite) :
#align finprod_mem_inter_mul_diff finprod_mem_inter_mul_diff
#align finsum_mem_inter_add_diff finsum_mem_inter_add_diff
-/- warning: finprod_mem_mul_diff' -> finprod_mem_mul_diff' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u2} M (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) => f i)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) => f i))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α} {t : Set.{u2} α}, (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) s t) -> (Set.Finite.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) t (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f))) -> (Eq.{succ u1} M (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (SDiff.sdiff.{u2} (Set.{u2} α) (Set.instSDiffSet.{u2} α) t s)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (SDiff.sdiff.{u2} (Set.{u2} α) (Set.instSDiffSet.{u2} α) t s)) => f i)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) => f i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_mul_diff' finprod_mem_mul_diff'ₓ'. -/
/-- A more general version of `finprod_mem_mul_diff` that requires `t ∩ mul_support f` rather than
`t` to be finite. -/
@[to_additive
@@ -1487,12 +974,6 @@ theorem finprod_mem_mul_diff' (hst : s ⊆ t) (ht : (t ∩ mulSupport f).Finite)
#align finprod_mem_mul_diff' finprod_mem_mul_diff'
#align finsum_mem_add_diff' finsum_mem_add_diff'
-/- warning: finprod_mem_mul_diff -> finprod_mem_mul_diff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Set.Finite.{u1} α t) -> (Eq.{succ u2} M (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) => f i)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i t) => f i))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {s : Set.{u2} α} {t : Set.{u2} α}, (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) s t) -> (Set.Finite.{u2} α t) -> (Eq.{succ u1} M (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i s) => f i))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (SDiff.sdiff.{u2} (Set.{u2} α) (Set.instSDiffSet.{u2} α) t s)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i (SDiff.sdiff.{u2} (Set.{u2} α) (Set.instSDiffSet.{u2} α) t s)) => f i)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) i t) => f i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_mul_diff finprod_mem_mul_diffₓ'. -/
/-- Given a finite set `t` and a subset `s` of `t`, the product of `f i` over `i ∈ s`
times the product of `f i` over `t \ s` equals the product of `f i` over `i ∈ t`. -/
@[to_additive
@@ -1503,12 +984,6 @@ theorem finprod_mem_mul_diff (hst : s ⊆ t) (ht : t.Finite) :
#align finprod_mem_mul_diff finprod_mem_mul_diff
#align finsum_mem_add_diff finsum_mem_add_diff
-/- warning: finprod_mem_Union -> finprod_mem_iUnion is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {ι : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} [_inst_3 : Finite.{succ u2} ι] {t : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) t)) -> (forall (i : ι), Set.Finite.{u1} α (t i)) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) => f a))) (finprod.{u3, succ u2} M ι _inst_1 (fun (i : ι) => finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (t i)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (t i)) => f a)))))
-but is expected to have type
- forall {α : Type.{u2}} {ι : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} [_inst_3 : Finite.{succ u3} ι] {t : ι -> (Set.{u2} α)}, (Pairwise.{u3} ι (Function.onFun.{succ u3, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) t)) -> (forall (i : ι), Set.Finite.{u2} α (t i)) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.iUnion.{u2, succ u3} α ι (fun (i : ι) => t i))) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.iUnion.{u2, succ u3} α ι (fun (i : ι) => t i))) => f a))) (finprod.{u1, succ u3} M ι _inst_1 (fun (i : ι) => finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (t i)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (t i)) => f a)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_Union finprod_mem_iUnionₓ'. -/
/-- Given a family of pairwise disjoint finite sets `t i` indexed by a finite type, the product of
`f a` over the union `⋃ i, t i` is equal to the product over all indexes `i` of the products of
`f a` over `a ∈ t i`. -/
@@ -1527,12 +1002,6 @@ theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoi
#align finprod_mem_Union finprod_mem_iUnion
#align finsum_mem_Union finsum_mem_iUnion
-/- warning: finprod_mem_bUnion -> finprod_mem_biUnion is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {ι : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} {I : Set.{u2} ι} {t : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) I t) -> (Set.Finite.{u2} ι I) -> (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i I) -> (Set.Finite.{u1} α (t i))) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.iUnion.{u1, succ u2} α ι (fun (x : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) => t x)))) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.iUnion.{u1, succ u2} α ι (fun (x : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) => t x)))) => f a))) (finprod.{u3, succ u2} M ι _inst_1 (fun (i : ι) => finprod.{u3, 0} M (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i I) _inst_1 (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i I) => finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j (t i)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j (t i)) => f j))))))
-but is expected to have type
- forall {α : Type.{u2}} {ι : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {I : Set.{u3} ι} {t : ι -> (Set.{u2} α)}, (Set.PairwiseDisjoint.{u2, u3} (Set.{u2} α) ι (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) I t) -> (Set.Finite.{u3} ι I) -> (forall (i : ι), (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) i I) -> (Set.Finite.{u2} α (t i))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.iUnion.{u2, succ u3} α ι (fun (x : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) (fun (H : Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) => t x)))) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.iUnion.{u2, succ u3} α ι (fun (x : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) (fun (H : Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) => t x)))) => f a))) (finprod.{u1, succ u3} M ι _inst_1 (fun (i : ι) => finprod.{u1, 0} M (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) i I) _inst_1 (fun (H : Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) i I) => finprod.{u1, succ u2} M α _inst_1 (fun (j : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j (t i)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j (t i)) => f j))))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_bUnion finprod_mem_biUnionₓ'. -/
/-- Given a family of sets `t : ι → set α`, a finite set `I` in the index type such that all sets
`t i`, `i ∈ I`, are finite, if all `t i`, `i ∈ I`, are pairwise disjoint, then the product of `f a`
over `a ∈ ⋃ i ∈ I, t i` is equal to the product over `i ∈ I` of the products of `f a` over
@@ -1548,12 +1017,6 @@ theorem finprod_mem_biUnion {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisj
#align finprod_mem_bUnion finprod_mem_biUnion
#align finsum_mem_bUnion finsum_mem_biUnion
-/- warning: finprod_mem_sUnion -> finprod_mem_sUnion is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {t : Set.{u1} (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u1} (Set.{u1} α) (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) t (id.{succ u1} (Set.{u1} α))) -> (Set.Finite.{u1} (Set.{u1} α) t) -> (forall (x : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x t) -> (Set.Finite.{u1} α x)) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (a : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.sUnion.{u1} α t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.sUnion.{u1} α t)) => f a))) (finprod.{u2, succ u1} M (Set.{u1} α) _inst_1 (fun (s : Set.{u1} α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s t) _inst_1 (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s t) => finprod.{u2, succ u1} M α _inst_1 (fun (a : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {t : Set.{u2} (Set.{u2} α)}, (Set.PairwiseDisjoint.{u2, u2} (Set.{u2} α) (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) t (id.{succ u2} (Set.{u2} α))) -> (Set.Finite.{u2} (Set.{u2} α) t) -> (forall (x : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Set.{u2} (Set.{u2} α)) (Set.instMembershipSet.{u2} (Set.{u2} α)) x t) -> (Set.Finite.{u2} α x)) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.sUnion.{u2} α t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.sUnion.{u2} α t)) => f a))) (finprod.{u1, succ u2} M (Set.{u2} α) _inst_1 (fun (s : Set.{u2} α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} (Set.{u2} α) (Set.{u2} (Set.{u2} α)) (Set.instMembershipSet.{u2} (Set.{u2} α)) s t) _inst_1 (fun (H : Membership.mem.{u2, u2} (Set.{u2} α) (Set.{u2} (Set.{u2} α)) (Set.instMembershipSet.{u2} (Set.{u2} α)) s t) => finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) => f a))))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_sUnion finprod_mem_sUnionₓ'. -/
/-- If `t` is a finite set of pairwise disjoint finite sets, then the product of `f a`
over `a ∈ ⋃₀ t` is the product over `s ∈ t` of the products of `f a` over `a ∈ s`. -/
@[to_additive
@@ -1564,12 +1027,6 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
#align finprod_mem_sUnion finprod_mem_sUnion
#align finsum_mem_sUnion finsum_mem_sUnion
-/- warning: mul_finprod_cond_ne -> mul_finprod_cond_ne is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} (a : α), (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) -> (Eq.{succ u2} M (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) (f a) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Ne.{succ u1} α i a) _inst_1 (fun (H : Ne.{succ u1} α i a) => f i)))) (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i)))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} (a : α), (Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) -> (Eq.{succ u1} M (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (f a) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Ne.{succ u2} α i a) _inst_1 (fun (H : Ne.{succ u2} α i a) => f i)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)))
-Case conversion may be inaccurate. Consider using '#align mul_finprod_cond_ne mul_finprod_cond_neₓ'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr ≠ » a) -/
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
@@ -1590,12 +1047,6 @@ theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
#align mul_finprod_cond_ne mul_finprod_cond_ne
#align add_finsum_cond_ne add_finsum_cond_ne
-/- warning: finprod_mem_comm -> finprod_mem_comm is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {s : Set.{u1} α} {t : Set.{u2} β} (f : α -> β -> M), (Set.Finite.{u1} α s) -> (Set.Finite.{u2} β t) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => finprod.{u3, succ u2} M β _inst_1 (fun (j : β) => finprod.{u3, 0} M (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) j t) _inst_1 (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) j t) => f i j))))) (finprod.{u3, succ u2} M β _inst_1 (fun (j : β) => finprod.{u3, 0} M (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) j t) _inst_1 (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) j t) => finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i j))))))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {s : Set.{u3} α} {t : Set.{u2} β} (f : α -> β -> M), (Set.Finite.{u3} α s) -> (Set.Finite.{u2} β t) -> (Eq.{succ u1} M (finprod.{u1, succ u3} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) i s) _inst_1 (fun (H : Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) i s) => finprod.{u1, succ u2} M β _inst_1 (fun (j : β) => finprod.{u1, 0} M (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) j t) _inst_1 (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) j t) => f i j))))) (finprod.{u1, succ u2} M β _inst_1 (fun (j : β) => finprod.{u1, 0} M (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) j t) _inst_1 (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) j t) => finprod.{u1, succ u3} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) i s) _inst_1 (fun (H : Membership.mem.{u3, u3} α (Set.{u3} α) (Set.instMembershipSet.{u3} α) i s) => f i j))))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_comm finprod_mem_commₓ'. -/
/-- If `s : set α` and `t : set β` are finite sets, then taking the product over `s` commutes with
taking the product over `t`. -/
@[to_additive
@@ -1609,12 +1060,6 @@ theorem finprod_mem_comm {s : Set α} {t : Set β} (f : α → β → M) (hs : s
#align finprod_mem_comm finprod_mem_comm
#align finsum_mem_comm finsum_mem_comm
-/- warning: finprod_mem_induction -> finprod_mem_induction is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} (p : M -> Prop), (p (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))))) -> (forall (x : M) (y : M), (p x) -> (p y) -> (p (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) x y))) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (p (f x))) -> (p (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i))))
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {s : Set.{u1} α} (p : M -> Prop), (p (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))))) -> (forall (x : M) (y : M), (p x) -> (p y) -> (p (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))) x y))) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (p (f x))) -> (p (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_induction finprod_mem_inductionₓ'. -/
/-- To prove a property of a finite product, it suffices to prove that the property is
multiplicative and holds on factors. -/
@[to_additive
@@ -1625,23 +1070,11 @@ theorem finprod_mem_induction (p : M → Prop) (hp₀ : p 1) (hp₁ : ∀ x y, p
#align finprod_mem_induction finprod_mem_induction
#align finsum_mem_induction finsum_mem_induction
-/- warning: finprod_cond_nonneg -> finprod_cond_nonneg is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : OrderedCommSemiring.{u2} R] {p : α -> Prop} {f : α -> R}, (forall (x : α), (p x) -> (LE.le.{u2} R (Preorder.toHasLe.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (f x))) -> (LE.le.{u2} R (Preorder.toHasLe.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (finprod.{u2, succ u1} R α (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (x : α) => finprod.{u2, 0} R (p x) (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (h : p x) => f x))))
-but is expected to have type
- forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : OrderedCommSemiring.{u2} R] {p : α -> Prop} {f : α -> R}, (forall (x : α), (p x) -> (LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedSemiring.toPartialOrder.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3)))) (OfNat.ofNat.{u2} R 0 (Zero.toOfNat0.{u2} R (CommMonoidWithZero.toZero.{u2} R (CommSemiring.toCommMonoidWithZero.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3))))) (f x))) -> (LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedSemiring.toPartialOrder.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3)))) (OfNat.ofNat.{u2} R 0 (Zero.toOfNat0.{u2} R (CommMonoidWithZero.toZero.{u2} R (CommSemiring.toCommMonoidWithZero.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3))))) (finprod.{u2, succ u1} R α (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (x : α) => finprod.{u2, 0} R (p x) (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (h : p x) => f x))))
-Case conversion may be inaccurate. Consider using '#align finprod_cond_nonneg finprod_cond_nonnegₓ'. -/
theorem finprod_cond_nonneg {R : Type _} [OrderedCommSemiring R] {p : α → Prop} {f : α → R}
(hf : ∀ x, p x → 0 ≤ f x) : 0 ≤ ∏ᶠ (x) (h : p x), f x :=
finprod_nonneg fun x => finprod_nonneg <| hf x
#align finprod_cond_nonneg finprod_cond_nonneg
-/- warning: single_le_finprod -> single_le_finprod is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_3 : OrderedCommMonoid.{u2} M] (i : α) {f : α -> M}, (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3)))) f)) -> (forall (j : α), LE.le.{u2} M (Preorder.toHasLe.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))))) (f j)) -> (LE.le.{u2} M (Preorder.toHasLe.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (f i) (finprod.{u2, succ u1} M α (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3) (fun (j : α) => f j)))
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_3 : OrderedCommMonoid.{u2} M] (i : α) {f : α -> M}, (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))) f)) -> (forall (j : α), LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))) (f j)) -> (LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (f i) (finprod.{u2, succ u1} M α (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3) (fun (j : α) => f j)))
-Case conversion may be inaccurate. Consider using '#align single_le_finprod single_le_finprodₓ'. -/
@[to_additive]
theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α → M}
(hf : (mulSupport f).Finite) (h : ∀ j, 1 ≤ f j) : f i ≤ ∏ᶠ j, f j := by
@@ -1654,12 +1087,6 @@ theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α
#align single_le_finprod single_le_finprod
#align single_le_finsum single_le_finsum
-/- warning: finprod_eq_zero -> finprod_eq_zero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M₀ : Type.{u2}} [_inst_3 : CommMonoidWithZero.{u2} M₀] (f : α -> M₀) (x : α), (Eq.{succ u2} M₀ (f x) (OfNat.ofNat.{u2} M₀ 0 (OfNat.mk.{u2} M₀ 0 (Zero.zero.{u2} M₀ (MulZeroClass.toHasZero.{u2} M₀ (MulZeroOneClass.toMulZeroClass.{u2} M₀ (MonoidWithZero.toMulZeroOneClass.{u2} M₀ (CommMonoidWithZero.toMonoidWithZero.{u2} M₀ _inst_3)))))))) -> (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M₀ (MulOneClass.toHasOne.{u2} M₀ (MulZeroOneClass.toMulOneClass.{u2} M₀ (MonoidWithZero.toMulZeroOneClass.{u2} M₀ (CommMonoidWithZero.toMonoidWithZero.{u2} M₀ _inst_3)))) f)) -> (Eq.{succ u2} M₀ (finprod.{u2, succ u1} M₀ α (CommMonoidWithZero.toCommMonoid.{u2} M₀ _inst_3) (fun (x : α) => f x)) (OfNat.ofNat.{u2} M₀ 0 (OfNat.mk.{u2} M₀ 0 (Zero.zero.{u2} M₀ (MulZeroClass.toHasZero.{u2} M₀ (MulZeroOneClass.toMulZeroClass.{u2} M₀ (MonoidWithZero.toMulZeroOneClass.{u2} M₀ (CommMonoidWithZero.toMonoidWithZero.{u2} M₀ _inst_3))))))))
-but is expected to have type
- forall {α : Type.{u1}} {M₀ : Type.{u2}} [_inst_3 : CommMonoidWithZero.{u2} M₀] (f : α -> M₀) (x : α), (Eq.{succ u2} M₀ (f x) (OfNat.ofNat.{u2} M₀ 0 (Zero.toOfNat0.{u2} M₀ (CommMonoidWithZero.toZero.{u2} M₀ _inst_3)))) -> (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M₀ (Monoid.toOne.{u2} M₀ (MonoidWithZero.toMonoid.{u2} M₀ (CommMonoidWithZero.toMonoidWithZero.{u2} M₀ _inst_3))) f)) -> (Eq.{succ u2} M₀ (finprod.{u2, succ u1} M₀ α (CommMonoidWithZero.toCommMonoid.{u2} M₀ _inst_3) (fun (x : α) => f x)) (OfNat.ofNat.{u2} M₀ 0 (Zero.toOfNat0.{u2} M₀ (CommMonoidWithZero.toZero.{u2} M₀ _inst_3))))
-Case conversion may be inaccurate. Consider using '#align finprod_eq_zero finprod_eq_zeroₓ'. -/
theorem finprod_eq_zero {M₀ : Type _} [CommMonoidWithZero M₀] (f : α → M₀) (x : α) (hx : f x = 0)
(hf : (mulSupport f).Finite) : (∏ᶠ x, f x) = 0 :=
by
@@ -1669,12 +1096,6 @@ theorem finprod_eq_zero {M₀ : Type _} [CommMonoidWithZero M₀] (f : α → M
simp [hx]
#align finprod_eq_zero finprod_eq_zero
-/- warning: finprod_prod_comm -> finprod_prod_comm is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] (s : Finset.{u2} β) (f : α -> β -> M), (forall (b : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) -> (Set.Finite.{u1} α (Function.mulSupport.{u1, u3} α M (MulOneClass.toHasOne.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (fun (a : α) => f a b)))) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => Finset.prod.{u3, u2} M β _inst_1 s (fun (b : β) => f a b))) (Finset.prod.{u3, u2} M β _inst_1 s (fun (b : β) => finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => f a b))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (s : Finset.{u3} β) (f : α -> β -> M), (forall (b : β), (Membership.mem.{u3, u3} β (Finset.{u3} β) (Finset.instMembershipFinset.{u3} β) b s) -> (Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (fun (a : α) => f a b)))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => Finset.prod.{u1, u3} M β _inst_1 s (fun (b : β) => f a b))) (Finset.prod.{u1, u3} M β _inst_1 s (fun (b : β) => finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => f a b))))
-Case conversion may be inaccurate. Consider using '#align finprod_prod_comm finprod_prod_commₓ'. -/
@[to_additive]
theorem finprod_prod_comm (s : Finset β) (f : α → β → M)
(h : ∀ b ∈ s, (mulSupport fun a => f a b).Finite) :
@@ -1697,12 +1118,6 @@ theorem finprod_prod_comm (s : Finset β) (f : α → β → M)
#align finprod_prod_comm finprod_prod_comm
#align finsum_sum_comm finsum_sum_comm
-/- warning: prod_finprod_comm -> prod_finprod_comm is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] (s : Finset.{u1} α) (f : α -> β -> M), (forall (a : α), (Membership.Mem.{u1, u1} α (Finset.{u1} α) (Finset.hasMem.{u1} α) a s) -> (Set.Finite.{u2} β (Function.mulSupport.{u2, u3} β M (MulOneClass.toHasOne.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (f a)))) -> (Eq.{succ u3} M (Finset.prod.{u3, u1} M α _inst_1 s (fun (a : α) => finprod.{u3, succ u2} M β _inst_1 (fun (b : β) => f a b))) (finprod.{u3, succ u2} M β _inst_1 (fun (b : β) => Finset.prod.{u3, u1} M α _inst_1 s (fun (a : α) => f a b))))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (s : Finset.{u3} α) (f : α -> β -> M), (forall (a : α), (Membership.mem.{u3, u3} α (Finset.{u3} α) (Finset.instMembershipFinset.{u3} α) a s) -> (Set.Finite.{u2} β (Function.mulSupport.{u2, u1} β M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (f a)))) -> (Eq.{succ u1} M (Finset.prod.{u1, u3} M α _inst_1 s (fun (a : α) => finprod.{u1, succ u2} M β _inst_1 (fun (b : β) => f a b))) (finprod.{u1, succ u2} M β _inst_1 (fun (b : β) => Finset.prod.{u1, u3} M α _inst_1 s (fun (a : α) => f a b))))
-Case conversion may be inaccurate. Consider using '#align prod_finprod_comm prod_finprod_commₓ'. -/
@[to_additive]
theorem prod_finprod_comm (s : Finset α) (f : α → β → M) (h : ∀ a ∈ s, (mulSupport (f a)).Finite) :
(∏ a in s, ∏ᶠ b : β, f a b) = ∏ᶠ b : β, ∏ a in s, f a b :=
@@ -1710,34 +1125,16 @@ theorem prod_finprod_comm (s : Finset α) (f : α → β → M) (h : ∀ a ∈ s
#align prod_finprod_comm prod_finprod_comm
#align sum_finsum_comm sum_finsum_comm
-/- warning: mul_finsum -> mul_finsum is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : Semiring.{u2} R] (f : α -> R) (r : R), (Set.Finite.{u1} α (Function.support.{u1, u2} α R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3)))) f)) -> (Eq.{succ u2} R (HMul.hMul.{u2, u2, u2} R R R (instHMul.{u2} R (Distrib.toHasMul.{u2} R (NonUnitalNonAssocSemiring.toDistrib.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))))) r (finsum.{u2, succ u1} R α (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))) (fun (a : α) => f a))) (finsum.{u2, succ u1} R α (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))) (fun (a : α) => HMul.hMul.{u2, u2, u2} R R R (instHMul.{u2} R (Distrib.toHasMul.{u2} R (NonUnitalNonAssocSemiring.toDistrib.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))))) r (f a))))
-but is expected to have type
- forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : Semiring.{u2} R] (f : α -> R) (r : R), (Set.Finite.{u1} α (Function.support.{u1, u2} α R (MonoidWithZero.toZero.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_3)) f)) -> (Eq.{succ u2} R (HMul.hMul.{u2, u2, u2} R R R (instHMul.{u2} R (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3)))) r (finsum.{u2, succ u1} R α (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))) (fun (a : α) => f a))) (finsum.{u2, succ u1} R α (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))) (fun (a : α) => HMul.hMul.{u2, u2, u2} R R R (instHMul.{u2} R (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3)))) r (f a))))
-Case conversion may be inaccurate. Consider using '#align mul_finsum mul_finsumₓ'. -/
theorem mul_finsum {R : Type _} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
(r * ∑ᶠ a : α, f a) = ∑ᶠ a : α, r * f a :=
(AddMonoidHom.mulLeft r).map_finsum h
#align mul_finsum mul_finsum
-/- warning: finsum_mul -> finsum_mul is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : Semiring.{u2} R] (f : α -> R) (r : R), (Set.Finite.{u1} α (Function.support.{u1, u2} α R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3)))) f)) -> (Eq.{succ u2} R (HMul.hMul.{u2, u2, u2} R R R (instHMul.{u2} R (Distrib.toHasMul.{u2} R (NonUnitalNonAssocSemiring.toDistrib.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))))) (finsum.{u2, succ u1} R α (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))) (fun (a : α) => f a)) r) (finsum.{u2, succ u1} R α (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))) (fun (a : α) => HMul.hMul.{u2, u2, u2} R R R (instHMul.{u2} R (Distrib.toHasMul.{u2} R (NonUnitalNonAssocSemiring.toDistrib.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))))) (f a) r)))
-but is expected to have type
- forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : Semiring.{u2} R] (f : α -> R) (r : R), (Set.Finite.{u1} α (Function.support.{u1, u2} α R (MonoidWithZero.toZero.{u2} R (Semiring.toMonoidWithZero.{u2} R _inst_3)) f)) -> (Eq.{succ u2} R (HMul.hMul.{u2, u2, u2} R R R (instHMul.{u2} R (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3)))) (finsum.{u2, succ u1} R α (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))) (fun (a : α) => f a)) r) (finsum.{u2, succ u1} R α (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3))) (fun (a : α) => HMul.hMul.{u2, u2, u2} R R R (instHMul.{u2} R (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R _inst_3)))) (f a) r)))
-Case conversion may be inaccurate. Consider using '#align finsum_mul finsum_mulₓ'. -/
theorem finsum_mul {R : Type _} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
(∑ᶠ a : α, f a) * r = ∑ᶠ a : α, f a * r :=
(AddMonoidHom.mulRight r).map_finsum h
#align finsum_mul finsum_mul
-/- warning: finset.mul_support_of_fiberwise_prod_subset_image -> Finset.mulSupport_of_fiberwise_prod_subset_image is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] [_inst_3 : DecidableEq.{succ u2} β] (s : Finset.{u1} α) (f : α -> M) (g : α -> β), HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) (Function.mulSupport.{u2, u3} β M (MulOneClass.toHasOne.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (fun (b : β) => Finset.prod.{u3, u1} M α _inst_1 (Finset.filter.{u1} α (fun (a : α) => Eq.{succ u2} β (g a) b) (fun (a : α) => _inst_3 (g a) b) s) f)) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} β) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (Finset.Set.hasCoeT.{u2} β))) (Finset.image.{u1, u2} α β (fun (a : β) (b : β) => _inst_3 a b) g s))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] [_inst_3 : DecidableEq.{succ u3} β] (s : Finset.{u2} α) (f : α -> M) (g : α -> β), HasSubset.Subset.{u3} (Set.{u3} β) (Set.instHasSubsetSet.{u3} β) (Function.mulSupport.{u3, u1} β M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (fun (b : β) => Finset.prod.{u1, u2} M α _inst_1 (Finset.filter.{u2} α (fun (a : α) => Eq.{succ u3} β (g a) b) (fun (a : α) => _inst_3 (g a) b) s) f)) (Finset.toSet.{u3} β (Finset.image.{u2, u3} α β (fun (a : β) (b : β) => _inst_3 a b) g s))
-Case conversion may be inaccurate. Consider using '#align finset.mul_support_of_fiberwise_prod_subset_image Finset.mulSupport_of_fiberwise_prod_subset_imageₓ'. -/
@[to_additive]
theorem Finset.mulSupport_of_fiberwise_prod_subset_image [DecidableEq β] (s : Finset α) (f : α → M)
(g : α → β) : (mulSupport fun b => (s.filterₓ fun a => g a = b).Prod f) ⊆ s.image g :=
@@ -1750,12 +1147,6 @@ theorem Finset.mulSupport_of_fiberwise_prod_subset_image [DecidableEq β] (s : F
#align finset.mul_support_of_fiberwise_prod_subset_image Finset.mulSupport_of_fiberwise_prod_subset_image
#align finset.support_of_fiberwise_sum_subset_image Finset.support_of_fiberwise_sum_subset_image
-/- warning: finprod_mem_finset_product' -> finprod_mem_finset_product' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] [_inst_3 : DecidableEq.{succ u1} α] [_inst_4 : DecidableEq.{succ u2} β] (s : Finset.{max u1 u2} (Prod.{u1, u2} α β)) (f : (Prod.{u1, u2} α β) -> M), Eq.{succ u3} M (finprod.{u3, succ (max u1 u2)} M (Prod.{u1, u2} α β) _inst_1 (fun (ab : Prod.{u1, u2} α β) => finprod.{u3, 0} M (Membership.Mem.{max u1 u2, max u1 u2} (Prod.{u1, u2} α β) (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.hasMem.{max u1 u2} (Prod.{u1, u2} α β)) ab s) _inst_1 (fun (h : Membership.Mem.{max u1 u2, max u1 u2} (Prod.{u1, u2} α β) (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.hasMem.{max u1 u2} (Prod.{u1, u2} α β)) ab s) => f ab))) (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, succ u2} M β _inst_1 (fun (b : β) => finprod.{u3, 0} M (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b (Finset.image.{max u1 u2, u2} (Prod.{u1, u2} α β) β (fun (a : β) (b : β) => _inst_4 a b) (Prod.snd.{u1, u2} α β) (Finset.filter.{max u1 u2} (Prod.{u1, u2} α β) (fun (ab : Prod.{u1, u2} α β) => Eq.{succ u1} α (Prod.fst.{u1, u2} α β ab) a) (fun (a_1 : Prod.{u1, u2} α β) => _inst_3 (Prod.fst.{u1, u2} α β a_1) a) s))) _inst_1 (fun (h : Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b (Finset.image.{max u1 u2, u2} (Prod.{u1, u2} α β) β (fun (a : β) (b : β) => _inst_4 a b) (Prod.snd.{u1, u2} α β) (Finset.filter.{max u1 u2} (Prod.{u1, u2} α β) (fun (ab : Prod.{u1, u2} α β) => Eq.{succ u1} α (Prod.fst.{u1, u2} α β ab) a) (fun (a_1 : Prod.{u1, u2} α β) => _inst_3 (Prod.fst.{u1, u2} α β a_1) a) s))) => f (Prod.mk.{u1, u2} α β a b)))))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] [_inst_3 : DecidableEq.{succ u3} α] [_inst_4 : DecidableEq.{succ u2} β] (s : Finset.{max u2 u3} (Prod.{u3, u2} α β)) (f : (Prod.{u3, u2} α β) -> M), Eq.{succ u1} M (finprod.{u1, succ (max u3 u2)} M (Prod.{u3, u2} α β) _inst_1 (fun (ab : Prod.{u3, u2} α β) => finprod.{u1, 0} M (Membership.mem.{max u3 u2, max u3 u2} (Prod.{u3, u2} α β) (Finset.{max u2 u3} (Prod.{u3, u2} α β)) (Finset.instMembershipFinset.{max u3 u2} (Prod.{u3, u2} α β)) ab s) _inst_1 (fun (h : Membership.mem.{max u3 u2, max u3 u2} (Prod.{u3, u2} α β) (Finset.{max u2 u3} (Prod.{u3, u2} α β)) (Finset.instMembershipFinset.{max u3 u2} (Prod.{u3, u2} α β)) ab s) => f ab))) (finprod.{u1, succ u3} M α _inst_1 (fun (a : α) => finprod.{u1, succ u2} M β _inst_1 (fun (b : β) => finprod.{u1, 0} M (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b (Finset.image.{max u2 u3, u2} (Prod.{u3, u2} α β) β (fun (a : β) (b : β) => _inst_4 a b) (Prod.snd.{u3, u2} α β) (Finset.filter.{max u2 u3} (Prod.{u3, u2} α β) (fun (ab : Prod.{u3, u2} α β) => Eq.{succ u3} α (Prod.fst.{u3, u2} α β ab) a) (fun (a_1 : Prod.{u3, u2} α β) => _inst_3 (Prod.fst.{u3, u2} α β a_1) a) s))) _inst_1 (fun (h : Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b (Finset.image.{max u2 u3, u2} (Prod.{u3, u2} α β) β (fun (a : β) (b : β) => _inst_4 a b) (Prod.snd.{u3, u2} α β) (Finset.filter.{max u2 u3} (Prod.{u3, u2} α β) (fun (ab : Prod.{u3, u2} α β) => Eq.{succ u3} α (Prod.fst.{u3, u2} α β ab) a) (fun (a_1 : Prod.{u3, u2} α β) => _inst_3 (Prod.fst.{u3, u2} α β a_1) a) s))) => f (Prod.mk.{u3, u2} α β a b)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_finset_product' finprod_mem_finset_product'ₓ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
/-- Note that `b ∈ (s.filter (λ ab, prod.fst ab = a)).image prod.snd` iff `(a, b) ∈ s` so we can
simplify the right hand side of this lemma. However the form stated here is more useful for
@@ -1788,12 +1179,6 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
#align finprod_mem_finset_product' finprod_mem_finset_product'
#align finsum_mem_finset_product' finsum_mem_finset_product'
-/- warning: finprod_mem_finset_product -> finprod_mem_finset_product is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] (s : Finset.{max u1 u2} (Prod.{u1, u2} α β)) (f : (Prod.{u1, u2} α β) -> M), Eq.{succ u3} M (finprod.{u3, succ (max u1 u2)} M (Prod.{u1, u2} α β) _inst_1 (fun (ab : Prod.{u1, u2} α β) => finprod.{u3, 0} M (Membership.Mem.{max u1 u2, max u1 u2} (Prod.{u1, u2} α β) (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.hasMem.{max u1 u2} (Prod.{u1, u2} α β)) ab s) _inst_1 (fun (h : Membership.Mem.{max u1 u2, max u1 u2} (Prod.{u1, u2} α β) (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.hasMem.{max u1 u2} (Prod.{u1, u2} α β)) ab s) => f ab))) (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, succ u2} M β _inst_1 (fun (b : β) => finprod.{u3, 0} M (Membership.Mem.{max u1 u2, max u1 u2} (Prod.{u1, u2} α β) (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.hasMem.{max u1 u2} (Prod.{u1, u2} α β)) (Prod.mk.{u1, u2} α β a b) s) _inst_1 (fun (h : Membership.Mem.{max u1 u2, max u1 u2} (Prod.{u1, u2} α β) (Finset.{max u1 u2} (Prod.{u1, u2} α β)) (Finset.hasMem.{max u1 u2} (Prod.{u1, u2} α β)) (Prod.mk.{u1, u2} α β a b) s) => f (Prod.mk.{u1, u2} α β a b)))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (s : Finset.{max u3 u2} (Prod.{u2, u3} α β)) (f : (Prod.{u2, u3} α β) -> M), Eq.{succ u1} M (finprod.{u1, succ (max u2 u3)} M (Prod.{u2, u3} α β) _inst_1 (fun (ab : Prod.{u2, u3} α β) => finprod.{u1, 0} M (Membership.mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} α β) (Finset.{max u3 u2} (Prod.{u2, u3} α β)) (Finset.instMembershipFinset.{max u2 u3} (Prod.{u2, u3} α β)) ab s) _inst_1 (fun (h : Membership.mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} α β) (Finset.{max u3 u2} (Prod.{u2, u3} α β)) (Finset.instMembershipFinset.{max u2 u3} (Prod.{u2, u3} α β)) ab s) => f ab))) (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, succ u3} M β _inst_1 (fun (b : β) => finprod.{u1, 0} M (Membership.mem.{max u3 u2, max u2 u3} (Prod.{u2, u3} α β) (Finset.{max u3 u2} (Prod.{u2, u3} α β)) (Finset.instMembershipFinset.{max u3 u2} (Prod.{u2, u3} α β)) (Prod.mk.{u2, u3} α β a b) s) _inst_1 (fun (h : Membership.mem.{max u3 u2, max u2 u3} (Prod.{u2, u3} α β) (Finset.{max u3 u2} (Prod.{u2, u3} α β)) (Finset.instMembershipFinset.{max u3 u2} (Prod.{u2, u3} α β)) (Prod.mk.{u2, u3} α β a b) s) => f (Prod.mk.{u2, u3} α β a b)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_finset_product finprod_mem_finset_productₓ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
/-- See also `finprod_mem_finset_product'`. -/
@[to_additive "See also `finsum_mem_finset_product'`."]
@@ -1805,12 +1190,6 @@ theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M)
#align finprod_mem_finset_product finprod_mem_finset_product
#align finsum_mem_finset_product finsum_mem_finset_product
-/- warning: finprod_mem_finset_product₃ -> finprod_mem_finset_product₃ is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {γ : Type.{u4}} (s : Finset.{max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ))) (f : (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) -> M), Eq.{succ u3} M (finprod.{u3, succ (max u1 u2 u4)} M (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) _inst_1 (fun (abc : Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) => finprod.{u3, 0} M (Membership.Mem.{max u1 u2 u4, max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) (Finset.{max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ))) (Finset.hasMem.{max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ))) abc s) _inst_1 (fun (h : Membership.Mem.{max u1 u2 u4, max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) (Finset.{max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ))) (Finset.hasMem.{max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ))) abc s) => f abc))) (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, succ u2} M β _inst_1 (fun (b : β) => finprod.{u3, succ u4} M γ _inst_1 (fun (c : γ) => finprod.{u3, 0} M (Membership.Mem.{max u1 u2 u4, max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) (Finset.{max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ))) (Finset.hasMem.{max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ))) (Prod.mk.{u1, max u2 u4} α (Prod.{u2, u4} β γ) a (Prod.mk.{u2, u4} β γ b c)) s) _inst_1 (fun (h : Membership.Mem.{max u1 u2 u4, max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) (Finset.{max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ))) (Finset.hasMem.{max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ))) (Prod.mk.{u1, max u2 u4} α (Prod.{u2, u4} β γ) a (Prod.mk.{u2, u4} β γ b c)) s) => f (Prod.mk.{u1, max u2 u4} α (Prod.{u2, u4} β γ) a (Prod.mk.{u2, u4} β γ b c)))))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {γ : Type.{u4}} (s : Finset.{max (max u4 u3) u2} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ))) (f : (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ)) -> M), Eq.{succ u1} M (finprod.{u1, succ (max (max u2 u3) u4)} M (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ)) _inst_1 (fun (abc : Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ)) => finprod.{u1, 0} M (Membership.mem.{max (max u2 u3) u4, max (max u2 u3) u4} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ)) (Finset.{max (max u4 u3) u2} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ))) (Finset.instMembershipFinset.{max (max u2 u3) u4} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ))) abc s) _inst_1 (fun (h : Membership.mem.{max (max u2 u3) u4, max (max u2 u3) u4} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ)) (Finset.{max (max u4 u3) u2} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ))) (Finset.instMembershipFinset.{max (max u2 u3) u4} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ))) abc s) => f abc))) (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, succ u3} M β _inst_1 (fun (b : β) => finprod.{u1, succ u4} M γ _inst_1 (fun (c : γ) => finprod.{u1, 0} M (Membership.mem.{max (max u4 u3) u2, max (max u2 u3) u4} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ)) (Finset.{max (max u4 u3) u2} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ))) (Finset.instMembershipFinset.{max (max u2 u4) u3} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ))) (Prod.mk.{u2, max u4 u3} α (Prod.{u3, u4} β γ) a (Prod.mk.{u3, u4} β γ b c)) s) _inst_1 (fun (h : Membership.mem.{max (max u4 u3) u2, max (max u2 u3) u4} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ)) (Finset.{max (max u4 u3) u2} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ))) (Finset.instMembershipFinset.{max (max u2 u4) u3} (Prod.{u2, max u4 u3} α (Prod.{u3, u4} β γ))) (Prod.mk.{u2, max u4 u3} α (Prod.{u3, u4} β γ) a (Prod.mk.{u3, u4} β γ b c)) s) => f (Prod.mk.{u2, max u3 u4} α (Prod.{u3, u4} β γ) a (Prod.mk.{u3, u4} β γ b c)))))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_finset_product₃ finprod_mem_finset_product₃ₓ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b c) -/
@[to_additive]
theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)) (f : α × β × γ → M) :
@@ -1822,12 +1201,6 @@ theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)
#align finprod_mem_finset_product₃ finprod_mem_finset_product₃
#align finsum_mem_finset_product₃ finsum_mem_finset_product₃
-/- warning: finprod_curry -> finprod_curry is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] (f : (Prod.{u1, u2} α β) -> M), (Set.Finite.{max u1 u2} (Prod.{u1, u2} α β) (Function.mulSupport.{max u1 u2, u3} (Prod.{u1, u2} α β) M (MulOneClass.toHasOne.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) f)) -> (Eq.{succ u3} M (finprod.{u3, max (succ u1) (succ u2)} M (Prod.{u1, u2} α β) _inst_1 (fun (ab : Prod.{u1, u2} α β) => f ab)) (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, succ u2} M β _inst_1 (fun (b : β) => f (Prod.mk.{u1, u2} α β a b)))))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : (Prod.{u3, u2} α β) -> M), (Set.Finite.{max u3 u2} (Prod.{u3, u2} α β) (Function.mulSupport.{max u3 u2, u1} (Prod.{u3, u2} α β) M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) -> (Eq.{succ u1} M (finprod.{u1, max (succ u3) (succ u2)} M (Prod.{u3, u2} α β) _inst_1 (fun (ab : Prod.{u3, u2} α β) => f ab)) (finprod.{u1, succ u3} M α _inst_1 (fun (a : α) => finprod.{u1, succ u2} M β _inst_1 (fun (b : β) => f (Prod.mk.{u3, u2} α β a b)))))
-Case conversion may be inaccurate. Consider using '#align finprod_curry finprod_curryₓ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b) -/
@[to_additive]
theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
@@ -1839,12 +1212,6 @@ theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
#align finprod_curry finprod_curry
#align finsum_curry finsum_curry
-/- warning: finprod_curry₃ -> finprod_curry₃ is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {γ : Type.{u4}} (f : (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) -> M), (Set.Finite.{max u1 u2 u4} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) (Function.mulSupport.{max u1 u2 u4, u3} (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) M (MulOneClass.toHasOne.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) f)) -> (Eq.{succ u3} M (finprod.{u3, max (succ u1) (succ (max u2 u4))} M (Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) _inst_1 (fun (abc : Prod.{u1, max u2 u4} α (Prod.{u2, u4} β γ)) => f abc)) (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, succ u2} M β _inst_1 (fun (b : β) => finprod.{u3, succ u4} M γ _inst_1 (fun (c : γ) => f (Prod.mk.{u1, max u2 u4} α (Prod.{u2, u4} β γ) a (Prod.mk.{u2, u4} β γ b c)))))))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {γ : Type.{u4}} (f : (Prod.{u3, max u4 u2} α (Prod.{u2, u4} β γ)) -> M), (Set.Finite.{max (max u3 u2) u4} (Prod.{u3, max u4 u2} α (Prod.{u2, u4} β γ)) (Function.mulSupport.{max (max u3 u2) u4, u1} (Prod.{u3, max u4 u2} α (Prod.{u2, u4} β γ)) M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) -> (Eq.{succ u1} M (finprod.{u1, max (max (succ u3) (succ u2)) (succ u4)} M (Prod.{u3, max u4 u2} α (Prod.{u2, u4} β γ)) _inst_1 (fun (abc : Prod.{u3, max u4 u2} α (Prod.{u2, u4} β γ)) => f abc)) (finprod.{u1, succ u3} M α _inst_1 (fun (a : α) => finprod.{u1, succ u2} M β _inst_1 (fun (b : β) => finprod.{u1, succ u4} M γ _inst_1 (fun (c : γ) => f (Prod.mk.{u3, max u2 u4} α (Prod.{u2, u4} β γ) a (Prod.mk.{u2, u4} β γ b c)))))))
-Case conversion may be inaccurate. Consider using '#align finprod_curry₃ finprod_curry₃ₓ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b c) -/
@[to_additive]
theorem finprod_curry₃ {γ : Type _} (f : α × β × γ → M) (h : (mulSupport f).Finite) :
@@ -1853,12 +1220,6 @@ theorem finprod_curry₃ {γ : Type _} (f : α × β × γ → M) (h : (mulSuppo
#align finprod_curry₃ finprod_curry₃
#align finsum_curry₃ finsum_curry₃
-/- warning: finprod_dmem -> finprod_dmem is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {s : Set.{u1} α} [_inst_3 : DecidablePred.{succ u1} α (fun (_x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) _x s)] (f : forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> M), Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (a : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_1 (fun (h : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a h))) (finprod.{u2, succ u1} M α _inst_1 (fun (a : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_1 (fun (h : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => dite.{succ u2} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (_inst_3 a) (fun (h' : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a h') (fun (h' : Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s)) => OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)))))))))
-but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {s : Set.{u2} α} [_inst_3 : DecidablePred.{succ u2} α (fun (_x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) _x s)] (f : forall (a : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) -> M), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) _inst_1 (fun (h : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) => f a h))) (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) _inst_1 (fun (h : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) => dite.{succ u1} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) (_inst_3 a) (fun (h' : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) => f a h') (fun (h' : Not (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s)) => OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align finprod_dmem finprod_dmemₓ'. -/
@[to_additive]
theorem finprod_dmem {s : Set α} [DecidablePred (· ∈ s)] (f : ∀ a : α, a ∈ s → M) :
(∏ᶠ (a : α) (h : a ∈ s), f a h) = ∏ᶠ (a : α) (h : a ∈ s), if h' : a ∈ s then f a h' else 1 :=
@@ -1866,12 +1227,6 @@ theorem finprod_dmem {s : Set α} [DecidablePred (· ∈ s)] (f : ∀ a : α, a
#align finprod_dmem finprod_dmem
#align finsum_dmem finsum_dmem
-/- warning: finprod_emb_domain' -> finprod_emb_domain' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> β}, (Function.Injective.{succ u1, succ u2} α β f) -> (forall [_inst_3 : DecidablePred.{succ u2} β (fun (_x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) _x (Set.range.{u2, succ u1} β α f))] (g : α -> M), Eq.{succ u3} M (finprod.{u3, succ u2} M β _inst_1 (fun (b : β) => dite.{succ u3} M (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, succ u1} β α f)) (_inst_3 b) (fun (h : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, succ u1} β α f)) => g (Classical.choose.{succ u1} α (fun (y : α) => Eq.{succ u2} β (f y) b) h)) (fun (h : Not (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, succ u1} β α f))) => OfNat.ofNat.{u3} M 1 (OfNat.mk.{u3} M 1 (One.one.{u3} M (MulOneClass.toHasOne.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)))))))) (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => g a)))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> β}, (Function.Injective.{succ u3, succ u2} α β f) -> (forall [_inst_3 : DecidablePred.{succ u2} β (fun (_x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) _x (Set.range.{u2, succ u3} β α f))] (g : α -> M), Eq.{succ u1} M (finprod.{u1, succ u2} M β _inst_1 (fun (b : β) => dite.{succ u1} M (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, succ u3} β α f)) (_inst_3 b) (fun (h : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, succ u3} β α f)) => g (Classical.choose.{succ u3} α (fun (y : α) => Eq.{succ u2} β (f y) b) h)) (fun (h : Not (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, succ u3} β α f))) => OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))) (finprod.{u1, succ u3} M α _inst_1 (fun (a : α) => g a)))
-Case conversion may be inaccurate. Consider using '#align finprod_emb_domain' finprod_emb_domain'ₓ'. -/
@[to_additive]
theorem finprod_emb_domain' {f : α → β} (hf : Injective f) [DecidablePred (· ∈ Set.range f)]
(g : α → M) :
@@ -1883,12 +1238,6 @@ theorem finprod_emb_domain' {f : α → β} (hf : Injective f) [DecidablePred (
#align finprod_emb_domain' finprod_emb_domain'
#align finsum_emb_domain' finsum_emb_domain'
-/- warning: finprod_emb_domain -> finprod_emb_domain is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] (f : Function.Embedding.{succ u1, succ u2} α β) [_inst_3 : DecidablePred.{succ u2} β (fun (_x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) _x (Set.range.{u2, succ u1} β α (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Function.Embedding.{succ u1, succ u2} α β) (fun (_x : Function.Embedding.{succ u1, succ u2} α β) => α -> β) (Function.Embedding.hasCoeToFun.{succ u1, succ u2} α β) f)))] (g : α -> M), Eq.{succ u3} M (finprod.{u3, succ u2} M β _inst_1 (fun (b : β) => dite.{succ u3} M (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, succ u1} β α (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Function.Embedding.{succ u1, succ u2} α β) (fun (_x : Function.Embedding.{succ u1, succ u2} α β) => α -> β) (Function.Embedding.hasCoeToFun.{succ u1, succ u2} α β) f))) (_inst_3 b) (fun (h : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, succ u1} β α (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Function.Embedding.{succ u1, succ u2} α β) (fun (_x : Function.Embedding.{succ u1, succ u2} α β) => α -> β) (Function.Embedding.hasCoeToFun.{succ u1, succ u2} α β) f))) => g (Classical.choose.{succ u1} α (fun (y : α) => Eq.{succ u2} β (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Function.Embedding.{succ u1, succ u2} α β) (fun (_x : Function.Embedding.{succ u1, succ u2} α β) => α -> β) (Function.Embedding.hasCoeToFun.{succ u1, succ u2} α β) f y) b) h)) (fun (h : Not (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, succ u1} β α (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (Function.Embedding.{succ u1, succ u2} α β) (fun (_x : Function.Embedding.{succ u1, succ u2} α β) => α -> β) (Function.Embedding.hasCoeToFun.{succ u1, succ u2} α β) f)))) => OfNat.ofNat.{u3} M 1 (OfNat.mk.{u3} M 1 (One.one.{u3} M (MulOneClass.toHasOne.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)))))))) (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => g a))
-but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : Function.Embedding.{succ u3, succ u2} α β) [_inst_3 : DecidablePred.{succ u2} β (fun (_x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) _x (Set.range.{u2, succ u3} β α (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) f)))] (g : α -> M), Eq.{succ u1} M (finprod.{u1, succ u2} M β _inst_1 (fun (b : β) => dite.{succ u1} M (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, succ u3} β α (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) f))) (_inst_3 b) (fun (h : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, succ u3} β α (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) f))) => g (Classical.choose.{succ u3} α (fun (y : α) => Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) f y) b) h)) (fun (h : Not (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, succ u3} β α (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) f)))) => OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))) (finprod.{u1, succ u3} M α _inst_1 (fun (a : α) => g a))
-Case conversion may be inaccurate. Consider using '#align finprod_emb_domain finprod_emb_domainₓ'. -/
@[to_additive]
theorem finprod_emb_domain (f : α ↪ β) [DecidablePred (· ∈ Set.range f)] (g : α → M) :
(∏ᶠ b : β, if h : b ∈ Set.range f then g (Classical.choose h) else 1) = ∏ᶠ a : α, g a :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -147,10 +147,8 @@ Case conversion may be inaccurate. Consider using '#align finprod_eq_prod_plift_
@[to_additive]
theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
(hs : mulSupport (f ∘ PLift.down) ⊆ s) : (∏ᶠ i, f i) = ∏ i in s, f i.down :=
- finprod_eq_prod_pLift_of_mulSupport_toFinset_subset (s.finite_toSet.Subset hs) fun x hx =>
- by
- rw [finite.mem_to_finset] at hx
- exact hs hx
+ finprod_eq_prod_pLift_of_mulSupport_toFinset_subset (s.finite_toSet.Subset hs) fun x hx => by
+ rw [finite.mem_to_finset] at hx; exact hs hx
#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_pLift_of_mulSupport_subset
#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_pLift_of_support_subset
@@ -176,10 +174,7 @@ but is expected to have type
forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] [_inst_3 : IsEmpty.{u2} α] (f : α -> M), Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (i : α) => f i)) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))))
Case conversion may be inaccurate. Consider using '#align finprod_of_is_empty finprod_of_isEmptyₓ'. -/
@[to_additive]
-theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : (∏ᶠ i, f i) = 1 :=
- by
- rw [← finprod_one]
- congr
+theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : (∏ᶠ i, f i) = 1 := by rw [← finprod_one]; congr
#align finprod_of_is_empty finprod_of_isEmpty
#align finsum_of_is_empty finsum_of_isEmpty
@@ -208,8 +203,7 @@ theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f
by
have : mul_support (f ∘ PLift.down) ⊆ ({PLift.up a} : Finset (PLift α)) :=
by
- intro x
- contrapose
+ intro x; contrapose
simpa [PLift.eq_up_iff_down_eq] using ha x.down
rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_singleton]
#align finprod_eq_single finprod_eq_single
@@ -242,10 +236,8 @@ theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
(∏ᶠ i, f i) = if h : p then f h else 1 :=
by
split_ifs
- · haveI : Unique p := ⟨⟨h⟩, fun _ => rfl⟩
- exact finprod_unique f
- · haveI : IsEmpty p := ⟨h⟩
- exact finprod_of_isEmpty f
+ · haveI : Unique p := ⟨⟨h⟩, fun _ => rfl⟩; exact finprod_unique f
+ · haveI : IsEmpty p := ⟨h⟩; exact finprod_of_isEmpty f
#align finprod_eq_dif finprod_eq_dif
#align finsum_eq_dif finsum_eq_dif
@@ -276,9 +268,7 @@ theorem finprod_congr {f g : α → M} (h : ∀ x, f x = g x) : finprod f = finp
#print finprod_congr_Prop /-
@[congr, to_additive]
theorem finprod_congr_Prop {p q : Prop} {f : p → M} {g : q → M} (hpq : p = q)
- (hfg : ∀ h : q, f (hpq.mpr h) = g h) : finprod f = finprod g :=
- by
- subst q
+ (hfg : ∀ h : q, f (hpq.mpr h) = g h) : finprod f = finprod g := by subst q;
exact finprod_congr hfg
#align finprod_congr_Prop finprod_congr_Prop
#align finsum_congr_Prop finsum_congr_Prop
@@ -496,10 +486,8 @@ theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h :
by
rw [mul_support_comp_eq_preimage]
exact (equiv.plift.symm.image_eq_preimage _).symm
- have : mul_support (f ∘ PLift.down) ⊆ s.map equiv.plift.symm.to_embedding :=
- by
- rw [A, Finset.coe_map]
- exact image_subset _ h
+ have : mul_support (f ∘ PLift.down) ⊆ s.map equiv.plift.symm.to_embedding := by
+ rw [A, Finset.coe_map]; exact image_subset _ h
rw [finprod_eq_prod_pLift_of_mulSupport_subset this]
simp
#align finprod_eq_prod_of_mul_support_subset finprod_eq_prod_of_mulSupport_subset
@@ -598,10 +586,7 @@ theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : F
(h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : (∏ᶠ (i) (hi : p i), f i) = ∏ i in t, f i :=
by
set s := { x | p x }
- have : mul_support (s.mul_indicator f) ⊆ t :=
- by
- rw [Set.mulSupport_mulIndicator]
- intro x hx
+ have : mul_support (s.mul_indicator f) ⊆ t := by rw [Set.mulSupport_mulIndicator]; intro x hx;
exact (h hx.2).1 hx.1
erw [finprod_mem_def, finprod_eq_prod_of_mulSupport_subset _ this]
refine' Finset.prod_congr rfl fun x hx => mul_indicator_apply_eq_self.2 fun hxs => _
@@ -918,10 +903,8 @@ Case conversion may be inaccurate. Consider using '#align finprod_mem_of_eq_on_o
/-- If a function `f` equals `1` on a set `s`, then the product of `f i` over `i ∈ s` equals `1`. -/
@[to_additive
"If a function `f` equals `0` on a set `s`, then the product of `f i` over `i ∈ s`\nequals `0`."]
-theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : (∏ᶠ i ∈ s, f i) = 1 :=
- by
- rw [← finprod_mem_one s]
- exact finprod_mem_congr rfl hf
+theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : (∏ᶠ i ∈ s, f i) = 1 := by
+ rw [← finprod_mem_one s]; exact finprod_mem_congr rfl hf
#align finprod_mem_of_eq_on_one finprod_mem_of_eqOn_one
#align finsum_mem_of_eq_on_zero finsum_mem_of_eqOn_zero
@@ -1299,10 +1282,8 @@ but is expected to have type
Case conversion may be inaccurate. Consider using '#align finprod_mem_pair finprod_mem_pairₓ'. -/
/-- The product of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a * f b`. -/
@[to_additive "The sum of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a + f b`."]
-theorem finprod_mem_pair (h : a ≠ b) : (∏ᶠ i ∈ ({a, b} : Set α), f i) = f a * f b :=
- by
- rw [finprod_mem_insert, finprod_mem_singleton]
- exacts[h, finite_singleton b]
+theorem finprod_mem_pair (h : a ≠ b) : (∏ᶠ i ∈ ({a, b} : Set α), f i) = f a * f b := by
+ rw [finprod_mem_insert, finprod_mem_singleton]; exacts[h, finite_singleton b]
#align finprod_mem_pair finprod_mem_pair
#align finsum_mem_pair finsum_mem_pair
@@ -1578,10 +1559,8 @@ over `a ∈ ⋃₀ t` is the product over `s ∈ t` of the products of `f a` ove
@[to_additive
"If `t` is a finite set of pairwise disjoint finite sets, then the sum of `f a` over\n`a ∈ ⋃₀ t` is the sum over `s ∈ t` of the sums of `f a` over `a ∈ s`."]
theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀ : t.Finite)
- (ht₁ : ∀ x ∈ t, Set.Finite x) : (∏ᶠ a ∈ ⋃₀ t, f a) = ∏ᶠ s ∈ t, ∏ᶠ a ∈ s, f a :=
- by
- rw [Set.sUnion_eq_biUnion]
- exact finprod_mem_biUnion h ht₀ ht₁
+ (ht₁ : ∀ x ∈ t, Set.Finite x) : (∏ᶠ a ∈ ⋃₀ t, f a) = ∏ᶠ s ∈ t, ∏ᶠ a ∈ s, f a := by
+ rw [Set.sUnion_eq_biUnion]; exact finprod_mem_biUnion h ht₀ ht₁
#align finprod_mem_sUnion finprod_mem_sUnion
#align finsum_mem_sUnion finsum_mem_sUnion
@@ -1869,13 +1848,8 @@ Case conversion may be inaccurate. Consider using '#align finprod_curry₃ finpr
/- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (a b c) -/
@[to_additive]
theorem finprod_curry₃ {γ : Type _} (f : α × β × γ → M) (h : (mulSupport f).Finite) :
- (∏ᶠ abc, f abc) = ∏ᶠ (a) (b) (c), f (a, b, c) :=
- by
- rw [finprod_curry f h]
- congr
- ext a
- rw [finprod_curry]
- simp [h]
+ (∏ᶠ abc, f abc) = ∏ᶠ (a) (b) (c), f (a, b, c) := by rw [finprod_curry f h]; congr ; ext a;
+ rw [finprod_curry]; simp [h]
#align finprod_curry₃ finprod_curry₃
#align finsum_curry₃ finsum_curry₃
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -1019,10 +1019,7 @@ theorem MonoidHom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.Finite)
#align add_monoid_hom.map_finsum_mem AddMonoidHom.map_finsum_mem
/- warning: mul_equiv.map_finprod_mem -> MulEquiv.map_finprod_mem is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] (g : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (f i)))))
-but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7873 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (EquivLike.toEmbeddingLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulEquivClass.toEquivLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (EquivLike.toEmbeddingLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulEquivClass.toEquivLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod_mem MulEquiv.map_finprod_memₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs : s.Finite) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -333,7 +333,7 @@ theorem one_le_finprod' {M : Type _} [OrderedCommMonoid M] {f : α → M} (hf :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u3} (PLift.{u3} α) (Function.mulSupport.{u3, u1} (PLift.{u3} α) M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (Function.comp.{succ u3, u3, succ u1} (PLift.{u3} α) α M g (PLift.down.{u3} α)))) -> (Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, u3} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u3} N α _inst_2 (fun (x : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g x))))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u1} (PLift.{u1} α) (Function.mulSupport.{u1, u3} (PLift.{u1} α) M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Function.comp.{succ u1, u1, succ u3} (PLift.{u1} α) α M g (PLift.down.{u1} α)))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u1} N α _inst_2 (fun (x : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g x))))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u1} (PLift.{u1} α) (Function.mulSupport.{u1, u3} (PLift.{u1} α) M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Function.comp.{succ u1, u1, succ u3} (PLift.{u1} α) α M g (PLift.down.{u1} α)))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u1} N α _inst_2 (fun (x : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g x))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_pLiftₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
@@ -350,7 +350,7 @@ theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] {p : Prop} (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : p -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u2, 0} N p _inst_2 (fun (x : p) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g x)))
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u1} N] {p : Prop} (f : MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (g : p -> M), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u1, 0} N p _inst_2 (fun (x : p) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (g x)))
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u1} N] {p : Prop} (f : MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (g : p -> M), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u1, 0} N p _inst_2 (fun (x : p) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (g x)))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_Prop MonoidHom.map_finprod_Propₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
@@ -363,7 +363,7 @@ theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f x) (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) -> (Eq.{succ u1} M x (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))))) -> (forall (g : α -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, u3} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g i))))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f x) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) 1 (One.toOfNat1.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) (Monoid.toOne.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) (CommMonoid.toMonoid.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) _inst_2))))) -> (Eq.{succ u3} M x (OfNat.ofNat.{u3} M 1 (One.toOfNat1.{u3} M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)))))) -> (forall (g : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g i))))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f x) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) 1 (One.toOfNat1.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) (Monoid.toOne.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) (CommMonoid.toMonoid.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) _inst_2))))) -> (Eq.{succ u3} M x (OfNat.ofNat.{u3} M 1 (One.toOfNat1.{u3} M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)))))) -> (forall (g : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g i))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_of_preimage_one MonoidHom.map_finprod_of_preimage_oneₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x = 1 → x = 1) (g : α → M) :
@@ -379,7 +379,7 @@ theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x =
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u1, succ u2} M N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g)) -> (forall (f : α -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g (finprod.{u1, u3} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g (f i))))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u3, succ u2} M N (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g)) -> (forall (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u3, succ u2} M N (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g)) -> (forall (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_of_injective MonoidHom.map_finprod_of_injectiveₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_of_injective (g : M →* N) (hg : Injective g) (f : α → M) :
@@ -962,7 +962,7 @@ theorem finprod_mem_mul_distrib (hs : s.Finite) :
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f)) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f)) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod MonoidHom.map_finprodₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod {f : α → M} (g : M →* N) (hf : (mulSupport f).Finite) :
@@ -987,7 +987,7 @@ theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7611 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7611 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem' MonoidHom.map_finprod_mem'ₓ'. -/
/-- A more general version of `monoid_hom.map_finprod_mem` that requires `s ∩ mul_support f` rather
than `s` to be finite. -/
@@ -1006,7 +1006,7 @@ theorem MonoidHom.map_finprod_mem' {f : α → M} (g : M →* N) (h₀ : (s ∩
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7758 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7758 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem MonoidHom.map_finprod_memₓ'. -/
/-- Given a monoid homomorphism `g : M →* N` and a function `f : α → M`, the value of `g` at the
product of `f i` over `i ∈ s` equals the product of `g (f i)` over `s`. -/
@@ -1432,7 +1432,7 @@ theorem finprod_comp {g : β → M} (e : α → β) (he₀ : Function.Bijective
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] (e : Equiv.{succ u1, succ u2} α β) {f : β -> M}, Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e i))) (finprod.{u3, succ u2} M β _inst_1 (fun (i' : β) => f i'))
but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (e : Equiv.{succ u3, succ u2} α β) {f : β -> M}, Eq.{succ u1} M (finprod.{u1, succ u3} M α _inst_1 (fun (i : α) => f (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} α β) e i))) (finprod.{u1, succ u2} M β _inst_1 (fun (i' : β) => f i'))
+ forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (e : Equiv.{succ u3, succ u2} α β) {f : β -> M}, Eq.{succ u1} M (finprod.{u1, succ u3} M α _inst_1 (fun (i : α) => f (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} α β) e i))) (finprod.{u1, succ u2} M β _inst_1 (fun (i' : β) => f i'))
Case conversion may be inaccurate. Consider using '#align finprod_comp_equiv finprod_comp_equivₓ'. -/
@[to_additive]
theorem finprod_comp_equiv (e : α ≃ β) {f : β → M} : (∏ᶠ i, f (e i)) = ∏ᶠ i', f i' :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -307,7 +307,7 @@ theorem finprod_induction {f : α → M} (p : M → Prop) (hp₀ : p 1)
/- warning: finprod_nonneg -> finprod_nonneg is a dubious translation:
lean 3 declaration is
- forall {α : Sort.{u1}} {R : Type.{u2}} [_inst_3 : OrderedCommSemiring.{u2} R] {f : α -> R}, (forall (x : α), LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (f x)) -> (LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (finprod.{u2, u1} R α (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (x : α) => f x)))
+ forall {α : Sort.{u1}} {R : Type.{u2}} [_inst_3 : OrderedCommSemiring.{u2} R] {f : α -> R}, (forall (x : α), LE.le.{u2} R (Preorder.toHasLe.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (f x)) -> (LE.le.{u2} R (Preorder.toHasLe.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (finprod.{u2, u1} R α (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (x : α) => f x)))
but is expected to have type
forall {α : Sort.{u1}} {R : Type.{u2}} [_inst_3 : OrderedCommSemiring.{u2} R] {f : α -> R}, (forall (x : α), LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedSemiring.toPartialOrder.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3)))) (OfNat.ofNat.{u2} R 0 (Zero.toOfNat0.{u2} R (CommMonoidWithZero.toZero.{u2} R (CommSemiring.toCommMonoidWithZero.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3))))) (f x)) -> (LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedSemiring.toPartialOrder.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3)))) (OfNat.ofNat.{u2} R 0 (Zero.toOfNat0.{u2} R (CommMonoidWithZero.toZero.{u2} R (CommSemiring.toCommMonoidWithZero.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3))))) (finprod.{u2, u1} R α (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (x : α) => f x)))
Case conversion may be inaccurate. Consider using '#align finprod_nonneg finprod_nonnegₓ'. -/
@@ -318,7 +318,7 @@ theorem finprod_nonneg {R : Type _} [OrderedCommSemiring R] {f : α → R} (hf :
/- warning: one_le_finprod' -> one_le_finprod' is a dubious translation:
lean 3 declaration is
- forall {α : Sort.{u1}} {M : Type.{u2}} [_inst_3 : OrderedCommMonoid.{u2} M] {f : α -> M}, (forall (i : α), LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))))) (f i)) -> (LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))))) (finprod.{u2, u1} M α (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3) (fun (i : α) => f i)))
+ forall {α : Sort.{u1}} {M : Type.{u2}} [_inst_3 : OrderedCommMonoid.{u2} M] {f : α -> M}, (forall (i : α), LE.le.{u2} M (Preorder.toHasLe.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))))) (f i)) -> (LE.le.{u2} M (Preorder.toHasLe.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))))) (finprod.{u2, u1} M α (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3) (fun (i : α) => f i)))
but is expected to have type
forall {α : Sort.{u1}} {M : Type.{u2}} [_inst_3 : OrderedCommMonoid.{u2} M] {f : α -> M}, (forall (i : α), LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))) (f i)) -> (LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))) (finprod.{u2, u1} M α (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3) (fun (i : α) => f i)))
Case conversion may be inaccurate. Consider using '#align one_le_finprod' one_le_finprod'ₓ'. -/
@@ -1651,7 +1651,7 @@ theorem finprod_mem_induction (p : M → Prop) (hp₀ : p 1) (hp₁ : ∀ x y, p
/- warning: finprod_cond_nonneg -> finprod_cond_nonneg is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : OrderedCommSemiring.{u2} R] {p : α -> Prop} {f : α -> R}, (forall (x : α), (p x) -> (LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (f x))) -> (LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (finprod.{u2, succ u1} R α (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (x : α) => finprod.{u2, 0} R (p x) (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (h : p x) => f x))))
+ forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : OrderedCommSemiring.{u2} R] {p : α -> Prop} {f : α -> R}, (forall (x : α), (p x) -> (LE.le.{u2} R (Preorder.toHasLe.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (f x))) -> (LE.le.{u2} R (Preorder.toHasLe.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedAddCommMonoid.toPartialOrder.{u2} R (OrderedSemiring.toOrderedAddCommMonoid.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))) (OfNat.ofNat.{u2} R 0 (OfNat.mk.{u2} R 0 (Zero.zero.{u2} R (MulZeroClass.toHasZero.{u2} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (OrderedSemiring.toSemiring.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3))))))))) (finprod.{u2, succ u1} R α (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (x : α) => finprod.{u2, 0} R (p x) (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (h : p x) => f x))))
but is expected to have type
forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : OrderedCommSemiring.{u2} R] {p : α -> Prop} {f : α -> R}, (forall (x : α), (p x) -> (LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedSemiring.toPartialOrder.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3)))) (OfNat.ofNat.{u2} R 0 (Zero.toOfNat0.{u2} R (CommMonoidWithZero.toZero.{u2} R (CommSemiring.toCommMonoidWithZero.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3))))) (f x))) -> (LE.le.{u2} R (Preorder.toLE.{u2} R (PartialOrder.toPreorder.{u2} R (OrderedSemiring.toPartialOrder.{u2} R (OrderedCommSemiring.toOrderedSemiring.{u2} R _inst_3)))) (OfNat.ofNat.{u2} R 0 (Zero.toOfNat0.{u2} R (CommMonoidWithZero.toZero.{u2} R (CommSemiring.toCommMonoidWithZero.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3))))) (finprod.{u2, succ u1} R α (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (x : α) => finprod.{u2, 0} R (p x) (CommSemiring.toCommMonoid.{u2} R (OrderedCommSemiring.toCommSemiring.{u2} R _inst_3)) (fun (h : p x) => f x))))
Case conversion may be inaccurate. Consider using '#align finprod_cond_nonneg finprod_cond_nonnegₓ'. -/
@@ -1662,7 +1662,7 @@ theorem finprod_cond_nonneg {R : Type _} [OrderedCommSemiring R] {p : α → Pro
/- warning: single_le_finprod -> single_le_finprod is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_3 : OrderedCommMonoid.{u2} M] (i : α) {f : α -> M}, (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3)))) f)) -> (forall (j : α), LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))))) (f j)) -> (LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (f i) (finprod.{u2, succ u1} M α (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3) (fun (j : α) => f j)))
+ forall {α : Type.{u1}} {M : Type.{u2}} [_inst_3 : OrderedCommMonoid.{u2} M] (i : α) {f : α -> M}, (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3)))) f)) -> (forall (j : α), LE.le.{u2} M (Preorder.toHasLe.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (OfNat.mk.{u2} M 1 (One.one.{u2} M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))))) (f j)) -> (LE.le.{u2} M (Preorder.toHasLe.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (f i) (finprod.{u2, succ u1} M α (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3) (fun (j : α) => f j)))
but is expected to have type
forall {α : Type.{u1}} {M : Type.{u2}} [_inst_3 : OrderedCommMonoid.{u2} M] (i : α) {f : α -> M}, (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))) f)) -> (forall (j : α), LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M (CommMonoid.toMonoid.{u2} M (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3))))) (f j)) -> (LE.le.{u2} M (Preorder.toLE.{u2} M (PartialOrder.toPreorder.{u2} M (OrderedCommMonoid.toPartialOrder.{u2} M _inst_3))) (f i) (finprod.{u2, succ u1} M α (OrderedCommMonoid.toCommMonoid.{u2} M _inst_3) (fun (j : α) => f j)))
Case conversion may be inaccurate. Consider using '#align single_le_finprod single_le_finprodₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -392,7 +392,7 @@ theorem MonoidHom.map_finprod_of_injective (g : M →* N) (hg : Injective g) (f
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} N (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (fun (_x : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) g (finprod.{u1, u3} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (fun (_x : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) g (f i)))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (EquivLike.toEmbeddingLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulEquivClass.toEquivLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (EquivLike.toEmbeddingLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulEquivClass.toEquivLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))
Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod MulEquiv.map_finprodₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod (g : M ≃* N) (f : α → M) : g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
@@ -1022,7 +1022,7 @@ theorem MonoidHom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.Finite)
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] (g : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7873 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7873 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (EquivLike.toEmbeddingLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulEquivClass.toEquivLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : M) => N) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (EquivLike.toEmbeddingLike.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulEquivClass.toEquivLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod_mem MulEquiv.map_finprod_memₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs : s.Finite) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
@@ -1525,68 +1525,68 @@ theorem finprod_mem_mul_diff (hst : s ⊆ t) (ht : t.Finite) :
#align finprod_mem_mul_diff finprod_mem_mul_diff
#align finsum_mem_add_diff finsum_mem_add_diff
-/- warning: finprod_mem_Union -> finprod_mem_unionᵢ is a dubious translation:
+/- warning: finprod_mem_Union -> finprod_mem_iUnion is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {ι : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} [_inst_3 : Finite.{succ u2} ι] {t : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) t)) -> (forall (i : ι), Set.Finite.{u1} α (t i)) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => t i))) => f a))) (finprod.{u3, succ u2} M ι _inst_1 (fun (i : ι) => finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (t i)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (t i)) => f a)))))
+ forall {α : Type.{u1}} {ι : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} [_inst_3 : Finite.{succ u2} ι] {t : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) t)) -> (forall (i : ι), Set.Finite.{u1} α (t i)) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => t i))) => f a))) (finprod.{u3, succ u2} M ι _inst_1 (fun (i : ι) => finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (t i)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (t i)) => f a)))))
but is expected to have type
- forall {α : Type.{u2}} {ι : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} [_inst_3 : Finite.{succ u3} ι] {t : ι -> (Set.{u2} α)}, (Pairwise.{u3} ι (Function.onFun.{succ u3, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) t)) -> (forall (i : ι), Set.Finite.{u2} α (t i)) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.unionᵢ.{u2, succ u3} α ι (fun (i : ι) => t i))) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.unionᵢ.{u2, succ u3} α ι (fun (i : ι) => t i))) => f a))) (finprod.{u1, succ u3} M ι _inst_1 (fun (i : ι) => finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (t i)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (t i)) => f a)))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_Union finprod_mem_unionᵢₓ'. -/
+ forall {α : Type.{u2}} {ι : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} [_inst_3 : Finite.{succ u3} ι] {t : ι -> (Set.{u2} α)}, (Pairwise.{u3} ι (Function.onFun.{succ u3, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) t)) -> (forall (i : ι), Set.Finite.{u2} α (t i)) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.iUnion.{u2, succ u3} α ι (fun (i : ι) => t i))) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.iUnion.{u2, succ u3} α ι (fun (i : ι) => t i))) => f a))) (finprod.{u1, succ u3} M ι _inst_1 (fun (i : ι) => finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (t i)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (t i)) => f a)))))
+Case conversion may be inaccurate. Consider using '#align finprod_mem_Union finprod_mem_iUnionₓ'. -/
/-- Given a family of pairwise disjoint finite sets `t i` indexed by a finite type, the product of
`f a` over the union `⋃ i, t i` is equal to the product over all indexes `i` of the products of
`f a` over `a ∈ t i`. -/
@[to_additive
"Given a family of pairwise disjoint finite sets `t i` indexed by a finite type, the\nsum of `f a` over the union `⋃ i, t i` is equal to the sum over all indexes `i` of the sums of `f a`\nover `a ∈ t i`."]
-theorem finprod_mem_unionᵢ [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoint on t))
+theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoint on t))
(ht : ∀ i, (t i).Finite) : (∏ᶠ a ∈ ⋃ i : ι, t i, f a) = ∏ᶠ i, ∏ᶠ a ∈ t i, f a :=
by
cases nonempty_fintype ι
lift t to ι → Finset α using ht
classical
- rw [← bUnion_univ, ← Finset.coe_univ, ← Finset.coe_bunionᵢ, finprod_mem_coe_finset,
- Finset.prod_bunionᵢ]
+ rw [← bUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset,
+ Finset.prod_biUnion]
· simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype]
· exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)
-#align finprod_mem_Union finprod_mem_unionᵢ
-#align finsum_mem_Union finsum_mem_unionᵢ
+#align finprod_mem_Union finprod_mem_iUnion
+#align finsum_mem_Union finsum_mem_iUnion
-/- warning: finprod_mem_bUnion -> finprod_mem_bunionᵢ is a dubious translation:
+/- warning: finprod_mem_bUnion -> finprod_mem_biUnion is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {ι : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} {I : Set.{u2} ι} {t : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) I t) -> (Set.Finite.{u2} ι I) -> (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i I) -> (Set.Finite.{u1} α (t i))) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.unionᵢ.{u1, succ u2} α ι (fun (x : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) => t x)))) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.unionᵢ.{u1, succ u2} α ι (fun (x : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) => t x)))) => f a))) (finprod.{u3, succ u2} M ι _inst_1 (fun (i : ι) => finprod.{u3, 0} M (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i I) _inst_1 (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i I) => finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j (t i)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j (t i)) => f j))))))
+ forall {α : Type.{u1}} {ι : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] {f : α -> M} {I : Set.{u2} ι} {t : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) I t) -> (Set.Finite.{u2} ι I) -> (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i I) -> (Set.Finite.{u1} α (t i))) -> (Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (a : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.iUnion.{u1, succ u2} α ι (fun (x : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) => t x)))) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.iUnion.{u1, succ u2} α ι (fun (x : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x I) => t x)))) => f a))) (finprod.{u3, succ u2} M ι _inst_1 (fun (i : ι) => finprod.{u3, 0} M (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i I) _inst_1 (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i I) => finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j (t i)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j (t i)) => f j))))))
but is expected to have type
- forall {α : Type.{u2}} {ι : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {I : Set.{u3} ι} {t : ι -> (Set.{u2} α)}, (Set.PairwiseDisjoint.{u2, u3} (Set.{u2} α) ι (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) I t) -> (Set.Finite.{u3} ι I) -> (forall (i : ι), (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) i I) -> (Set.Finite.{u2} α (t i))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.unionᵢ.{u2, succ u3} α ι (fun (x : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) (fun (H : Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) => t x)))) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.unionᵢ.{u2, succ u3} α ι (fun (x : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) (fun (H : Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) => t x)))) => f a))) (finprod.{u1, succ u3} M ι _inst_1 (fun (i : ι) => finprod.{u1, 0} M (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) i I) _inst_1 (fun (H : Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) i I) => finprod.{u1, succ u2} M α _inst_1 (fun (j : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j (t i)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j (t i)) => f j))))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_bUnion finprod_mem_bunionᵢₓ'. -/
+ forall {α : Type.{u2}} {ι : Type.{u3}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {I : Set.{u3} ι} {t : ι -> (Set.{u2} α)}, (Set.PairwiseDisjoint.{u2, u3} (Set.{u2} α) ι (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) I t) -> (Set.Finite.{u3} ι I) -> (forall (i : ι), (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) i I) -> (Set.Finite.{u2} α (t i))) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.iUnion.{u2, succ u3} α ι (fun (x : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) (fun (H : Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) => t x)))) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.iUnion.{u2, succ u3} α ι (fun (x : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) (fun (H : Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) x I) => t x)))) => f a))) (finprod.{u1, succ u3} M ι _inst_1 (fun (i : ι) => finprod.{u1, 0} M (Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) i I) _inst_1 (fun (H : Membership.mem.{u3, u3} ι (Set.{u3} ι) (Set.instMembershipSet.{u3} ι) i I) => finprod.{u1, succ u2} M α _inst_1 (fun (j : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j (t i)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j (t i)) => f j))))))
+Case conversion may be inaccurate. Consider using '#align finprod_mem_bUnion finprod_mem_biUnionₓ'. -/
/-- Given a family of sets `t : ι → set α`, a finite set `I` in the index type such that all sets
`t i`, `i ∈ I`, are finite, if all `t i`, `i ∈ I`, are pairwise disjoint, then the product of `f a`
over `a ∈ ⋃ i ∈ I, t i` is equal to the product over `i ∈ I` of the products of `f a` over
`a ∈ t i`. -/
@[to_additive
"Given a family of sets `t : ι → set α`, a finite set `I` in the index type such that\nall sets `t i`, `i ∈ I`, are finite, if all `t i`, `i ∈ I`, are pairwise disjoint, then the sum of\n`f a` over `a ∈ ⋃ i ∈ I, t i` is equal to the sum over `i ∈ I` of the sums of `f a` over\n`a ∈ t i`."]
-theorem finprod_mem_bunionᵢ {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisjoint t) (hI : I.Finite)
+theorem finprod_mem_biUnion {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisjoint t) (hI : I.Finite)
(ht : ∀ i ∈ I, (t i).Finite) : (∏ᶠ a ∈ ⋃ x ∈ I, t x, f a) = ∏ᶠ i ∈ I, ∏ᶠ j ∈ t i, f j :=
by
haveI := hI.fintype
- rw [bUnion_eq_Union, finprod_mem_unionᵢ, ← finprod_set_coe_eq_finprod_mem]
+ rw [bUnion_eq_Union, finprod_mem_iUnion, ← finprod_set_coe_eq_finprod_mem]
exacts[fun x y hxy => h x.2 y.2 (subtype.coe_injective.ne hxy), fun b => ht b b.2]
-#align finprod_mem_bUnion finprod_mem_bunionᵢ
-#align finsum_mem_bUnion finsum_mem_bunionᵢ
+#align finprod_mem_bUnion finprod_mem_biUnion
+#align finsum_mem_bUnion finsum_mem_biUnion
-/- warning: finprod_mem_sUnion -> finprod_mem_unionₛ is a dubious translation:
+/- warning: finprod_mem_sUnion -> finprod_mem_sUnion is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {t : Set.{u1} (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u1} (Set.{u1} α) (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) t (id.{succ u1} (Set.{u1} α))) -> (Set.Finite.{u1} (Set.{u1} α) t) -> (forall (x : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x t) -> (Set.Finite.{u1} α x)) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (a : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.unionₛ.{u1} α t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.unionₛ.{u1} α t)) => f a))) (finprod.{u2, succ u1} M (Set.{u1} α) _inst_1 (fun (s : Set.{u1} α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s t) _inst_1 (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s t) => finprod.{u2, succ u1} M α _inst_1 (fun (a : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))))
+ forall {α : Type.{u1}} {M : Type.{u2}} [_inst_1 : CommMonoid.{u2} M] {f : α -> M} {t : Set.{u1} (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u1} (Set.{u1} α) (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) t (id.{succ u1} (Set.{u1} α))) -> (Set.Finite.{u1} (Set.{u1} α) t) -> (forall (x : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x t) -> (Set.Finite.{u1} α x)) -> (Eq.{succ u2} M (finprod.{u2, succ u1} M α _inst_1 (fun (a : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.sUnion.{u1} α t)) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (Set.sUnion.{u1} α t)) => f a))) (finprod.{u2, succ u1} M (Set.{u1} α) _inst_1 (fun (s : Set.{u1} α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s t) _inst_1 (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s t) => finprod.{u2, succ u1} M α _inst_1 (fun (a : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))))
but is expected to have type
- forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {t : Set.{u2} (Set.{u2} α)}, (Set.PairwiseDisjoint.{u2, u2} (Set.{u2} α) (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) t (id.{succ u2} (Set.{u2} α))) -> (Set.Finite.{u2} (Set.{u2} α) t) -> (forall (x : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Set.{u2} (Set.{u2} α)) (Set.instMembershipSet.{u2} (Set.{u2} α)) x t) -> (Set.Finite.{u2} α x)) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.unionₛ.{u2} α t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.unionₛ.{u2} α t)) => f a))) (finprod.{u1, succ u2} M (Set.{u2} α) _inst_1 (fun (s : Set.{u2} α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} (Set.{u2} α) (Set.{u2} (Set.{u2} α)) (Set.instMembershipSet.{u2} (Set.{u2} α)) s t) _inst_1 (fun (H : Membership.mem.{u2, u2} (Set.{u2} α) (Set.{u2} (Set.{u2} α)) (Set.instMembershipSet.{u2} (Set.{u2} α)) s t) => finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) => f a))))))
-Case conversion may be inaccurate. Consider using '#align finprod_mem_sUnion finprod_mem_unionₛₓ'. -/
+ forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} {t : Set.{u2} (Set.{u2} α)}, (Set.PairwiseDisjoint.{u2, u2} (Set.{u2} α) (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) t (id.{succ u2} (Set.{u2} α))) -> (Set.Finite.{u2} (Set.{u2} α) t) -> (forall (x : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Set.{u2} (Set.{u2} α)) (Set.instMembershipSet.{u2} (Set.{u2} α)) x t) -> (Set.Finite.{u2} α x)) -> (Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.sUnion.{u2} α t)) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a (Set.sUnion.{u2} α t)) => f a))) (finprod.{u1, succ u2} M (Set.{u2} α) _inst_1 (fun (s : Set.{u2} α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} (Set.{u2} α) (Set.{u2} (Set.{u2} α)) (Set.instMembershipSet.{u2} (Set.{u2} α)) s t) _inst_1 (fun (H : Membership.mem.{u2, u2} (Set.{u2} α) (Set.{u2} (Set.{u2} α)) (Set.instMembershipSet.{u2} (Set.{u2} α)) s t) => finprod.{u1, succ u2} M α _inst_1 (fun (a : α) => finprod.{u1, 0} M (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) _inst_1 (fun (H : Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) a s) => f a))))))
+Case conversion may be inaccurate. Consider using '#align finprod_mem_sUnion finprod_mem_sUnionₓ'. -/
/-- If `t` is a finite set of pairwise disjoint finite sets, then the product of `f a`
over `a ∈ ⋃₀ t` is the product over `s ∈ t` of the products of `f a` over `a ∈ s`. -/
@[to_additive
"If `t` is a finite set of pairwise disjoint finite sets, then the sum of `f a` over\n`a ∈ ⋃₀ t` is the sum over `s ∈ t` of the sums of `f a` over `a ∈ s`."]
-theorem finprod_mem_unionₛ {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀ : t.Finite)
+theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀ : t.Finite)
(ht₁ : ∀ x ∈ t, Set.Finite x) : (∏ᶠ a ∈ ⋃₀ t, f a) = ∏ᶠ s ∈ t, ∏ᶠ a ∈ s, f a :=
by
- rw [Set.unionₛ_eq_bunionᵢ]
- exact finprod_mem_bunionᵢ h ht₀ ht₁
-#align finprod_mem_sUnion finprod_mem_unionₛ
-#align finsum_mem_sUnion finsum_mem_unionₛ
+ rw [Set.sUnion_eq_biUnion]
+ exact finprod_mem_biUnion h ht₀ ht₁
+#align finprod_mem_sUnion finprod_mem_sUnion
+#align finsum_mem_sUnion finsum_mem_sUnion
/- warning: mul_finprod_cond_ne -> mul_finprod_cond_ne is a dubious translation:
lean 3 declaration is
mathlib commit https://github.com/leanprover-community/mathlib/commit/36b8aa61ea7c05727161f96a0532897bd72aedab
@@ -987,7 +987,7 @@ theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7613 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7611 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem' MonoidHom.map_finprod_mem'ₓ'. -/
/-- A more general version of `monoid_hom.map_finprod_mem` that requires `s ∩ mul_support f` rather
than `s` to be finite. -/
@@ -1006,7 +1006,7 @@ theorem MonoidHom.map_finprod_mem' {f : α → M} (g : M →* N) (h₀ : (s ∩
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7760 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7758 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem MonoidHom.map_finprod_memₓ'. -/
/-- Given a monoid homomorphism `g : M →* N` and a function `f : α → M`, the value of `g` at the
product of `f i` over `i ∈ s` equals the product of `g (f i)` over `s`. -/
@@ -1022,7 +1022,7 @@ theorem MonoidHom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.Finite)
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] (g : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7875 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7873 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod_mem MulEquiv.map_finprod_memₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs : s.Finite) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/7ebf83ed9c262adbf983ef64d5e8c2ae94b625f4
@@ -987,7 +987,7 @@ theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7346 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7613 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem' MonoidHom.map_finprod_mem'ₓ'. -/
/-- A more general version of `monoid_hom.map_finprod_mem` that requires `s ∩ mul_support f` rather
than `s` to be finite. -/
@@ -1006,7 +1006,7 @@ theorem MonoidHom.map_finprod_mem' {f : α → M} (g : M →* N) (h₀ : (s ∩
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7493 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7760 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem MonoidHom.map_finprod_memₓ'. -/
/-- Given a monoid homomorphism `g : M →* N` and a function `f : α → M`, the value of `g` at the
product of `f i` over `i ∈ s` equals the product of `g (f i)` over `s`. -/
@@ -1022,7 +1022,7 @@ theorem MonoidHom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.Finite)
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] (g : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7608 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7875 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod_mem MulEquiv.map_finprod_memₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs : s.Finite) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce7e9d53d4bbc38065db3b595cd5bd73c323bc1d
@@ -987,7 +987,7 @@ theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7287 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7346 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem' MonoidHom.map_finprod_mem'ₓ'. -/
/-- A more general version of `monoid_hom.map_finprod_mem` that requires `s ∩ mul_support f` rather
than `s` to be finite. -/
@@ -1006,7 +1006,7 @@ theorem MonoidHom.map_finprod_mem' {f : α → M} (g : M →* N) (h₀ : (s ∩
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7434 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7493 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem MonoidHom.map_finprod_memₓ'. -/
/-- Given a monoid homomorphism `g : M →* N` and a function `f : α → M`, the value of `g` at the
product of `f i` over `i ∈ s` equals the product of `g (f i)` over `s`. -/
@@ -1022,7 +1022,7 @@ theorem MonoidHom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.Finite)
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] (g : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7549 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7608 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod_mem MulEquiv.map_finprod_memₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs : s.Finite) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -333,7 +333,7 @@ theorem one_le_finprod' {M : Type _} [OrderedCommMonoid M] {f : α → M} (hf :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u3} (PLift.{u3} α) (Function.mulSupport.{u3, u1} (PLift.{u3} α) M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (Function.comp.{succ u3, u3, succ u1} (PLift.{u3} α) α M g (PLift.down.{u3} α)))) -> (Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, u3} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u3} N α _inst_2 (fun (x : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g x))))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u1} (PLift.{u1} α) (Function.mulSupport.{u1, u3} (PLift.{u1} α) M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Function.comp.{succ u1, u1, succ u3} (PLift.{u1} α) α M g (PLift.down.{u1} α)))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u1} N α _inst_2 (fun (x : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g x))))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u1} (PLift.{u1} α) (Function.mulSupport.{u1, u3} (PLift.{u1} α) M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Function.comp.{succ u1, u1, succ u3} (PLift.{u1} α) α M g (PLift.down.{u1} α)))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u1} N α _inst_2 (fun (x : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g x))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_pLiftₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
@@ -350,7 +350,7 @@ theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] {p : Prop} (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : p -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u2, 0} N p _inst_2 (fun (x : p) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g x)))
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u1} N] {p : Prop} (f : MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (g : p -> M), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u1, 0} N p _inst_2 (fun (x : p) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (g x)))
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u1} N] {p : Prop} (f : MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (g : p -> M), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u1, 0} N p _inst_2 (fun (x : p) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (g x)))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_Prop MonoidHom.map_finprod_Propₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
@@ -363,7 +363,7 @@ theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f x) (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) -> (Eq.{succ u1} M x (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))))) -> (forall (g : α -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, u3} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g i))))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f x) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) 1 (One.toOfNat1.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) (Monoid.toOne.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) (CommMonoid.toMonoid.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) _inst_2))))) -> (Eq.{succ u3} M x (OfNat.ofNat.{u3} M 1 (One.toOfNat1.{u3} M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)))))) -> (forall (g : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g i))))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f x) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) 1 (One.toOfNat1.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) (Monoid.toOne.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) (CommMonoid.toMonoid.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) _inst_2))))) -> (Eq.{succ u3} M x (OfNat.ofNat.{u3} M 1 (One.toOfNat1.{u3} M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)))))) -> (forall (g : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g i))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_of_preimage_one MonoidHom.map_finprod_of_preimage_oneₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x = 1 → x = 1) (g : α → M) :
@@ -379,7 +379,7 @@ theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x =
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u1, succ u2} M N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g)) -> (forall (f : α -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g (finprod.{u1, u3} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g (f i))))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u3, succ u2} M N (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g)) -> (forall (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u3, succ u2} M N (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g)) -> (forall (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_of_injective MonoidHom.map_finprod_of_injectiveₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_of_injective (g : M →* N) (hg : Injective g) (f : α → M) :
@@ -392,7 +392,7 @@ theorem MonoidHom.map_finprod_of_injective (g : M →* N) (hg : Injective g) (f
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} N (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (fun (_x : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) g (finprod.{u1, u3} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (fun (_x : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) g (f i)))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))
Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod MulEquiv.map_finprodₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod (g : M ≃* N) (f : α → M) : g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
@@ -962,7 +962,7 @@ theorem finprod_mem_mul_distrib (hs : s.Finite) :
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f)) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f)) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod MonoidHom.map_finprodₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod {f : α → M} (g : M →* N) (hf : (mulSupport f).Finite) :
@@ -987,7 +987,7 @@ theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7269 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7287 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem' MonoidHom.map_finprod_mem'ₓ'. -/
/-- A more general version of `monoid_hom.map_finprod_mem` that requires `s ∩ mul_support f` rather
than `s` to be finite. -/
@@ -1006,7 +1006,7 @@ theorem MonoidHom.map_finprod_mem' {f : α → M} (g : M →* N) (h₀ : (s ∩
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7414 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7434 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem MonoidHom.map_finprod_memₓ'. -/
/-- Given a monoid homomorphism `g : M →* N` and a function `f : α → M`, the value of `g` at the
product of `f i` over `i ∈ s` equals the product of `g (f i)` over `s`. -/
@@ -1022,7 +1022,7 @@ theorem MonoidHom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.Finite)
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] (g : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7527 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7549 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod_mem MulEquiv.map_finprod_memₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs : s.Finite) :
@@ -1432,7 +1432,7 @@ theorem finprod_comp {g : β → M} (e : α → β) (he₀ : Function.Bijective
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} {M : Type.{u3}} [_inst_1 : CommMonoid.{u3} M] (e : Equiv.{succ u1, succ u2} α β) {f : β -> M}, Eq.{succ u3} M (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f (coeFn.{max 1 (max (succ u1) (succ u2)) (succ u2) (succ u1), max (succ u1) (succ u2)} (Equiv.{succ u1, succ u2} α β) (fun (_x : Equiv.{succ u1, succ u2} α β) => α -> β) (Equiv.hasCoeToFun.{succ u1, succ u2} α β) e i))) (finprod.{u3, succ u2} M β _inst_1 (fun (i' : β) => f i'))
but is expected to have type
- forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (e : Equiv.{succ u3, succ u2} α β) {f : β -> M}, Eq.{succ u1} M (finprod.{u1, succ u3} M α _inst_1 (fun (i : α) => f (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} α β) e i))) (finprod.{u1, succ u2} M β _inst_1 (fun (i' : β) => f i'))
+ forall {α : Type.{u3}} {β : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (e : Equiv.{succ u3, succ u2} α β) {f : β -> M}, Eq.{succ u1} M (finprod.{u1, succ u3} M α _inst_1 (fun (i : α) => f (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Equiv.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => β) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u2} α β) e i))) (finprod.{u1, succ u2} M β _inst_1 (fun (i' : β) => f i'))
Case conversion may be inaccurate. Consider using '#align finprod_comp_equiv finprod_comp_equivₓ'. -/
@[to_additive]
theorem finprod_comp_equiv (e : α ≃ β) {f : β → M} : (∏ᶠ i, f (e i)) = ∏ᶠ i', f i' :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/38f16f960f5006c6c0c2bac7b0aba5273188f4e5
@@ -333,7 +333,7 @@ theorem one_le_finprod' {M : Type _} [OrderedCommMonoid M] {f : α → M} (hf :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u3} (PLift.{u3} α) (Function.mulSupport.{u3, u1} (PLift.{u3} α) M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (Function.comp.{succ u3, u3, succ u1} (PLift.{u3} α) α M g (PLift.down.{u3} α)))) -> (Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, u3} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u3} N α _inst_2 (fun (x : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g x))))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u1} (PLift.{u1} α) (Function.mulSupport.{u1, u3} (PLift.{u1} α) M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Function.comp.{succ u1, u1, succ u3} (PLift.{u1} α) α M g (PLift.down.{u1} α)))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u1} N α _inst_2 (fun (x : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g x))))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : α -> M), (Set.Finite.{u1} (PLift.{u1} α) (Function.mulSupport.{u1, u3} (PLift.{u1} α) M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Function.comp.{succ u1, u1, succ u3} (PLift.{u1} α) α M g (PLift.down.{u1} α)))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (x : α) => g x))) (finprod.{u2, u1} N α _inst_2 (fun (x : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g x))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_pLiftₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
@@ -350,7 +350,7 @@ theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] {p : Prop} (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (g : p -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u2, 0} N p _inst_2 (fun (x : p) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g x)))
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u1} N] {p : Prop} (f : MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (g : p -> M), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u1, 0} N p _inst_2 (fun (x : p) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (g x)))
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u1} N] {p : Prop} (f : MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (g : p -> M), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (finprod.{u2, 0} M p _inst_1 (fun (x : p) => g x))) (finprod.{u1, 0} N p _inst_2 (fun (x : p) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))) M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2)) (MonoidHom.monoidHomClass.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_2))))) f (g x)))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_Prop MonoidHom.map_finprod_Propₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
@@ -363,7 +363,7 @@ theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f x) (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) -> (Eq.{succ u1} M x (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))))) -> (forall (g : α -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (finprod.{u1, u3} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) f (g i))))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f x) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) x) 1 (One.toOfNat1.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) x) (Monoid.toOne.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) x) (CommMonoid.toMonoid.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) x) _inst_2))))) -> (Eq.{succ u3} M x (OfNat.ofNat.{u3} M 1 (One.toOfNat1.{u3} M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)))))) -> (forall (g : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g i))))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (f : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (forall (x : M), (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f x) (OfNat.ofNat.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) 1 (One.toOfNat1.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) (Monoid.toOne.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) (CommMonoid.toMonoid.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) _inst_2))))) -> (Eq.{succ u3} M x (OfNat.ofNat.{u3} M 1 (One.toOfNat1.{u3} M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)))))) -> (forall (g : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (finprod.{u3, u1} M α _inst_1 (fun (i : α) => g i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) f (g i))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_of_preimage_one MonoidHom.map_finprod_of_preimage_oneₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x = 1 → x = 1) (g : α → M) :
@@ -379,7 +379,7 @@ theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x =
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u1, succ u2} M N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g)) -> (forall (f : α -> M), Eq.{succ u2} N (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g (finprod.{u1, u3} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (fun (_x : MonoidHom.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) g (f i))))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u3, succ u2} M N (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g)) -> (forall (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Function.Injective.{succ u3, succ u2} M N (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g)) -> (forall (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_of_injective MonoidHom.map_finprod_of_injectiveₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod_of_injective (g : M →* N) (hg : Injective g) (f : α → M) :
@@ -392,7 +392,7 @@ theorem MonoidHom.map_finprod_of_injective (g : M →* N) (hg : Injective g) (f
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {α : Sort.{u3}} [_inst_1 : CommMonoid.{u1} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} N (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (fun (_x : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) g (finprod.{u1, u3} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u3} N α _inst_2 (fun (i : α) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (fun (_x : MulEquiv.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1))) (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) g (f i)))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))
+ forall {M : Type.{u3}} {N : Type.{u2}} {α : Sort.{u1}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))
Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod MulEquiv.map_finprodₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod (g : M ≃* N) (f : α → M) : g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
@@ -962,7 +962,7 @@ theorem finprod_mem_mul_distrib (hs : s.Finite) :
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f)) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f)) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f)) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => f i))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod MonoidHom.map_finprodₓ'. -/
@[to_additive]
theorem MonoidHom.map_finprod {f : α → M} (g : M →* N) (hf : (mulSupport f).Finite) :
@@ -987,7 +987,7 @@ theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (Function.mulSupport.{u1, u2} α M (MulOneClass.toHasOne.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) f))) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7269 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} {f : α -> M} (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (Function.mulSupport.{u1, u3} α M (Monoid.toOne.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) f))) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7269 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem' MonoidHom.map_finprod_mem'ₓ'. -/
/-- A more general version of `monoid_hom.map_finprod_mem` that requires `s ∩ mul_support f` rather
than `s` to be finite. -/
@@ -1006,7 +1006,7 @@ theorem MonoidHom.map_finprod_mem' {f : α → M} (g : M →* N) (h₀ : (s ∩
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (finprod.{u2, succ u1} M α _inst_1 (fun (j : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s) => f j)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) (fun (_x : MonoidHom.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) => M -> N) (MonoidHom.hasCoeToFun.{u2, u3} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1)) (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7414 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] {s : Set.{u1} α} (f : α -> M) (g : MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))), (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7414 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (j : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) j s) => f j)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MonoidHom.monoidHomClass.{u3, u2} M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.map_finprod_mem MonoidHom.map_finprod_memₓ'. -/
/-- Given a monoid homomorphism `g : M →* N` and a function `f : α → M`, the value of `g` at the
product of `f i` over `i ∈ s` equals the product of `g (f i)` over `s`. -/
@@ -1022,7 +1022,7 @@ theorem MonoidHom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.Finite)
lean 3 declaration is
forall {α : Type.{u1}} {M : Type.{u2}} {N : Type.{u3}} [_inst_1 : CommMonoid.{u2} M] [_inst_2 : CommMonoid.{u3} N] (g : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u3} N (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (finprod.{u2, succ u1} M α _inst_1 (fun (i : α) => finprod.{u2, 0} M (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_1 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => f i)))) (finprod.{u3, succ u1} N α _inst_2 (fun (i : α) => finprod.{u3, 0} N (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) _inst_2 (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) (fun (_x : MulEquiv.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) => M -> N) (MulEquiv.hasCoeToFun.{u2, u3} M N (MulOneClass.toHasMul.{u2} M (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_1))) (MulOneClass.toHasMul.{u3} N (Monoid.toMulOneClass.{u3} N (CommMonoid.toMonoid.{u3} N _inst_2)))) g (f i)))))
but is expected to have type
- forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7527 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
+ forall {α : Type.{u1}} {M : Type.{u3}} {N : Type.{u2}} [_inst_1 : CommMonoid.{u3} M] [_inst_2 : CommMonoid.{u2} N] (g : MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) (f : α -> M) {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (h._@.Mathlib.Algebra.BigOperators.Finprod._hyg.7527 : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (finprod.{u3, succ u1} M α _inst_1 (fun (i : α) => finprod.{u3, 0} M (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_1 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => f i)))) (finprod.{u2, succ u1} N α _inst_2 (fun (i : α) => finprod.{u2, 0} N (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) _inst_2 (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquivClass.instMonoidHomClass.{max u3 u2, u3, u2} (MulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)))) M N (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{u3, u2} M N (MulOneClass.toMul.{u3} M (Monoid.toMulOneClass.{u3} M (CommMonoid.toMonoid.{u3} M _inst_1))) (MulOneClass.toMul.{u2} N (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_2))))))) g (f i)))))
Case conversion may be inaccurate. Consider using '#align mul_equiv.map_finprod_mem MulEquiv.map_finprod_memₓ'. -/
@[to_additive]
theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs : s.Finite) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/4c586d291f189eecb9d00581aeb3dd998ac34442
@@ -201,7 +201,7 @@ lean 3 declaration is
but is expected to have type
forall {M : Type.{u1}} {α : Sort.{u2}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (a : α), (forall (x : α), (Ne.{u2} α x a) -> (Eq.{succ u1} M (f x) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))))) -> (Eq.{succ u1} M (finprod.{u1, u2} M α _inst_1 (fun (x : α) => f x)) (f a))
Case conversion may be inaccurate. Consider using '#align finprod_eq_single finprod_eq_singleₓ'. -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (x «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ≠ » a) -/
@[to_additive]
theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) :
(∏ᶠ x, f x) = f a :=
@@ -616,7 +616,7 @@ lean 3 declaration is
but is expected to have type
forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] (f : α -> M) (a : α) [_inst_3 : DecidableEq.{succ u2} α] (hf : Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)), Eq.{succ u1} M (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Ne.{succ u2} α i a) _inst_1 (fun (H : Ne.{succ u2} α i a) => f i))) (Finset.prod.{u1, u2} M α _inst_1 (Finset.erase.{u2} α (fun (a : α) (b : α) => _inst_3 a b) (Set.Finite.toFinset.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f) hf) a) (fun (i : α) => f i))
Case conversion may be inaccurate. Consider using '#align finprod_cond_ne finprod_cond_neₓ'. -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (i «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr ≠ » a) -/
@[to_additive]
theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSupport f).Finite) :
(∏ᶠ (i) (_ : i ≠ a), f i) = ∏ i in hf.toFinset.eraseₓ a, f i :=
@@ -1192,7 +1192,7 @@ theorem finprod_mem_singleton : (∏ᶠ i ∈ ({a} : Set α), f i) = f a := by
#align finsum_mem_singleton finsum_mem_singleton
-/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (i «expr = » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr = » a) -/
#print finprod_cond_eq_left /-
@[simp, to_additive]
theorem finprod_cond_eq_left : (∏ᶠ (i) (_ : i = a), f i) = f a :=
@@ -1594,7 +1594,7 @@ lean 3 declaration is
but is expected to have type
forall {α : Type.{u2}} {M : Type.{u1}} [_inst_1 : CommMonoid.{u1} M] {f : α -> M} (a : α), (Set.Finite.{u2} α (Function.mulSupport.{u2, u1} α M (Monoid.toOne.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)) f)) -> (Eq.{succ u1} M (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_1)))) (f a) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => finprod.{u1, 0} M (Ne.{succ u2} α i a) _inst_1 (fun (H : Ne.{succ u2} α i a) => f i)))) (finprod.{u1, succ u2} M α _inst_1 (fun (i : α) => f i)))
Case conversion may be inaccurate. Consider using '#align mul_finprod_cond_ne mul_finprod_cond_neₓ'. -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (i «expr ≠ » a) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i «expr ≠ » a) -/
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
(f a * ∏ᶠ (i) (_ : i ≠ a), f i) = ∏ᶠ i, f i := by
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -1033,9 +1033,9 @@ theorem finprod_subtype_eq_finprod_cond (p : α → Prop) :
theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finite) :
((∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i) = ∏ᶠ i ∈ s, f i := by
rw [← finprod_mem_union', inter_union_diff]
- rw [disjoint_iff_inf_le]
- exacts [fun x hx => hx.2.2 hx.1.2, h.subset fun x hx => ⟨hx.1.1, hx.2⟩,
- h.subset fun x hx => ⟨hx.1.1, hx.2⟩]
+ · rw [disjoint_iff_inf_le]
+ exact fun x hx => hx.2.2 hx.1.2
+ exacts [h.subset fun x hx => ⟨hx.1.1, hx.2⟩, h.subset fun x hx => ⟨hx.1.1, hx.2⟩]
#align finprod_mem_inter_mul_diff' finprod_mem_inter_mul_diff'
#align finsum_mem_inter_add_diff' finsum_mem_inter_add_diff'
Similar to #12486, which did this for Algebra.Algebra.Basic
.
Splits Algebra.Module.Defs
off Algebra.Module.Basic
. Most imports only need the Defs file, which has significantly smaller imports. The remaining Algebra.Module.Basic
is now a grab-bag of unrelated results, and should probably be split further or rehomed.
This is mostly motivated by the wasted effort during minimization upon encountering Algebra.Module.Basic.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>
@@ -5,7 +5,7 @@ Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
-/
import Mathlib.Algebra.Order.BigOperators.Group.Finset
import Mathlib.Algebra.Function.Finite
-import Mathlib.Algebra.Module.Basic
+import Mathlib.Algebra.Module.Defs
import Mathlib.Data.Set.Subsingleton
#align_import algebra.big_operators.finprod from "leanprover-community/mathlib"@"d6fad0e5bf2d6f48da9175d25c3dc5706b3834ce"
Subsingleton,Nontrivial
off of Data.Set.Basic
(#11832)
Moves definition of and lemmas related to Set.Subsingleton
and Set.Nontrivial
to a new file, so that Basic
can be shorter.
@@ -6,6 +6,7 @@ Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
import Mathlib.Algebra.Order.BigOperators.Group.Finset
import Mathlib.Algebra.Function.Finite
import Mathlib.Algebra.Module.Basic
+import Mathlib.Data.Set.Subsingleton
#align_import algebra.big_operators.finprod from "leanprover-community/mathlib"@"d6fad0e5bf2d6f48da9175d25c3dc5706b3834ce"
Take the content of
Algebra.BigOperators.List.Basic
Algebra.BigOperators.List.Lemmas
Algebra.BigOperators.Multiset.Basic
Algebra.BigOperators.Multiset.Lemmas
Algebra.BigOperators.Multiset.Order
Algebra.BigOperators.Order
and sort it into six files:
Algebra.Order.BigOperators.Group.List
. I credit Yakov for https://github.com/leanprover-community/mathlib/pull/8543.Algebra.Order.BigOperators.Group.Multiset
. Copyright inherited from Algebra.BigOperators.Multiset.Order
.Algebra.Order.BigOperators.Group.Finset
. Copyright inherited from Algebra.BigOperators.Order
.Algebra.Order.BigOperators.Ring.List
. I credit Stuart for https://github.com/leanprover-community/mathlib/pull/10184.Algebra.Order.BigOperators.Ring.Multiset
. I credit Ruben for https://github.com/leanprover-community/mathlib/pull/8787.Algebra.Order.BigOperators.Ring.Finset
. I credit Floris for https://github.com/leanprover-community/mathlib/pull/1294.Here are the design decisions at play:
Data.Nat.Order.Basic
in a few List
files.Algebra.Order.BigOperators
instead of Algebra.BigOperators.Order
because algebraic order theory is more of a theory than big operators algebra. Another reason is that algebraic order theory is the only way to mix pure order and pure algebra, while there are more ways to mix pure finiteness and pure algebra than just big operators.Algebra.Order.BigOperators.Group
should be additivisable (except a few Nat
- or Int
-specific lemmas). In contrast, things under Algebra.Order.BigOperators.Ring
are more prone to having heavy imports.List
vs Multiset
vs Finset
. This is not strictly necessary, and can be relaxed in cases where there aren't that many lemmas to be had. As an example, I could split out the AbsoluteValue
lemmas from Algebra.Order.BigOperators.Ring.Finset
to a file Algebra.Order.BigOperators.Ring.AbsoluteValue
and it could stay this way until too many lemmas are in this file (or a split is needed for import reasons), in which case we would need files Algebra.Order.BigOperators.Ring.AbsoluteValue.Finset
, Algebra.Order.BigOperators.Ring.AbsoluteValue.Multiset
, etc...Finsupp
big operator and finprod
/finsum
order lemmas also belong in Algebra.Order.BigOperators
. I haven't done so in this PR because the diff is big enough like that.@@ -3,10 +3,9 @@ Copyright (c) 2020 Kexing Ying and Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
-/
-import Mathlib.Algebra.BigOperators.Order
+import Mathlib.Algebra.Order.BigOperators.Group.Finset
import Mathlib.Algebra.Function.Finite
import Mathlib.Algebra.Module.Basic
-import Mathlib.Data.Set.Basic
#align_import algebra.big_operators.finprod from "leanprover-community/mathlib"@"d6fad0e5bf2d6f48da9175d25c3dc5706b3834ce"
@@ -1191,7 +1191,7 @@ theorem finprod_prod_comm (s : Finset β) (f : α → β → M)
(s.finite_toSet.biUnion fun b hb => h b (Finset.mem_coe.1 hb)).toFinset := by
rw [Finite.coe_toFinset]
intro x hx
- simp only [exists_prop, mem_iUnion, Ne.def, mem_mulSupport, Finset.mem_coe]
+ simp only [exists_prop, mem_iUnion, Ne, mem_mulSupport, Finset.mem_coe]
contrapose! hx
rw [mem_mulSupport, not_not, Finset.prod_congr rfl hx, Finset.prod_const_one]
rw [finprod_eq_prod_of_mulSupport_subset _ hU, Finset.prod_comm]
open Classical
(#11199)
We remove all but one open Classical
s, instead preferring to use open scoped Classical
. The only real side-effect this led to is moving a couple declarations to use Exists.choose
instead of Classical.choose
.
The first few commits are explicitly labelled regex replaces for ease of review.
@@ -89,7 +89,7 @@ section
/- Note: we use classical logic only for these definitions, to ensure that we do not write lemmas
with `Classical.dec` in their statement. -/
-open Classical
+open scoped Classical
/-- Sum of `f x` as `x` ranges over the elements of the support of `f`, if it's finite. Zero
otherwise. -/
Data.Set.Basic
from scripts/noshake.json
.example
s only,
move these example
s to a new test file.Order.Filter.Basic
dependency on Control.Traversable.Instances
,
as the relevant parts were moved to Order.Filter.ListTraverse
.lake exe shake --fix
.@@ -6,6 +6,7 @@ Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
import Mathlib.Algebra.BigOperators.Order
import Mathlib.Algebra.Function.Finite
import Mathlib.Algebra.Module.Basic
+import Mathlib.Data.Set.Basic
#align_import algebra.big_operators.finprod from "leanprover-community/mathlib"@"d6fad0e5bf2d6f48da9175d25c3dc5706b3834ce"
Lemmas around this were a mess, throth in terms of names, statement and location. This PR standardises everything to be in Algebra.BigOperators.Basic
and changes the lemmas to take in InjOn
and SurjOn
assumptions where possible (and where impossible make sure the hypotheses are taken in the correct order) and moves the equality of functions hypothesis last.
Also add a few lemmas that help fix downstream uses by golfing.
From LeanAPAP and LeanCamCombi
@@ -1240,14 +1240,10 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
(f : α × β → M) :
(∏ᶠ (ab) (_ : ab ∈ s), f ab) =
∏ᶠ (a) (b) (_ : b ∈ (s.filter fun ab => Prod.fst ab = a).image Prod.snd), f (a, b) := by
- have :
- ∀ a,
- (∏ i : β in (s.filter fun ab => Prod.fst ab = a).image Prod.snd, f (a, i)) =
- (Finset.filter (fun ab => Prod.fst ab = a) s).prod f := by
- refine' fun a => Finset.prod_bij (fun b _ => (a, b)) _ _ _ _ <;> simp
- suffices ∀ a' b, (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a by simpa
- rintro a' b hp rfl
- exact ⟨hp, rfl⟩
+ have (a) :
+ ∏ i in (s.filter fun ab => Prod.fst ab = a).image Prod.snd, f (a, i) =
+ (s.filter (Prod.fst · = a)).prod f := by
+ refine Finset.prod_nbij' (fun b ↦ (a, b)) Prod.snd ?_ ?_ ?_ ?_ ?_ <;> aesop
rw [finprod_mem_finset_eq_prod]
simp_rw [finprod_mem_finset_eq_prod, this]
rw [finprod_eq_prod_of_mulSupport_subset _
Algebra.Support
down the import tree (#8919)
Function.support
is a very basic definition. Nevertheless, it is a pretty heavy import because it imports most objects a support
lemma can be written about.
This PR reverses the dependencies between those objects and Function.support
, so that the latter can become a much more lightweight import.
Only two import could not easily be reversed, namely the ones to Data.Set.Finite
and Order.ConditionallyCompleteLattice.Basic
, so I created two new files instead.
I credit:
@@ -4,7 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
-/
import Mathlib.Algebra.BigOperators.Order
-import Mathlib.Algebra.IndicatorFunction
+import Mathlib.Algebra.Function.Finite
+import Mathlib.Algebra.Module.Basic
#align_import algebra.big_operators.finprod from "leanprover-community/mathlib"@"d6fad0e5bf2d6f48da9175d25c3dc5706b3834ce"
@@ -290,7 +290,7 @@ theorem one_le_finprod' {M : Type*} [OrderedCommMonoid M] {f : α → M} (hf :
theorem MonoidHom.map_finprod_plift (f : M →* N) (g : α → M)
(h : (mulSupport <| g ∘ PLift.down).Finite) : f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) := by
rw [finprod_eq_prod_plift_of_mulSupport_subset h.coe_toFinset.ge,
- finprod_eq_prod_plift_of_mulSupport_subset, f.map_prod]
+ finprod_eq_prod_plift_of_mulSupport_subset, map_prod]
rw [h.coe_toFinset]
exact mulSupport_comp_subset f.map_one (g ∘ PLift.down)
#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_plift
@@ -668,7 +668,7 @@ theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : ∏ᶠ i ∈ s, f i = 1 := b
"If the product of `f i` over `i ∈ s` is not equal to `0`, then there is some `x ∈ s`
such that `f x ≠ 0`."]
theorem exists_ne_one_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : ∃ x ∈ s, f x ≠ 1 := by
- by_contra' h'
+ by_contra! h'
exact h (finprod_mem_of_eqOn_one h')
#align exists_ne_one_of_finprod_mem_ne_one exists_ne_one_of_finprod_mem_ne_one
#align exists_ne_zero_of_finsum_mem_ne_zero exists_ne_zero_of_finsum_mem_ne_zero
attribute [simp] ... in
-> attribute [local simp] ... in
(#7678)
Mathlib.Logic.Unique contains the line attribute [simp] eq_iff_true_of_subsingleton in ...
:
Despite what the in
part may imply, this adds the lemma to the simp set "globally", including for downstream files; it is likely that attribute [local simp] eq_iff_true_of_subsingleton in ...
was meant instead (or maybe scoped simp
, but I think "scoped" refers to the current namespace). Indeed, the relevant lemma is not marked with @[simp]
for possible slowness: https://github.com/leanprover/std4/blob/846e9e1d6bb534774d1acd2dc430e70987da3c18/Std/Logic.lean#L749. Adding it to the simp set causes the example at https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Regression.20in.20simp to slow down.
This PR changes this and fixes the relevant downstream simp
s. There was also one ocurrence of attribute [simp] FullSubcategory.comp_def FullSubcategory.id_def in
in Mathlib.CategoryTheory.Monoidal.Subcategory but that was much easier to fix.
@@ -197,7 +197,7 @@ theorem finprod_one : (∏ᶠ _ : α, (1 : M)) = 1 := by
theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : ∏ᶠ i, f i = 1 := by
rw [← finprod_one]
congr
- simp
+ simp [eq_iff_true_of_subsingleton]
#align finprod_of_is_empty finprod_of_isEmpty
#align finsum_of_is_empty finsum_of_isEmpty
@@ -108,19 +108,15 @@ end
open Std.ExtendedBinder
--- Porting note: removed scoped[BigOperators], `notation3` doesn't mesh with `scoped[Foo]`
-
/-- `∑ᶠ x, f x` is notation for `finsum f`. It is the sum of `f x`, where `x` ranges over the
support of `f`, if it's finite, zero otherwise. Taking the sum over multiple arguments or
conditions is possible, e.g. `∏ᶠ (x) (y), f x y` and `∏ᶠ (x) (h: x ∈ s), f x`-/
-notation3"∑ᶠ "(...)", "r:67:(scoped f => finsum f) => r
-
--- Porting note: removed scoped[BigOperators], `notation3` doesn't mesh with `scoped[Foo]`
+scoped[BigOperators] notation3"∑ᶠ "(...)", "r:67:(scoped f => finsum f) => r
/-- `∏ᶠ x, f x` is notation for `finprod f`. It is the sum of `f x`, where `x` ranges over the
multiplicative support of `f`, if it's finite, one otherwise. Taking the product over multiple
arguments or conditions is possible, e.g. `∏ᶠ (x) (y), f x y` and `∏ᶠ (x) (h: x ∈ s), f x`-/
-notation3"∏ᶠ "(...)", "r:67:(scoped f => finprod f) => r
+scoped[BigOperators] notation3"∏ᶠ "(...)", "r:67:(scoped f => finprod f) => r
-- Porting note: The following ports the lean3 notation for this file, but is currently very fickle.
@@ -651,7 +651,7 @@ theorem finprod_mem_mul_distrib' (hf : (s ∩ mulSupport f).Finite) (hg : (s ∩
#align finsum_mem_add_distrib' finsum_mem_add_distrib'
/-- The product of the constant function `1` over any set equals `1`. -/
-@[to_additive "The product of the constant function `0` over any set equals `0`."]
+@[to_additive "The sum of the constant function `0` over any set equals `0`."]
theorem finprod_mem_one (s : Set α) : (∏ᶠ i ∈ s, (1 : M)) = 1 := by simp
#align finprod_mem_one finprod_mem_one
#align finsum_mem_zero finsum_mem_zero
@@ -47,11 +47,11 @@ This notation works for functions `f : p → M`, where `p : Prop`, so the follow
## Implementation notes
-`Finsum` and `Finprod` is "yet another way of doing finite sums and products in Lean". However
+`finsum` and `finprod` is "yet another way of doing finite sums and products in Lean". However
experiments in the wild (e.g. with matroids) indicate that it is a helpful approach in settings
where the user is not interested in computability and wants to do reasoning without running into
typeclass diamonds caused by the constructive finiteness used in definitions such as `Finset` and
-`Fintype`. By sticking solely to `Set.finite` we avoid these problems. We are aware that there are
+`Fintype`. By sticking solely to `Set.Finite` we avoid these problems. We are aware that there are
other solutions but for beginner mathematicians this approach is easier in practice.
Another application is the construction of a partition of unity from a collection of “bump”
@@ -171,29 +171,29 @@ notation3"∏ᶠ "(...)", "r:67:(scoped f => finprod f) => r
-- (finprod (α := $t) fun $h => $p))))
@[to_additive]
-theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
+theorem finprod_eq_prod_plift_of_mulSupport_toFinset_subset {f : α → M}
(hf : (mulSupport (f ∘ PLift.down)).Finite) {s : Finset (PLift α)} (hs : hf.toFinset ⊆ s) :
∏ᶠ i, f i = ∏ i in s, f i.down := by
rw [finprod, dif_pos]
refine' Finset.prod_subset hs fun x _ hxf => _
rwa [hf.mem_toFinset, nmem_mulSupport] at hxf
-#align finprod_eq_prod_plift_of_mul_support_to_finset_subset finprod_eq_prod_pLift_of_mulSupport_toFinset_subset
-#align finsum_eq_sum_plift_of_support_to_finset_subset finsum_eq_sum_pLift_of_support_toFinset_subset
+#align finprod_eq_prod_plift_of_mul_support_to_finset_subset finprod_eq_prod_plift_of_mulSupport_toFinset_subset
+#align finsum_eq_sum_plift_of_support_to_finset_subset finsum_eq_sum_plift_of_support_toFinset_subset
@[to_additive]
-theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
+theorem finprod_eq_prod_plift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
(hs : mulSupport (f ∘ PLift.down) ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i.down :=
- finprod_eq_prod_pLift_of_mulSupport_toFinset_subset (s.finite_toSet.subset hs) fun x hx => by
+ finprod_eq_prod_plift_of_mulSupport_toFinset_subset (s.finite_toSet.subset hs) fun x hx => by
rw [Finite.mem_toFinset] at hx
exact hs hx
-#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_pLift_of_mulSupport_subset
-#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_pLift_of_support_subset
+#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_plift_of_mulSupport_subset
+#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_plift_of_support_subset
@[to_additive (attr := simp)]
theorem finprod_one : (∏ᶠ _ : α, (1 : M)) = 1 := by
have : (mulSupport fun x : PLift α => (fun _ => 1 : α → M) x.down) ⊆ (∅ : Finset (PLift α)) :=
fun x h => by simp at h
- rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_empty]
+ rw [finprod_eq_prod_plift_of_mulSupport_subset this, Finset.prod_empty]
#align finprod_one finprod_one
#align finsum_zero finsum_zero
@@ -212,13 +212,13 @@ theorem finprod_false (f : False → M) : ∏ᶠ i, f i = 1 :=
#align finsum_false finsum_false
@[to_additive]
-theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) :
+theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ x, x ≠ a → f x = 1) :
∏ᶠ x, f x = f a := by
have : mulSupport (f ∘ PLift.down) ⊆ ({PLift.up a} : Finset (PLift α)) := by
intro x
contrapose
simpa [PLift.eq_up_iff_down_eq] using ha x.down
- rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_singleton]
+ rw [finprod_eq_prod_plift_of_mulSupport_subset this, Finset.prod_singleton]
#align finprod_eq_single finprod_eq_single
#align finsum_eq_single finsum_eq_single
@@ -291,26 +291,26 @@ theorem one_le_finprod' {M : Type*} [OrderedCommMonoid M] {f : α → M} (hf :
#align finsum_nonneg finsum_nonneg
@[to_additive]
-theorem MonoidHom.map_finprod_pLift (f : M →* N) (g : α → M)
+theorem MonoidHom.map_finprod_plift (f : M →* N) (g : α → M)
(h : (mulSupport <| g ∘ PLift.down).Finite) : f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) := by
- rw [finprod_eq_prod_pLift_of_mulSupport_subset h.coe_toFinset.ge,
- finprod_eq_prod_pLift_of_mulSupport_subset, f.map_prod]
+ rw [finprod_eq_prod_plift_of_mulSupport_subset h.coe_toFinset.ge,
+ finprod_eq_prod_plift_of_mulSupport_subset, f.map_prod]
rw [h.coe_toFinset]
exact mulSupport_comp_subset f.map_one (g ∘ PLift.down)
-#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_pLift
-#align add_monoid_hom.map_finsum_plift AddMonoidHom.map_finsum_pLift
+#align monoid_hom.map_finprod_plift MonoidHom.map_finprod_plift
+#align add_monoid_hom.map_finsum_plift AddMonoidHom.map_finsum_plift
@[to_additive]
theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) :=
- f.map_finprod_pLift g (Set.toFinite _)
+ f.map_finprod_plift g (Set.toFinite _)
#align monoid_hom.map_finprod_Prop MonoidHom.map_finprod_Prop
#align add_monoid_hom.map_finsum_Prop AddMonoidHom.map_finsum_Prop
@[to_additive]
theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x = 1 → x = 1) (g : α → M) :
f (∏ᶠ i, g i) = ∏ᶠ i, f (g i) := by
- by_cases hg : (mulSupport <| g ∘ PLift.down).Finite; · exact f.map_finprod_pLift g hg
+ by_cases hg : (mulSupport <| g ∘ PLift.down).Finite; · exact f.map_finprod_plift g hg
rw [finprod, dif_neg, f.map_one, finprod, dif_neg]
exacts [Infinite.mono (fun x hx => mt (hf (g x.down)) hx) hg, hg]
#align monoid_hom.map_finprod_of_preimage_one MonoidHom.map_finprod_of_preimage_one
@@ -333,16 +333,18 @@ theorem MulEquiv.map_finprod (g : M ≃* N) (f : α → M) : g (∏ᶠ i, f i) =
infinite. For a more usual version assuming `(support f).Finite` instead, see `finsum_smul'`. -/
theorem finsum_smul {R M : Type*} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(f : ι → R) (x : M) : (∑ᶠ i, f i) • x = ∑ᶠ i, f i • x := by
- rcases eq_or_ne x 0 with (rfl | hx); · simp
- exact ((smulAddHom R M).flip x).map_finsum_of_injective (smul_left_injective R hx) _
+ rcases eq_or_ne x 0 with (rfl | hx)
+ · simp
+ · exact ((smulAddHom R M).flip x).map_finsum_of_injective (smul_left_injective R hx) _
#align finsum_smul finsum_smul
/-- The `NoZeroSMulDivisors` makes sure that the result holds even when the support of `f` is
infinite. For a more usual version assuming `(support f).Finite` instead, see `smul_finsum'`. -/
theorem smul_finsum {R M : Type*} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(c : R) (f : ι → M) : (c • ∑ᶠ i, f i) = ∑ᶠ i, c • f i := by
- rcases eq_or_ne c 0 with (rfl | hc); · simp
- exact (smulAddHom R M c).map_finsum_of_injective (smul_right_injective M hc) _
+ rcases eq_or_ne c 0 with (rfl | hc)
+ · simp
+ · exact (smulAddHom R M c).map_finsum_of_injective (smul_right_injective M hc) _
#align smul_finsum smul_finsum
@[to_additive]
@@ -388,7 +390,7 @@ theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h :
have : mulSupport (f ∘ PLift.down) ⊆ s.map Equiv.plift.symm.toEmbedding := by
rw [A, Finset.coe_map]
exact image_subset _ h
- rw [finprod_eq_prod_pLift_of_mulSupport_subset this]
+ rw [finprod_eq_prod_plift_of_mulSupport_subset this]
simp only [Finset.prod_map, Equiv.coe_toEmbedding]
congr
#align finprod_eq_prod_of_mul_support_subset finprod_eq_prod_of_mulSupport_subset
@@ -619,7 +621,7 @@ theorem finprod_mul_distrib (hf : (mulSupport f).Finite) (hg : (mulSupport g).Fi
mem_union, mem_mulSupport]
intro x
contrapose!
- rintro ⟨hf,hg⟩
+ rintro ⟨hf, hg⟩
simp [hf, hg]
#align finprod_mul_distrib finprod_mul_distrib
#align finsum_add_distrib finsum_add_distrib
@@ -689,7 +691,7 @@ theorem finprod_mem_mul_distrib (hs : s.Finite) :
@[to_additive]
theorem MonoidHom.map_finprod {f : α → M} (g : M →* N) (hf : (mulSupport f).Finite) :
g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
- g.map_finprod_pLift f <| hf.preimage <| Equiv.plift.injective.injOn _
+ g.map_finprod_plift f <| hf.preimage <| Equiv.plift.injective.injOn _
#align monoid_hom.map_finprod MonoidHom.map_finprod
#align add_monoid_hom.map_finsum AddMonoidHom.map_finsum
@@ -1255,7 +1255,7 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
(s.mulSupport_of_fiberwise_prod_subset_image f Prod.fst),
← Finset.prod_fiberwise_of_maps_to (t := Finset.image Prod.fst s) _ f]
-- `finish` could close the goal here
- simp only [Finset.mem_image, Prod.mk.eta]
+ simp only [Finset.mem_image]
exact fun x hx => ⟨x, hx, rfl⟩
#align finprod_mem_finset_product' finprod_mem_finset_product'
#align finsum_mem_finset_product' finsum_mem_finset_product'
The major change here is adapting to simp
failing if it makes no progress.
The vast majority of the redundant simp
s found due to this change were extracted to #6632.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -1245,8 +1245,7 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
∀ a,
(∏ i : β in (s.filter fun ab => Prod.fst ab = a).image Prod.snd, f (a, i)) =
(Finset.filter (fun ab => Prod.fst ab = a) s).prod f := by
- refine' fun a => Finset.prod_bij (fun b _ => (a, b)) _ _ _ _ <;>-- `finish` closes these goals
- try simp; done
+ refine' fun a => Finset.prod_bij (fun b _ => (a, b)) _ _ _ _ <;> simp
suffices ∀ a' b, (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a by simpa
rintro a' b hp rfl
exact ⟨hp, rfl⟩
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -79,7 +79,7 @@ open Function Set
-- Porting note: Used to be section Sort
section sort
-variable {G M N : Type _} {α β ι : Sort _} [CommMonoid M] [CommMonoid N]
+variable {G M N : Type*} {α β ι : Sort*} [CommMonoid M] [CommMonoid N]
open BigOperators
@@ -278,13 +278,13 @@ theorem finprod_induction {f : α → M} (p : M → Prop) (hp₀ : p 1)
#align finprod_induction finprod_induction
#align finsum_induction finsum_induction
-theorem finprod_nonneg {R : Type _} [OrderedCommSemiring R] {f : α → R} (hf : ∀ x, 0 ≤ f x) :
+theorem finprod_nonneg {R : Type*} [OrderedCommSemiring R] {f : α → R} (hf : ∀ x, 0 ≤ f x) :
0 ≤ ∏ᶠ x, f x :=
finprod_induction (fun x => 0 ≤ x) zero_le_one (fun _ _ => mul_nonneg) hf
#align finprod_nonneg finprod_nonneg
@[to_additive finsum_nonneg]
-theorem one_le_finprod' {M : Type _} [OrderedCommMonoid M] {f : α → M} (hf : ∀ i, 1 ≤ f i) :
+theorem one_le_finprod' {M : Type*} [OrderedCommMonoid M] {f : α → M} (hf : ∀ i, 1 ≤ f i) :
1 ≤ ∏ᶠ i, f i :=
finprod_induction _ le_rfl (fun _ _ => one_le_mul) hf
#align one_le_finprod' one_le_finprod'
@@ -331,7 +331,7 @@ theorem MulEquiv.map_finprod (g : M ≃* N) (f : α → M) : g (∏ᶠ i, f i) =
/-- The `NoZeroSMulDivisors` makes sure that the result holds even when the support of `f` is
infinite. For a more usual version assuming `(support f).Finite` instead, see `finsum_smul'`. -/
-theorem finsum_smul {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
+theorem finsum_smul {R M : Type*} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(f : ι → R) (x : M) : (∑ᶠ i, f i) • x = ∑ᶠ i, f i • x := by
rcases eq_or_ne x 0 with (rfl | hx); · simp
exact ((smulAddHom R M).flip x).map_finsum_of_injective (smul_left_injective R hx) _
@@ -339,7 +339,7 @@ theorem finsum_smul {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZer
/-- The `NoZeroSMulDivisors` makes sure that the result holds even when the support of `f` is
infinite. For a more usual version assuming `(support f).Finite` instead, see `smul_finsum'`. -/
-theorem smul_finsum {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
+theorem smul_finsum {R M : Type*} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(c : R) (f : ι → M) : (c • ∑ᶠ i, f i) = ∑ᶠ i, c • f i := by
rcases eq_or_ne c 0 with (rfl | hc); · simp
exact (smulAddHom R M c).map_finsum_of_injective (smul_right_injective M hc) _
@@ -356,7 +356,7 @@ end sort
-- Porting note: Used to be section Type
section type
-variable {α β ι G M N : Type _} [CommMonoid M] [CommMonoid N]
+variable {α β ι G M N : Type*} [CommMonoid M] [CommMonoid N]
open BigOperators
@@ -591,7 +591,7 @@ theorem finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) :
#align finsum_eq_zero_of_forall_eq_zero finsum_eq_zero_of_forall_eq_zero
@[to_additive finsum_pos']
-theorem one_lt_finprod' {M : Type _} [OrderedCancelCommMonoid M] {f : ι → M}
+theorem one_lt_finprod' {M : Type*} [OrderedCancelCommMonoid M] {f : ι → M}
(h : ∀ i, 1 ≤ f i) (h' : ∃ i, 1 < f i) (hf : (mulSupport f).Finite) : 1 < ∏ᶠ i, f i := by
rcases h' with ⟨i, hi⟩
rw [finprod_eq_prod _ hf]
@@ -701,13 +701,13 @@ theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n
/-- See also `finsum_smul` for a version that works even when the support of `f` is not finite,
but with slightly stronger typeclass requirements. -/
-theorem finsum_smul' {R M : Type _} [Semiring R] [AddCommMonoid M] [Module R M] {f : ι → R}
+theorem finsum_smul' {R M : Type*} [Semiring R] [AddCommMonoid M] [Module R M] {f : ι → R}
(hf : (support f).Finite) (x : M) : (∑ᶠ i, f i) • x = ∑ᶠ i, f i • x :=
((smulAddHom R M).flip x).map_finsum hf
/-- See also `smul_finsum` for a version that works even when the support of `f` is not finite,
but with slightly stronger typeclass requirements. -/
-theorem smul_finsum' {R M : Type _} [Semiring R] [AddCommMonoid M] [Module R M] (c : R) {f : ι → M}
+theorem smul_finsum' {R M : Type*} [Semiring R] [AddCommMonoid M] [Module R M] (c : R) {f : ι → M}
(hf : (support f).Finite) : (c • ∑ᶠ i, f i) = ∑ᶠ i, c • f i :=
(smulAddHom R M c).map_finsum hf
@@ -1158,13 +1158,13 @@ theorem finprod_mem_induction (p : M → Prop) (hp₀ : p 1) (hp₁ : ∀ x y, p
#align finprod_mem_induction finprod_mem_induction
#align finsum_mem_induction finsum_mem_induction
-theorem finprod_cond_nonneg {R : Type _} [OrderedCommSemiring R] {p : α → Prop} {f : α → R}
+theorem finprod_cond_nonneg {R : Type*} [OrderedCommSemiring R] {p : α → Prop} {f : α → R}
(hf : ∀ x, p x → 0 ≤ f x) : 0 ≤ ∏ᶠ (x) (_ : p x), f x :=
finprod_nonneg fun x => finprod_nonneg <| hf x
#align finprod_cond_nonneg finprod_cond_nonneg
@[to_additive]
-theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α → M}
+theorem single_le_finprod {M : Type*} [OrderedCommMonoid M] (i : α) {f : α → M}
(hf : (mulSupport f).Finite) (h : ∀ j, 1 ≤ f j) : f i ≤ ∏ᶠ j, f j := by
classical calc
f i ≤ ∏ j in insert i hf.toFinset, f j :=
@@ -1174,7 +1174,7 @@ theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α
#align single_le_finprod single_le_finprod
#align single_le_finsum single_le_finsum
-theorem finprod_eq_zero {M₀ : Type _} [CommMonoidWithZero M₀] (f : α → M₀) (x : α) (hx : f x = 0)
+theorem finprod_eq_zero {M₀ : Type*} [CommMonoidWithZero M₀] (f : α → M₀) (x : α) (hx : f x = 0)
(hf : (mulSupport f).Finite) : ∏ᶠ x, f x = 0 := by
nontriviality
rw [finprod_eq_prod f hf]
@@ -1209,12 +1209,12 @@ theorem prod_finprod_comm (s : Finset α) (f : α → β → M) (h : ∀ a ∈ s
#align prod_finprod_comm prod_finprod_comm
#align sum_finsum_comm sum_finsum_comm
-theorem mul_finsum {R : Type _} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
+theorem mul_finsum {R : Type*} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
(r * ∑ᶠ a : α, f a) = ∑ᶠ a : α, r * f a :=
(AddMonoidHom.mulLeft r).map_finsum h
#align mul_finsum mul_finsum
-theorem finsum_mul {R : Type _} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
+theorem finsum_mul {R : Type*} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
(∑ᶠ a : α, f a) * r = ∑ᶠ a : α, f a * r :=
(AddMonoidHom.mulRight r).map_finsum h
#align finsum_mul finsum_mul
@@ -1272,7 +1272,7 @@ theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M)
#align finsum_mem_finset_product finsum_mem_finset_product
@[to_additive]
-theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)) (f : α × β × γ → M) :
+theorem finprod_mem_finset_product₃ {γ : Type*} (s : Finset (α × β × γ)) (f : α × β × γ → M) :
(∏ᶠ (abc) (_ : abc ∈ s), f abc) = ∏ᶠ (a) (b) (c) (_ : (a, b, c) ∈ s), f (a, b, c) := by
classical
rw [finprod_mem_finset_product']
@@ -1291,7 +1291,7 @@ theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
#align finsum_curry finsum_curry
@[to_additive]
-theorem finprod_curry₃ {γ : Type _} (f : α × β × γ → M) (h : (mulSupport f).Finite) :
+theorem finprod_curry₃ {γ : Type*} (f : α × β × γ → M) (h : (mulSupport f).Finite) :
∏ᶠ abc, f abc = ∏ᶠ (a) (b) (c), f (a, b, c) := by
rw [finprod_curry f h]
congr
@@ -110,14 +110,14 @@ open Std.ExtendedBinder
-- Porting note: removed scoped[BigOperators], `notation3` doesn't mesh with `scoped[Foo]`
-/-- `∑ᶠ x, f x` is notation for `finsum f`. It is the sum of `f x`, where `x` ranges over the the
+/-- `∑ᶠ x, f x` is notation for `finsum f`. It is the sum of `f x`, where `x` ranges over the
support of `f`, if it's finite, zero otherwise. Taking the sum over multiple arguments or
conditions is possible, e.g. `∏ᶠ (x) (y), f x y` and `∏ᶠ (x) (h: x ∈ s), f x`-/
notation3"∑ᶠ "(...)", "r:67:(scoped f => finsum f) => r
-- Porting note: removed scoped[BigOperators], `notation3` doesn't mesh with `scoped[Foo]`
-/-- `∏ᶠ x, f x` is notation for `finprod f`. It is the sum of `f x`, where `x` ranges over the the
+/-- `∏ᶠ x, f x` is notation for `finprod f`. It is the sum of `f x`, where `x` ranges over the
multiplicative support of `f`, if it's finite, one otherwise. Taking the product over multiple
arguments or conditions is possible, e.g. `∏ᶠ (x) (y), f x y` and `∏ᶠ (x) (h: x ∈ s), f x`-/
notation3"∏ᶠ "(...)", "r:67:(scoped f => finprod f) => r
@@ -590,6 +590,14 @@ theorem finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) :
#align finprod_eq_one_of_forall_eq_one finprod_eq_one_of_forall_eq_one
#align finsum_eq_zero_of_forall_eq_zero finsum_eq_zero_of_forall_eq_zero
+@[to_additive finsum_pos']
+theorem one_lt_finprod' {M : Type _} [OrderedCancelCommMonoid M] {f : ι → M}
+ (h : ∀ i, 1 ≤ f i) (h' : ∃ i, 1 < f i) (hf : (mulSupport f).Finite) : 1 < ∏ᶠ i, f i := by
+ rcases h' with ⟨i, hi⟩
+ rw [finprod_eq_prod _ hf]
+ refine Finset.one_lt_prod' (fun i _ ↦ h i) ⟨i, ?_, hi⟩
+ simpa only [Finite.mem_toFinset, mem_mulSupport] using ne_of_gt hi
+
/-!
### Distributivity w.r.t. addition, subtraction, and (scalar) multiplication
-/
@@ -2,15 +2,12 @@
Copyright (c) 2020 Kexing Ying and Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
-
-! This file was ported from Lean 3 source module algebra.big_operators.finprod
-! leanprover-community/mathlib commit d6fad0e5bf2d6f48da9175d25c3dc5706b3834ce
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Algebra.BigOperators.Order
import Mathlib.Algebra.IndicatorFunction
+#align_import algebra.big_operators.finprod from "leanprover-community/mathlib"@"d6fad0e5bf2d6f48da9175d25c3dc5706b3834ce"
+
/-!
# Finite products and sums over types and sets
∑'
precedence (#5615)
∑
, ∏
and variants).([^a-zA-Zα-ωΑ-Ω'𝓝ℳ₀𝕂ₛ)]) \(([∑∏][^()∑∏]*,[^()∑∏:]*)\) ([⊂⊆=<≤])
replaced by $1 $2 $3
@@ -176,7 +176,7 @@ notation3"∏ᶠ "(...)", "r:67:(scoped f => finprod f) => r
@[to_additive]
theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
(hf : (mulSupport (f ∘ PLift.down)).Finite) {s : Finset (PLift α)} (hs : hf.toFinset ⊆ s) :
- (∏ᶠ i, f i) = ∏ i in s, f i.down := by
+ ∏ᶠ i, f i = ∏ i in s, f i.down := by
rw [finprod, dif_pos]
refine' Finset.prod_subset hs fun x _ hxf => _
rwa [hf.mem_toFinset, nmem_mulSupport] at hxf
@@ -185,7 +185,7 @@ theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
@[to_additive]
theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
- (hs : mulSupport (f ∘ PLift.down) ⊆ s) : (∏ᶠ i, f i) = ∏ i in s, f i.down :=
+ (hs : mulSupport (f ∘ PLift.down) ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i.down :=
finprod_eq_prod_pLift_of_mulSupport_toFinset_subset (s.finite_toSet.subset hs) fun x hx => by
rw [Finite.mem_toFinset] at hx
exact hs hx
@@ -201,7 +201,7 @@ theorem finprod_one : (∏ᶠ _ : α, (1 : M)) = 1 := by
#align finsum_zero finsum_zero
@[to_additive]
-theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : (∏ᶠ i, f i) = 1 := by
+theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : ∏ᶠ i, f i = 1 := by
rw [← finprod_one]
congr
simp
@@ -209,14 +209,14 @@ theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : (∏ᶠ i, f i) = 1 :=
#align finsum_of_is_empty finsum_of_isEmpty
@[to_additive (attr := simp)]
-theorem finprod_false (f : False → M) : (∏ᶠ i, f i) = 1 :=
+theorem finprod_false (f : False → M) : ∏ᶠ i, f i = 1 :=
finprod_of_isEmpty _
#align finprod_false finprod_false
#align finsum_false finsum_false
@[to_additive]
theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) :
- (∏ᶠ x, f x) = f a := by
+ ∏ᶠ x, f x = f a := by
have : mulSupport (f ∘ PLift.down) ⊆ ({PLift.up a} : Finset (PLift α)) := by
intro x
contrapose
@@ -226,20 +226,20 @@ theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f
#align finsum_eq_single finsum_eq_single
@[to_additive]
-theorem finprod_unique [Unique α] (f : α → M) : (∏ᶠ i, f i) = f default :=
+theorem finprod_unique [Unique α] (f : α → M) : ∏ᶠ i, f i = f default :=
finprod_eq_single f default fun _x hx => (hx <| Unique.eq_default _).elim
#align finprod_unique finprod_unique
#align finsum_unique finsum_unique
@[to_additive (attr := simp)]
-theorem finprod_true (f : True → M) : (∏ᶠ i, f i) = f trivial :=
+theorem finprod_true (f : True → M) : ∏ᶠ i, f i = f trivial :=
@finprod_unique M True _ ⟨⟨trivial⟩, fun _ => rfl⟩ f
#align finprod_true finprod_true
#align finsum_true finsum_true
@[to_additive]
theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
- (∏ᶠ i, f i) = if h : p then f h else 1 := by
+ ∏ᶠ i, f i = if h : p then f h else 1 := by
split_ifs with h
· haveI : Unique p := ⟨⟨h⟩, fun _ => rfl⟩
exact finprod_unique f
@@ -249,7 +249,7 @@ theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
#align finsum_eq_dif finsum_eq_dif
@[to_additive]
-theorem finprod_eq_if {p : Prop} [Decidable p] {x : M} : (∏ᶠ _ : p, x) = if p then x else 1 :=
+theorem finprod_eq_if {p : Prop} [Decidable p] {x : M} : ∏ᶠ _ : p, x = if p then x else 1 :=
finprod_eq_dif fun _ => x
#align finprod_eq_if finprod_eq_if
#align finsum_eq_if finsum_eq_if
@@ -365,26 +365,26 @@ open BigOperators
@[to_additive]
theorem finprod_eq_mulIndicator_apply (s : Set α) (f : α → M) (a : α) :
- (∏ᶠ _ : a ∈ s, f a) = mulIndicator s f a := by
+ ∏ᶠ _ : a ∈ s, f a = mulIndicator s f a := by
classical convert finprod_eq_if (M := M) (p := a ∈ s) (x := f a)
#align finprod_eq_mul_indicator_apply finprod_eq_mulIndicator_apply
#align finsum_eq_indicator_apply finsum_eq_indicator_apply
@[to_additive (attr := simp)]
-theorem finprod_mem_mulSupport (f : α → M) (a : α) : (∏ᶠ _ : f a ≠ 1, f a) = f a := by
+theorem finprod_mem_mulSupport (f : α → M) (a : α) : ∏ᶠ _ : f a ≠ 1, f a = f a := by
rw [← mem_mulSupport, finprod_eq_mulIndicator_apply, mulIndicator_mulSupport]
#align finprod_mem_mul_support finprod_mem_mulSupport
#align finsum_mem_support finsum_mem_support
@[to_additive]
-theorem finprod_mem_def (s : Set α) (f : α → M) : (∏ᶠ a ∈ s, f a) = ∏ᶠ a, mulIndicator s f a :=
+theorem finprod_mem_def (s : Set α) (f : α → M) : ∏ᶠ a ∈ s, f a = ∏ᶠ a, mulIndicator s f a :=
finprod_congr <| finprod_eq_mulIndicator_apply s f
#align finprod_mem_def finprod_mem_def
#align finsum_mem_def finsum_mem_def
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h : mulSupport f ⊆ s) :
- (∏ᶠ i, f i) = ∏ i in s, f i := by
+ ∏ᶠ i, f i = ∏ i in s, f i := by
have A : mulSupport (f ∘ PLift.down) = Equiv.plift.symm '' mulSupport f := by
rw [mulSupport_comp_eq_preimage]
exact (Equiv.plift.symm.image_eq_preimage _).symm
@@ -399,14 +399,14 @@ theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h :
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_toFinset_subset (f : α → M) (hf : (mulSupport f).Finite)
- {s : Finset α} (h : hf.toFinset ⊆ s) : (∏ᶠ i, f i) = ∏ i in s, f i :=
+ {s : Finset α} (h : hf.toFinset ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i :=
finprod_eq_prod_of_mulSupport_subset _ fun _ hx => h <| hf.mem_toFinset.2 hx
#align finprod_eq_prod_of_mul_support_to_finset_subset finprod_eq_prod_of_mulSupport_toFinset_subset
#align finsum_eq_sum_of_support_to_finset_subset finsum_eq_sum_of_support_toFinset_subset
@[to_additive]
theorem finprod_eq_finset_prod_of_mulSupport_subset (f : α → M) {s : Finset α}
- (h : mulSupport f ⊆ (s : Set α)) : (∏ᶠ i, f i) = ∏ i in s, f i :=
+ (h : mulSupport f ⊆ (s : Set α)) : ∏ᶠ i, f i = ∏ i in s, f i :=
haveI h' : (s.finite_toSet.subset h).toFinset ⊆ s := by
simpa [← Finset.coe_subset, Set.coe_toFinset]
finprod_eq_prod_of_mulSupport_toFinset_subset _ _ h'
@@ -415,7 +415,7 @@ theorem finprod_eq_finset_prod_of_mulSupport_subset (f : α → M) {s : Finset
@[to_additive]
theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
- (∏ᶠ i : α, f i) = if h : (mulSupport f).Finite then ∏ i in h.toFinset, f i else 1 := by
+ ∏ᶠ i : α, f i = if h : (mulSupport f).Finite then ∏ i in h.toFinset, f i else 1 := by
split_ifs with h
· exact finprod_eq_prod_of_mulSupport_toFinset_subset _ h (Finset.Subset.refl _)
· rw [finprod, dif_neg]
@@ -426,18 +426,18 @@ theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
@[to_additive]
theorem finprod_of_infinite_mulSupport {f : α → M} (hf : (mulSupport f).Infinite) :
- (∏ᶠ i, f i) = 1 := by classical rw [finprod_def, dif_neg hf]
+ ∏ᶠ i, f i = 1 := by classical rw [finprod_def, dif_neg hf]
#align finprod_of_infinite_mul_support finprod_of_infinite_mulSupport
#align finsum_of_infinite_support finsum_of_infinite_support
@[to_additive]
theorem finprod_eq_prod (f : α → M) (hf : (mulSupport f).Finite) :
- (∏ᶠ i : α, f i) = ∏ i in hf.toFinset, f i := by classical rw [finprod_def, dif_pos hf]
+ ∏ᶠ i : α, f i = ∏ i in hf.toFinset, f i := by classical rw [finprod_def, dif_pos hf]
#align finprod_eq_prod finprod_eq_prod
#align finsum_eq_sum finsum_eq_sum
@[to_additive]
-theorem finprod_eq_prod_of_fintype [Fintype α] (f : α → M) : (∏ᶠ i : α, f i) = ∏ i, f i :=
+theorem finprod_eq_prod_of_fintype [Fintype α] (f : α → M) : ∏ᶠ i : α, f i = ∏ i, f i :=
finprod_eq_prod_of_mulSupport_toFinset_subset _ (Set.toFinite _) <| Finset.subset_univ _
#align finprod_eq_prod_of_fintype finprod_eq_prod_of_fintype
#align finsum_eq_sum_of_fintype finsum_eq_sum_of_fintype
@@ -469,7 +469,7 @@ theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSuppo
@[to_additive]
theorem finprod_mem_eq_prod_of_inter_mulSupport_eq (f : α → M) {s : Set α} {t : Finset α}
- (h : s ∩ mulSupport f = t.toSet ∩ mulSupport f) : (∏ᶠ i ∈ s, f i) = ∏ i in t, f i :=
+ (h : s ∩ mulSupport f = t.toSet ∩ mulSupport f) : ∏ᶠ i ∈ s, f i = ∏ i in t, f i :=
finprod_cond_eq_prod_of_cond_iff _ <| by
intro x hxf
rw [← mem_mulSupport] at hxf
@@ -485,14 +485,14 @@ theorem finprod_mem_eq_prod_of_inter_mulSupport_eq (f : α → M) {s : Set α} {
@[to_additive]
theorem finprod_mem_eq_prod_of_subset (f : α → M) {s : Set α} {t : Finset α}
- (h₁ : s ∩ mulSupport f ⊆ t) (h₂ : ↑t ⊆ s) : (∏ᶠ i ∈ s, f i) = ∏ i in t, f i :=
+ (h₁ : s ∩ mulSupport f ⊆ t) (h₂ : ↑t ⊆ s) : ∏ᶠ i ∈ s, f i = ∏ i in t, f i :=
finprod_cond_eq_prod_of_cond_iff _ fun hx => ⟨fun h => h₁ ⟨h, hx⟩, fun h => h₂ h⟩
#align finprod_mem_eq_prod_of_subset finprod_mem_eq_prod_of_subset
#align finsum_mem_eq_sum_of_subset finsum_mem_eq_sum_of_subset
@[to_additive]
theorem finprod_mem_eq_prod (f : α → M) {s : Set α} (hf : (s ∩ mulSupport f).Finite) :
- (∏ᶠ i ∈ s, f i) = ∏ i in hf.toFinset, f i :=
+ ∏ᶠ i ∈ s, f i = ∏ i in hf.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by simp [inter_assoc]
#align finprod_mem_eq_prod finprod_mem_eq_prod
#align finsum_mem_eq_sum finsum_mem_eq_sum
@@ -500,7 +500,7 @@ theorem finprod_mem_eq_prod (f : α → M) {s : Set α} (hf : (s ∩ mulSupport
@[to_additive]
theorem finprod_mem_eq_prod_filter (f : α → M) (s : Set α) [DecidablePred (· ∈ s)]
(hf : (mulSupport f).Finite) :
- (∏ᶠ i ∈ s, f i) = ∏ i in Finset.filter (· ∈ s) hf.toFinset, f i :=
+ ∏ᶠ i ∈ s, f i = ∏ i in Finset.filter (· ∈ s) hf.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by
ext x
simp [and_comm]
@@ -509,20 +509,20 @@ theorem finprod_mem_eq_prod_filter (f : α → M) (s : Set α) [DecidablePred (
@[to_additive]
theorem finprod_mem_eq_toFinset_prod (f : α → M) (s : Set α) [Fintype s] :
- (∏ᶠ i ∈ s, f i) = ∏ i in s.toFinset, f i :=
+ ∏ᶠ i ∈ s, f i = ∏ i in s.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by simp_rw [coe_toFinset s]
#align finprod_mem_eq_to_finset_prod finprod_mem_eq_toFinset_prod
#align finsum_mem_eq_to_finset_sum finsum_mem_eq_toFinset_sum
@[to_additive]
theorem finprod_mem_eq_finite_toFinset_prod (f : α → M) {s : Set α} (hs : s.Finite) :
- (∏ᶠ i ∈ s, f i) = ∏ i in hs.toFinset, f i :=
+ ∏ᶠ i ∈ s, f i = ∏ i in hs.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by rw [hs.coe_toFinset]
#align finprod_mem_eq_finite_to_finset_prod finprod_mem_eq_finite_toFinset_prod
#align finsum_mem_eq_finite_to_finset_sum finsum_mem_eq_finite_toFinset_sum
@[to_additive]
-theorem finprod_mem_finset_eq_prod (f : α → M) (s : Finset α) : (∏ᶠ i ∈ s, f i) = ∏ i in s, f i :=
+theorem finprod_mem_finset_eq_prod (f : α → M) (s : Finset α) : ∏ᶠ i ∈ s, f i = ∏ i in s, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ rfl
#align finprod_mem_finset_eq_prod finprod_mem_finset_eq_prod
#align finsum_mem_finset_eq_sum finsum_mem_finset_eq_sum
@@ -536,7 +536,7 @@ theorem finprod_mem_coe_finset (f : α → M) (s : Finset α) :
@[to_additive]
theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩ mulSupport f).Infinite) :
- (∏ᶠ i ∈ s, f i) = 1 := by
+ ∏ᶠ i ∈ s, f i = 1 := by
rw [finprod_mem_def]
apply finprod_of_infinite_mulSupport
rwa [← mulSupport_mulIndicator] at hs
@@ -545,27 +545,27 @@ theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩
@[to_additive]
theorem finprod_mem_eq_one_of_forall_eq_one {f : α → M} {s : Set α} (h : ∀ x ∈ s, f x = 1) :
- (∏ᶠ i ∈ s, f i) = 1 := by simp (config := { contextual := true }) [h]
+ ∏ᶠ i ∈ s, f i = 1 := by simp (config := { contextual := true }) [h]
#align finprod_mem_eq_one_of_forall_eq_one finprod_mem_eq_one_of_forall_eq_one
#align finsum_mem_eq_zero_of_forall_eq_zero finsum_mem_eq_zero_of_forall_eq_zero
@[to_additive]
theorem finprod_mem_inter_mulSupport (f : α → M) (s : Set α) :
- (∏ᶠ i ∈ s ∩ mulSupport f, f i) = ∏ᶠ i ∈ s, f i := by
+ ∏ᶠ i ∈ s ∩ mulSupport f, f i = ∏ᶠ i ∈ s, f i := by
rw [finprod_mem_def, finprod_mem_def, mulIndicator_inter_mulSupport]
#align finprod_mem_inter_mul_support finprod_mem_inter_mulSupport
#align finsum_mem_inter_support finsum_mem_inter_support
@[to_additive]
theorem finprod_mem_inter_mulSupport_eq (f : α → M) (s t : Set α)
- (h : s ∩ mulSupport f = t ∩ mulSupport f) : (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ t, f i := by
+ (h : s ∩ mulSupport f = t ∩ mulSupport f) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_inter_mulSupport, h, finprod_mem_inter_mulSupport]
#align finprod_mem_inter_mul_support_eq finprod_mem_inter_mulSupport_eq
#align finsum_mem_inter_support_eq finsum_mem_inter_support_eq
@[to_additive]
theorem finprod_mem_inter_mulSupport_eq' (f : α → M) (s t : Set α)
- (h : ∀ x ∈ mulSupport f, x ∈ s ↔ x ∈ t) : (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ t, f i := by
+ (h : ∀ x ∈ mulSupport f, x ∈ s ↔ x ∈ t) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, f i := by
apply finprod_mem_inter_mulSupport_eq
ext x
exact and_congr_left (h x)
@@ -573,7 +573,7 @@ theorem finprod_mem_inter_mulSupport_eq' (f : α → M) (s t : Set α)
#align finsum_mem_inter_support_eq' finsum_mem_inter_support_eq'
@[to_additive]
-theorem finprod_mem_univ (f : α → M) : (∏ᶠ i ∈ @Set.univ α, f i) = ∏ᶠ i : α, f i :=
+theorem finprod_mem_univ (f : α → M) : ∏ᶠ i ∈ @Set.univ α, f i = ∏ᶠ i : α, f i :=
finprod_congr fun _ => finprod_true _
#align finprod_mem_univ finprod_mem_univ
#align finsum_mem_univ finsum_mem_univ
@@ -582,13 +582,13 @@ variable {f g : α → M} {a b : α} {s t : Set α}
@[to_additive]
theorem finprod_mem_congr (h₀ : s = t) (h₁ : ∀ x ∈ t, f x = g x) :
- (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ t, g i :=
+ ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, g i :=
h₀.symm ▸ finprod_congr fun i => finprod_congr_Prop rfl (h₁ i)
#align finprod_mem_congr finprod_mem_congr
#align finsum_mem_congr finsum_mem_congr
@[to_additive]
-theorem finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) : (∏ᶠ i, f i) = 1 := by
+theorem finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) : ∏ᶠ i, f i = 1 := by
simp (config := { contextual := true }) [h]
#align finprod_eq_one_of_forall_eq_one finprod_eq_one_of_forall_eq_one
#align finsum_eq_zero_of_forall_eq_zero finsum_eq_zero_of_forall_eq_zero
@@ -604,7 +604,7 @@ the product of `f i` multiplied by the product of `g i`. -/
"If the additive supports of `f` and `g` are finite, then the sum of `f i + g i`
equals the sum of `f i` plus the sum of `g i`."]
theorem finprod_mul_distrib (hf : (mulSupport f).Finite) (hg : (mulSupport g).Finite) :
- (∏ᶠ i, f i * g i) = (∏ᶠ i, f i) * ∏ᶠ i, g i := by
+ ∏ᶠ i, f i * g i = (∏ᶠ i, f i) * ∏ᶠ i, g i := by
classical
rw [finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_union_left _ _),
finprod_eq_prod_of_mulSupport_toFinset_subset _ hg (Finset.subset_union_right _ _), ←
@@ -625,7 +625,7 @@ equals the product of `f i` divided by the product of `g i`. -/
"If the additive supports of `f` and `g` are finite, then the sum of `f i - g i`
equals the sum of `f i` minus the sum of `g i`."]
theorem finprod_div_distrib [DivisionCommMonoid G] {f g : α → G} (hf : (mulSupport f).Finite)
- (hg : (mulSupport g).Finite) : (∏ᶠ i, f i / g i) = (∏ᶠ i, f i) / ∏ᶠ i, g i := by
+ (hg : (mulSupport g).Finite) : ∏ᶠ i, f i / g i = (∏ᶠ i, f i) / ∏ᶠ i, g i := by
simp only [div_eq_mul_inv, finprod_mul_distrib hf ((mulSupport_inv g).symm.rec hg),
finprod_inv_distrib]
#align finprod_div_distrib finprod_div_distrib
@@ -637,7 +637,7 @@ theorem finprod_div_distrib [DivisionCommMonoid G] {f g : α → G} (hf : (mulSu
"A more general version of `finsum_mem_add_distrib` that only requires `s ∩ support f`
and `s ∩ support g` rather than `s` to be finite."]
theorem finprod_mem_mul_distrib' (hf : (s ∩ mulSupport f).Finite) (hg : (s ∩ mulSupport g).Finite) :
- (∏ᶠ i ∈ s, f i * g i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i := by
+ ∏ᶠ i ∈ s, f i * g i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i := by
rw [← mulSupport_mulIndicator] at hf hg
simp only [finprod_mem_def, mulIndicator_mul, finprod_mul_distrib hf hg]
#align finprod_mem_mul_distrib' finprod_mem_mul_distrib'
@@ -653,7 +653,7 @@ theorem finprod_mem_one (s : Set α) : (∏ᶠ i ∈ s, (1 : M)) = 1 := by simp
@[to_additive
"If a function `f` equals `0` on a set `s`, then the product of `f i` over `i ∈ s`
equals `0`."]
-theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : (∏ᶠ i ∈ s, f i) = 1 := by
+theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : ∏ᶠ i ∈ s, f i = 1 := by
rw [← finprod_mem_one s]
exact finprod_mem_congr rfl hf
#align finprod_mem_of_eq_on_one finprod_mem_of_eqOn_one
@@ -664,7 +664,7 @@ theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : (∏ᶠ i ∈ s, f i) = 1 :=
@[to_additive
"If the product of `f i` over `i ∈ s` is not equal to `0`, then there is some `x ∈ s`
such that `f x ≠ 0`."]
-theorem exists_ne_one_of_finprod_mem_ne_one (h : (∏ᶠ i ∈ s, f i) ≠ 1) : ∃ x ∈ s, f x ≠ 1 := by
+theorem exists_ne_one_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : ∃ x ∈ s, f x ≠ 1 := by
by_contra' h'
exact h (finprod_mem_of_eqOn_one h')
#align exists_ne_one_of_finprod_mem_ne_one exists_ne_one_of_finprod_mem_ne_one
@@ -676,7 +676,7 @@ over `i ∈ s` times the product of `g i` over `i ∈ s`. -/
"Given a finite set `s`, the sum of `f i + g i` over `i ∈ s` equals the sum of `f i`
over `i ∈ s` plus the sum of `g i` over `i ∈ s`."]
theorem finprod_mem_mul_distrib (hs : s.Finite) :
- (∏ᶠ i ∈ s, f i * g i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i :=
+ ∏ᶠ i ∈ s, f i * g i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i :=
finprod_mem_mul_distrib' (hs.inter_of_left _) (hs.inter_of_left _)
#align finprod_mem_mul_distrib finprod_mem_mul_distrib
#align finsum_mem_add_distrib finsum_mem_add_distrib
@@ -750,7 +750,7 @@ over `i ∈ s` divided by the product of `g i` over `i ∈ s`. -/
"Given a finite set `s`, the sum of `f i / g i` over `i ∈ s` equals the sum of `f i`
over `i ∈ s` minus the sum of `g i` over `i ∈ s`."]
theorem finprod_mem_div_distrib [DivisionCommMonoid G] (f g : α → G) (hs : s.Finite) :
- (∏ᶠ i ∈ s, f i / g i) = (∏ᶠ i ∈ s, f i) / ∏ᶠ i ∈ s, g i := by
+ ∏ᶠ i ∈ s, f i / g i = (∏ᶠ i ∈ s, f i) / ∏ᶠ i ∈ s, g i := by
simp only [div_eq_mul_inv, finprod_mem_mul_distrib hs, finprod_mem_inv_distrib g hs]
#align finprod_mem_div_distrib finprod_mem_div_distrib
#align finsum_mem_sub_distrib finsum_mem_sub_distrib
@@ -768,7 +768,7 @@ theorem finprod_mem_empty : (∏ᶠ i ∈ (∅ : Set α), f i) = 1 := by simp
/-- A set `s` is nonempty if the product of some function over `s` is not equal to `1`. -/
@[to_additive "A set `s` is nonempty if the sum of some function over `s` is not equal to `0`."]
-theorem nonempty_of_finprod_mem_ne_one (h : (∏ᶠ i ∈ s, f i) ≠ 1) : s.Nonempty :=
+theorem nonempty_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : s.Nonempty :=
nonempty_iff_ne_empty.2 fun h' => h <| h'.symm ▸ finprod_mem_empty
#align nonempty_of_finprod_mem_ne_one nonempty_of_finprod_mem_ne_one
#align nonempty_of_finsum_mem_ne_zero nonempty_of_finsum_mem_ne_zero
@@ -810,7 +810,7 @@ theorem finprod_mem_union_inter' (hs : (s ∩ mulSupport f).Finite) (ht : (t ∩
"A more general version of `finsum_mem_union` that requires `s ∩ support f` and
`t ∩ support f` rather than `s` and `t` to be finite."]
theorem finprod_mem_union' (hst : Disjoint s t) (hs : (s ∩ mulSupport f).Finite)
- (ht : (t ∩ mulSupport f).Finite) : (∏ᶠ i ∈ s ∪ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
+ (ht : (t ∩ mulSupport f).Finite) : ∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_union_inter' hs ht, disjoint_iff_inter_eq_empty.1 hst, finprod_mem_empty,
mul_one]
#align finprod_mem_union' finprod_mem_union'
@@ -822,7 +822,7 @@ product of `f i` over `i ∈ s` times the product of `f i` over `i ∈ t`. -/
"Given two finite disjoint sets `s` and `t`, the sum of `f i` over `i ∈ s ∪ t` equals
the sum of `f i` over `i ∈ s` plus the sum of `f i` over `i ∈ t`."]
theorem finprod_mem_union (hst : Disjoint s t) (hs : s.Finite) (ht : t.Finite) :
- (∏ᶠ i ∈ s ∪ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i :=
+ ∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i :=
finprod_mem_union' hst (hs.inter_of_left _) (ht.inter_of_left _)
#align finprod_mem_union finprod_mem_union
#align finsum_mem_union finsum_mem_union
@@ -834,7 +834,7 @@ theorem finprod_mem_union (hst : Disjoint s t) (hs : s.Finite) (ht : t.Finite) :
`t ∩ support f` rather than `s` and `t` to be disjoint"]
theorem finprod_mem_union'' (hst : Disjoint (s ∩ mulSupport f) (t ∩ mulSupport f))
(hs : (s ∩ mulSupport f).Finite) (ht : (t ∩ mulSupport f).Finite) :
- (∏ᶠ i ∈ s ∪ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
+ ∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_inter_mulSupport f s, ← finprod_mem_inter_mulSupport f t, ←
finprod_mem_union hst hs ht, ← union_inter_distrib_right, finprod_mem_inter_mulSupport]
#align finprod_mem_union'' finprod_mem_union''
@@ -864,7 +864,7 @@ to be finite. -/
"A more general version of `finsum_mem_insert` that requires `s ∩ support f` rather
than `s` to be finite."]
theorem finprod_mem_insert' (f : α → M) (h : a ∉ s) (hs : (s ∩ mulSupport f).Finite) :
- (∏ᶠ i ∈ insert a s, f i) = f a * ∏ᶠ i ∈ s, f i := by
+ ∏ᶠ i ∈ insert a s, f i = f a * ∏ᶠ i ∈ s, f i := by
rw [insert_eq, finprod_mem_union' _ _ hs, finprod_mem_singleton]
· rwa [disjoint_singleton_left]
· exact (finite_singleton a).inter_of_left _
@@ -877,7 +877,7 @@ theorem finprod_mem_insert' (f : α → M) (h : a ∉ s) (hs : (s ∩ mulSupport
"Given a finite set `s` and an element `a ∉ s`, the sum of `f i` over `i ∈ insert a s`
equals `f a` plus the sum of `f i` over `i ∈ s`."]
theorem finprod_mem_insert (f : α → M) (h : a ∉ s) (hs : s.Finite) :
- (∏ᶠ i ∈ insert a s, f i) = f a * ∏ᶠ i ∈ s, f i :=
+ ∏ᶠ i ∈ insert a s, f i = f a * ∏ᶠ i ∈ s, f i :=
finprod_mem_insert' f h <| hs.inter_of_left _
#align finprod_mem_insert finprod_mem_insert
#align finsum_mem_insert finsum_mem_insert
@@ -888,7 +888,7 @@ theorem finprod_mem_insert (f : α → M) (h : a ∉ s) (hs : s.Finite) :
"If `f a = 0` when `a ∉ s`, then the sum of `f i` over `i ∈ insert a s` equals the sum
of `f i` over `i ∈ s`."]
theorem finprod_mem_insert_of_eq_one_if_not_mem (h : a ∉ s → f a = 1) :
- (∏ᶠ i ∈ insert a s, f i) = ∏ᶠ i ∈ s, f i := by
+ ∏ᶠ i ∈ insert a s, f i = ∏ᶠ i ∈ s, f i := by
refine' finprod_mem_inter_mulSupport_eq' _ _ _ fun x hx => ⟨_, Or.inr⟩
rintro (rfl | hxs)
exacts [not_imp_comm.1 h hx, hxs]
@@ -900,7 +900,7 @@ theorem finprod_mem_insert_of_eq_one_if_not_mem (h : a ∉ s → f a = 1) :
@[to_additive
"If `f a = 0`, then the sum of `f i` over `i ∈ insert a s` equals the sum of `f i`
over `i ∈ s`."]
-theorem finprod_mem_insert_one (h : f a = 1) : (∏ᶠ i ∈ insert a s, f i) = ∏ᶠ i ∈ s, f i :=
+theorem finprod_mem_insert_one (h : f a = 1) : ∏ᶠ i ∈ insert a s, f i = ∏ᶠ i ∈ s, f i :=
finprod_mem_insert_of_eq_one_if_not_mem fun _ => h
#align finprod_mem_insert_one finprod_mem_insert_one
#align finsum_mem_insert_zero finsum_mem_insert_zero
@@ -929,7 +929,7 @@ provided that `g` is injective on `s ∩ mulSupport (f ∘ g)`. -/
"The sum of `f y` over `y ∈ g '' s` equals the sum of `f (g i)` over `s` provided that
`g` is injective on `s ∩ support (f ∘ g)`."]
theorem finprod_mem_image' {s : Set β} {g : β → α} (hg : (s ∩ mulSupport (f ∘ g)).InjOn g) :
- (∏ᶠ i ∈ g '' s, f i) = ∏ᶠ j ∈ s, f (g j) := by
+ ∏ᶠ i ∈ g '' s, f i = ∏ᶠ j ∈ s, f (g j) := by
classical
by_cases hs : (s ∩ mulSupport (f ∘ g)).Finite
· have hg : ∀ x ∈ hs.toFinset, ∀ y ∈ hs.toFinset, g x = g y → x = y := by
@@ -951,7 +951,7 @@ theorem finprod_mem_image' {s : Set β} {g : β → α} (hg : (s ∩ mulSupport
"The sum of `f y` over `y ∈ g '' s` equals the sum of `f (g i)` over `s` provided that
`g` is injective on `s`."]
theorem finprod_mem_image {s : Set β} {g : β → α} (hg : s.InjOn g) :
- (∏ᶠ i ∈ g '' s, f i) = ∏ᶠ j ∈ s, f (g j) :=
+ ∏ᶠ i ∈ g '' s, f i = ∏ᶠ j ∈ s, f (g j) :=
finprod_mem_image' <| hg.mono <| inter_subset_left _ _
#align finprod_mem_image finprod_mem_image
#align finsum_mem_image finsum_mem_image
@@ -962,7 +962,7 @@ provided that `g` is injective on `mulSupport (f ∘ g)`. -/
"The sum of `f y` over `y ∈ Set.range g` equals the sum of `f (g i)` over all `i`
provided that `g` is injective on `support (f ∘ g)`."]
theorem finprod_mem_range' {g : β → α} (hg : (mulSupport (f ∘ g)).InjOn g) :
- (∏ᶠ i ∈ range g, f i) = ∏ᶠ j, f (g j) := by
+ ∏ᶠ i ∈ range g, f i = ∏ᶠ j, f (g j) := by
rw [← image_univ, finprod_mem_image', finprod_mem_univ]
rwa [univ_inter]
#align finprod_mem_range' finprod_mem_range'
@@ -973,7 +973,7 @@ provided that `g` is injective. -/
@[to_additive
"The sum of `f y` over `y ∈ Set.range g` equals the sum of `f (g i)` over all `i`
provided that `g` is injective."]
-theorem finprod_mem_range {g : β → α} (hg : Injective g) : (∏ᶠ i ∈ range g, f i) = ∏ᶠ j, f (g j) :=
+theorem finprod_mem_range {g : β → α} (hg : Injective g) : ∏ᶠ i ∈ range g, f i = ∏ᶠ j, f (g j) :=
finprod_mem_range' (hg.injOn _)
#align finprod_mem_range finprod_mem_range
#align finsum_mem_range finsum_mem_range
@@ -981,7 +981,7 @@ theorem finprod_mem_range {g : β → α} (hg : Injective g) : (∏ᶠ i ∈ ran
/-- See also `Finset.prod_bij`. -/
@[to_additive "See also `Finset.sum_bij`."]
theorem finprod_mem_eq_of_bijOn {s : Set α} {t : Set β} {f : α → M} {g : β → M} (e : α → β)
- (he₀ : s.BijOn e t) (he₁ : ∀ x ∈ s, f x = g (e x)) : (∏ᶠ i ∈ s, f i) = ∏ᶠ j ∈ t, g j := by
+ (he₀ : s.BijOn e t) (he₁ : ∀ x ∈ s, f x = g (e x)) : ∏ᶠ i ∈ s, f i = ∏ᶠ j ∈ t, g j := by
rw [← Set.BijOn.image_eq he₀, finprod_mem_image he₀.2.1]
exact finprod_mem_congr rfl he₁
#align finprod_mem_eq_of_bij_on finprod_mem_eq_of_bijOn
@@ -990,7 +990,7 @@ theorem finprod_mem_eq_of_bijOn {s : Set α} {t : Set β} {f : α → M} {g : β
/-- See `finprod_comp`, `Fintype.prod_bijective` and `Finset.prod_bij`. -/
@[to_additive "See `finsum_comp`, `Fintype.sum_bijective` and `Finset.sum_bij`."]
theorem finprod_eq_of_bijective {f : α → M} {g : β → M} (e : α → β) (he₀ : Bijective e)
- (he₁ : ∀ x, f x = g (e x)) : (∏ᶠ i, f i) = ∏ᶠ j, g j := by
+ (he₁ : ∀ x, f x = g (e x)) : ∏ᶠ i, f i = ∏ᶠ j, g j := by
rw [← finprod_mem_univ f, ← finprod_mem_univ g]
exact finprod_mem_eq_of_bijOn _ (bijective_iff_bijOn_univ.mp he₀) fun x _ => he₁ x
#align finprod_eq_of_bijective finprod_eq_of_bijective
@@ -1011,7 +1011,7 @@ theorem finprod_comp_equiv (e : α ≃ β) {f : β → M} : (∏ᶠ i, f (e i))
#align finsum_comp_equiv finsum_comp_equiv
@[to_additive]
-theorem finprod_set_coe_eq_finprod_mem (s : Set α) : (∏ᶠ j : s, f j) = ∏ᶠ i ∈ s, f i := by
+theorem finprod_set_coe_eq_finprod_mem (s : Set α) : ∏ᶠ j : s, f j = ∏ᶠ i ∈ s, f i := by
rw [← finprod_mem_range, Subtype.range_coe]
exact Subtype.coe_injective
#align finprod_set_coe_eq_finprod_mem finprod_set_coe_eq_finprod_mem
@@ -1019,7 +1019,7 @@ theorem finprod_set_coe_eq_finprod_mem (s : Set α) : (∏ᶠ j : s, f j) = ∏
@[to_additive]
theorem finprod_subtype_eq_finprod_cond (p : α → Prop) :
- (∏ᶠ j : Subtype p, f j) = ∏ᶠ (i) (_ : p i), f i :=
+ ∏ᶠ j : Subtype p, f j = ∏ᶠ (i) (_ : p i), f i :=
finprod_set_coe_eq_finprod_mem { i | p i }
#align finprod_subtype_eq_finprod_cond finprod_subtype_eq_finprod_cond
#align finsum_subtype_eq_finsum_cond finsum_subtype_eq_finsum_cond
@@ -1071,7 +1071,7 @@ theorem finprod_mem_mul_diff (hst : s ⊆ t) (ht : t.Finite) :
sum of `f a` over the union `⋃ i, t i` is equal to the sum over all indexes `i` of the
sums of `f a` over `a ∈ t i`."]
theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoint on t))
- (ht : ∀ i, (t i).Finite) : (∏ᶠ a ∈ ⋃ i : ι, t i, f a) = ∏ᶠ i, ∏ᶠ a ∈ t i, f a := by
+ (ht : ∀ i, (t i).Finite) : ∏ᶠ a ∈ ⋃ i : ι, t i, f a = ∏ᶠ i, ∏ᶠ a ∈ t i, f a := by
cases nonempty_fintype ι
lift t to ι → Finset α using ht
classical
@@ -1092,7 +1092,7 @@ over `a ∈ ⋃ i ∈ I, t i` is equal to the product over `i ∈ I` of the prod
sum of `f a` over `a ∈ ⋃ i ∈ I, t i` is equal to the sum over `i ∈ I` of the sums of `f a`
over `a ∈ t i`."]
theorem finprod_mem_biUnion {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisjoint t) (hI : I.Finite)
- (ht : ∀ i ∈ I, (t i).Finite) : (∏ᶠ a ∈ ⋃ x ∈ I, t x, f a) = ∏ᶠ i ∈ I, ∏ᶠ j ∈ t i, f j := by
+ (ht : ∀ i ∈ I, (t i).Finite) : ∏ᶠ a ∈ ⋃ x ∈ I, t x, f a = ∏ᶠ i ∈ I, ∏ᶠ j ∈ t i, f j := by
haveI := hI.fintype
rw [biUnion_eq_iUnion, finprod_mem_iUnion, ← finprod_set_coe_eq_finprod_mem]
exacts [fun x y hxy => h x.2 y.2 (Subtype.coe_injective.ne hxy), fun b => ht b b.2]
@@ -1105,7 +1105,7 @@ over `a ∈ ⋃₀ t` is the product over `s ∈ t` of the products of `f a` ove
"If `t` is a finite set of pairwise disjoint finite sets, then the sum of `f a` over
`a ∈ ⋃₀ t` is the sum over `s ∈ t` of the sums of `f a` over `a ∈ s`."]
theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀ : t.Finite)
- (ht₁ : ∀ x ∈ t, Set.Finite x) : (∏ᶠ a ∈ ⋃₀ t, f a) = ∏ᶠ s ∈ t, ∏ᶠ a ∈ s, f a := by
+ (ht₁ : ∀ x ∈ t, Set.Finite x) : ∏ᶠ a ∈ ⋃₀ t, f a = ∏ᶠ s ∈ t, ∏ᶠ a ∈ s, f a := by
rw [Set.sUnion_eq_biUnion]
exact finprod_mem_biUnion h ht₀ ht₁
#align finprod_mem_sUnion finprod_mem_sUnion
@@ -1170,7 +1170,7 @@ theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α
#align single_le_finsum single_le_finsum
theorem finprod_eq_zero {M₀ : Type _} [CommMonoidWithZero M₀] (f : α → M₀) (x : α) (hx : f x = 0)
- (hf : (mulSupport f).Finite) : (∏ᶠ x, f x) = 0 := by
+ (hf : (mulSupport f).Finite) : ∏ᶠ x, f x = 0 := by
nontriviality
rw [finprod_eq_prod f hf]
refine' Finset.prod_eq_zero (hf.mem_toFinset.2 _) hx
@@ -1278,16 +1278,16 @@ theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)
@[to_additive]
theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
- (∏ᶠ ab, f ab) = ∏ᶠ (a) (b), f (a, b) := by
- have h₁ : ∀ a, (∏ᶠ _ : a ∈ hf.toFinset, f a) = f a := by simp
- have h₂ : (∏ᶠ a, f a) = ∏ᶠ (a) (_ : a ∈ hf.toFinset), f a := by simp
+ ∏ᶠ ab, f ab = ∏ᶠ (a) (b), f (a, b) := by
+ have h₁ : ∀ a, ∏ᶠ _ : a ∈ hf.toFinset, f a = f a := by simp
+ have h₂ : ∏ᶠ a, f a = ∏ᶠ (a) (_ : a ∈ hf.toFinset), f a := by simp
simp_rw [h₂, finprod_mem_finset_product, h₁]
#align finprod_curry finprod_curry
#align finsum_curry finsum_curry
@[to_additive]
theorem finprod_curry₃ {γ : Type _} (f : α × β × γ → M) (h : (mulSupport f).Finite) :
- (∏ᶠ abc, f abc) = ∏ᶠ (a) (b) (c), f (a, b, c) := by
+ ∏ᶠ abc, f abc = ∏ᶠ (a) (b) (c), f (a, b, c) := by
rw [finprod_curry f h]
congr
ext a
smul_finsum
(#5601)
The current versions of smul_finsum
and finsum_smul
assume NoZeroSMulDivisors
in order to be a little bit clever about the junk values (that's why there's no finite support hypothesis). While this is reasonable in a lot of cases, there are also cases where we already know that the sum is well-defined, so we don't need this extra assumption.
@@ -332,12 +332,16 @@ theorem MulEquiv.map_finprod (g : M ≃* N) (f : α → M) : g (∏ᶠ i, f i) =
#align mul_equiv.map_finprod MulEquiv.map_finprod
#align add_equiv.map_finsum AddEquiv.map_finsum
+/-- The `NoZeroSMulDivisors` makes sure that the result holds even when the support of `f` is
+infinite. For a more usual version assuming `(support f).Finite` instead, see `finsum_smul'`. -/
theorem finsum_smul {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(f : ι → R) (x : M) : (∑ᶠ i, f i) • x = ∑ᶠ i, f i • x := by
rcases eq_or_ne x 0 with (rfl | hx); · simp
exact ((smulAddHom R M).flip x).map_finsum_of_injective (smul_left_injective R hx) _
#align finsum_smul finsum_smul
+/-- The `NoZeroSMulDivisors` makes sure that the result holds even when the support of `f` is
+infinite. For a more usual version assuming `(support f).Finite` instead, see `smul_finsum'`. -/
theorem smul_finsum {R M : Type _} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(c : R) (f : ι → M) : (c • ∑ᶠ i, f i) = ∑ᶠ i, c • f i := by
rcases eq_or_ne c 0 with (rfl | hc); · simp
@@ -690,6 +694,18 @@ theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n
#align finprod_pow finprod_pow
#align finsum_nsmul finsum_nsmul
+/-- See also `finsum_smul` for a version that works even when the support of `f` is not finite,
+but with slightly stronger typeclass requirements. -/
+theorem finsum_smul' {R M : Type _} [Semiring R] [AddCommMonoid M] [Module R M] {f : ι → R}
+ (hf : (support f).Finite) (x : M) : (∑ᶠ i, f i) • x = ∑ᶠ i, f i • x :=
+ ((smulAddHom R M).flip x).map_finsum hf
+
+/-- See also `smul_finsum` for a version that works even when the support of `f` is not finite,
+but with slightly stronger typeclass requirements. -/
+theorem smul_finsum' {R M : Type _} [Semiring R] [AddCommMonoid M] [Module R M] (c : R) {f : ι → M}
+ (hf : (support f).Finite) : (c • ∑ᶠ i, f i) = ∑ᶠ i, c • f i :=
+ (smulAddHom R M c).map_finsum hf
+
/-- A more general version of `MonoidHom.map_finprod_mem` that requires `s ∩ mulSupport f` rather
than `s` to be finite. -/
@[to_additive
finprod
/finsum
(#5524)
notation3
lines with the latest versions in mathport
.Topology.PartitionOfUnity
.Topology.PartitionOfUnity
(locally_finite'
-> locallyFinite'
).FunLike
for PartitionOfUnity
and BumpCovering
@@ -116,14 +116,14 @@ open Std.ExtendedBinder
/-- `∑ᶠ x, f x` is notation for `finsum f`. It is the sum of `f x`, where `x` ranges over the the
support of `f`, if it's finite, zero otherwise. Taking the sum over multiple arguments or
conditions is possible, e.g. `∏ᶠ (x) (y), f x y` and `∏ᶠ (x) (h: x ∈ s), f x`-/
-notation3 "∑ᶠ "(...)", "r:(scoped f => finsum f) => r
+notation3"∑ᶠ "(...)", "r:67:(scoped f => finsum f) => r
-- Porting note: removed scoped[BigOperators], `notation3` doesn't mesh with `scoped[Foo]`
/-- `∏ᶠ x, f x` is notation for `finprod f`. It is the sum of `f x`, where `x` ranges over the the
multiplicative support of `f`, if it's finite, one otherwise. Taking the product over multiple
arguments or conditions is possible, e.g. `∏ᶠ (x) (y), f x y` and `∏ᶠ (x) (h: x ∈ s), f x`-/
-notation3 "∏ᶠ "(...)", "r:(scoped f => finprod f) => r
+notation3"∏ᶠ "(...)", "r:67:(scoped f => finprod f) => r
-- Porting note: The following ports the lean3 notation for this file, but is currently very fickle.
@@ -277,7 +277,7 @@ theorem finprod_induction {f : α → M} (p : M → Prop) (hp₀ : p 1)
(hp₁ : ∀ x y, p x → p y → p (x * y)) (hp₂ : ∀ i, p (f i)) : p (∏ᶠ i, f i) := by
rw [finprod]
split_ifs
- exacts[Finset.prod_induction _ _ hp₁ hp₀ fun i _ => hp₂ _, hp₀]
+ exacts [Finset.prod_induction _ _ hp₁ hp₀ fun i _ => hp₂ _, hp₀]
#align finprod_induction finprod_induction
#align finsum_induction finsum_induction
@@ -315,7 +315,7 @@ theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x =
f (∏ᶠ i, g i) = ∏ᶠ i, f (g i) := by
by_cases hg : (mulSupport <| g ∘ PLift.down).Finite; · exact f.map_finprod_pLift g hg
rw [finprod, dif_neg, f.map_one, finprod, dif_neg]
- exacts[Infinite.mono (fun x hx => mt (hf (g x.down)) hx) hg, hg]
+ exacts [Infinite.mono (fun x hx => mt (hf (g x.down)) hx) hg, hg]
#align monoid_hom.map_finprod_of_preimage_one MonoidHom.map_finprod_of_preimage_one
#align add_monoid_hom.map_finsum_of_preimage_zero AddMonoidHom.map_finsum_of_preimage_zero
@@ -875,7 +875,7 @@ theorem finprod_mem_insert_of_eq_one_if_not_mem (h : a ∉ s → f a = 1) :
(∏ᶠ i ∈ insert a s, f i) = ∏ᶠ i ∈ s, f i := by
refine' finprod_mem_inter_mulSupport_eq' _ _ _ fun x hx => ⟨_, Or.inr⟩
rintro (rfl | hxs)
- exacts[not_imp_comm.1 h hx, hxs]
+ exacts [not_imp_comm.1 h hx, hxs]
#align finprod_mem_insert_of_eq_one_if_not_mem finprod_mem_insert_of_eq_one_if_not_mem
#align finsum_mem_insert_of_eq_zero_if_not_mem finsum_mem_insert_of_eq_zero_if_not_mem
@@ -903,7 +903,7 @@ theorem finprod_mem_dvd {f : α → N} (a : α) (hf : (mulSupport f).Finite) : f
@[to_additive "The sum of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a + f b`."]
theorem finprod_mem_pair (h : a ≠ b) : (∏ᶠ i ∈ ({a, b} : Set α), f i) = f a * f b := by
rw [finprod_mem_insert, finprod_mem_singleton]
- exacts[h, finite_singleton b]
+ exacts [h, finite_singleton b]
#align finprod_mem_pair finprod_mem_pair
#align finsum_mem_pair finsum_mem_pair
@@ -1013,7 +1013,7 @@ theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finit
((∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i) = ∏ᶠ i ∈ s, f i := by
rw [← finprod_mem_union', inter_union_diff]
rw [disjoint_iff_inf_le]
- exacts[fun x hx => hx.2.2 hx.1.2, h.subset fun x hx => ⟨hx.1.1, hx.2⟩,
+ exacts [fun x hx => hx.2.2 hx.1.2, h.subset fun x hx => ⟨hx.1.1, hx.2⟩,
h.subset fun x hx => ⟨hx.1.1, hx.2⟩]
#align finprod_mem_inter_mul_diff' finprod_mem_inter_mul_diff'
#align finsum_mem_inter_add_diff' finsum_mem_inter_add_diff'
@@ -1079,7 +1079,7 @@ theorem finprod_mem_biUnion {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisj
(ht : ∀ i ∈ I, (t i).Finite) : (∏ᶠ a ∈ ⋃ x ∈ I, t x, f a) = ∏ᶠ i ∈ I, ∏ᶠ j ∈ t i, f j := by
haveI := hI.fintype
rw [biUnion_eq_iUnion, finprod_mem_iUnion, ← finprod_set_coe_eq_finprod_mem]
- exacts[fun x y hxy => h x.2 y.2 (Subtype.coe_injective.ne hxy), fun b => ht b b.2]
+ exacts [fun x y hxy => h x.2 y.2 (Subtype.coe_injective.ne hxy), fun b => ht b b.2]
#align finprod_mem_bUnion finprod_mem_biUnion
#align finsum_mem_bUnion finsum_mem_biUnion
@@ -193,7 +193,7 @@ theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (P
#align finsum_eq_sum_plift_of_support_subset finsum_eq_sum_pLift_of_support_subset
@[to_additive (attr := simp)]
-theorem finprod_one : (∏ᶠ _i : α, (1 : M)) = 1 := by
+theorem finprod_one : (∏ᶠ _ : α, (1 : M)) = 1 := by
have : (mulSupport fun x : PLift α => (fun _ => 1 : α → M) x.down) ⊆ (∅ : Finset (PLift α)) :=
fun x h => by simp at h
rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_empty]
@@ -249,7 +249,7 @@ theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
#align finsum_eq_dif finsum_eq_dif
@[to_additive]
-theorem finprod_eq_if {p : Prop} [Decidable p] {x : M} : (∏ᶠ _i : p, x) = if p then x else 1 :=
+theorem finprod_eq_if {p : Prop} [Decidable p] {x : M} : (∏ᶠ _ : p, x) = if p then x else 1 :=
finprod_eq_dif fun _ => x
#align finprod_eq_if finprod_eq_if
#align finsum_eq_if finsum_eq_if
@@ -361,13 +361,13 @@ open BigOperators
@[to_additive]
theorem finprod_eq_mulIndicator_apply (s : Set α) (f : α → M) (a : α) :
- (∏ᶠ _h : a ∈ s, f a) = mulIndicator s f a := by
+ (∏ᶠ _ : a ∈ s, f a) = mulIndicator s f a := by
classical convert finprod_eq_if (M := M) (p := a ∈ s) (x := f a)
#align finprod_eq_mul_indicator_apply finprod_eq_mulIndicator_apply
#align finsum_eq_indicator_apply finsum_eq_indicator_apply
@[to_additive (attr := simp)]
-theorem finprod_mem_mulSupport (f : α → M) (a : α) : (∏ᶠ _h : f a ≠ 1, f a) = f a := by
+theorem finprod_mem_mulSupport (f : α → M) (a : α) : (∏ᶠ _ : f a ≠ 1, f a) = f a := by
rw [← mem_mulSupport, finprod_eq_mulIndicator_apply, mulIndicator_mulSupport]
#align finprod_mem_mul_support finprod_mem_mulSupport
#align finsum_mem_support finsum_mem_support
@@ -440,7 +440,7 @@ theorem finprod_eq_prod_of_fintype [Fintype α] (f : α → M) : (∏ᶠ i : α,
@[to_additive]
theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : Finset α}
- (h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : (∏ᶠ (i) (_hi : p i), f i) = ∏ i in t, f i := by
+ (h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : (∏ᶠ (i) (_ : p i), f i) = ∏ i in t, f i := by
set s := { x | p x }
have : mulSupport (s.mulIndicator f) ⊆ t := by
rw [Set.mulSupport_mulIndicator]
@@ -455,7 +455,7 @@ theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : F
@[to_additive]
theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSupport f).Finite) :
- (∏ᶠ (i) (_h : i ≠ a), f i) = ∏ i in hf.toFinset.erase a, f i := by
+ (∏ᶠ (i) (_ : i ≠ a), f i) = ∏ i in hf.toFinset.erase a, f i := by
apply finprod_cond_eq_prod_of_cond_iff
intro x hx
rw [Finset.mem_erase, Finite.mem_toFinset, mem_mulSupport]
@@ -832,13 +832,13 @@ theorem finprod_mem_singleton : (∏ᶠ i ∈ ({a} : Set α), f i) = f a := by
#align finsum_mem_singleton finsum_mem_singleton
@[to_additive (attr := simp)]
-theorem finprod_cond_eq_left : (∏ᶠ (i) (_h : i = a), f i) = f a :=
+theorem finprod_cond_eq_left : (∏ᶠ (i) (_ : i = a), f i) = f a :=
finprod_mem_singleton
#align finprod_cond_eq_left finprod_cond_eq_left
#align finsum_cond_eq_left finsum_cond_eq_left
@[to_additive (attr := simp)]
-theorem finprod_cond_eq_right : (∏ᶠ (i) (_hi : a = i), f i) = f a := by simp [@eq_comm _ a]
+theorem finprod_cond_eq_right : (∏ᶠ (i) (_ : a = i), f i) = f a := by simp [@eq_comm _ a]
#align finprod_cond_eq_right finprod_cond_eq_right
#align finsum_cond_eq_right finsum_cond_eq_right
@@ -1003,7 +1003,7 @@ theorem finprod_set_coe_eq_finprod_mem (s : Set α) : (∏ᶠ j : s, f j) = ∏
@[to_additive]
theorem finprod_subtype_eq_finprod_cond (p : α → Prop) :
- (∏ᶠ j : Subtype p, f j) = ∏ᶠ (i) (_hi : p i), f i :=
+ (∏ᶠ j : Subtype p, f j) = ∏ᶠ (i) (_ : p i), f i :=
finprod_set_coe_eq_finprod_mem { i | p i }
#align finprod_subtype_eq_finprod_cond finprod_subtype_eq_finprod_cond
#align finsum_subtype_eq_finsum_cond finsum_subtype_eq_finsum_cond
@@ -1097,7 +1097,7 @@ theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
- (f a * ∏ᶠ (i) (_h : i ≠ a), f i) = ∏ᶠ i, f i := by
+ (f a * ∏ᶠ (i) (_ : i ≠ a), f i) = ∏ᶠ i, f i := by
classical
rw [finprod_eq_prod _ hf]
have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.toFinset \ {a}) := by
@@ -1138,7 +1138,7 @@ theorem finprod_mem_induction (p : M → Prop) (hp₀ : p 1) (hp₁ : ∀ x y, p
#align finsum_mem_induction finsum_mem_induction
theorem finprod_cond_nonneg {R : Type _} [OrderedCommSemiring R] {p : α → Prop} {f : α → R}
- (hf : ∀ x, p x → 0 ≤ f x) : 0 ≤ ∏ᶠ (x) (_h : p x), f x :=
+ (hf : ∀ x, p x → 0 ≤ f x) : 0 ≤ ∏ᶠ (x) (_ : p x), f x :=
finprod_nonneg fun x => finprod_nonneg <| hf x
#align finprod_cond_nonneg finprod_cond_nonneg
@@ -1218,8 +1218,8 @@ iterating this lemma, e.g., if we have `f : α × β × γ → M`. -/
useful for iterating this lemma, e.g., if we have `f : α × β × γ → M`."]
theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finset (α × β))
(f : α × β → M) :
- (∏ᶠ (ab) (_h : ab ∈ s), f ab) =
- ∏ᶠ (a) (b) (_h : b ∈ (s.filter fun ab => Prod.fst ab = a).image Prod.snd), f (a, b) := by
+ (∏ᶠ (ab) (_ : ab ∈ s), f ab) =
+ ∏ᶠ (a) (b) (_ : b ∈ (s.filter fun ab => Prod.fst ab = a).image Prod.snd), f (a, b) := by
have :
∀ a,
(∏ i : β in (s.filter fun ab => Prod.fst ab = a).image Prod.snd, f (a, i)) =
@@ -1243,7 +1243,7 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
/-- See also `finprod_mem_finset_product'`. -/
@[to_additive "See also `finsum_mem_finset_product'`."]
theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M) :
- (∏ᶠ (ab) (_h : ab ∈ s), f ab) = ∏ᶠ (a) (b) (_h : (a, b) ∈ s), f (a, b) := by
+ (∏ᶠ (ab) (_ : ab ∈ s), f ab) = ∏ᶠ (a) (b) (_ : (a, b) ∈ s), f (a, b) := by
classical
rw [finprod_mem_finset_product']
simp
@@ -1252,7 +1252,7 @@ theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M)
@[to_additive]
theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)) (f : α × β × γ → M) :
- (∏ᶠ (abc) (_h : abc ∈ s), f abc) = ∏ᶠ (a) (b) (c) (_h : (a, b, c) ∈ s), f (a, b, c) := by
+ (∏ᶠ (abc) (_ : abc ∈ s), f abc) = ∏ᶠ (a) (b) (c) (_ : (a, b, c) ∈ s), f (a, b, c) := by
classical
rw [finprod_mem_finset_product']
simp_rw [finprod_mem_finset_product']
@@ -1263,8 +1263,8 @@ theorem finprod_mem_finset_product₃ {γ : Type _} (s : Finset (α × β × γ)
@[to_additive]
theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
(∏ᶠ ab, f ab) = ∏ᶠ (a) (b), f (a, b) := by
- have h₁ : ∀ a, (∏ᶠ _h : a ∈ hf.toFinset, f a) = f a := by simp
- have h₂ : (∏ᶠ a, f a) = ∏ᶠ (a) (_h : a ∈ hf.toFinset), f a := by simp
+ have h₁ : ∀ a, (∏ᶠ _ : a ∈ hf.toFinset, f a) = f a := by simp
+ have h₂ : (∏ᶠ a, f a) = ∏ᶠ (a) (_ : a ∈ hf.toFinset), f a := by simp
simp_rw [h₂, finprod_mem_finset_product, h₁]
#align finprod_curry finprod_curry
#align finsum_curry finsum_curry
@@ -1282,7 +1282,7 @@ theorem finprod_curry₃ {γ : Type _} (f : α × β × γ → M) (h : (mulSuppo
@[to_additive]
theorem finprod_dmem {s : Set α} [DecidablePred (· ∈ s)] (f : ∀ a : α, a ∈ s → M) :
- (∏ᶠ (a : α) (h : a ∈ s), f a h) = ∏ᶠ (a : α) (_h : a ∈ s), if h' : a ∈ s then f a h' else 1 :=
+ (∏ᶠ (a : α) (h : a ∈ s), f a h) = ∏ᶠ (a : α) (_ : a ∈ s), if h' : a ∈ s then f a h' else 1 :=
finprod_congr fun _ => finprod_congr fun ha => (dif_pos ha).symm
#align finprod_dmem finprod_dmem
#align finsum_dmem finsum_dmem
This fixes a bunch of spacing bugs in tactics. Mathlib counterpart of:
@@ -116,14 +116,14 @@ open Std.ExtendedBinder
/-- `∑ᶠ x, f x` is notation for `finsum f`. It is the sum of `f x`, where `x` ranges over the the
support of `f`, if it's finite, zero otherwise. Taking the sum over multiple arguments or
conditions is possible, e.g. `∏ᶠ (x) (y), f x y` and `∏ᶠ (x) (h: x ∈ s), f x`-/
-notation3"∑ᶠ "(...)", "r:(scoped f => finsum f) => r
+notation3 "∑ᶠ "(...)", "r:(scoped f => finsum f) => r
-- Porting note: removed scoped[BigOperators], `notation3` doesn't mesh with `scoped[Foo]`
/-- `∏ᶠ x, f x` is notation for `finprod f`. It is the sum of `f x`, where `x` ranges over the the
multiplicative support of `f`, if it's finite, one otherwise. Taking the product over multiple
arguments or conditions is possible, e.g. `∏ᶠ (x) (y), f x y` and `∏ᶠ (x) (h: x ∈ s), f x`-/
-notation3"∏ᶠ "(...)", "r:(scoped f => finprod f) => r
+notation3 "∏ᶠ "(...)", "r:(scoped f => finprod f) => r
-- Porting note: The following ports the lean3 notation for this file, but is currently very fickle.
fix-comments.py
on all files.@@ -940,7 +940,7 @@ theorem finprod_mem_image {s : Set β} {g : β → α} (hg : s.InjOn g) :
#align finprod_mem_image finprod_mem_image
#align finsum_mem_image finsum_mem_image
-/-- The product of `f y` over `y ∈ set.range g` equals the product of `f (g i)` over all `i`
+/-- The product of `f y` over `y ∈ Set.range g` equals the product of `f (g i)` over all `i`
provided that `g` is injective on `mulSupport (f ∘ g)`. -/
@[to_additive
"The sum of `f y` over `y ∈ Set.range g` equals the sum of `f (g i)` over all `i`
This makes a mathlib4 version of mathlib3's tactic.basic
, now called Mathlib.Tactic.Common
, which imports all tactics which do not have significant theory requirements, and then is imported all across the base of the hierarchy.
This ensures that all common tactics are available nearly everywhere in the library, rather than having to be imported one-by-one as you need them.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -10,7 +10,6 @@ Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
-/
import Mathlib.Algebra.BigOperators.Order
import Mathlib.Algebra.IndicatorFunction
-import Mathlib.Tactic.ScopedNS
/-!
# Finite products and sums over types and sets
sSup
/iSup
(#3938)
As discussed on Zulip
supₛ
→ sSup
infₛ
→ sInf
supᵢ
→ iSup
infᵢ
→ iInf
bsupₛ
→ bsSup
binfₛ
→ bsInf
bsupᵢ
→ biSup
binfᵢ
→ biInf
csupₛ
→ csSup
cinfₛ
→ csInf
csupᵢ
→ ciSup
cinfᵢ
→ ciInf
unionₛ
→ sUnion
interₛ
→ sInter
unionᵢ
→ iUnion
interᵢ
→ iInter
bunionₛ
→ bsUnion
binterₛ
→ bsInter
bunionᵢ
→ biUnion
binterᵢ
→ biInter
Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>
@@ -1055,17 +1055,17 @@ theorem finprod_mem_mul_diff (hst : s ⊆ t) (ht : t.Finite) :
"Given a family of pairwise disjoint finite sets `t i` indexed by a finite type, the
sum of `f a` over the union `⋃ i, t i` is equal to the sum over all indexes `i` of the
sums of `f a` over `a ∈ t i`."]
-theorem finprod_mem_unionᵢ [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoint on t))
+theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoint on t))
(ht : ∀ i, (t i).Finite) : (∏ᶠ a ∈ ⋃ i : ι, t i, f a) = ∏ᶠ i, ∏ᶠ a ∈ t i, f a := by
cases nonempty_fintype ι
lift t to ι → Finset α using ht
classical
- rw [← bunionᵢ_univ, ← Finset.coe_univ, ← Finset.coe_bunionᵢ, finprod_mem_coe_finset,
- Finset.prod_bunionᵢ]
+ rw [← biUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset,
+ Finset.prod_biUnion]
· simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype]
· exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)
-#align finprod_mem_Union finprod_mem_unionᵢ
-#align finsum_mem_Union finsum_mem_unionᵢ
+#align finprod_mem_Union finprod_mem_iUnion
+#align finsum_mem_Union finsum_mem_iUnion
/-- Given a family of sets `t : ι → Set α`, a finite set `I` in the index type such that all sets
`t i`, `i ∈ I`, are finite, if all `t i`, `i ∈ I`, are pairwise disjoint, then the product of `f a`
@@ -1076,25 +1076,25 @@ over `a ∈ ⋃ i ∈ I, t i` is equal to the product over `i ∈ I` of the prod
all sets `t i`, `i ∈ I`, are finite, if all `t i`, `i ∈ I`, are pairwise disjoint, then the
sum of `f a` over `a ∈ ⋃ i ∈ I, t i` is equal to the sum over `i ∈ I` of the sums of `f a`
over `a ∈ t i`."]
-theorem finprod_mem_bunionᵢ {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisjoint t) (hI : I.Finite)
+theorem finprod_mem_biUnion {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisjoint t) (hI : I.Finite)
(ht : ∀ i ∈ I, (t i).Finite) : (∏ᶠ a ∈ ⋃ x ∈ I, t x, f a) = ∏ᶠ i ∈ I, ∏ᶠ j ∈ t i, f j := by
haveI := hI.fintype
- rw [bunionᵢ_eq_unionᵢ, finprod_mem_unionᵢ, ← finprod_set_coe_eq_finprod_mem]
+ rw [biUnion_eq_iUnion, finprod_mem_iUnion, ← finprod_set_coe_eq_finprod_mem]
exacts[fun x y hxy => h x.2 y.2 (Subtype.coe_injective.ne hxy), fun b => ht b b.2]
-#align finprod_mem_bUnion finprod_mem_bunionᵢ
-#align finsum_mem_bUnion finsum_mem_bunionᵢ
+#align finprod_mem_bUnion finprod_mem_biUnion
+#align finsum_mem_bUnion finsum_mem_biUnion
/-- If `t` is a finite set of pairwise disjoint finite sets, then the product of `f a`
over `a ∈ ⋃₀ t` is the product over `s ∈ t` of the products of `f a` over `a ∈ s`. -/
@[to_additive
"If `t` is a finite set of pairwise disjoint finite sets, then the sum of `f a` over
`a ∈ ⋃₀ t` is the sum over `s ∈ t` of the sums of `f a` over `a ∈ s`."]
-theorem finprod_mem_unionₛ {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀ : t.Finite)
+theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀ : t.Finite)
(ht₁ : ∀ x ∈ t, Set.Finite x) : (∏ᶠ a ∈ ⋃₀ t, f a) = ∏ᶠ s ∈ t, ∏ᶠ a ∈ s, f a := by
- rw [Set.unionₛ_eq_bunionᵢ]
- exact finprod_mem_bunionᵢ h ht₀ ht₁
-#align finprod_mem_sUnion finprod_mem_unionₛ
-#align finsum_mem_sUnion finsum_mem_unionₛ
+ rw [Set.sUnion_eq_biUnion]
+ exact finprod_mem_biUnion h ht₀ ht₁
+#align finprod_mem_sUnion finprod_mem_sUnion
+#align finsum_mem_sUnion finsum_mem_sUnion
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
@@ -1168,16 +1168,16 @@ theorem finprod_prod_comm (s : Finset β) (f : α → β → M)
(∏ᶠ a : α, ∏ b in s, f a b) = ∏ b in s, ∏ᶠ a : α, f a b := by
have hU :
(mulSupport fun a => ∏ b in s, f a b) ⊆
- (s.finite_toSet.bunionᵢ fun b hb => h b (Finset.mem_coe.1 hb)).toFinset := by
+ (s.finite_toSet.biUnion fun b hb => h b (Finset.mem_coe.1 hb)).toFinset := by
rw [Finite.coe_toFinset]
intro x hx
- simp only [exists_prop, mem_unionᵢ, Ne.def, mem_mulSupport, Finset.mem_coe]
+ simp only [exists_prop, mem_iUnion, Ne.def, mem_mulSupport, Finset.mem_coe]
contrapose! hx
rw [mem_mulSupport, not_not, Finset.prod_congr rfl hx, Finset.prod_const_one]
rw [finprod_eq_prod_of_mulSupport_subset _ hU, Finset.prod_comm]
refine' Finset.prod_congr rfl fun b hb => (finprod_eq_prod_of_mulSupport_subset _ _).symm
intro a ha
- simp only [Finite.coe_toFinset, mem_unionᵢ]
+ simp only [Finite.coe_toFinset, mem_iUnion]
exact ⟨b, hb, ha⟩
#align finprod_prod_comm finprod_prod_comm
#align finsum_sum_comm finsum_sum_comm
by
s! (#3825)
This PR puts, with one exception, every single remaining by
that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh
. The exception is when the by
begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.
Essentially this is s/\n *by$/ by/g
, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated by
s".
@@ -218,8 +218,7 @@ theorem finprod_false (f : False → M) : (∏ᶠ i, f i) = 1 :=
@[to_additive]
theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ (x) (_ : x ≠ a), f x = 1) :
(∏ᶠ x, f x) = f a := by
- have : mulSupport (f ∘ PLift.down) ⊆ ({PLift.up a} : Finset (PLift α)) :=
- by
+ have : mulSupport (f ∘ PLift.down) ⊆ ({PLift.up a} : Finset (PLift α)) := by
intro x
contrapose
simpa [PLift.eq_up_iff_down_eq] using ha x.down
@@ -383,12 +382,10 @@ theorem finprod_mem_def (s : Set α) (f : α → M) : (∏ᶠ a ∈ s, f a) =
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h : mulSupport f ⊆ s) :
(∏ᶠ i, f i) = ∏ i in s, f i := by
- have A : mulSupport (f ∘ PLift.down) = Equiv.plift.symm '' mulSupport f :=
- by
+ have A : mulSupport (f ∘ PLift.down) = Equiv.plift.symm '' mulSupport f := by
rw [mulSupport_comp_eq_preimage]
exact (Equiv.plift.symm.image_eq_preimage _).symm
- have : mulSupport (f ∘ PLift.down) ⊆ s.map Equiv.plift.symm.toEmbedding :=
- by
+ have : mulSupport (f ∘ PLift.down) ⊆ s.map Equiv.plift.symm.toEmbedding := by
rw [A, Finset.coe_map]
exact image_subset _ h
rw [finprod_eq_prod_pLift_of_mulSupport_subset this]
@@ -446,8 +443,7 @@ theorem finprod_eq_prod_of_fintype [Fintype α] (f : α → M) : (∏ᶠ i : α,
theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : Finset α}
(h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : (∏ᶠ (i) (_hi : p i), f i) = ∏ i in t, f i := by
set s := { x | p x }
- have : mulSupport (s.mulIndicator f) ⊆ t :=
- by
+ have : mulSupport (s.mulIndicator f) ⊆ t := by
rw [Set.mulSupport_mulIndicator]
intro x hx
exact (h hx.2).1 hx.1
@@ -1105,8 +1101,7 @@ theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
(f a * ∏ᶠ (i) (_h : i ≠ a), f i) = ∏ᶠ i, f i := by
classical
rw [finprod_eq_prod _ hf]
- have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.toFinset \ {a}) :=
- by
+ have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.toFinset \ {a}) := by
intro x hx
rw [Finset.mem_sdiff, Finset.mem_singleton, Finite.mem_toFinset, mem_mulSupport]
exact ⟨fun h => And.intro hx h, fun h => h.2⟩
@@ -1173,8 +1168,7 @@ theorem finprod_prod_comm (s : Finset β) (f : α → β → M)
(∏ᶠ a : α, ∏ b in s, f a b) = ∏ b in s, ∏ᶠ a : α, f a b := by
have hU :
(mulSupport fun a => ∏ b in s, f a b) ⊆
- (s.finite_toSet.bunionᵢ fun b hb => h b (Finset.mem_coe.1 hb)).toFinset :=
- by
+ (s.finite_toSet.bunionᵢ fun b hb => h b (Finset.mem_coe.1 hb)).toFinset := by
rw [Finite.coe_toFinset]
intro x hx
simp only [exists_prop, mem_unionᵢ, Ne.def, mem_mulSupport, Finset.mem_coe]
@@ -1230,8 +1224,7 @@ theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finse
have :
∀ a,
(∏ i : β in (s.filter fun ab => Prod.fst ab = a).image Prod.snd, f (a, i)) =
- (Finset.filter (fun ab => Prod.fst ab = a) s).prod f :=
- by
+ (Finset.filter (fun ab => Prod.fst ab = a) s).prod f := by
refine' fun a => Finset.prod_bij (fun b _ => (a, b)) _ _ _ _ <;>-- `finish` closes these goals
try simp; done
suffices ∀ a' b, (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a by simpa
This PR fixes two things:
align
statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align
). This is often seen in the mathport output after ending calc
blocks.#align
statements. (This was needed for a script I wrote for #3630.)@@ -181,18 +181,13 @@ theorem finprod_eq_prod_pLift_of_mulSupport_toFinset_subset {f : α → M}
rw [finprod, dif_pos]
refine' Finset.prod_subset hs fun x _ hxf => _
rwa [hf.mem_toFinset, nmem_mulSupport] at hxf
-#align
- finprod_eq_prod_plift_of_mul_support_to_finset_subset
- finprod_eq_prod_pLift_of_mulSupport_toFinset_subset
-#align
- finsum_eq_sum_plift_of_support_to_finset_subset
- finsum_eq_sum_pLift_of_support_toFinset_subset
+#align finprod_eq_prod_plift_of_mul_support_to_finset_subset finprod_eq_prod_pLift_of_mulSupport_toFinset_subset
+#align finsum_eq_sum_plift_of_support_to_finset_subset finsum_eq_sum_pLift_of_support_toFinset_subset
@[to_additive]
theorem finprod_eq_prod_pLift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
(hs : mulSupport (f ∘ PLift.down) ⊆ s) : (∏ᶠ i, f i) = ∏ i in s, f i.down :=
- finprod_eq_prod_pLift_of_mulSupport_toFinset_subset (s.finite_toSet.subset hs) fun x hx =>
- by
+ finprod_eq_prod_pLift_of_mulSupport_toFinset_subset (s.finite_toSet.subset hs) fun x hx => by
rw [Finite.mem_toFinset] at hx
exact hs hx
#align finprod_eq_prod_plift_of_mul_support_subset finprod_eq_prod_pLift_of_mulSupport_subset
@@ -1161,7 +1156,6 @@ theorem single_le_finprod {M : Type _} [OrderedCommMonoid M] (i : α) {f : α
Finset.single_le_prod' (fun j _ => h j) (Finset.mem_insert_self _ _)
_ = ∏ᶠ j, f j :=
(finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm
-
#align single_le_finprod single_le_finprod
#align single_le_finsum single_le_finsum
@@ -1219,12 +1213,8 @@ theorem Finset.mulSupport_of_fiberwise_prod_subset_image [DecidableEq β] (s : F
suffices (s.filter fun a : α => g a = b).Nonempty by
simpa only [s.fiber_nonempty_iff_mem_image g b, Finset.mem_image, exists_prop]
exact Finset.nonempty_of_prod_ne_one h
-#align
- finset.mul_support_of_fiberwise_prod_subset_image
- Finset.mulSupport_of_fiberwise_prod_subset_image
-#align
- finset.support_of_fiberwise_sum_subset_image
- Finset.support_of_fiberwise_sum_subset_image
+#align finset.mul_support_of_fiberwise_prod_subset_image Finset.mulSupport_of_fiberwise_prod_subset_image
+#align finset.support_of_fiberwise_sum_subset_image Finset.support_of_fiberwise_sum_subset_image
/-- Note that `b ∈ (s.filter (fun ab => Prod.fst ab = a)).image Prod.snd` iff `(a, b) ∈ s` so
we can simplify the right hand side of this lemma. However the form stated here is more useful for
@@ -93,23 +93,21 @@ section
with `Classical.dec` in their statement. -/
open Classical
-
--- Porting note: replaced irreducible_def with def and an irreducible tag here.
/-- Sum of `f x` as `x` ranges over the elements of the support of `f`, if it's finite. Zero
otherwise. -/
-@[irreducible]
-noncomputable def finsum {M α} [AddCommMonoid M] (f : α → M) : M :=
+noncomputable irreducible_def finsum (lemma := finsum_def') [AddCommMonoid M] (f : α → M) : M :=
if h : (support (f ∘ PLift.down)).Finite then ∑ i in h.toFinset, f i.down else 0
#align finsum finsum
--- Porting note: replaced irreducible_def with def and an irreducible tag here.
/-- Product of `f x` as `x` ranges over the elements of the multiplicative support of `f`, if it's
finite. One otherwise. -/
-@[to_additive existing (attr:= irreducible)]
-noncomputable def finprod (f : α → M) : M :=
+@[to_additive existing]
+noncomputable irreducible_def finprod (lemma := finprod_def') (f : α → M) : M :=
if h : (mulSupport (f ∘ PLift.down)).Finite then ∏ i in h.toFinset, f i.down else 1
#align finprod finprod
+attribute [to_additive existing] finprod_def'
+
end
open Std.ExtendedBinder
@@ -105,7 +105,7 @@ noncomputable def finsum {M α} [AddCommMonoid M] (f : α → M) : M :=
-- Porting note: replaced irreducible_def with def and an irreducible tag here.
/-- Product of `f x` as `x` ranges over the elements of the multiplicative support of `f`, if it's
finite. One otherwise. -/
-@[to_additive (attr:= irreducible)]
+@[to_additive existing (attr:= irreducible)]
noncomputable def finprod (f : α → M) : M :=
if h : (mulSupport (f ∘ PLift.down)).Finite then ∏ i in h.toFinset, f i.down else 1
#align finprod finprod
to_additive
into linter errors@[to_additive (attr := to_additive)]
to additivize the generated lemma. This is useful for Pow -> SMul -> VAdd
lemmas. We can write e.g. @[to_additive (attr := to_additive, simp)]
to add the simp
attribute to all 3 generated lemmas, and we can provide other options to each to_additive
call separately (specifying a name / reorder).addToAdditiveAttr
now returns a value, turn a few (meta) definitions into mutual partial def
, reorder some definitions, generalize additivizeLemmas
to lists of more than 2 elements) that should have no visible effects for the user.@@ -696,7 +696,7 @@ theorem MonoidHom.map_finprod {f : α → M} (g : M →* N) (hf : (mulSupport f)
#align monoid_hom.map_finprod MonoidHom.map_finprod
#align add_monoid_hom.map_finsum AddMonoidHom.map_finsum
-@[to_additive finsum_nsmul]
+@[to_additive]
theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n = ∏ᶠ i, f i ^ n :=
(powMonoidHom n).map_finprod hf
#align finprod_pow finprod_pow
@@ -269,7 +269,7 @@ theorem finprod_congr {f g : α → M} (h : ∀ x, f x = g x) : finprod f = finp
#align finprod_congr finprod_congr
#align finsum_congr finsum_congr
-@[congr, to_additive]
+@[to_additive (attr := congr)]
theorem finprod_congr_Prop {p q : Prop} {f : p → M} {g : q → M} (hpq : p = q)
(hfg : ∀ h : q, f (hpq.mpr h) = g h) : finprod f = finprod g := by
subst q
@@ -277,8 +277,6 @@ theorem finprod_congr_Prop {p q : Prop} {f : p → M} {g : q → M} (hpq : p = q
#align finprod_congr_Prop finprod_congr_Prop
#align finsum_congr_Prop finsum_congr_Prop
-attribute [congr] finsum_congr_Prop
-
/-- To prove a property of a finite product, it suffices to prove that the property is
multiplicative and holds on the factors. -/
@[to_additive
@@ -85,8 +85,7 @@ section sort
variable {G M N : Type _} {α β ι : Sort _} [CommMonoid M] [CommMonoid N]
--- Porting note: Unknown namespace BigOperators
---open BigOperators
+open BigOperators
section
@@ -369,8 +368,7 @@ section type
variable {α β ι G M N : Type _} [CommMonoid M] [CommMonoid N]
--- Porting note: Unknown namespace
---open BigOperators
+open BigOperators
@[to_additive]
theorem finprod_eq_mulIndicator_apply (s : Set α) (f : α → M) (a : α) :
The unported dependencies are