algebra.char_p.basicMathlib.Algebra.CharP.Basic

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(data/{int,nat}/modeq): a/c ≡ b/c mod m/c → a ≡ b mod m (#18666)

Also prove -a ≡ -b [ZMOD n] ↔ a ≡ b [ZMOD n], a ≡ b [ZMOD -n] ↔ a ≡ b [ZMOD n], generalise int.modeq.mul_left'/int.modeq.mul_right', and rename

  • int.gcd_pos_of_non_zero_leftint.gcd_pos_of_ne_zero_left
  • int.gcd_pos_of_non_zero_rightint.gcd_pos_of_ne_zero_right
  • eq_iff_modeq_int, char_p.int_coe_eq_int_coe_iffchar_p.int_cast_eq_int_cast (they were duplicates)
Diff
@@ -121,10 +121,16 @@ begin
     rw [int.cast_coe_nat, char_p.cast_eq_zero_iff R p, int.coe_nat_dvd] }
 end
 
-lemma char_p.int_coe_eq_int_coe_iff [add_group_with_one R] (p : ℕ) [char_p R p] (a b : ℤ) :
-  (a : R) = (b : R) ↔ a ≡ b [ZMOD p] :=
-by rw [eq_comm, ←sub_eq_zero, ←int.cast_sub,
-       char_p.int_cast_eq_zero_iff R p, int.modeq_iff_dvd]
+lemma char_p.int_cast_eq_int_cast [add_group_with_one R] (p : ℕ) [char_p R p] {a b : ℤ} :
+  (a : R) = b ↔ a ≡ b [ZMOD p] :=
+by rw [eq_comm, ←sub_eq_zero, ←int.cast_sub, char_p.int_cast_eq_zero_iff R p, int.modeq_iff_dvd]
+
+lemma char_p.nat_cast_eq_nat_cast [add_group_with_one R] (p : ℕ) [char_p R p] {a b : ℕ} :
+  (a : R) = b ↔ a ≡ b [MOD p] :=
+begin
+  rw [←int.cast_coe_nat, ←int.cast_coe_nat b],
+  exact (char_p.int_cast_eq_int_cast _ _).trans int.coe_nat_modeq_iff,
+end
 
 theorem char_p.eq [add_monoid_with_one R] {p q : ℕ} (c1 : char_p R p) (c2 : char_p R q) :
   p = q :=
@@ -242,11 +248,6 @@ theorem sub_pow_char_pow [comm_ring R] {p : ℕ} [fact p.prime]
   (x - y) ^ (p ^ n) = x ^ (p ^ n) - y ^ (p ^ n) :=
 sub_pow_char_pow_of_commute _ _ _ (commute.all _ _)
 
-lemma eq_iff_modeq_int [ring R] (p : ℕ) [char_p R p] (a b : ℤ) :
-  (a : R) = b ↔ a ≡ b [ZMOD p] :=
-by rw [eq_comm, ←sub_eq_zero, ←int.cast_sub,
-       char_p.int_cast_eq_zero_iff R p, int.modeq_iff_dvd]
-
 lemma char_p.neg_one_ne_one [ring R] (p : ℕ) [char_p R p] [fact (2 < p)] :
   (-1 : R) ≠ (1 : R) :=
 begin

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

feat(algebra/char_p/basic): refactor proof of add_pow_char_of_commute to extract a statement true in all rings (#11364)

If x and y commute, the pth power of their sum is the sum of the pth powers plus a multiple of p. This holds in any semiring and easily implies the additivity of frobenius in char p, but is occasionally useful in characteristic 0. Also make the fact that p is 0 in a char_p ring a simp lemma.

From flt-regular

Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Yaël Dillies <yael.dillies@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -3,11 +3,8 @@ Copyright (c) 2018 Kenny Lau. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
 -/
-
-import algebra.hom.iterate
 import data.int.modeq
-import data.nat.choose.dvd
-import data.nat.choose.sum
+import data.nat.multiplicity
 import group_theory.order_of_element
 import ring_theory.nilpotent
 
@@ -17,7 +14,70 @@ import ring_theory.nilpotent
 
 universes u v
 
-variables (R : Type u)
+open finset
+open_locale big_operators
+
+variables {R : Type*}
+
+namespace commute
+variables [semiring R] {p : ℕ} {x y : R}
+
+protected lemma add_pow_prime_pow_eq (hp : p.prime) (h : commute x y) (n : ℕ) :
+  (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n +
+    p * ∑ k in Ioo 0 (p ^ n), x ^ k * y ^ (p ^ n - k) * ↑((p ^ n).choose k / p) :=
+begin
+  transitivity
+    x ^ p ^ n + y ^ p ^ n + ∑ k in Ioo 0 (p ^ n), x ^ k * y ^ (p ^ n - k) * (p ^ n).choose k,
+  { simp_rw [h.add_pow, ←nat.Ico_zero_eq_range, nat.Ico_succ_right, Icc_eq_cons_Ico (zero_le _),
+      finset.sum_cons, Ico_eq_cons_Ioo (pow_pos hp.pos _), finset.sum_cons, tsub_self, tsub_zero,
+      pow_zero, nat.choose_zero_right, nat.choose_self, nat.cast_one, mul_one, one_mul,
+      ←add_assoc] },
+  { congr' 1,
+    simp_rw [finset.mul_sum, nat.cast_comm, mul_assoc _ _ (p : R), ←nat.cast_mul],
+    refine finset.sum_congr rfl (λ i hi, _),
+    rw mem_Ioo at hi,
+    rw nat.div_mul_cancel (hp.dvd_choose_pow hi.1.ne' hi.2.ne) },
+end
+
+protected lemma add_pow_prime_eq (hp : p.prime) (h : commute x y) :
+  (x + y) ^ p = x ^ p + y ^ p +
+    p * ∑ k in finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
+by simpa using h.add_pow_prime_pow_eq hp 1
+
+protected lemma exists_add_pow_prime_pow_eq (hp : p.prime) (h : commute x y) (n : ℕ) :
+  ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
+⟨_, h.add_pow_prime_pow_eq hp n⟩
+
+protected lemma exists_add_pow_prime_eq (hp : p.prime) (h : commute x y) :
+  ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
+⟨_, h.add_pow_prime_eq hp⟩
+
+end commute
+
+section comm_semiring
+variables [comm_semiring R] {p : ℕ} {x y : R}
+
+lemma add_pow_prime_pow_eq (hp : p.prime) (x y : R) (n : ℕ) :
+  (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n +
+    p * ∑ k in finset.Ioo 0 (p ^ n), x ^ k * y ^ (p ^ n - k) * ↑((p ^ n).choose k / p) :=
+(commute.all x y).add_pow_prime_pow_eq hp n
+
+lemma add_pow_prime_eq (hp : p.prime) (x y : R) :
+  (x + y) ^ p = x ^ p + y ^ p +
+    p * ∑ k in finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
+(commute.all x y).add_pow_prime_eq hp
+
+lemma exists_add_pow_prime_pow_eq (hp : p.prime) (x y : R) (n : ℕ) :
+  ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
+(commute.all x y).exists_add_pow_prime_pow_eq hp n
+
+lemma exists_add_pow_prime_eq (hp : p.prime) (x y : R) :
+  ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
+(commute.all x y).exists_add_pow_prime_eq hp
+
+end comm_semiring
+
+variables (R)
 
 /-- The generator of the kernel of the unique homomorphism ℕ → R for a semiring R.
 
@@ -33,6 +93,7 @@ This example is formalized in `counterexamples/char_p_zero_ne_char_zero`.
 class char_p [add_monoid_with_one R] (p : ℕ) : Prop :=
 (cast_eq_zero_iff [] : ∀ x:ℕ, (x:R) = 0 ↔ p ∣ x)
 
+@[simp]
 theorem char_p.cast_eq_zero [add_monoid_with_one R] (p : ℕ) [char_p R p] :
   (p:R) = 0 :=
 (char_p.cast_eq_zero_iff R p p).2 (dvd_refl p)
@@ -133,32 +194,15 @@ by rw ring_char.spec
 
 end ring_char
 
-theorem add_pow_char_of_commute [semiring R] {p : ℕ} [fact p.prime]
+theorem add_pow_char_of_commute [semiring R] {p : ℕ} [hp : fact p.prime]
   [char_p R p] (x y : R) (h : commute x y) :
   (x + y)^p = x^p + y^p :=
-begin
-  rw [commute.add_pow h, finset.sum_range_succ_comm, tsub_self, pow_zero, nat.choose_self],
-  rw [nat.cast_one, mul_one, mul_one], congr' 1,
-  convert finset.sum_eq_single 0 _ _,
-  { simp only [mul_one, one_mul, nat.choose_zero_right, tsub_zero, nat.cast_one, pow_zero] },
-  { intros b h1 h2,
-    suffices : (p.choose b : R) = 0, { rw this, simp },
-    rw char_p.cast_eq_zero_iff R p,
-    exact nat.prime.dvd_choose_self (fact.out _) h2 (finset.mem_range.1 h1) },
-  { intro h1,
-    contrapose! h1,
-    rw finset.mem_range,
-    exact nat.prime.pos (fact.out _) }
-end
+let ⟨r, hr⟩ := h.exists_add_pow_prime_eq hp.out in by simp [hr]
 
-theorem add_pow_char_pow_of_commute [semiring R] {p : ℕ} [fact p.prime]
-  [char_p R p] {n : ℕ} (x y : R) (h : commute x y) :
+theorem add_pow_char_pow_of_commute [semiring R] {p n : ℕ} [hp : fact p.prime] [char_p R p]
+  (x y : R) (h : commute x y) :
   (x + y) ^ (p ^ n) = x ^ (p ^ n) + y ^ (p ^ n) :=
-begin
-  induction n, { simp, },
-  rw [pow_succ', pow_mul, pow_mul, pow_mul, n_ih],
-  apply add_pow_char_of_commute, apply commute.pow_pow h,
-end
+let ⟨r, hr⟩ := h.exists_add_pow_prime_pow_eq hp.out n in by simp [hr]
 
 theorem sub_pow_char_of_commute [ring R] {p : ℕ} [fact p.prime]
   [char_p R p] (x y : R) (h : commute x y) :

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -6,7 +6,7 @@ Authors: Kenny Lau, Joey van Langen, Casper Putz
 import Data.Int.ModEq
 import Data.Nat.Multiplicity
 import GroupTheory.OrderOfElement
-import RingTheory.Nilpotent
+import RingTheory.Nilpotent.Defs
 
 #align_import algebra.char_p.basic from "leanprover-community/mathlib"@"47a1a73351de8dd6c8d3d32b569c8e434b03ca47"
 
Diff
@@ -150,8 +150,8 @@ theorem CharP.addOrderOf_one (R) [Semiring R] : CharP R (addOrderOf (1 : R)) :=
 #align char_p.add_order_of_one CharP.addOrderOf_one
 -/
 
-#print CharP.int_cast_eq_zero_iff /-
-theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a : ℤ) :
+#print CharP.intCast_eq_zero_iff /-
+theorem CharP.intCast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a : ℤ) :
     (a : R) = 0 ↔ (p : ℤ) ∣ a :=
   by
   rcases lt_trichotomy a 0 with (h | rfl | h)
@@ -161,13 +161,13 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
   · simp only [Int.cast_zero, eq_self_iff_true, dvd_zero]
   · lift a to ℕ using le_of_lt h with b
     rw [Int.cast_natCast, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
-#align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
+#align char_p.int_cast_eq_zero_iff CharP.intCast_eq_zero_iff
 -/
 
 #print CharP.intCast_eq_intCast /-
 theorem CharP.intCast_eq_intCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℤ} :
     (a : R) = b ↔ a ≡ b [ZMOD p] := by
-  rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
+  rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.intCast_eq_zero_iff R p, Int.modEq_iff_dvd]
 #align char_p.int_cast_eq_int_cast CharP.intCast_eq_intCast
 -/
 
@@ -503,10 +503,10 @@ theorem frobenius_add : frobenius R p (x + y) = frobenius R p x + frobenius R p
 #align frobenius_add frobenius_add
 -/
 
-#print frobenius_nat_cast /-
-theorem frobenius_nat_cast (n : ℕ) : frobenius R p n = n :=
+#print frobenius_natCast /-
+theorem frobenius_natCast (n : ℕ) : frobenius R p n = n :=
   map_natCast (frobenius R p) n
-#align frobenius_nat_cast frobenius_nat_cast
+#align frobenius_nat_cast frobenius_natCast
 -/
 
 open scoped BigOperators
Diff
@@ -157,10 +157,10 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
   rcases lt_trichotomy a 0 with (h | rfl | h)
   · rw [← neg_eq_zero, ← Int.cast_neg, ← dvd_neg]
     lift -a to ℕ using neg_nonneg.mpr (le_of_lt h) with b
-    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
+    rw [Int.cast_natCast, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
   · simp only [Int.cast_zero, eq_self_iff_true, dvd_zero]
   · lift a to ℕ using le_of_lt h with b
-    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
+    rw [Int.cast_natCast, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 -/
 
@@ -175,7 +175,7 @@ theorem CharP.intCast_eq_intCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b
 theorem CharP.natCast_eq_natCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℕ} :
     (a : R) = b ↔ a ≡ b [MOD p] :=
   by
-  rw [← Int.cast_ofNat, ← Int.cast_ofNat b]
+  rw [← Int.cast_natCast, ← Int.cast_natCast b]
   exact (CharP.intCast_eq_intCast _ _).trans Int.natCast_modEq_iff
 #align char_p.nat_cast_eq_nat_cast CharP.natCast_eq_natCast
 -/
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2018 Kenny Lau. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
 -/
-import Data.Int.Modeq
+import Data.Int.ModEq
 import Data.Nat.Multiplicity
 import GroupTheory.OrderOfElement
 import RingTheory.Nilpotent
@@ -157,10 +157,10 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
   rcases lt_trichotomy a 0 with (h | rfl | h)
   · rw [← neg_eq_zero, ← Int.cast_neg, ← dvd_neg]
     lift -a to ℕ using neg_nonneg.mpr (le_of_lt h) with b
-    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
+    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
   · simp only [Int.cast_zero, eq_self_iff_true, dvd_zero]
   · lift a to ℕ using le_of_lt h with b
-    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
+    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 -/
 
@@ -176,7 +176,7 @@ theorem CharP.natCast_eq_natCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b
     (a : R) = b ↔ a ≡ b [MOD p] :=
   by
   rw [← Int.cast_ofNat, ← Int.cast_ofNat b]
-  exact (CharP.intCast_eq_intCast _ _).trans Int.coe_nat_modEq_iff
+  exact (CharP.intCast_eq_intCast _ _).trans Int.natCast_modEq_iff
 #align char_p.nat_cast_eq_nat_cast CharP.natCast_eq_natCast
 -/
 
@@ -333,7 +333,7 @@ theorem sub_pow_char_pow_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p
     (h : Commute x y) : (x - y) ^ p ^ n = x ^ p ^ n - y ^ p ^ n :=
   by
   induction n; · simp
-  rw [pow_succ', pow_mul, pow_mul, pow_mul, n_ih]
+  rw [pow_succ, pow_mul, pow_mul, pow_mul, n_ih]
   apply sub_pow_char_of_commute; apply Commute.pow_pow h
 #align sub_pow_char_pow_of_commute sub_pow_char_pow_of_commute
 -/
@@ -433,7 +433,7 @@ theorem frobenius_def : frobenius R p x = x ^ p :=
 theorem iterate_frobenius (n : ℕ) : (frobenius R p^[n]) x = x ^ p ^ n :=
   by
   induction n; · simp
-  rw [Function.iterate_succ', pow_succ', pow_mul, Function.comp_apply, frobenius_def, n_ih]
+  rw [Function.iterate_succ', pow_succ, pow_mul, Function.comp_apply, frobenius_def, n_ih]
 #align iterate_frobenius iterate_frobenius
 -/
 
@@ -624,7 +624,7 @@ theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x
   induction' k with k hk
   · rw [pow_zero, one_mul]
   · refine' ⟨fun h => _, fun h => _⟩
-    · rw [pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at h
+    · rw [pow_succ', mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at h
       exact hk.1 (frobenius_inj R p h)
     · rw [pow_mul', h, one_pow]
 #align char_p.pow_prime_pow_mul_eq_one_iff ExpChar.pow_prime_pow_mul_eq_one_iff
@@ -649,7 +649,7 @@ section NoZeroDivisors
 
 variable [NoZeroDivisors R]
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (d «expr ∣ » p) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (d «expr ∣ » p) -/
 #print CharP.char_is_prime_of_two_le /-
 theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.Prime p :=
   suffices ∀ (d) (_ : d ∣ p), d = 1 ∨ d = p from Nat.prime_def_lt''.mpr ⟨hp, this⟩
Diff
@@ -44,7 +44,7 @@ protected theorem add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ
   · congr 1
     simp_rw [Finset.mul_sum, Nat.cast_comm, mul_assoc _ _ (p : R), ← Nat.cast_mul]
     refine' Finset.sum_congr rfl fun i hi => _
-    rw [mem_Ioo] at hi 
+    rw [mem_Ioo] at hi
     rw [Nat.div_mul_cancel (hp.dvd_choose_pow hi.1.ne' hi.2.Ne)]
 #align commute.add_pow_prime_pow_eq Commute.add_pow_prime_pow_eq
 -/
@@ -213,7 +213,7 @@ theorem CharP.exists [NonAssocSemiring R] : ∃ p, CharP R p :=
                     rwa [← Nat.mod_add_div x (Nat.find (Classical.not_forall.1 H)), Nat.cast_add,
                       Nat.cast_mul,
                       of_not_not (not_not_of_not_imp <| Nat.find_spec (Classical.not_forall.1 H)),
-                      MulZeroClass.zero_mul, add_zero] at H1 ,
+                      MulZeroClass.zero_mul, add_zero] at H1,
                     H2⟩)),
           fun H1 => by
           rw [← Nat.mul_div_cancel' H1, Nat.cast_mul,
@@ -371,7 +371,7 @@ theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1
   by
   suffices (2 : R) ≠ 0 by symm; rw [Ne.def, ← sub_eq_zero, sub_neg_eq_add]; exact this
   intro h
-  rw [show (2 : R) = (2 : ℕ) by norm_cast] at h 
+  rw [show (2 : R) = (2 : ℕ) by norm_cast] at h
   have := (CharP.cast_eq_zero_iff R p 2).mp h
   have := Nat.le_of_dvd (by decide) this
   rw [fact_iff] at *; linarith
@@ -558,7 +558,7 @@ end frobenius
 #print frobenius_inj /-
 theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
     Function.Injective (frobenius R p) := fun x h H => by rw [← sub_eq_zero] at H ⊢;
-  rw [← frobenius_sub] at H ; exact IsReduced.eq_zero _ ⟨_, H⟩
+  rw [← frobenius_sub] at H; exact IsReduced.eq_zero _ ⟨_, H⟩
 #align frobenius_inj frobenius_inj
 -/
 
@@ -624,7 +624,7 @@ theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x
   induction' k with k hk
   · rw [pow_zero, one_mul]
   · refine' ⟨fun h => _, fun h => _⟩
-    · rw [pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at h 
+    · rw [pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at h
       exact hk.1 (frobenius_inj R p h)
     · rw [pow_mul', h, one_pow]
 #align char_p.pow_prime_pow_mul_eq_one_iff ExpChar.pow_prime_pow_mul_eq_one_iff
@@ -666,7 +666,7 @@ theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.
     have : e ∣ p := dvd_of_mul_left_eq d (Eq.symm hmul)
     have : e = p := dvd_antisymm ‹e ∣ p› ‹p ∣ e›
     have h₀ : 0 < p := two_pos.trans_le hp
-    have : d * p = 1 * p := by rw [‹e = p›] at hmul  <;> rw [one_mul] <;> exact Eq.symm hmul
+    have : d * p = 1 * p := by rw [‹e = p›] at hmul <;> rw [one_mul] <;> exact Eq.symm hmul
     show d = 1 ∨ d = p from Or.inl (mul_right_cancel₀ h₀.ne' this)
 #align char_p.char_is_prime_of_two_le CharP.char_is_prime_of_two_le
 -/
@@ -738,7 +738,7 @@ theorem ringChar_ne_one [Nontrivial R] : ringChar R ≠ 1 := by intro h; apply z
 #print CharP.nontrivial_of_char_ne_one /-
 theorem nontrivial_of_char_ne_one {v : ℕ} (hv : v ≠ 1) [hr : CharP R v] : Nontrivial R :=
   ⟨⟨(1 : ℕ), 0, fun h =>
-      hv <| by rwa [CharP.cast_eq_zero_iff _ v, Nat.dvd_one] at h  <;> assumption⟩⟩
+      hv <| by rwa [CharP.cast_eq_zero_iff _ v, Nat.dvd_one] at h <;> assumption⟩⟩
 #align char_p.nontrivial_of_char_ne_one CharP.nontrivial_of_char_ne_one
 -/
 
@@ -804,7 +804,7 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
       constructor
       · intro h
         rw [← Nat.mod_add_div k n, Nat.cast_add, Nat.cast_mul, H, MulZeroClass.zero_mul,
-          add_zero] at h 
+          add_zero] at h
         rw [Nat.dvd_iff_mod_eq_zero]
         apply hR _ (Nat.mod_lt _ _) h
         rw [← hn, Fintype.card_pos_iff]
@@ -819,7 +819,7 @@ theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fa
   by
   obtain ⟨c, hc⟩ := CharP.exists R; skip
   have hcpn : c ∣ p ^ n := by rw [← CharP.cast_eq_zero_iff R c, ← hn, CharP.cast_card_eq_zero]
-  obtain ⟨i, hi, hc⟩ : ∃ i ≤ n, c = p ^ i := by rwa [Nat.dvd_prime_pow hp.1] at hcpn 
+  obtain ⟨i, hi, hc⟩ : ∃ i ≤ n, c = p ^ i := by rwa [Nat.dvd_prime_pow hp.1] at hcpn
   obtain rfl : i = n := by apply hR i hi; rw [← Nat.cast_pow, ← hc, CharP.cast_eq_zero]
   rwa [← hc]
 #align char_p_of_prime_pow_injective charP_of_prime_pow_injective
@@ -869,23 +869,23 @@ theorem Int.cast_injOn_of_ringChar_ne_two {R : Type _} [NonAssocRing R] [Nontriv
   intro a ha b hb h
   apply eq_of_sub_eq_zero
   by_contra hf
-  change a = 0 ∨ a = 1 ∨ a = -1 at ha 
-  change b = 0 ∨ b = 1 ∨ b = -1 at hb 
+  change a = 0 ∨ a = 1 ∨ a = -1 at ha
+  change b = 0 ∨ b = 1 ∨ b = -1 at hb
   have hh : a - b = 1 ∨ b - a = 1 ∨ a - b = 2 ∨ b - a = 2 :=
     by
     rcases ha with (ha | ha | ha) <;> rcases hb with (hb | hb | hb)
     pick_goal 5; pick_goal 9
     -- move goals with `a = b` to the front
-    iterate 3 rw [ha, hb, sub_self] at hf ; tauto
+    iterate 3 rw [ha, hb, sub_self] at hf; tauto
     -- 6 goals remain
     all_goals rw [ha, hb]; norm_num
   have h' : ((a - b : ℤ) : R) = 0 := by exact_mod_cast sub_eq_zero_of_eq h
   have h'' : ((b - a : ℤ) : R) = 0 := by exact_mod_cast sub_eq_zero_of_eq h.symm
   rcases hh with (hh | hh | hh | hh)
-  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h' ; exact one_ne_zero h'
-  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h'' ; exact one_ne_zero h''
-  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h' ; exact Ring.two_ne_zero hR h'
-  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h'' ; exact Ring.two_ne_zero hR h''
+  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h'; exact one_ne_zero h'
+  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h''; exact one_ne_zero h''
+  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h'; exact Ring.two_ne_zero hR h'
+  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h''; exact Ring.two_ne_zero hR h''
 #align int.cast_inj_on_of_ring_char_ne_two Int.cast_injOn_of_ringChar_ne_two
 -/
 
Diff
@@ -113,7 +113,7 @@ end CommSemiring
 variable (R)
 
 #print CharP /-
-/- ./././Mathport/Syntax/Translate/Command.lean:404:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
+/- ./././Mathport/Syntax/Translate/Command.lean:400:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
 /-- The generator of the kernel of the unique homomorphism ℕ → R for a semiring R.
 
 *Warning*: for a semiring `R`, `char_p R 0` and `char_zero R` need not coincide.
@@ -616,7 +616,7 @@ section CommRing
 
 variable [CommRing R] [IsReduced R] {R}
 
-#print CharP.pow_prime_pow_mul_eq_one_iff /-
+#print ExpChar.pow_prime_pow_mul_eq_one_iff /-
 @[simp]
 theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x : R) :
     x ^ (p ^ k * m) = 1 ↔ x ^ m = 1 :=
@@ -627,7 +627,7 @@ theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x
     · rw [pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at h 
       exact hk.1 (frobenius_inj R p h)
     · rw [pow_mul', h, one_pow]
-#align char_p.pow_prime_pow_mul_eq_one_iff CharP.pow_prime_pow_mul_eq_one_iff
+#align char_p.pow_prime_pow_mul_eq_one_iff ExpChar.pow_prime_pow_mul_eq_one_iff
 -/
 
 end CommRing
Diff
@@ -113,7 +113,7 @@ end CommSemiring
 variable (R)
 
 #print CharP /-
-/- ./././Mathport/Syntax/Translate/Command.lean:394:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
+/- ./././Mathport/Syntax/Translate/Command.lean:404:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
 /-- The generator of the kernel of the unique homomorphism ℕ → R for a semiring R.
 
 *Warning*: for a semiring `R`, `char_p R 0` and `char_zero R` need not coincide.
Diff
@@ -200,24 +200,24 @@ theorem CharP.exists [NonAssocSemiring R] : ∃ p, CharP R p :=
     (fun H : ∀ p : ℕ, (p : R) = 0 → p = 0 =>
       ⟨0, ⟨fun x => by rw [zero_dvd_iff] <;> exact ⟨H x, by rintro rfl <;> simp⟩⟩⟩)
     fun H =>
-    ⟨Nat.find (not_forall.1 H),
+    ⟨Nat.find (Classical.not_forall.1 H),
       ⟨fun x =>
         ⟨fun H1 =>
           Nat.dvd_of_mod_eq_zero
             (by_contradiction fun H2 =>
-              Nat.find_min (not_forall.1 H)
+              Nat.find_min (Classical.not_forall.1 H)
                 (Nat.mod_lt x <|
-                  Nat.pos_of_ne_zero <| not_of_not_imp <| Nat.find_spec (not_forall.1 H))
+                  Nat.pos_of_ne_zero <| not_of_not_imp <| Nat.find_spec (Classical.not_forall.1 H))
                 (not_imp_of_and_not
                   ⟨by
-                    rwa [← Nat.mod_add_div x (Nat.find (not_forall.1 H)), Nat.cast_add,
+                    rwa [← Nat.mod_add_div x (Nat.find (Classical.not_forall.1 H)), Nat.cast_add,
                       Nat.cast_mul,
-                      of_not_not (not_not_of_not_imp <| Nat.find_spec (not_forall.1 H)),
+                      of_not_not (not_not_of_not_imp <| Nat.find_spec (Classical.not_forall.1 H)),
                       MulZeroClass.zero_mul, add_zero] at H1 ,
                     H2⟩)),
           fun H1 => by
           rw [← Nat.mul_div_cancel' H1, Nat.cast_mul,
-            of_not_not (not_not_of_not_imp <| Nat.find_spec (not_forall.1 H)),
+            of_not_not (not_not_of_not_imp <| Nat.find_spec (Classical.not_forall.1 H)),
             MulZeroClass.zero_mul]⟩⟩⟩
 #align char_p.exists CharP.exists
 -/
Diff
@@ -3,10 +3,10 @@ Copyright (c) 2018 Kenny Lau. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
 -/
-import Mathbin.Data.Int.Modeq
-import Mathbin.Data.Nat.Multiplicity
-import Mathbin.GroupTheory.OrderOfElement
-import Mathbin.RingTheory.Nilpotent
+import Data.Int.Modeq
+import Data.Nat.Multiplicity
+import GroupTheory.OrderOfElement
+import RingTheory.Nilpotent
 
 #align_import algebra.char_p.basic from "leanprover-community/mathlib"@"47a1a73351de8dd6c8d3d32b569c8e434b03ca47"
 
@@ -113,7 +113,7 @@ end CommSemiring
 variable (R)
 
 #print CharP /-
-/- ./././Mathport/Syntax/Translate/Command.lean:393:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
+/- ./././Mathport/Syntax/Translate/Command.lean:394:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
 /-- The generator of the kernel of the unique homomorphism ℕ → R for a semiring R.
 
 *Warning*: for a semiring `R`, `char_p R 0` and `char_zero R` need not coincide.
@@ -649,7 +649,7 @@ section NoZeroDivisors
 
 variable [NoZeroDivisors R]
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (d «expr ∣ » p) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (d «expr ∣ » p) -/
 #print CharP.char_is_prime_of_two_le /-
 theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.Prime p :=
   suffices ∀ (d) (_ : d ∣ p), d = 1 ∨ d = p from Nat.prime_def_lt''.mpr ⟨hp, this⟩
Diff
@@ -439,7 +439,7 @@ theorem iterate_frobenius (n : ℕ) : (frobenius R p^[n]) x = x ^ p ^ n :=
 
 #print frobenius_mul /-
 theorem frobenius_mul : frobenius R p (x * y) = frobenius R p x * frobenius R p y :=
-  (frobenius R p).map_mul x y
+  (frobenius R p).map_hMul x y
 #align frobenius_mul frobenius_mul
 -/
 
@@ -657,7 +657,7 @@ theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.
   let ⟨e, hmul⟩ := hdvd
   have : (p : R) = 0 := (cast_eq_zero_iff R p p).mpr (dvd_refl p)
   have : (d : R) * e = 0 := @cast_mul R _ d e ▸ hmul ▸ this
-  Or.elim (eq_zero_or_eq_zero_of_mul_eq_zero this)
+  Or.elim (eq_zero_or_eq_zero_of_hMul_eq_zero this)
     (fun hd : (d : R) = 0 =>
       have : p ∣ d := (cast_eq_zero_iff R p d).mp hd
       show d = 1 ∨ d = p from Or.inr (dvd_antisymm ⟨e, hmul⟩ this))
Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2018 Kenny Lau. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
-
-! This file was ported from Lean 3 source module algebra.char_p.basic
-! leanprover-community/mathlib commit 47a1a73351de8dd6c8d3d32b569c8e434b03ca47
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Int.Modeq
 import Mathbin.Data.Nat.Multiplicity
 import Mathbin.GroupTheory.OrderOfElement
 import Mathbin.RingTheory.Nilpotent
 
+#align_import algebra.char_p.basic from "leanprover-community/mathlib"@"47a1a73351de8dd6c8d3d32b569c8e434b03ca47"
+
 /-!
 # Characteristic of semirings
 
@@ -652,7 +649,7 @@ section NoZeroDivisors
 
 variable [NoZeroDivisors R]
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (d «expr ∣ » p) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (d «expr ∣ » p) -/
 #print CharP.char_is_prime_of_two_le /-
 theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.Prime p :=
   suffices ∀ (d) (_ : d ∣ p), d = 1 ∨ d = p from Nat.prime_def_lt''.mpr ⟨hp, this⟩
Diff
@@ -33,6 +33,7 @@ namespace Commute
 
 variable [Semiring R] {p : ℕ} {x y : R}
 
+#print Commute.add_pow_prime_pow_eq /-
 protected theorem add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ) :
     (x + y) ^ p ^ n =
       x ^ p ^ n + y ^ p ^ n +
@@ -49,22 +50,29 @@ protected theorem add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ
     rw [mem_Ioo] at hi 
     rw [Nat.div_mul_cancel (hp.dvd_choose_pow hi.1.ne' hi.2.Ne)]
 #align commute.add_pow_prime_pow_eq Commute.add_pow_prime_pow_eq
+-/
 
+#print Commute.add_pow_prime_eq /-
 protected theorem add_pow_prime_eq (hp : p.Prime) (h : Commute x y) :
     (x + y) ^ p =
       x ^ p + y ^ p + p * ∑ k in Finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
   by simpa using h.add_pow_prime_pow_eq hp 1
 #align commute.add_pow_prime_eq Commute.add_pow_prime_eq
+-/
 
+#print Commute.exists_add_pow_prime_pow_eq /-
 protected theorem exists_add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ) :
     ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
   ⟨_, h.add_pow_prime_pow_eq hp n⟩
 #align commute.exists_add_pow_prime_pow_eq Commute.exists_add_pow_prime_pow_eq
+-/
 
+#print Commute.exists_add_pow_prime_eq /-
 protected theorem exists_add_pow_prime_eq (hp : p.Prime) (h : Commute x y) :
     ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
   ⟨_, h.add_pow_prime_eq hp⟩
 #align commute.exists_add_pow_prime_eq Commute.exists_add_pow_prime_eq
+-/
 
 end Commute
 
@@ -72,35 +80,43 @@ section CommSemiring
 
 variable [CommSemiring R] {p : ℕ} {x y : R}
 
+#print add_pow_prime_pow_eq /-
 theorem add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
     (x + y) ^ p ^ n =
       x ^ p ^ n + y ^ p ^ n +
         p * ∑ k in Finset.Ioo 0 (p ^ n), x ^ k * y ^ (p ^ n - k) * ↑((p ^ n).choose k / p) :=
   (Commute.all x y).add_pow_prime_pow_eq hp n
 #align add_pow_prime_pow_eq add_pow_prime_pow_eq
+-/
 
+#print add_pow_prime_eq /-
 theorem add_pow_prime_eq (hp : p.Prime) (x y : R) :
     (x + y) ^ p =
       x ^ p + y ^ p + p * ∑ k in Finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
   (Commute.all x y).add_pow_prime_eq hp
 #align add_pow_prime_eq add_pow_prime_eq
+-/
 
+#print exists_add_pow_prime_pow_eq /-
 theorem exists_add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
     ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
   (Commute.all x y).exists_add_pow_prime_pow_eq hp n
 #align exists_add_pow_prime_pow_eq exists_add_pow_prime_pow_eq
+-/
 
+#print exists_add_pow_prime_eq /-
 theorem exists_add_pow_prime_eq (hp : p.Prime) (x y : R) :
     ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
   (Commute.all x y).exists_add_pow_prime_eq hp
 #align exists_add_pow_prime_eq exists_add_pow_prime_eq
+-/
 
 end CommSemiring
 
 variable (R)
 
 #print CharP /-
-/- ./././Mathport/Syntax/Translate/Command.lean:394:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
+/- ./././Mathport/Syntax/Translate/Command.lean:393:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
 /-- The generator of the kernel of the unique homomorphism ℕ → R for a semiring R.
 
 *Warning*: for a semiring `R`, `char_p R 0` and `char_zero R` need not coincide.
@@ -117,15 +133,19 @@ class CharP [AddMonoidWithOne R] (p : ℕ) : Prop where
 #align char_p CharP
 -/
 
+#print CharP.cast_eq_zero /-
 @[simp]
 theorem CharP.cast_eq_zero [AddMonoidWithOne R] (p : ℕ) [CharP R p] : (p : R) = 0 :=
   (CharP.cast_eq_zero_iff R p p).2 (dvd_refl p)
 #align char_p.cast_eq_zero CharP.cast_eq_zero
+-/
 
+#print CharP.cast_card_eq_zero /-
 @[simp]
 theorem CharP.cast_card_eq_zero [AddGroupWithOne R] [Fintype R] : (Fintype.card R : R) = 0 := by
   rw [← nsmul_one, card_nsmul_eq_zero]
 #align char_p.cast_card_eq_zero CharP.cast_card_eq_zero
+-/
 
 #print CharP.addOrderOf_one /-
 theorem CharP.addOrderOf_one (R) [Semiring R] : CharP R (addOrderOf (1 : R)) :=
@@ -133,6 +153,7 @@ theorem CharP.addOrderOf_one (R) [Semiring R] : CharP R (addOrderOf (1 : R)) :=
 #align char_p.add_order_of_one CharP.addOrderOf_one
 -/
 
+#print CharP.int_cast_eq_zero_iff /-
 theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a : ℤ) :
     (a : R) = 0 ↔ (p : ℤ) ∣ a :=
   by
@@ -144,11 +165,14 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
   · lift a to ℕ using le_of_lt h with b
     rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
+-/
 
+#print CharP.intCast_eq_intCast /-
 theorem CharP.intCast_eq_intCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℤ} :
     (a : R) = b ↔ a ≡ b [ZMOD p] := by
   rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
 #align char_p.int_cast_eq_int_cast CharP.intCast_eq_intCast
+-/
 
 #print CharP.natCast_eq_natCast /-
 theorem CharP.natCast_eq_natCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℕ} :
@@ -226,10 +250,12 @@ namespace ringChar
 
 variable [NonAssocSemiring R]
 
+#print ringChar.spec /-
 theorem spec : ∀ x : ℕ, (x : R) = 0 ↔ ringChar R ∣ x := by
   letI := (Classical.choose_spec (CharP.exists_unique R)).1 <;> unfold ringChar <;>
     exact CharP.cast_eq_zero_iff R (ringChar R)
 #align ring_char.spec ringChar.spec
+-/
 
 #print ringChar.eq /-
 theorem eq (p : ℕ) [C : CharP R p] : ringChar R = p :=
@@ -257,9 +283,11 @@ theorem eq_iff {p : ℕ} : ringChar R = p ↔ CharP R p :=
 #align ring_char.eq_iff ringChar.eq_iff
 -/
 
+#print ringChar.dvd /-
 theorem dvd {x : ℕ} (hx : (x : R) = 0) : ringChar R ∣ x :=
   (spec R x).1 hx
 #align ring_char.dvd ringChar.dvd
+-/
 
 #print ringChar.eq_zero /-
 @[simp]
@@ -268,33 +296,42 @@ theorem eq_zero [CharZero R] : ringChar R = 0 :=
 #align ring_char.eq_zero ringChar.eq_zero
 -/
 
+#print ringChar.Nat.cast_ringChar /-
 @[simp]
 theorem Nat.cast_ringChar : (ringChar R : R) = 0 := by rw [ringChar.spec]
 #align ring_char.nat.cast_ring_char ringChar.Nat.cast_ringChar
+-/
 
 end ringChar
 
+#print add_pow_char_of_commute /-
 theorem add_pow_char_of_commute [Semiring R] {p : ℕ} [hp : Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x + y) ^ p = x ^ p + y ^ p :=
   by
   let ⟨r, hr⟩ := h.exists_add_pow_prime_eq hp.out
   simp [hr]
 #align add_pow_char_of_commute add_pow_char_of_commute
+-/
 
+#print add_pow_char_pow_of_commute /-
 theorem add_pow_char_pow_of_commute [Semiring R] {p n : ℕ} [hp : Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n :=
   by
   let ⟨r, hr⟩ := h.exists_add_pow_prime_pow_eq hp.out n
   simp [hr]
 #align add_pow_char_pow_of_commute add_pow_char_pow_of_commute
+-/
 
+#print sub_pow_char_of_commute /-
 theorem sub_pow_char_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x - y) ^ p = x ^ p - y ^ p :=
   by
   rw [eq_sub_iff_add_eq, ← add_pow_char_of_commute _ _ _ (Commute.sub_left h rfl)]
   simp; repeat' infer_instance
 #align sub_pow_char_of_commute sub_pow_char_of_commute
+-/
 
+#print sub_pow_char_pow_of_commute /-
 theorem sub_pow_char_pow_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ} (x y : R)
     (h : Commute x y) : (x - y) ^ p ^ n = x ^ p ^ n - y ^ p ^ n :=
   by
@@ -302,27 +339,37 @@ theorem sub_pow_char_pow_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p
   rw [pow_succ', pow_mul, pow_mul, pow_mul, n_ih]
   apply sub_pow_char_of_commute; apply Commute.pow_pow h
 #align sub_pow_char_pow_of_commute sub_pow_char_pow_of_commute
+-/
 
+#print add_pow_char /-
 theorem add_pow_char [CommSemiring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R) :
     (x + y) ^ p = x ^ p + y ^ p :=
   add_pow_char_of_commute _ _ _ (Commute.all _ _)
 #align add_pow_char add_pow_char
+-/
 
+#print add_pow_char_pow /-
 theorem add_pow_char_pow [CommSemiring R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ} (x y : R) :
     (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n :=
   add_pow_char_pow_of_commute _ _ _ (Commute.all _ _)
 #align add_pow_char_pow add_pow_char_pow
+-/
 
+#print sub_pow_char /-
 theorem sub_pow_char [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R) :
     (x - y) ^ p = x ^ p - y ^ p :=
   sub_pow_char_of_commute _ _ _ (Commute.all _ _)
 #align sub_pow_char sub_pow_char
+-/
 
+#print sub_pow_char_pow /-
 theorem sub_pow_char_pow [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ} (x y : R) :
     (x - y) ^ p ^ n = x ^ p ^ n - y ^ p ^ n :=
   sub_pow_char_pow_of_commute _ _ _ (Commute.all _ _)
 #align sub_pow_char_pow sub_pow_char_pow
+-/
 
+#print CharP.neg_one_ne_one /-
 theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1 : R) ≠ (1 : R) :=
   by
   suffices (2 : R) ≠ 0 by symm; rw [Ne.def, ← sub_eq_zero, sub_neg_eq_add]; exact this
@@ -332,25 +379,32 @@ theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1
   have := Nat.le_of_dvd (by decide) this
   rw [fact_iff] at *; linarith
 #align char_p.neg_one_ne_one CharP.neg_one_ne_one
+-/
 
+#print CharP.neg_one_pow_char /-
 theorem CharP.neg_one_pow_char [CommRing R] (p : ℕ) [CharP R p] [Fact p.Prime] :
     (-1 : R) ^ p = -1 := by
   rw [eq_neg_iff_add_eq_zero]
   nth_rw 2 [← one_pow p]
   rw [← add_pow_char, add_left_neg, zero_pow (Fact.out (Nat.Prime p)).Pos]
 #align char_p.neg_one_pow_char CharP.neg_one_pow_char
+-/
 
+#print CharP.neg_one_pow_char_pow /-
 theorem CharP.neg_one_pow_char_pow [CommRing R] (p n : ℕ) [CharP R p] [Fact p.Prime] :
     (-1 : R) ^ p ^ n = -1 := by
   rw [eq_neg_iff_add_eq_zero]
   nth_rw 2 [← one_pow (p ^ n)]
   rw [← add_pow_char_pow, add_left_neg, zero_pow (pow_pos (Fact.out (Nat.Prime p)).Pos _)]
 #align char_p.neg_one_pow_char_pow CharP.neg_one_pow_char_pow
+-/
 
+#print RingHom.charP_iff_charP /-
 theorem RingHom.charP_iff_charP {K L : Type _} [DivisionRing K] [Semiring L] [Nontrivial L]
     (f : K →+* L) (p : ℕ) : CharP K p ↔ CharP L p := by
   simp only [charP_iff, ← f.injective.eq_iff, map_natCast f, f.map_zero]
 #align ring_hom.char_p_iff_char_p RingHom.charP_iff_charP
+-/
 
 section frobenius
 
@@ -372,73 +426,101 @@ def frobenius : R →+* R where
 
 variable {R}
 
+#print frobenius_def /-
 theorem frobenius_def : frobenius R p x = x ^ p :=
   rfl
 #align frobenius_def frobenius_def
+-/
 
+#print iterate_frobenius /-
 theorem iterate_frobenius (n : ℕ) : (frobenius R p^[n]) x = x ^ p ^ n :=
   by
   induction n; · simp
   rw [Function.iterate_succ', pow_succ', pow_mul, Function.comp_apply, frobenius_def, n_ih]
 #align iterate_frobenius iterate_frobenius
+-/
 
+#print frobenius_mul /-
 theorem frobenius_mul : frobenius R p (x * y) = frobenius R p x * frobenius R p y :=
   (frobenius R p).map_mul x y
 #align frobenius_mul frobenius_mul
+-/
 
+#print frobenius_one /-
 theorem frobenius_one : frobenius R p 1 = 1 :=
   one_pow _
 #align frobenius_one frobenius_one
+-/
 
+#print MonoidHom.map_frobenius /-
 theorem MonoidHom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
   f.map_pow x p
 #align monoid_hom.map_frobenius MonoidHom.map_frobenius
+-/
 
+#print RingHom.map_frobenius /-
 theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
   g.map_pow x p
 #align ring_hom.map_frobenius RingHom.map_frobenius
+-/
 
+#print MonoidHom.map_iterate_frobenius /-
 theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
     f ((frobenius R p^[n]) x) = (frobenius S p^[n]) (f x) :=
   Function.Semiconj.iterate_right (f.map_frobenius p) n x
 #align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobenius
+-/
 
+#print RingHom.map_iterate_frobenius /-
 theorem RingHom.map_iterate_frobenius (n : ℕ) :
     g ((frobenius R p^[n]) x) = (frobenius S p^[n]) (g x) :=
   g.toMonoidHom.map_iterate_frobenius p x n
 #align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobenius
+-/
 
+#print MonoidHom.iterate_map_frobenius /-
 theorem MonoidHom.iterate_map_frobenius (f : R →* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
     (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
   f.iterate_map_pow _ _ _
 #align monoid_hom.iterate_map_frobenius MonoidHom.iterate_map_frobenius
+-/
 
+#print RingHom.iterate_map_frobenius /-
 theorem RingHom.iterate_map_frobenius (f : R →+* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
     (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
   f.iterate_map_pow _ _ _
 #align ring_hom.iterate_map_frobenius RingHom.iterate_map_frobenius
+-/
 
 variable (R)
 
+#print frobenius_zero /-
 theorem frobenius_zero : frobenius R p 0 = 0 :=
   (frobenius R p).map_zero
 #align frobenius_zero frobenius_zero
+-/
 
+#print frobenius_add /-
 theorem frobenius_add : frobenius R p (x + y) = frobenius R p x + frobenius R p y :=
   (frobenius R p).map_add x y
 #align frobenius_add frobenius_add
+-/
 
+#print frobenius_nat_cast /-
 theorem frobenius_nat_cast (n : ℕ) : frobenius R p n = n :=
   map_natCast (frobenius R p) n
 #align frobenius_nat_cast frobenius_nat_cast
+-/
 
 open scoped BigOperators
 
 variable {R}
 
+#print list_sum_pow_char /-
 theorem list_sum_pow_char (l : List R) : l.Sum ^ p = (l.map (· ^ p)).Sum :=
   (frobenius R p).map_list_sum _
 #align list_sum_pow_char list_sum_pow_char
+-/
 
 #print multiset_sum_pow_char /-
 theorem multiset_sum_pow_char (s : Multiset R) : s.Sum ^ p = (s.map (· ^ p)).Sum :=
@@ -460,23 +542,30 @@ section CommRing
 variable [CommRing R] {S : Type v} [CommRing S] (f : R →* S) (g : R →+* S) (p : ℕ) [Fact p.Prime]
   [CharP R p] [CharP S p] (x y : R)
 
+#print frobenius_neg /-
 theorem frobenius_neg : frobenius R p (-x) = -frobenius R p x :=
   (frobenius R p).map_neg x
 #align frobenius_neg frobenius_neg
+-/
 
+#print frobenius_sub /-
 theorem frobenius_sub : frobenius R p (x - y) = frobenius R p x - frobenius R p y :=
   (frobenius R p).map_sub x y
 #align frobenius_sub frobenius_sub
+-/
 
 end CommRing
 
 end frobenius
 
+#print frobenius_inj /-
 theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
     Function.Injective (frobenius R p) := fun x h H => by rw [← sub_eq_zero] at H ⊢;
   rw [← frobenius_sub] at H ; exact IsReduced.eq_zero _ ⟨_, H⟩
 #align frobenius_inj frobenius_inj
+-/
 
+#print isSquare_of_charTwo' /-
 /-- If `ring_char R = 2`, where `R` is a finite reduced commutative ring,
 then every `a : R` is a square. -/
 theorem isSquare_of_charTwo' {R : Type _} [Finite R] [CommRing R] [IsReduced R] [CharP R 2]
@@ -485,6 +574,7 @@ theorem isSquare_of_charTwo' {R : Type _} [Finite R] [CommRing R] [IsReduced R]
     Exists.imp (fun b h => pow_two b ▸ Eq.symm h)
       (((Fintype.bijective_iff_injective_and_card _).mpr ⟨frobenius_inj R 2, rfl⟩).Surjective a)
 #align is_square_of_char_two' isSquare_of_charTwo'
+-/
 
 namespace CharP
 
@@ -529,6 +619,7 @@ section CommRing
 
 variable [CommRing R] [IsReduced R] {R}
 
+#print CharP.pow_prime_pow_mul_eq_one_iff /-
 @[simp]
 theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x : R) :
     x ^ (p ^ k * m) = 1 ↔ x ^ m = 1 :=
@@ -540,6 +631,7 @@ theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x
       exact hk.1 (frobenius_inj R p h)
     · rw [pow_mul', h, one_pow]
 #align char_p.pow_prime_pow_mul_eq_one_iff CharP.pow_prime_pow_mul_eq_one_iff
+-/
 
 end CommRing
 
@@ -561,6 +653,7 @@ section NoZeroDivisors
 variable [NoZeroDivisors R]
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (d «expr ∣ » p) -/
+#print CharP.char_is_prime_of_two_le /-
 theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.Prime p :=
   suffices ∀ (d) (_ : d ∣ p), d = 1 ∨ d = p from Nat.prime_def_lt''.mpr ⟨hp, this⟩
   fun (d : ℕ) (hdvd : ∃ e, p = d * e) =>
@@ -579,21 +672,26 @@ theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.
     have : d * p = 1 * p := by rw [‹e = p›] at hmul  <;> rw [one_mul] <;> exact Eq.symm hmul
     show d = 1 ∨ d = p from Or.inl (mul_right_cancel₀ h₀.ne' this)
 #align char_p.char_is_prime_of_two_le CharP.char_is_prime_of_two_le
+-/
 
 section Nontrivial
 
 variable [Nontrivial R]
 
+#print CharP.char_is_prime_or_zero /-
 theorem char_is_prime_or_zero (p : ℕ) [hc : CharP R p] : Nat.Prime p ∨ p = 0 :=
   match p, hc with
   | 0, _ => Or.inr rfl
   | 1, hc => absurd (Eq.refl (1 : ℕ)) (@char_ne_one R _ _ (1 : ℕ) hc)
   | m + 2, hc => Or.inl (@char_is_prime_of_two_le R _ _ (m + 2) hc (Nat.le_add_left 2 m))
 #align char_p.char_is_prime_or_zero CharP.char_is_prime_or_zero
+-/
 
+#print CharP.char_is_prime_of_pos /-
 theorem char_is_prime_of_pos (p : ℕ) [NeZero p] [CharP R p] : Fact p.Prime :=
   ⟨(CharP.char_is_prime_or_zero R _).resolve_right <| NeZero.ne p⟩
 #align char_p.char_is_prime_of_pos CharP.char_is_prime_of_pos
+-/
 
 end Nontrivial
 
@@ -605,9 +703,11 @@ section Ring
 
 variable (R) [Ring R] [NoZeroDivisors R] [Nontrivial R] [Finite R]
 
+#print CharP.char_is_prime /-
 theorem char_is_prime (p : ℕ) [CharP R p] : p.Prime :=
   Or.resolve_right (char_is_prime_or_zero R p) (char_ne_zero_of_finite R p)
 #align char_p.char_is_prime CharP.char_is_prime
+-/
 
 end Ring
 
@@ -645,10 +745,12 @@ theorem nontrivial_of_char_ne_one {v : ℕ} (hv : v ≠ 1) [hr : CharP R v] : No
 #align char_p.nontrivial_of_char_ne_one CharP.nontrivial_of_char_ne_one
 -/
 
+#print CharP.ringChar_of_prime_eq_zero /-
 theorem ringChar_of_prime_eq_zero [Nontrivial R] {p : ℕ} (hprime : Nat.Prime p)
     (hp0 : (p : R) = 0) : ringChar R = p :=
   Or.resolve_left ((Nat.dvd_prime hprime).1 (ringChar.dvd hp0)) ringChar_ne_one
 #align char_p.ring_char_of_prime_eq_zero CharP.ringChar_of_prime_eq_zero
+-/
 
 end CharOne
 
@@ -656,6 +758,7 @@ end CharP
 
 section
 
+#print Ring.two_ne_zero /-
 /-- We have `2 ≠ 0` in a nontrivial ring whose characteristic is not `2`. -/
 @[protected]
 theorem Ring.two_ne_zero {R : Type _} [NonAssocSemiring R] [Nontrivial R] (hR : ringChar R ≠ 2) :
@@ -664,7 +767,9 @@ theorem Ring.two_ne_zero {R : Type _} [NonAssocSemiring R] [Nontrivial R] (hR :
   rw [Ne.def, (by norm_cast : (2 : R) = (2 : ℕ)), ringChar.spec, Nat.dvd_prime Nat.prime_two]
   exact mt (or_iff_left hR).mp CharP.ringChar_ne_one
 #align ring.two_ne_zero Ring.two_ne_zero
+-/
 
+#print Ring.neg_one_ne_one_of_char_ne_two /-
 -- We have `char_p.neg_one_ne_one`, which assumes `[ring R] (p : ℕ) [char_p R p] [fact (2 < p)]`.
 -- This is a version using `ring_char` instead.
 /-- Characteristic `≠ 2` and nontrivial implies that `-1 ≠ 1`. -/
@@ -672,7 +777,9 @@ theorem Ring.neg_one_ne_one_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontri
     (hR : ringChar R ≠ 2) : (-1 : R) ≠ 1 := fun h =>
   Ring.two_ne_zero hR (neg_eq_iff_add_eq_zero.mp h)
 #align ring.neg_one_ne_one_of_char_ne_two Ring.neg_one_ne_one_of_char_ne_two
+-/
 
+#print Ring.eq_self_iff_eq_zero_of_char_ne_two /-
 /-- Characteristic `≠ 2` in a domain implies that `-a = a` iff `a = 0`. -/
 theorem Ring.eq_self_iff_eq_zero_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontrivial R]
     [NoZeroDivisors R] (hR : ringChar R ≠ 2) {a : R} : -a = a ↔ a = 0 :=
@@ -681,6 +788,7 @@ theorem Ring.eq_self_iff_eq_zero_of_char_ne_two {R : Type _} [NonAssocRing R] [N
       (Ring.two_ne_zero hR),
     fun h => ((congr_arg (fun x => -x) h).trans neg_zero).trans h.symm⟩
 #align ring.eq_self_iff_eq_zero_of_char_ne_two Ring.eq_self_iff_eq_zero_of_char_ne_two
+-/
 
 end
 
@@ -688,6 +796,7 @@ section
 
 variable (R) [NonAssocRing R] [Fintype R] (n : ℕ)
 
+#print charP_of_ne_zero /-
 theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0 → i = 0) :
     CharP R n :=
   {
@@ -705,7 +814,9 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
         exact ⟨0⟩
       · rintro ⟨k, rfl⟩; rw [Nat.cast_mul, H, MulZeroClass.zero_mul] }
 #align char_p_of_ne_zero charP_of_ne_zero
+-/
 
+#print charP_of_prime_pow_injective /-
 theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fact p.Prime] (n : ℕ)
     (hn : Fintype.card R = p ^ n) (hR : ∀ i ≤ n, (p ^ i : R) = 0 → i = n) : CharP R (p ^ n) :=
   by
@@ -715,6 +826,7 @@ theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fa
   obtain rfl : i = n := by apply hR i hi; rw [← Nat.cast_pow, ← hc, CharP.cast_eq_zero]
   rwa [← hc]
 #align char_p_of_prime_pow_injective charP_of_prime_pow_injective
+-/
 
 end
 
@@ -728,10 +840,12 @@ instance [CharP S q] : CharP (R × S) (Nat.lcm p q)
     where cast_eq_zero_iff := by
     simp [Prod.ext_iff, CharP.cast_eq_zero_iff R p, CharP.cast_eq_zero_iff S q, Nat.lcm_dvd_iff]
 
+#print Prod.charP /-
 /-- The characteristic of the product of two rings of the same characteristic
   is the same as the characteristic of the rings -/
 instance Prod.charP [CharP S p] : CharP (R × S) p := by convert Nat.lcm.charP R S p p <;> simp
 #align prod.char_p Prod.charP
+-/
 
 end Prod
 
@@ -749,6 +863,7 @@ instance MulOpposite.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP R
 
 section
 
+#print Int.cast_injOn_of_ringChar_ne_two /-
 /-- If two integers from `{0, 1, -1}` result in equal elements in a ring `R`
 that is nontrivial and of characteristic not `2`, then they are equal. -/
 theorem Int.cast_injOn_of_ringChar_ne_two {R : Type _} [NonAssocRing R] [Nontrivial R]
@@ -775,6 +890,7 @@ theorem Int.cast_injOn_of_ringChar_ne_two {R : Type _} [NonAssocRing R] [Nontriv
   · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h' ; exact Ring.two_ne_zero hR h'
   · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h'' ; exact Ring.two_ne_zero hR h''
 #align int.cast_inj_on_of_ring_char_ne_two Int.cast_injOn_of_ringChar_ne_two
+-/
 
 end
 
@@ -782,13 +898,17 @@ namespace NeZero
 
 variable (R) [AddMonoidWithOne R] {r : R} {n p : ℕ} {a : ℕ+}
 
+#print NeZero.of_not_dvd /-
 theorem of_not_dvd [CharP R p] (h : ¬p ∣ n) : NeZero (n : R) :=
   ⟨(CharP.cast_eq_zero_iff R p n).Not.mpr h⟩
 #align ne_zero.of_not_dvd NeZero.of_not_dvd
+-/
 
+#print NeZero.not_char_dvd /-
 theorem not_char_dvd (p : ℕ) [CharP R p] (k : ℕ) [h : NeZero (k : R)] : ¬p ∣ k := by
   rwa [← CharP.cast_eq_zero_iff R p k, ← Ne.def, ← neZero_iff]
 #align ne_zero.not_char_dvd NeZero.not_char_dvd
+-/
 
 end NeZero
 
Diff
@@ -503,7 +503,6 @@ theorem cast_eq_mod (p : ℕ) [CharP R p] (k : ℕ) : (k : R) = (k % p : ℕ) :=
   calc
     (k : R) = ↑(k % p + p * (k / p)) := by rw [Nat.mod_add_div]
     _ = ↑(k % p) := by simp [cast_eq_zero]
-    
 #align char_p.cast_eq_mod CharP.cast_eq_mod
 -/
 
@@ -626,7 +625,6 @@ instance (priority := 100) [CharP R 1] : Subsingleton R :=
       _ = (1 : ℕ) * r := by rw [Nat.cast_one]
       _ = 0 * r := by rw [CharP.cast_eq_zero]
       _ = 0 := by rw [MulZeroClass.zero_mul]
-      
 
 #print CharP.false_of_nontrivial_of_char_one /-
 theorem false_of_nontrivial_of_char_one [Nontrivial R] [CharP R 1] : False :=
Diff
@@ -561,7 +561,7 @@ section NoZeroDivisors
 
 variable [NoZeroDivisors R]
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (d «expr ∣ » p) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (d «expr ∣ » p) -/
 theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.Prime p :=
   suffices ∀ (d) (_ : d ∣ p), d = 1 ∨ d = p from Nat.prime_def_lt''.mpr ⟨hp, this⟩
   fun (d : ℕ) (hdvd : ∃ e, p = d * e) =>
Diff
@@ -100,7 +100,7 @@ end CommSemiring
 variable (R)
 
 #print CharP /-
-/- ./././Mathport/Syntax/Translate/Command.lean:393:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
+/- ./././Mathport/Syntax/Translate/Command.lean:394:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
 /-- The generator of the kernel of the unique homomorphism ℕ → R for a semiring R.
 
 *Warning*: for a semiring `R`, `char_p R 0` and `char_zero R` need not coincide.
Diff
@@ -46,7 +46,7 @@ protected theorem add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ
   · congr 1
     simp_rw [Finset.mul_sum, Nat.cast_comm, mul_assoc _ _ (p : R), ← Nat.cast_mul]
     refine' Finset.sum_congr rfl fun i hi => _
-    rw [mem_Ioo] at hi
+    rw [mem_Ioo] at hi 
     rw [Nat.div_mul_cancel (hp.dvd_choose_pow hi.1.ne' hi.2.Ne)]
 #align commute.add_pow_prime_pow_eq Commute.add_pow_prime_pow_eq
 
@@ -192,7 +192,7 @@ theorem CharP.exists [NonAssocSemiring R] : ∃ p, CharP R p :=
                     rwa [← Nat.mod_add_div x (Nat.find (not_forall.1 H)), Nat.cast_add,
                       Nat.cast_mul,
                       of_not_not (not_not_of_not_imp <| Nat.find_spec (not_forall.1 H)),
-                      MulZeroClass.zero_mul, add_zero] at H1,
+                      MulZeroClass.zero_mul, add_zero] at H1 ,
                     H2⟩)),
           fun H1 => by
           rw [← Nat.mul_div_cancel' H1, Nat.cast_mul,
@@ -327,7 +327,7 @@ theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1
   by
   suffices (2 : R) ≠ 0 by symm; rw [Ne.def, ← sub_eq_zero, sub_neg_eq_add]; exact this
   intro h
-  rw [show (2 : R) = (2 : ℕ) by norm_cast] at h
+  rw [show (2 : R) = (2 : ℕ) by norm_cast] at h 
   have := (CharP.cast_eq_zero_iff R p 2).mp h
   have := Nat.le_of_dvd (by decide) this
   rw [fact_iff] at *; linarith
@@ -473,8 +473,8 @@ end CommRing
 end frobenius
 
 theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
-    Function.Injective (frobenius R p) := fun x h H => by rw [← sub_eq_zero] at H⊢;
-  rw [← frobenius_sub] at H; exact IsReduced.eq_zero _ ⟨_, H⟩
+    Function.Injective (frobenius R p) := fun x h H => by rw [← sub_eq_zero] at H ⊢;
+  rw [← frobenius_sub] at H ; exact IsReduced.eq_zero _ ⟨_, H⟩
 #align frobenius_inj frobenius_inj
 
 /-- If `ring_char R = 2`, where `R` is a finite reduced commutative ring,
@@ -537,7 +537,7 @@ theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x
   induction' k with k hk
   · rw [pow_zero, one_mul]
   · refine' ⟨fun h => _, fun h => _⟩
-    · rw [pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at h
+    · rw [pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at h 
       exact hk.1 (frobenius_inj R p h)
     · rw [pow_mul', h, one_pow]
 #align char_p.pow_prime_pow_mul_eq_one_iff CharP.pow_prime_pow_mul_eq_one_iff
@@ -577,7 +577,7 @@ theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.
     have : e ∣ p := dvd_of_mul_left_eq d (Eq.symm hmul)
     have : e = p := dvd_antisymm ‹e ∣ p› ‹p ∣ e›
     have h₀ : 0 < p := two_pos.trans_le hp
-    have : d * p = 1 * p := by rw [‹e = p›] at hmul <;> rw [one_mul] <;> exact Eq.symm hmul
+    have : d * p = 1 * p := by rw [‹e = p›] at hmul  <;> rw [one_mul] <;> exact Eq.symm hmul
     show d = 1 ∨ d = p from Or.inl (mul_right_cancel₀ h₀.ne' this)
 #align char_p.char_is_prime_of_two_le CharP.char_is_prime_of_two_le
 
@@ -643,7 +643,7 @@ theorem ringChar_ne_one [Nontrivial R] : ringChar R ≠ 1 := by intro h; apply z
 #print CharP.nontrivial_of_char_ne_one /-
 theorem nontrivial_of_char_ne_one {v : ℕ} (hv : v ≠ 1) [hr : CharP R v] : Nontrivial R :=
   ⟨⟨(1 : ℕ), 0, fun h =>
-      hv <| by rwa [CharP.cast_eq_zero_iff _ v, Nat.dvd_one] at h <;> assumption⟩⟩
+      hv <| by rwa [CharP.cast_eq_zero_iff _ v, Nat.dvd_one] at h  <;> assumption⟩⟩
 #align char_p.nontrivial_of_char_ne_one CharP.nontrivial_of_char_ne_one
 -/
 
@@ -700,7 +700,7 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
       constructor
       · intro h
         rw [← Nat.mod_add_div k n, Nat.cast_add, Nat.cast_mul, H, MulZeroClass.zero_mul,
-          add_zero] at h
+          add_zero] at h 
         rw [Nat.dvd_iff_mod_eq_zero]
         apply hR _ (Nat.mod_lt _ _) h
         rw [← hn, Fintype.card_pos_iff]
@@ -713,7 +713,7 @@ theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fa
   by
   obtain ⟨c, hc⟩ := CharP.exists R; skip
   have hcpn : c ∣ p ^ n := by rw [← CharP.cast_eq_zero_iff R c, ← hn, CharP.cast_card_eq_zero]
-  obtain ⟨i, hi, hc⟩ : ∃ i ≤ n, c = p ^ i := by rwa [Nat.dvd_prime_pow hp.1] at hcpn
+  obtain ⟨i, hi, hc⟩ : ∃ i ≤ n, c = p ^ i := by rwa [Nat.dvd_prime_pow hp.1] at hcpn 
   obtain rfl : i = n := by apply hR i hi; rw [← Nat.cast_pow, ← hc, CharP.cast_eq_zero]
   rwa [← hc]
 #align char_p_of_prime_pow_injective charP_of_prime_pow_injective
@@ -759,23 +759,23 @@ theorem Int.cast_injOn_of_ringChar_ne_two {R : Type _} [NonAssocRing R] [Nontriv
   intro a ha b hb h
   apply eq_of_sub_eq_zero
   by_contra hf
-  change a = 0 ∨ a = 1 ∨ a = -1 at ha
-  change b = 0 ∨ b = 1 ∨ b = -1 at hb
+  change a = 0 ∨ a = 1 ∨ a = -1 at ha 
+  change b = 0 ∨ b = 1 ∨ b = -1 at hb 
   have hh : a - b = 1 ∨ b - a = 1 ∨ a - b = 2 ∨ b - a = 2 :=
     by
     rcases ha with (ha | ha | ha) <;> rcases hb with (hb | hb | hb)
     pick_goal 5; pick_goal 9
     -- move goals with `a = b` to the front
-    iterate 3 rw [ha, hb, sub_self] at hf; tauto
+    iterate 3 rw [ha, hb, sub_self] at hf ; tauto
     -- 6 goals remain
     all_goals rw [ha, hb]; norm_num
   have h' : ((a - b : ℤ) : R) = 0 := by exact_mod_cast sub_eq_zero_of_eq h
   have h'' : ((b - a : ℤ) : R) = 0 := by exact_mod_cast sub_eq_zero_of_eq h.symm
   rcases hh with (hh | hh | hh | hh)
-  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h'; exact one_ne_zero h'
-  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h''; exact one_ne_zero h''
-  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h'; exact Ring.two_ne_zero hR h'
-  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h''; exact Ring.two_ne_zero hR h''
+  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h' ; exact one_ne_zero h'
+  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h'' ; exact one_ne_zero h''
+  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h' ; exact Ring.two_ne_zero hR h'
+  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h'' ; exact Ring.two_ne_zero hR h''
 #align int.cast_inj_on_of_ring_char_ne_two Int.cast_injOn_of_ringChar_ne_two
 
 end
Diff
@@ -25,7 +25,7 @@ universe u v
 
 open Finset
 
-open BigOperators
+open scoped BigOperators
 
 variable {R : Type _}
 
@@ -432,7 +432,7 @@ theorem frobenius_nat_cast (n : ℕ) : frobenius R p n = n :=
   map_natCast (frobenius R p) n
 #align frobenius_nat_cast frobenius_nat_cast
 
-open BigOperators
+open scoped BigOperators
 
 variable {R}
 
Diff
@@ -33,12 +33,6 @@ namespace Commute
 
 variable [Semiring R] {p : ℕ} {x y : R}
 
-/- warning: commute.add_pow_prime_pow_eq -> Commute.add_pow_prime_pow_eq is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (forall (n : Nat), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n) k))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.hasDiv) (Nat.choose (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n) k) p)))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (forall (n : Nat), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n) k))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.instDivNat) (Nat.choose (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n) k) p)))))))
-Case conversion may be inaccurate. Consider using '#align commute.add_pow_prime_pow_eq Commute.add_pow_prime_pow_eqₓ'. -/
 protected theorem add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ) :
     (x + y) ^ p ^ n =
       x ^ p ^ n + y ^ p ^ n +
@@ -56,35 +50,17 @@ protected theorem add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ
     rw [Nat.div_mul_cancel (hp.dvd_choose_pow hi.1.ne' hi.2.Ne)]
 #align commute.add_pow_prime_pow_eq Commute.add_pow_prime_pow_eq
 
-/- warning: commute.add_pow_prime_eq -> Commute.add_pow_prime_eq is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) p) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) p k))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.hasDiv) (Nat.choose p k) p)))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) p) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) p k))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.instDivNat) (Nat.choose p k) p)))))))
-Case conversion may be inaccurate. Consider using '#align commute.add_pow_prime_eq Commute.add_pow_prime_eqₓ'. -/
 protected theorem add_pow_prime_eq (hp : p.Prime) (h : Commute x y) :
     (x + y) ^ p =
       x ^ p + y ^ p + p * ∑ k in Finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
   by simpa using h.add_pow_prime_pow_eq hp 1
 #align commute.add_pow_prime_eq Commute.add_pow_prime_eq
 
-/- warning: commute.exists_add_pow_prime_pow_eq -> Commute.exists_add_pow_prime_pow_eq is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (forall (n : Nat), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) p) r))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (forall (n : Nat), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) p) r))))
-Case conversion may be inaccurate. Consider using '#align commute.exists_add_pow_prime_pow_eq Commute.exists_add_pow_prime_pow_eqₓ'. -/
 protected theorem exists_add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ) :
     ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
   ⟨_, h.add_pow_prime_pow_eq hp n⟩
 #align commute.exists_add_pow_prime_pow_eq Commute.exists_add_pow_prime_pow_eq
 
-/- warning: commute.exists_add_pow_prime_eq -> Commute.exists_add_pow_prime_eq is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) p) r))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) p) r))))
-Case conversion may be inaccurate. Consider using '#align commute.exists_add_pow_prime_eq Commute.exists_add_pow_prime_eqₓ'. -/
 protected theorem exists_add_pow_prime_eq (hp : p.Prime) (h : Commute x y) :
     ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
   ⟨_, h.add_pow_prime_eq hp⟩
@@ -96,12 +72,6 @@ section CommSemiring
 
 variable [CommSemiring R] {p : ℕ} {x y : R}
 
-/- warning: add_pow_prime_pow_eq -> add_pow_prime_pow_eq is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R) (n : Nat), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n) k))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.hasDiv) (Nat.choose (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n) k) p)))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R) (n : Nat), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n) k))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.instDivNat) (Nat.choose (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n) k) p)))))))
-Case conversion may be inaccurate. Consider using '#align add_pow_prime_pow_eq add_pow_prime_pow_eqₓ'. -/
 theorem add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
     (x + y) ^ p ^ n =
       x ^ p ^ n + y ^ p ^ n +
@@ -109,35 +79,17 @@ theorem add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
   (Commute.all x y).add_pow_prime_pow_eq hp n
 #align add_pow_prime_pow_eq add_pow_prime_pow_eq
 
-/- warning: add_pow_prime_eq -> add_pow_prime_eq is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) p) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) p k))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.hasDiv) (Nat.choose p k) p)))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) p) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) p k))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.instDivNat) (Nat.choose p k) p)))))))
-Case conversion may be inaccurate. Consider using '#align add_pow_prime_eq add_pow_prime_eqₓ'. -/
 theorem add_pow_prime_eq (hp : p.Prime) (x y : R) :
     (x + y) ^ p =
       x ^ p + y ^ p + p * ∑ k in Finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
   (Commute.all x y).add_pow_prime_eq hp
 #align add_pow_prime_eq add_pow_prime_eq
 
-/- warning: exists_add_pow_prime_pow_eq -> exists_add_pow_prime_pow_eq is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R) (n : Nat), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) p) r))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R) (n : Nat), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) p) r))))
-Case conversion may be inaccurate. Consider using '#align exists_add_pow_prime_pow_eq exists_add_pow_prime_pow_eqₓ'. -/
 theorem exists_add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
     ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
   (Commute.all x y).exists_add_pow_prime_pow_eq hp n
 #align exists_add_pow_prime_pow_eq exists_add_pow_prime_pow_eq
 
-/- warning: exists_add_pow_prime_eq -> exists_add_pow_prime_eq is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) p) r))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) p) r))))
-Case conversion may be inaccurate. Consider using '#align exists_add_pow_prime_eq exists_add_pow_prime_eqₓ'. -/
 theorem exists_add_pow_prime_eq (hp : p.Prime) (x y : R) :
     ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
   (Commute.all x y).exists_add_pow_prime_eq hp
@@ -165,23 +117,11 @@ class CharP [AddMonoidWithOne R] (p : ℕ) : Prop where
 #align char_p CharP
 -/
 
-/- warning: char_p.cast_eq_zero -> CharP.cast_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1)))) p) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1))))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], Eq.{succ u1} R (Nat.cast.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1) p) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (AddMonoid.toZero.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1))))
-Case conversion may be inaccurate. Consider using '#align char_p.cast_eq_zero CharP.cast_eq_zeroₓ'. -/
 @[simp]
 theorem CharP.cast_eq_zero [AddMonoidWithOne R] (p : ℕ) [CharP R p] : (p : R) = 0 :=
   (CharP.cast_eq_zero_iff R p p).2 (dvd_refl p)
 #align char_p.cast_eq_zero CharP.cast_eq_zero
 
-/- warning: char_p.cast_card_eq_zero -> CharP.cast_card_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] [_inst_2 : Fintype.{u1} R], Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1))))) (Fintype.card.{u1} R _inst_2)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1)))))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] [_inst_2 : Fintype.{u1} R], Eq.{succ u1} R (Nat.cast.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1)) (Fintype.card.{u1} R _inst_2)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (NegZeroClass.toZero.{u1} R (SubNegZeroMonoid.toNegZeroClass.{u1} R (SubtractionMonoid.toSubNegZeroMonoid.{u1} R (AddGroup.toSubtractionMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align char_p.cast_card_eq_zero CharP.cast_card_eq_zeroₓ'. -/
 @[simp]
 theorem CharP.cast_card_eq_zero [AddGroupWithOne R] [Fintype R] : (Fintype.card R : R) = 0 := by
   rw [← nsmul_one, card_nsmul_eq_zero]
@@ -193,12 +133,6 @@ theorem CharP.addOrderOf_one (R) [Semiring R] : CharP R (addOrderOf (1 : R)) :=
 #align char_p.add_order_of_one CharP.addOrderOf_one
 -/
 
-/- warning: char_p.int_cast_eq_zero_iff -> CharP.int_cast_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) a) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1)))))))) (Dvd.Dvd.{0} Int (semigroupDvd.{0} Int Int.semigroup) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) a) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (NegZeroClass.toZero.{u1} R (SubNegZeroMonoid.toNegZeroClass.{u1} R (SubtractionMonoid.toSubNegZeroMonoid.{u1} R (AddGroup.toSubtractionMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R _inst_1)))))))) (Dvd.dvd.{0} Int Int.instDvdInt (Nat.cast.{0} Int instNatCastInt p) a)
-Case conversion may be inaccurate. Consider using '#align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iffₓ'. -/
 theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a : ℤ) :
     (a : R) = 0 ↔ (p : ℤ) ∣ a :=
   by
@@ -211,12 +145,6 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
     rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 
-/- warning: char_p.int_cast_eq_int_cast -> CharP.intCast_eq_intCast is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] {a : Int} {b : Int}, Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) a) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) b)) (Int.ModEq ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a b)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] {a : Int} {b : Int}, Iff (Eq.{succ u1} R (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int instNatCastInt p) a b)
-Case conversion may be inaccurate. Consider using '#align char_p.int_cast_eq_int_cast CharP.intCast_eq_intCastₓ'. -/
 theorem CharP.intCast_eq_intCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℤ} :
     (a : R) = b ↔ a ≡ b [ZMOD p] := by
   rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
@@ -298,12 +226,6 @@ namespace ringChar
 
 variable [NonAssocSemiring R]
 
-/- warning: ring_char.spec -> ringChar.spec is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] (x : Nat), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)))))) x) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))))))) (Dvd.Dvd.{0} Nat Nat.hasDvd (ringChar.{u1} R _inst_1) x)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] (x : Nat), Iff (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocSemiring.toNatCast.{u1} R _inst_1) x) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))))) (Dvd.dvd.{0} Nat Nat.instDvdNat (ringChar.{u1} R _inst_1) x)
-Case conversion may be inaccurate. Consider using '#align ring_char.spec ringChar.specₓ'. -/
 theorem spec : ∀ x : ℕ, (x : R) = 0 ↔ ringChar R ∣ x := by
   letI := (Classical.choose_spec (CharP.exists_unique R)).1 <;> unfold ringChar <;>
     exact CharP.cast_eq_zero_iff R (ringChar R)
@@ -335,12 +257,6 @@ theorem eq_iff {p : ℕ} : ringChar R = p ↔ CharP R p :=
 #align ring_char.eq_iff ringChar.eq_iff
 -/
 
-/- warning: ring_char.dvd -> ringChar.dvd is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] {x : Nat}, (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)))))) x) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))))))) -> (Dvd.Dvd.{0} Nat Nat.hasDvd (ringChar.{u1} R _inst_1) x)
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] {x : Nat}, (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocSemiring.toNatCast.{u1} R _inst_1) x) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))))) -> (Dvd.dvd.{0} Nat Nat.instDvdNat (ringChar.{u1} R _inst_1) x)
-Case conversion may be inaccurate. Consider using '#align ring_char.dvd ringChar.dvdₓ'. -/
 theorem dvd {x : ℕ} (hx : (x : R) = 0) : ringChar R ∣ x :=
   (spec R x).1 hx
 #align ring_char.dvd ringChar.dvd
@@ -352,24 +268,12 @@ theorem eq_zero [CharZero R] : ringChar R = 0 :=
 #align ring_char.eq_zero ringChar.eq_zero
 -/
 
-/- warning: ring_char.nat.cast_ring_char -> ringChar.Nat.cast_ringChar is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R], Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)))))) (ringChar.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R], Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocSemiring.toNatCast.{u1} R _inst_1) (ringChar.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))))
-Case conversion may be inaccurate. Consider using '#align ring_char.nat.cast_ring_char ringChar.Nat.cast_ringCharₓ'. -/
 @[simp]
 theorem Nat.cast_ringChar : (ringChar R : R) = 0 := by rw [ringChar.spec]
 #align ring_char.nat.cast_ring_char ringChar.Nat.cast_ringChar
 
 end ringChar
 
-/- warning: add_pow_char_of_commute -> add_pow_char_of_commute is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [hp : Fact (Nat.Prime p)] [_inst_2 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [hp : Fact (Nat.Prime p)] [_inst_2 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)))
-Case conversion may be inaccurate. Consider using '#align add_pow_char_of_commute add_pow_char_of_commuteₓ'. -/
 theorem add_pow_char_of_commute [Semiring R] {p : ℕ} [hp : Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x + y) ^ p = x ^ p + y ^ p :=
   by
@@ -377,12 +281,6 @@ theorem add_pow_char_of_commute [Semiring R] {p : ℕ} [hp : Fact p.Prime] [Char
   simp [hr]
 #align add_pow_char_of_commute add_pow_char_of_commute
 
-/- warning: add_pow_char_pow_of_commute -> add_pow_char_pow_of_commute is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} {n : Nat} [hp : Fact (Nat.Prime p)] [_inst_2 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} {n : Nat} [hp : Fact (Nat.Prime p)] [_inst_2 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))))
-Case conversion may be inaccurate. Consider using '#align add_pow_char_pow_of_commute add_pow_char_pow_of_commuteₓ'. -/
 theorem add_pow_char_pow_of_commute [Semiring R] {p n : ℕ} [hp : Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n :=
   by
@@ -390,12 +288,6 @@ theorem add_pow_char_pow_of_commute [Semiring R] {p n : ℕ} [hp : Fact p.Prime]
   simp [hr]
 #align add_pow_char_pow_of_commute add_pow_char_pow_of_commute
 
-/- warning: sub_pow_char_of_commute -> sub_pow_char_of_commute is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) y p)))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) y p)))
-Case conversion may be inaccurate. Consider using '#align sub_pow_char_of_commute sub_pow_char_of_commuteₓ'. -/
 theorem sub_pow_char_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x - y) ^ p = x ^ p - y ^ p :=
   by
@@ -403,12 +295,6 @@ theorem sub_pow_char_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x
   simp; repeat' infer_instance
 #align sub_pow_char_of_commute sub_pow_char_of_commute
 
-/- warning: sub_pow_char_pow_of_commute -> sub_pow_char_pow_of_commute is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))))
-Case conversion may be inaccurate. Consider using '#align sub_pow_char_pow_of_commute sub_pow_char_pow_of_commuteₓ'. -/
 theorem sub_pow_char_pow_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ} (x y : R)
     (h : Commute x y) : (x - y) ^ p ^ n = x ^ p ^ n - y ^ p ^ n :=
   by
@@ -417,56 +303,26 @@ theorem sub_pow_char_pow_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p
   apply sub_pow_char_of_commute; apply Commute.pow_pow h
 #align sub_pow_char_pow_of_commute sub_pow_char_pow_of_commute
 
-/- warning: add_pow_char -> add_pow_char is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p))
-Case conversion may be inaccurate. Consider using '#align add_pow_char add_pow_charₓ'. -/
 theorem add_pow_char [CommSemiring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R) :
     (x + y) ^ p = x ^ p + y ^ p :=
   add_pow_char_of_commute _ _ _ (Commute.all _ _)
 #align add_pow_char add_pow_char
 
-/- warning: add_pow_char_pow -> add_pow_char_pow is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)))
-Case conversion may be inaccurate. Consider using '#align add_pow_char_pow add_pow_char_powₓ'. -/
 theorem add_pow_char_pow [CommSemiring R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ} (x y : R) :
     (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n :=
   add_pow_char_pow_of_commute _ _ _ (Commute.all _ _)
 #align add_pow_char_pow add_pow_char_pow
 
-/- warning: sub_pow_char -> sub_pow_char is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y p))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) y p))
-Case conversion may be inaccurate. Consider using '#align sub_pow_char sub_pow_charₓ'. -/
 theorem sub_pow_char [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R) :
     (x - y) ^ p = x ^ p - y ^ p :=
   sub_pow_char_of_commute _ _ _ (Commute.all _ _)
 #align sub_pow_char sub_pow_char
 
-/- warning: sub_pow_char_pow -> sub_pow_char_pow is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)))
-Case conversion may be inaccurate. Consider using '#align sub_pow_char_pow sub_pow_char_powₓ'. -/
 theorem sub_pow_char_pow [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ} (x y : R) :
     (x - y) ^ p ^ n = x ^ p ^ n - y ^ p ^ n :=
   sub_pow_char_pow_of_commute _ _ _ (Commute.all _ _)
 #align sub_pow_char_pow sub_pow_char_pow
 
-/- warning: char_p.neg_one_ne_one -> CharP.neg_one_ne_one is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p] [_inst_3 : Fact (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) p)], Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] [_inst_3 : Fact (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) p)], Ne.{succ u1} R (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1))))
-Case conversion may be inaccurate. Consider using '#align char_p.neg_one_ne_one CharP.neg_one_ne_oneₓ'. -/
 theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1 : R) ≠ (1 : R) :=
   by
   suffices (2 : R) ≠ 0 by symm; rw [Ne.def, ← sub_eq_zero, sub_neg_eq_add]; exact this
@@ -477,12 +333,6 @@ theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1
   rw [fact_iff] at *; linarith
 #align char_p.neg_one_ne_one CharP.neg_one_ne_one
 
-/- warning: char_p.neg_one_pow_char -> CharP.neg_one_pow_char is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) p) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) p) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align char_p.neg_one_pow_char CharP.neg_one_pow_charₓ'. -/
 theorem CharP.neg_one_pow_char [CommRing R] (p : ℕ) [CharP R p] [Fact p.Prime] :
     (-1 : R) ^ p = -1 := by
   rw [eq_neg_iff_add_eq_zero]
@@ -490,12 +340,6 @@ theorem CharP.neg_one_pow_char [CommRing R] (p : ℕ) [CharP R p] [Fact p.Prime]
   rw [← add_pow_char, add_left_neg, zero_pow (Fact.out (Nat.Prime p)).Pos]
 #align char_p.neg_one_pow_char CharP.neg_one_pow_char
 
-/- warning: char_p.neg_one_pow_char_pow -> CharP.neg_one_pow_char_pow is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) (n : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) (n : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align char_p.neg_one_pow_char_pow CharP.neg_one_pow_char_powₓ'. -/
 theorem CharP.neg_one_pow_char_pow [CommRing R] (p n : ℕ) [CharP R p] [Fact p.Prime] :
     (-1 : R) ^ p ^ n = -1 := by
   rw [eq_neg_iff_add_eq_zero]
@@ -503,12 +347,6 @@ theorem CharP.neg_one_pow_char_pow [CommRing R] (p n : ℕ) [CharP R p] [Fact p.
   rw [← add_pow_char_pow, add_left_neg, zero_pow (pow_pos (Fact.out (Nat.Prime p)).Pos _)]
 #align char_p.neg_one_pow_char_pow CharP.neg_one_pow_char_pow
 
-/- warning: ring_hom.char_p_iff_char_p -> RingHom.charP_iff_charP is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : DivisionRing.{u1} K] [_inst_2 : Semiring.{u2} L] [_inst_3 : Nontrivial.{u2} L], (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u2} L _inst_2)) -> (forall (p : Nat), Iff (CharP.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K _inst_1)))) p) (CharP.{u2} L (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} L (NonAssocSemiring.toAddCommMonoidWithOne.{u2} L (Semiring.toNonAssocSemiring.{u2} L _inst_2))) p))
-but is expected to have type
-  forall {K : Type.{u2}} {L : Type.{u1}} [_inst_1 : DivisionRing.{u2} K] [_inst_2 : Semiring.{u1} L] [_inst_3 : Nontrivial.{u1} L], (RingHom.{u2, u1} K L (Semiring.toNonAssocSemiring.{u2} K (DivisionSemiring.toSemiring.{u2} K (DivisionRing.toDivisionSemiring.{u2} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} L _inst_2)) -> (forall (p : Nat), Iff (CharP.{u2} K (AddGroupWithOne.toAddMonoidWithOne.{u2} K (Ring.toAddGroupWithOne.{u2} K (DivisionRing.toRing.{u2} K _inst_1))) p) (CharP.{u1} L (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} L (NonAssocSemiring.toAddCommMonoidWithOne.{u1} L (Semiring.toNonAssocSemiring.{u1} L _inst_2))) p))
-Case conversion may be inaccurate. Consider using '#align ring_hom.char_p_iff_char_p RingHom.charP_iff_charPₓ'. -/
 theorem RingHom.charP_iff_charP {K L : Type _} [DivisionRing K] [Semiring L] [Nontrivial L]
     (f : K →+* L) (p : ℕ) : CharP K p ↔ CharP L p := by
   simp only [charP_iff, ← f.injective.eq_iff, map_natCast f, f.map_zero]
@@ -534,86 +372,47 @@ def frobenius : R →+* R where
 
 variable {R}
 
-/- warning: frobenius_def -> frobenius_def is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p)
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p)
-Case conversion may be inaccurate. Consider using '#align frobenius_def frobenius_defₓ'. -/
 theorem frobenius_def : frobenius R p x = x ^ p :=
   rfl
 #align frobenius_def frobenius_def
 
-/- warning: iterate_frobenius -> iterate_frobenius is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))
-Case conversion may be inaccurate. Consider using '#align iterate_frobenius iterate_frobeniusₓ'. -/
 theorem iterate_frobenius (n : ℕ) : (frobenius R p^[n]) x = x ^ p ^ n :=
   by
   induction n; · simp
   rw [Function.iterate_succ', pow_succ', pow_mul, Function.comp_apply, frobenius_def, n_ih]
 #align iterate_frobenius iterate_frobenius
 
-/- warning: frobenius_mul -> frobenius_mul is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align frobenius_mul frobenius_mulₓ'. -/
 theorem frobenius_mul : frobenius R p (x * y) = frobenius R p x * frobenius R p y :=
   (frobenius R p).map_mul x y
 #align frobenius_mul frobenius_mul
 
-/- warning: frobenius_one -> frobenius_one is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) _inst_1))))
-Case conversion may be inaccurate. Consider using '#align frobenius_one frobenius_oneₓ'. -/
 theorem frobenius_one : frobenius R p 1 = 1 :=
   one_pow _
 #align frobenius_one frobenius_one
 
-/- warning: monoid_hom.map_frobenius -> MonoidHom.map_frobenius is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align monoid_hom.map_frobenius MonoidHom.map_frobeniusₓ'. -/
 theorem MonoidHom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
   f.map_pow x p
 #align monoid_hom.map_frobenius MonoidHom.map_frobenius
 
-/- warning: ring_hom.map_frobenius -> RingHom.map_frobenius is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ring_hom.map_frobenius RingHom.map_frobeniusₓ'. -/
 theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
   g.map_pow x p
 #align ring_hom.map_frobenius RingHom.map_frobenius
 
-/- warning: monoid_hom.map_iterate_frobenius -> MonoidHom.map_iterate_frobenius is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobeniusₓ'. -/
 theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
     f ((frobenius R p^[n]) x) = (frobenius S p^[n]) (f x) :=
   Function.Semiconj.iterate_right (f.map_frobenius p) n x
 #align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobenius
 
-/- warning: ring_hom.map_iterate_frobenius -> RingHom.map_iterate_frobenius is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobeniusₓ'. -/
 theorem RingHom.map_iterate_frobenius (n : ℕ) :
     g ((frobenius R p^[n]) x) = (frobenius S p^[n]) (g x) :=
   g.toMonoidHom.map_iterate_frobenius p x n
 #align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobenius
 
-/- warning: monoid_hom.iterate_map_frobenius -> MonoidHom.iterate_map_frobenius is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align monoid_hom.iterate_map_frobenius MonoidHom.iterate_map_frobeniusₓ'. -/
 theorem MonoidHom.iterate_map_frobenius (f : R →* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
     (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
   f.iterate_map_pow _ _ _
 #align monoid_hom.iterate_map_frobenius MonoidHom.iterate_map_frobenius
 
-/- warning: ring_hom.iterate_map_frobenius -> RingHom.iterate_map_frobenius is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ring_hom.iterate_map_frobenius RingHom.iterate_map_frobeniusₓ'. -/
 theorem RingHom.iterate_map_frobenius (f : R →+* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
     (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
   f.iterate_map_pow _ _ _
@@ -621,29 +420,14 @@ theorem RingHom.iterate_map_frobenius (f : R →+* R) (p : ℕ) [Fact p.Prime] [
 
 variable (R)
 
-/- warning: frobenius_zero -> frobenius_zero is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) 0 (Zero.toOfNat0.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (CommMonoidWithZero.toZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (CommSemiring.toCommMonoidWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) _inst_1))))
-Case conversion may be inaccurate. Consider using '#align frobenius_zero frobenius_zeroₓ'. -/
 theorem frobenius_zero : frobenius R p 0 = 0 :=
   (frobenius R p).map_zero
 #align frobenius_zero frobenius_zero
 
-/- warning: frobenius_add -> frobenius_add is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align frobenius_add frobenius_addₓ'. -/
 theorem frobenius_add : frobenius R p (x + y) = frobenius R p x + frobenius R p y :=
   (frobenius R p).map_add x y
 #align frobenius_add frobenius_add
 
-/- warning: frobenius_nat_cast -> frobenius_nat_cast is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) n)) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) n)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (Nat.cast.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (Semiring.toNatCast.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) _inst_1)) n)
-Case conversion may be inaccurate. Consider using '#align frobenius_nat_cast frobenius_nat_castₓ'. -/
 theorem frobenius_nat_cast (n : ℕ) : frobenius R p n = n :=
   map_natCast (frobenius R p) n
 #align frobenius_nat_cast frobenius_nat_cast
@@ -652,12 +436,6 @@ open BigOperators
 
 variable {R}
 
-/- warning: list_sum_pow_char -> list_sum_pow_char is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (l : List.{u1} R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (List.sum.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) l) p) (List.sum.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (List.map.{u1, u1} R R (fun (_x : R) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) _x p) l))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (l : List.{u1} R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (List.sum.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) l) p) (List.sum.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) (List.map.{u1, u1} R R (fun (_x : R) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) _x p) l))
-Case conversion may be inaccurate. Consider using '#align list_sum_pow_char list_sum_pow_charₓ'. -/
 theorem list_sum_pow_char (l : List R) : l.Sum ^ p = (l.map (· ^ p)).Sum :=
   (frobenius R p).map_list_sum _
 #align list_sum_pow_char list_sum_pow_char
@@ -682,19 +460,10 @@ section CommRing
 variable [CommRing R] {S : Type v} [CommRing S] (f : R →* S) (g : R →+* S) (p : ℕ) [Fact p.Prime]
   [CharP R p] [CharP S p] (x y : R)
 
-/- warning: frobenius_neg -> frobenius_neg is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x)) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) x)) (Neg.neg.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (Ring.toNeg.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x))
-Case conversion may be inaccurate. Consider using '#align frobenius_neg frobenius_negₓ'. -/
 theorem frobenius_neg : frobenius R p (-x) = -frobenius R p x :=
   (frobenius R p).map_neg x
 #align frobenius_neg frobenius_neg
 
-/- warning: frobenius_sub -> frobenius_sub is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align frobenius_sub frobenius_subₓ'. -/
 theorem frobenius_sub : frobenius R p (x - y) = frobenius R p x - frobenius R p y :=
   (frobenius R p).map_sub x y
 #align frobenius_sub frobenius_sub
@@ -703,23 +472,11 @@ end CommRing
 
 end frobenius
 
-/- warning: frobenius_inj -> frobenius_inj is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p], Function.Injective.{succ u1, succ u1} R R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p], Function.Injective.{succ u1, succ u1} R R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
-Case conversion may be inaccurate. Consider using '#align frobenius_inj frobenius_injₓ'. -/
 theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
     Function.Injective (frobenius R p) := fun x h H => by rw [← sub_eq_zero] at H⊢;
   rw [← frobenius_sub] at H; exact IsReduced.eq_zero _ ⟨_, H⟩
 #align frobenius_inj frobenius_inj
 
-/- warning: is_square_of_char_two' -> isSquare_of_charTwo' is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Finite.{succ u1} R] [_inst_2 : CommRing.{u1} R] [_inst_3 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_2)))] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_2)))) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))] (a : R), IsSquare.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_2))) a
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Finite.{succ u1} R] [_inst_2 : CommRing.{u1} R] [_inst_3 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_2))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_2)))))] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_2))) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))] (a : R), IsSquare.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))) a
-Case conversion may be inaccurate. Consider using '#align is_square_of_char_two' isSquare_of_charTwo'ₓ'. -/
 /-- If `ring_char R = 2`, where `R` is a finite reduced commutative ring,
 then every `a : R` is a square. -/
 theorem isSquare_of_charTwo' {R : Type _} [Finite R] [CommRing R] [IsReduced R] [CharP R 2]
@@ -773,12 +530,6 @@ section CommRing
 
 variable [CommRing R] [IsReduced R] {R}
 
-/- warning: char_p.pow_prime_pow_mul_eq_one_iff -> CharP.pow_prime_pow_mul_eq_one_iff is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) (k : Nat) (m : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R), Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p k) m)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x m) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))] (p : Nat) (k : Nat) (m : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R), Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) x (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p k) m)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) x m) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align char_p.pow_prime_pow_mul_eq_one_iff CharP.pow_prime_pow_mul_eq_one_iffₓ'. -/
 @[simp]
 theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x : R) :
     x ^ (p ^ k * m) = 1 ↔ x ^ m = 1 :=
@@ -810,12 +561,6 @@ section NoZeroDivisors
 
 variable [NoZeroDivisors R]
 
-/- warning: char_p.char_is_prime_of_two_le -> CharP.char_is_prime_of_two_le is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)))] (p : Nat) [hc : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], (LE.le.{0} Nat Nat.hasLe (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) p) -> (Nat.Prime p)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))] (p : Nat) [hc : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], (LE.le.{0} Nat instLENat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) p) -> (Nat.Prime p)
-Case conversion may be inaccurate. Consider using '#align char_p.char_is_prime_of_two_le CharP.char_is_prime_of_two_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (d «expr ∣ » p) -/
 theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.Prime p :=
   suffices ∀ (d) (_ : d ∣ p), d = 1 ∨ d = p from Nat.prime_def_lt''.mpr ⟨hp, this⟩
@@ -840,12 +585,6 @@ section Nontrivial
 
 variable [Nontrivial R]
 
-/- warning: char_p.char_is_prime_or_zero -> CharP.char_is_prime_or_zero is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)))] [_inst_3 : Nontrivial.{u1} R] (p : Nat) [hc : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], Or (Nat.Prime p) (Eq.{1} Nat p (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))] [_inst_3 : Nontrivial.{u1} R] (p : Nat) [hc : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], Or (Nat.Prime p) (Eq.{1} Nat p (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))
-Case conversion may be inaccurate. Consider using '#align char_p.char_is_prime_or_zero CharP.char_is_prime_or_zeroₓ'. -/
 theorem char_is_prime_or_zero (p : ℕ) [hc : CharP R p] : Nat.Prime p ∨ p = 0 :=
   match p, hc with
   | 0, _ => Or.inr rfl
@@ -853,12 +592,6 @@ theorem char_is_prime_or_zero (p : ℕ) [hc : CharP R p] : Nat.Prime p ∨ p = 0
   | m + 2, hc => Or.inl (@char_is_prime_of_two_le R _ _ (m + 2) hc (Nat.le_add_left 2 m))
 #align char_p.char_is_prime_or_zero CharP.char_is_prime_or_zero
 
-/- warning: char_p.char_is_prime_of_pos -> CharP.char_is_prime_of_pos is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)))] [_inst_3 : Nontrivial.{u1} R] (p : Nat) [_inst_4 : NeZero.{0} Nat Nat.hasZero p] [_inst_5 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], Fact (Nat.Prime p)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))] [_inst_3 : Nontrivial.{u1} R] (p : Nat) [_inst_4 : NeZero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) p] [_inst_5 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], Fact (Nat.Prime p)
-Case conversion may be inaccurate. Consider using '#align char_p.char_is_prime_of_pos CharP.char_is_prime_of_posₓ'. -/
 theorem char_is_prime_of_pos (p : ℕ) [NeZero p] [CharP R p] : Fact p.Prime :=
   ⟨(CharP.char_is_prime_or_zero R _).resolve_right <| NeZero.ne p⟩
 #align char_p.char_is_prime_of_pos CharP.char_is_prime_of_pos
@@ -873,12 +606,6 @@ section Ring
 
 variable (R) [Ring R] [NoZeroDivisors R] [Nontrivial R] [Finite R]
 
-/- warning: char_p.char_is_prime -> CharP.char_is_prime is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : Finite.{succ u1} R] (p : Nat) [_inst_5 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p], Nat.Prime p
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : Finite.{succ u1} R] (p : Nat) [_inst_5 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p], Nat.Prime p
-Case conversion may be inaccurate. Consider using '#align char_p.char_is_prime CharP.char_is_primeₓ'. -/
 theorem char_is_prime (p : ℕ) [CharP R p] : p.Prime :=
   Or.resolve_right (char_is_prime_or_zero R p) (char_ne_zero_of_finite R p)
 #align char_p.char_is_prime CharP.char_is_prime
@@ -920,12 +647,6 @@ theorem nontrivial_of_char_ne_one {v : ℕ} (hv : v ≠ 1) [hr : CharP R v] : No
 #align char_p.nontrivial_of_char_ne_one CharP.nontrivial_of_char_ne_one
 -/
 
-/- warning: char_p.ring_char_of_prime_eq_zero -> CharP.ringChar_of_prime_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : Nontrivial.{u1} R] {p : Nat}, (Nat.Prime p) -> (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)))))) p) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))))))) -> (Eq.{1} Nat (ringChar.{u1} R _inst_1) p)
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : Nontrivial.{u1} R] {p : Nat}, (Nat.Prime p) -> (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocSemiring.toNatCast.{u1} R _inst_1) p) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))))) -> (Eq.{1} Nat (ringChar.{u1} R _inst_1) p)
-Case conversion may be inaccurate. Consider using '#align char_p.ring_char_of_prime_eq_zero CharP.ringChar_of_prime_eq_zeroₓ'. -/
 theorem ringChar_of_prime_eq_zero [Nontrivial R] {p : ℕ} (hprime : Nat.Prime p)
     (hp0 : (p : R) = 0) : ringChar R = p :=
   Or.resolve_left ((Nat.dvd_prime hprime).1 (ringChar.dvd hp0)) ringChar_ne_one
@@ -937,12 +658,6 @@ end CharP
 
 section
 
-/- warning: ring.two_ne_zero -> Ring.two_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R _inst_1) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Ne.{succ u1} R (OfNat.ofNat.{u1} R 2 (OfNat.mk.{u1} R 2 (bit0.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))) (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R _inst_1) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (Ne.{succ u1} R (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (NonAssocSemiring.toNatCast.{u1} R _inst_1) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align ring.two_ne_zero Ring.two_ne_zeroₓ'. -/
 /-- We have `2 ≠ 0` in a nontrivial ring whose characteristic is not `2`. -/
 @[protected]
 theorem Ring.two_ne_zero {R : Type _} [NonAssocSemiring R] [Nontrivial R] (hR : ringChar R ≠ 2) :
@@ -952,12 +667,6 @@ theorem Ring.two_ne_zero {R : Type _} [NonAssocSemiring R] [Nontrivial R] (hR :
   exact mt (or_iff_left hR).mp CharP.ringChar_ne_one
 #align ring.two_ne_zero Ring.two_ne_zero
 
-/- warning: ring.neg_one_ne_one_of_char_ne_two -> Ring.neg_one_ne_one_of_char_ne_two is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1)))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (Ne.{succ u1} R (Neg.neg.{u1} R (AddGroupWithOne.toNeg.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R _inst_1))))
-Case conversion may be inaccurate. Consider using '#align ring.neg_one_ne_one_of_char_ne_two Ring.neg_one_ne_one_of_char_ne_twoₓ'. -/
 -- We have `char_p.neg_one_ne_one`, which assumes `[ring R] (p : ℕ) [char_p R p] [fact (2 < p)]`.
 -- This is a version using `ring_char` instead.
 /-- Characteristic `≠ 2` and nontrivial implies that `-1 ≠ 1`. -/
@@ -966,12 +675,6 @@ theorem Ring.neg_one_ne_one_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontri
   Ring.two_ne_zero hR (neg_eq_iff_add_eq_zero.mp h)
 #align ring.neg_one_ne_one_of_char_ne_two Ring.neg_one_ne_one_of_char_ne_two
 
-/- warning: ring.eq_self_iff_eq_zero_of_char_ne_two -> Ring.eq_self_iff_eq_zero_of_char_ne_two is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1))))], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (forall {a : R}, Iff (Eq.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))))) a) a) (Eq.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (forall {a : R}, Iff (Eq.{succ u1} R (Neg.neg.{u1} R (AddGroupWithOne.toNeg.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) a) a) (Eq.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align ring.eq_self_iff_eq_zero_of_char_ne_two Ring.eq_self_iff_eq_zero_of_char_ne_twoₓ'. -/
 /-- Characteristic `≠ 2` in a domain implies that `-a = a` iff `a = 0`. -/
 theorem Ring.eq_self_iff_eq_zero_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontrivial R]
     [NoZeroDivisors R] (hR : ringChar R ≠ 2) {a : R} : -a = a ↔ a = 0 :=
@@ -987,12 +690,6 @@ section
 
 variable (R) [NonAssocRing R] [Fintype R] (n : ℕ)
 
-/- warning: char_p_of_ne_zero -> charP_of_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Fintype.{u1} R] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_2) n) -> (forall (i : Nat), (LT.lt.{0} Nat Nat.hasLt i n) -> (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))))))) i) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))))))) -> (Eq.{1} Nat i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) n)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Fintype.{u1} R] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_2) n) -> (forall (i : Nat), (LT.lt.{0} Nat instLTNat i n) -> (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R _inst_1) i) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))))) -> (Eq.{1} Nat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) n)
-Case conversion may be inaccurate. Consider using '#align char_p_of_ne_zero charP_of_ne_zeroₓ'. -/
 theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0 → i = 0) :
     CharP R n :=
   {
@@ -1011,12 +708,6 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
       · rintro ⟨k, rfl⟩; rw [Nat.cast_mul, H, MulZeroClass.zero_mul] }
 #align char_p_of_ne_zero charP_of_ne_zero
 
-/- warning: char_p_of_prime_pow_injective -> charP_of_prime_pow_injective is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_3 : Ring.{u1} R] [_inst_4 : Fintype.{u1} R] (p : Nat) [hp : Fact (Nat.Prime p)] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_4) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) -> (forall (i : Nat), (LE.le.{0} Nat Nat.hasLe i n) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_3))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_3))))))) p) i) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3))))))))) -> (Eq.{1} Nat i n)) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_3))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_3 : Ring.{u1} R] [_inst_4 : Fintype.{u1} R] (p : Nat) [hp : Fact (Nat.Prime p)] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_4) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) -> (forall (i : Nat), (LE.le.{0} Nat instLENat i n) -> (Eq.{succ u1} R (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (Ring.toSemiring.{u1} R _inst_3)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p i)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_3)))))) -> (Eq.{1} Nat i n)) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_3)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))
-Case conversion may be inaccurate. Consider using '#align char_p_of_prime_pow_injective charP_of_prime_pow_injectiveₓ'. -/
 theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fact p.Prime] (n : ℕ)
     (hn : Fintype.card R = p ^ n) (hR : ∀ i ≤ n, (p ^ i : R) = 0 → i = n) : CharP R (p ^ n) :=
   by
@@ -1039,12 +730,6 @@ instance [CharP S q] : CharP (R × S) (Nat.lcm p q)
     where cast_eq_zero_iff := by
     simp [Prod.ext_iff, CharP.cast_eq_zero_iff R p, CharP.cast_eq_zero_iff S q, Nat.lcm_dvd_iff]
 
-/- warning: prod.char_p -> Prod.charP is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u2}) (S : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u2} R] [_inst_2 : AddMonoidWithOne.{u1} S] (p : Nat) [_inst_3 : CharP.{u2} R _inst_1 p] [_inst_4 : CharP.{u1} S _inst_2 p], CharP.{max u2 u1} (Prod.{u2, u1} R S) (Prod.addMonoidWithOne.{u2, u1} R S _inst_1 _inst_2) p
-but is expected to have type
-  forall (R : Type.{u2}) (S : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u2} R] [_inst_2 : AddMonoidWithOne.{u1} S] (p : Nat) [_inst_3 : CharP.{u2} R _inst_1 p] [_inst_4 : CharP.{u1} S _inst_2 p], CharP.{max u1 u2} (Prod.{u2, u1} R S) (Prod.instAddMonoidWithOneProd.{u2, u1} R S _inst_1 _inst_2) p
-Case conversion may be inaccurate. Consider using '#align prod.char_p Prod.charPₓ'. -/
 /-- The characteristic of the product of two rings of the same characteristic
   is the same as the characteristic of the rings -/
 instance Prod.charP [CharP S p] : CharP (R × S) p := by convert Nat.lcm.charP R S p p <;> simp
@@ -1066,12 +751,6 @@ instance MulOpposite.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP R
 
 section
 
-/- warning: int.cast_inj_on_of_ring_char_ne_two -> Int.cast_injOn_of_ringChar_ne_two is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Set.InjOn.{0, u1} Int R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))))))) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.hasInsert.{0} Int) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.hasInsert.{0} Int) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))) (Singleton.singleton.{0, 0} Int (Set.{0} Int) (Set.hasSingleton.{0} Int) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (Set.InjOn.{0, u1} Int R (Int.cast.{u1} R (NonAssocRing.toIntCast.{u1} R _inst_1)) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.instInsertSet.{0} Int) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.instInsertSet.{0} Int) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)) (Singleton.singleton.{0, 0} Int (Set.{0} Int) (Set.instSingletonSet.{0} Int) (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
-Case conversion may be inaccurate. Consider using '#align int.cast_inj_on_of_ring_char_ne_two Int.cast_injOn_of_ringChar_ne_twoₓ'. -/
 /-- If two integers from `{0, 1, -1}` result in equal elements in a ring `R`
 that is nontrivial and of characteristic not `2`, then they are equal. -/
 theorem Int.cast_injOn_of_ringChar_ne_two {R : Type _} [NonAssocRing R] [Nontrivial R]
@@ -1105,22 +784,10 @@ namespace NeZero
 
 variable (R) [AddMonoidWithOne R] {r : R} {n p : ℕ} {a : ℕ+}
 
-/- warning: ne_zero.of_not_dvd -> NeZero.of_not_dvd is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] {n : Nat} {p : Nat} [_inst_2 : CharP.{u1} R _inst_1 p], (Not (Dvd.Dvd.{0} Nat Nat.hasDvd p n)) -> (NeZero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1)))) n))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] {n : Nat} {p : Nat} [_inst_2 : CharP.{u1} R _inst_1 p], (Not (Dvd.dvd.{0} Nat Nat.instDvdNat p n)) -> (NeZero.{u1} R (AddMonoid.toZero.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1)) (Nat.cast.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1) n))
-Case conversion may be inaccurate. Consider using '#align ne_zero.of_not_dvd NeZero.of_not_dvdₓ'. -/
 theorem of_not_dvd [CharP R p] (h : ¬p ∣ n) : NeZero (n : R) :=
   ⟨(CharP.cast_eq_zero_iff R p n).Not.mpr h⟩
 #align ne_zero.of_not_dvd NeZero.of_not_dvd
 
-/- warning: ne_zero.not_char_dvd -> NeZero.not_char_dvd is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p] (k : Nat) [h : NeZero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1)))) k)], Not (Dvd.Dvd.{0} Nat Nat.hasDvd p k)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p] (k : Nat) [h : NeZero.{u1} R (AddMonoid.toZero.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1)) (Nat.cast.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1) k)], Not (Dvd.dvd.{0} Nat Nat.instDvdNat p k)
-Case conversion may be inaccurate. Consider using '#align ne_zero.not_char_dvd NeZero.not_char_dvdₓ'. -/
 theorem not_char_dvd (p : ℕ) [CharP R p] (k : ℕ) [h : NeZero (k : R)] : ¬p ∣ k := by
   rwa [← CharP.cast_eq_zero_iff R p k, ← Ne.def, ← neZero_iff]
 #align ne_zero.not_char_dvd NeZero.not_char_dvd
Diff
@@ -469,16 +469,12 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align char_p.neg_one_ne_one CharP.neg_one_ne_oneₓ'. -/
 theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1 : R) ≠ (1 : R) :=
   by
-  suffices (2 : R) ≠ 0 by
-    symm
-    rw [Ne.def, ← sub_eq_zero, sub_neg_eq_add]
-    exact this
+  suffices (2 : R) ≠ 0 by symm; rw [Ne.def, ← sub_eq_zero, sub_neg_eq_add]; exact this
   intro h
   rw [show (2 : R) = (2 : ℕ) by norm_cast] at h
   have := (CharP.cast_eq_zero_iff R p 2).mp h
   have := Nat.le_of_dvd (by decide) this
-  rw [fact_iff] at *
-  linarith
+  rw [fact_iff] at *; linarith
 #align char_p.neg_one_ne_one CharP.neg_one_ne_one
 
 /- warning: char_p.neg_one_pow_char -> CharP.neg_one_pow_char is a dubious translation:
@@ -714,11 +710,8 @@ but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p], Function.Injective.{succ u1, succ u1} R R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
 Case conversion may be inaccurate. Consider using '#align frobenius_inj frobenius_injₓ'. -/
 theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
-    Function.Injective (frobenius R p) := fun x h H =>
-  by
-  rw [← sub_eq_zero] at H⊢
-  rw [← frobenius_sub] at H
-  exact IsReduced.eq_zero _ ⟨_, H⟩
+    Function.Injective (frobenius R p) := fun x h H => by rw [← sub_eq_zero] at H⊢;
+  rw [← frobenius_sub] at H; exact IsReduced.eq_zero _ ⟨_, H⟩
 #align frobenius_inj frobenius_inj
 
 /- warning: is_square_of_char_two' -> isSquare_of_charTwo' is a dubious translation:
@@ -730,8 +723,7 @@ Case conversion may be inaccurate. Consider using '#align is_square_of_char_two'
 /-- If `ring_char R = 2`, where `R` is a finite reduced commutative ring,
 then every `a : R` is a square. -/
 theorem isSquare_of_charTwo' {R : Type _} [Finite R] [CommRing R] [IsReduced R] [CharP R 2]
-    (a : R) : IsSquare a := by
-  cases nonempty_fintype R
+    (a : R) : IsSquare a := by cases nonempty_fintype R;
   exact
     Exists.imp (fun b h => pow_two b ▸ Eq.symm h)
       (((Fintype.bijective_iff_injective_and_card _).mpr ⟨frobenius_inj R 2, rfl⟩).Surjective a)
@@ -916,11 +908,7 @@ theorem false_of_nontrivial_of_char_one [Nontrivial R] [CharP R 1] : False :=
 -/
 
 #print CharP.ringChar_ne_one /-
-theorem ringChar_ne_one [Nontrivial R] : ringChar R ≠ 1 :=
-  by
-  intro h
-  apply zero_ne_one' R
-  symm
+theorem ringChar_ne_one [Nontrivial R] : ringChar R ≠ 1 := by intro h; apply zero_ne_one' R; symm;
   rw [← Nat.cast_one, ringChar.spec, h]
 #align char_p.ring_char_ne_one CharP.ringChar_ne_one
 -/
@@ -1020,8 +1008,7 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
         apply hR _ (Nat.mod_lt _ _) h
         rw [← hn, Fintype.card_pos_iff]
         exact ⟨0⟩
-      · rintro ⟨k, rfl⟩
-        rw [Nat.cast_mul, H, MulZeroClass.zero_mul] }
+      · rintro ⟨k, rfl⟩; rw [Nat.cast_mul, H, MulZeroClass.zero_mul] }
 #align char_p_of_ne_zero charP_of_ne_zero
 
 /- warning: char_p_of_prime_pow_injective -> charP_of_prime_pow_injective is a dubious translation:
@@ -1033,13 +1020,10 @@ Case conversion may be inaccurate. Consider using '#align char_p_of_prime_pow_in
 theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fact p.Prime] (n : ℕ)
     (hn : Fintype.card R = p ^ n) (hR : ∀ i ≤ n, (p ^ i : R) = 0 → i = n) : CharP R (p ^ n) :=
   by
-  obtain ⟨c, hc⟩ := CharP.exists R
-  skip
+  obtain ⟨c, hc⟩ := CharP.exists R; skip
   have hcpn : c ∣ p ^ n := by rw [← CharP.cast_eq_zero_iff R c, ← hn, CharP.cast_card_eq_zero]
   obtain ⟨i, hi, hc⟩ : ∃ i ≤ n, c = p ^ i := by rwa [Nat.dvd_prime_pow hp.1] at hcpn
-  obtain rfl : i = n := by
-    apply hR i hi
-    rw [← Nat.cast_pow, ← hc, CharP.cast_eq_zero]
+  obtain rfl : i = n := by apply hR i hi; rw [← Nat.cast_pow, ← hc, CharP.cast_eq_zero]
   rwa [← hc]
 #align char_p_of_prime_pow_injective charP_of_prime_pow_injective
 
@@ -1101,8 +1085,7 @@ theorem Int.cast_injOn_of_ringChar_ne_two {R : Type _} [NonAssocRing R] [Nontriv
   have hh : a - b = 1 ∨ b - a = 1 ∨ a - b = 2 ∨ b - a = 2 :=
     by
     rcases ha with (ha | ha | ha) <;> rcases hb with (hb | hb | hb)
-    pick_goal 5
-    pick_goal 9
+    pick_goal 5; pick_goal 9
     -- move goals with `a = b` to the front
     iterate 3 rw [ha, hb, sub_self] at hf; tauto
     -- 6 goals remain
@@ -1110,14 +1093,10 @@ theorem Int.cast_injOn_of_ringChar_ne_two {R : Type _} [NonAssocRing R] [Nontriv
   have h' : ((a - b : ℤ) : R) = 0 := by exact_mod_cast sub_eq_zero_of_eq h
   have h'' : ((b - a : ℤ) : R) = 0 := by exact_mod_cast sub_eq_zero_of_eq h.symm
   rcases hh with (hh | hh | hh | hh)
-  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h'
-    exact one_ne_zero h'
-  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h''
-    exact one_ne_zero h''
-  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h'
-    exact Ring.two_ne_zero hR h'
-  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h''
-    exact Ring.two_ne_zero hR h''
+  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h'; exact one_ne_zero h'
+  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h''; exact one_ne_zero h''
+  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h'; exact Ring.two_ne_zero hR h'
+  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h''; exact Ring.two_ne_zero hR h''
 #align int.cast_inj_on_of_ring_char_ne_two Int.cast_injOn_of_ringChar_ne_two
 
 end
Diff
@@ -561,10 +561,7 @@ theorem iterate_frobenius (n : ℕ) : (frobenius R p^[n]) x = x ^ p ^ n :=
 #align iterate_frobenius iterate_frobenius
 
 /- warning: frobenius_mul -> frobenius_mul is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x y)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (NonUnitalNonAssocSemiring.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (Semiring.toNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align frobenius_mul frobenius_mulₓ'. -/
 theorem frobenius_mul : frobenius R p (x * y) = frobenius R p x * frobenius R p y :=
   (frobenius R p).map_mul x y
@@ -581,30 +578,21 @@ theorem frobenius_one : frobenius R p 1 = 1 :=
 #align frobenius_one frobenius_one
 
 /- warning: monoid_hom.map_frobenius -> MonoidHom.map_frobenius is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (f : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R), Eq.{succ u1} S (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f x))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
+<too large>
 Case conversion may be inaccurate. Consider using '#align monoid_hom.map_frobenius MonoidHom.map_frobeniusₓ'. -/
 theorem MonoidHom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
   f.map_pow x p
 #align monoid_hom.map_frobenius MonoidHom.map_frobenius
 
 /- warning: ring_hom.map_frobenius -> RingHom.map_frobenius is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (g : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R), Eq.{succ u1} S (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g x))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ring_hom.map_frobenius RingHom.map_frobeniusₓ'. -/
 theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
   g.map_pow x p
 #align ring_hom.map_frobenius RingHom.map_frobenius
 
 /- warning: monoid_hom.map_iterate_frobenius -> MonoidHom.map_iterate_frobenius is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (f : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u1} S (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f (Nat.iterate.{succ u2} R (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u1} S (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f x))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
+<too large>
 Case conversion may be inaccurate. Consider using '#align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobeniusₓ'. -/
 theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
     f ((frobenius R p^[n]) x) = (frobenius S p^[n]) (f x) :=
@@ -612,10 +600,7 @@ theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
 #align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobenius
 
 /- warning: ring_hom.map_iterate_frobenius -> RingHom.map_iterate_frobenius is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (g : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u1} S (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g (Nat.iterate.{succ u2} R (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u1} S (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g x))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobeniusₓ'. -/
 theorem RingHom.map_iterate_frobenius (n : ℕ) :
     g ((frobenius R p^[n]) x) = (frobenius S p^[n]) (g x) :=
@@ -623,10 +608,7 @@ theorem RingHom.map_iterate_frobenius (n : ℕ) :
 #align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobenius
 
 /- warning: monoid_hom.iterate_map_frobenius -> MonoidHom.iterate_map_frobenius is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (fun (_x : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) => R -> R) (MonoidHom.hasCoeToFun.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) f) n (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (fun (_x : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) => R -> R) (MonoidHom.hasCoeToFun.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) f) n x))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MonoidHom.monoidHomClass.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) f) n (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MonoidHom.monoidHomClass.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) f) n x))
+<too large>
 Case conversion may be inaccurate. Consider using '#align monoid_hom.iterate_map_frobenius MonoidHom.iterate_map_frobeniusₓ'. -/
 theorem MonoidHom.iterate_map_frobenius (f : R →* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
     (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
@@ -634,10 +616,7 @@ theorem MonoidHom.iterate_map_frobenius (f : R →* R) (p : ℕ) [Fact p.Prime]
 #align monoid_hom.iterate_map_frobenius MonoidHom.iterate_map_frobenius
 
 /- warning: ring_hom.iterate_map_frobenius -> RingHom.iterate_map_frobenius is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) f) n (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) f) n x))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) f) n (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) f) n x))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ring_hom.iterate_map_frobenius RingHom.iterate_map_frobeniusₓ'. -/
 theorem RingHom.iterate_map_frobenius (f : R →+* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
     (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
@@ -657,10 +636,7 @@ theorem frobenius_zero : frobenius R p 0 = 0 :=
 #align frobenius_zero frobenius_zero
 
 /- warning: frobenius_add -> frobenius_add is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (instHAdd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (Distrib.toAdd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (NonUnitalNonAssocSemiring.toDistrib.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (Semiring.toNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) _inst_1)))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align frobenius_add frobenius_addₓ'. -/
 theorem frobenius_add : frobenius R p (x + y) = frobenius R p x + frobenius R p y :=
   (frobenius R p).map_add x y
@@ -721,10 +697,7 @@ theorem frobenius_neg : frobenius R p (-x) = -frobenius R p x :=
 #align frobenius_neg frobenius_neg
 
 /- warning: frobenius_sub -> frobenius_sub is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) y))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y)) (HSub.hSub.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (instHSub.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (Ring.toSub.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align frobenius_sub frobenius_subₓ'. -/
 theorem frobenius_sub : frobenius R p (x - y) = frobenius R p x - frobenius R p y :=
   (frobenius R p).map_sub x y
Diff
@@ -204,10 +204,10 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
   by
   rcases lt_trichotomy a 0 with (h | rfl | h)
   · rw [← neg_eq_zero, ← Int.cast_neg, ← dvd_neg]
-    lift -a to ℕ using neg_nonneg.mpr (le_of_lt h)
+    lift -a to ℕ using neg_nonneg.mpr (le_of_lt h) with b
     rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
   · simp only [Int.cast_zero, eq_self_iff_true, dvd_zero]
-  · lift a to ℕ using le_of_lt h
+  · lift a to ℕ using le_of_lt h with b
     rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 
Diff
@@ -204,10 +204,10 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
   by
   rcases lt_trichotomy a 0 with (h | rfl | h)
   · rw [← neg_eq_zero, ← Int.cast_neg, ← dvd_neg]
-    lift -a to ℕ using neg_nonneg.mpr (le_of_lt h) with b
+    lift -a to ℕ using neg_nonneg.mpr (le_of_lt h)
     rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
   · simp only [Int.cast_zero, eq_self_iff_true, dvd_zero]
-  · lift a to ℕ using le_of_lt h with b
+  · lift a to ℕ using le_of_lt h
     rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 
Diff
@@ -542,7 +542,7 @@ variable {R}
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p)
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p)
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p)
 Case conversion may be inaccurate. Consider using '#align frobenius_def frobenius_defₓ'. -/
 theorem frobenius_def : frobenius R p x = x ^ p :=
   rfl
@@ -552,7 +552,7 @@ theorem frobenius_def : frobenius R p x = x ^ p :=
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))
 Case conversion may be inaccurate. Consider using '#align iterate_frobenius iterate_frobeniusₓ'. -/
 theorem iterate_frobenius (n : ℕ) : (frobenius R p^[n]) x = x ^ p ^ n :=
   by
@@ -564,7 +564,7 @@ theorem iterate_frobenius (n : ℕ) : (frobenius R p^[n]) x = x ^ p ^ n :=
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x y)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (NonUnitalNonAssocSemiring.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Semiring.toNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x y)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (NonUnitalNonAssocSemiring.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (Semiring.toNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
 Case conversion may be inaccurate. Consider using '#align frobenius_mul frobenius_mulₓ'. -/
 theorem frobenius_mul : frobenius R p (x * y) = frobenius R p x * frobenius R p y :=
   (frobenius R p).map_mul x y
@@ -574,7 +574,7 @@ theorem frobenius_mul : frobenius R p (x * y) = frobenius R p x * frobenius R p
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) _inst_1))))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) _inst_1))))
 Case conversion may be inaccurate. Consider using '#align frobenius_one frobenius_oneₓ'. -/
 theorem frobenius_one : frobenius R p 1 = 1 :=
   one_pow _
@@ -584,7 +584,7 @@ theorem frobenius_one : frobenius R p 1 = 1 :=
 lean 3 declaration is
   forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (f : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R), Eq.{succ u1} S (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f x))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
 Case conversion may be inaccurate. Consider using '#align monoid_hom.map_frobenius MonoidHom.map_frobeniusₓ'. -/
 theorem MonoidHom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
   f.map_pow x p
@@ -594,7 +594,7 @@ theorem MonoidHom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
 lean 3 declaration is
   forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (g : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R), Eq.{succ u1} S (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g x))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
 Case conversion may be inaccurate. Consider using '#align ring_hom.map_frobenius RingHom.map_frobeniusₓ'. -/
 theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
   g.map_pow x p
@@ -604,7 +604,7 @@ theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
 lean 3 declaration is
   forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (f : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u1} S (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f (Nat.iterate.{succ u2} R (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u1} S (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f x))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
 Case conversion may be inaccurate. Consider using '#align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobeniusₓ'. -/
 theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
     f ((frobenius R p^[n]) x) = (frobenius S p^[n]) (f x) :=
@@ -615,7 +615,7 @@ theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
 lean 3 declaration is
   forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (g : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u1} S (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g (Nat.iterate.{succ u2} R (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u1} S (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g x))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
 Case conversion may be inaccurate. Consider using '#align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobeniusₓ'. -/
 theorem RingHom.map_iterate_frobenius (n : ℕ) :
     g ((frobenius R p^[n]) x) = (frobenius S p^[n]) (g x) :=
@@ -626,7 +626,7 @@ theorem RingHom.map_iterate_frobenius (n : ℕ) :
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (fun (_x : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) => R -> R) (MonoidHom.hasCoeToFun.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) f) n (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (fun (_x : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) => R -> R) (MonoidHom.hasCoeToFun.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) f) n x))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MonoidHom.monoidHomClass.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) f) n (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MonoidHom.monoidHomClass.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) f) n x))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MonoidHom.monoidHomClass.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) f) n (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MonoidHom.monoidHomClass.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) f) n x))
 Case conversion may be inaccurate. Consider using '#align monoid_hom.iterate_map_frobenius MonoidHom.iterate_map_frobeniusₓ'. -/
 theorem MonoidHom.iterate_map_frobenius (f : R →* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
     (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
@@ -637,7 +637,7 @@ theorem MonoidHom.iterate_map_frobenius (f : R →* R) (p : ℕ) [Fact p.Prime]
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) f) n (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) f) n x))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) f) n (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) f) n x))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) f) n (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) f) n x))
 Case conversion may be inaccurate. Consider using '#align ring_hom.iterate_map_frobenius RingHom.iterate_map_frobeniusₓ'. -/
 theorem RingHom.iterate_map_frobenius (f : R →+* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
     (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
@@ -650,7 +650,7 @@ variable (R)
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) 0 (Zero.toOfNat0.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (CommMonoidWithZero.toZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (CommSemiring.toCommMonoidWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) _inst_1))))
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) 0 (Zero.toOfNat0.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (CommMonoidWithZero.toZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (CommSemiring.toCommMonoidWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) _inst_1))))
 Case conversion may be inaccurate. Consider using '#align frobenius_zero frobenius_zeroₓ'. -/
 theorem frobenius_zero : frobenius R p 0 = 0 :=
   (frobenius R p).map_zero
@@ -660,7 +660,7 @@ theorem frobenius_zero : frobenius R p 0 = 0 :=
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (instHAdd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Distrib.toAdd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (NonUnitalNonAssocSemiring.toDistrib.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Semiring.toNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) _inst_1)))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (instHAdd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (Distrib.toAdd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (NonUnitalNonAssocSemiring.toDistrib.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (Semiring.toNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) _inst_1)))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
 Case conversion may be inaccurate. Consider using '#align frobenius_add frobenius_addₓ'. -/
 theorem frobenius_add : frobenius R p (x + y) = frobenius R p x + frobenius R p y :=
   (frobenius R p).map_add x y
@@ -670,7 +670,7 @@ theorem frobenius_add : frobenius R p (x + y) = frobenius R p x + frobenius R p
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) n)) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) n)
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (Nat.cast.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (Semiring.toNatCast.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) _inst_1)) n)
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (Nat.cast.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (Semiring.toNatCast.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) _inst_1)) n)
 Case conversion may be inaccurate. Consider using '#align frobenius_nat_cast frobenius_nat_castₓ'. -/
 theorem frobenius_nat_cast (n : ℕ) : frobenius R p n = n :=
   map_natCast (frobenius R p) n
@@ -714,7 +714,7 @@ variable [CommRing R] {S : Type v} [CommRing S] (f : R →* S) (g : R →+* S) (
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x)) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) x)) (Neg.neg.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Ring.toNeg.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) x)) (Neg.neg.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (Ring.toNeg.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x))
 Case conversion may be inaccurate. Consider using '#align frobenius_neg frobenius_negₓ'. -/
 theorem frobenius_neg : frobenius R p (-x) = -frobenius R p x :=
   (frobenius R p).map_neg x
@@ -724,7 +724,7 @@ theorem frobenius_neg : frobenius R p (-x) = -frobenius R p x :=
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) y))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y)) (HSub.hSub.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (instHSub.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Ring.toSub.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) y))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y)) (HSub.hSub.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (instHSub.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (Ring.toSub.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) x) _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) y))
 Case conversion may be inaccurate. Consider using '#align frobenius_sub frobenius_subₓ'. -/
 theorem frobenius_sub : frobenius R p (x - y) = frobenius R p x - frobenius R p y :=
   (frobenius R p).map_sub x y
@@ -738,7 +738,7 @@ end frobenius
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p], Function.Injective.{succ u1, succ u1} R R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p], Function.Injective.{succ u1, succ u1} R R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p], Function.Injective.{succ u1, succ u1} R R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
 Case conversion may be inaccurate. Consider using '#align frobenius_inj frobenius_injₓ'. -/
 theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
     Function.Injective (frobenius R p) := fun x h H =>
Diff
@@ -443,7 +443,7 @@ theorem add_pow_char_pow [CommSemiring R] {p : ℕ} [Fact p.Prime] [CharP R p] {
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y p))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) y p))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) y p))
 Case conversion may be inaccurate. Consider using '#align sub_pow_char sub_pow_charₓ'. -/
 theorem sub_pow_char [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R) :
     (x - y) ^ p = x ^ p - y ^ p :=
@@ -454,7 +454,7 @@ theorem sub_pow_char [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R)
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)))
 Case conversion may be inaccurate. Consider using '#align sub_pow_char_pow sub_pow_char_powₓ'. -/
 theorem sub_pow_char_pow [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ} (x y : R) :
     (x - y) ^ p ^ n = x ^ p ^ n - y ^ p ^ n :=
@@ -465,7 +465,7 @@ theorem sub_pow_char_pow [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] {n :
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p] [_inst_3 : Fact (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) p)], Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] [_inst_3 : Fact (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) p)], Ne.{succ u1} R (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] [_inst_3 : Fact (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) p)], Ne.{succ u1} R (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1))))
 Case conversion may be inaccurate. Consider using '#align char_p.neg_one_ne_one CharP.neg_one_ne_oneₓ'. -/
 theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1 : R) ≠ (1 : R) :=
   by
@@ -485,7 +485,7 @@ theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) p) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) p) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) p) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
 Case conversion may be inaccurate. Consider using '#align char_p.neg_one_pow_char CharP.neg_one_pow_charₓ'. -/
 theorem CharP.neg_one_pow_char [CommRing R] (p : ℕ) [CharP R p] [Fact p.Prime] :
     (-1 : R) ^ p = -1 := by
@@ -498,7 +498,7 @@ theorem CharP.neg_one_pow_char [CommRing R] (p : ℕ) [CharP R p] [Fact p.Prime]
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) (n : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) (n : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) (n : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
 Case conversion may be inaccurate. Consider using '#align char_p.neg_one_pow_char_pow CharP.neg_one_pow_char_powₓ'. -/
 theorem CharP.neg_one_pow_char_pow [CommRing R] (p n : ℕ) [CharP R p] [Fact p.Prime] :
     (-1 : R) ^ p ^ n = -1 := by
@@ -511,7 +511,7 @@ theorem CharP.neg_one_pow_char_pow [CommRing R] (p n : ℕ) [CharP R p] [Fact p.
 lean 3 declaration is
   forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : DivisionRing.{u1} K] [_inst_2 : Semiring.{u2} L] [_inst_3 : Nontrivial.{u2} L], (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u2} L _inst_2)) -> (forall (p : Nat), Iff (CharP.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K _inst_1)))) p) (CharP.{u2} L (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} L (NonAssocSemiring.toAddCommMonoidWithOne.{u2} L (Semiring.toNonAssocSemiring.{u2} L _inst_2))) p))
 but is expected to have type
-  forall {K : Type.{u2}} {L : Type.{u1}} [_inst_1 : DivisionRing.{u2} K] [_inst_2 : Semiring.{u1} L] [_inst_3 : Nontrivial.{u1} L], (RingHom.{u2, u1} K L (NonAssocRing.toNonAssocSemiring.{u2} K (Ring.toNonAssocRing.{u2} K (DivisionRing.toRing.{u2} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} L _inst_2)) -> (forall (p : Nat), Iff (CharP.{u2} K (AddGroupWithOne.toAddMonoidWithOne.{u2} K (Ring.toAddGroupWithOne.{u2} K (DivisionRing.toRing.{u2} K _inst_1))) p) (CharP.{u1} L (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} L (NonAssocSemiring.toAddCommMonoidWithOne.{u1} L (Semiring.toNonAssocSemiring.{u1} L _inst_2))) p))
+  forall {K : Type.{u2}} {L : Type.{u1}} [_inst_1 : DivisionRing.{u2} K] [_inst_2 : Semiring.{u1} L] [_inst_3 : Nontrivial.{u1} L], (RingHom.{u2, u1} K L (Semiring.toNonAssocSemiring.{u2} K (DivisionSemiring.toSemiring.{u2} K (DivisionRing.toDivisionSemiring.{u2} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} L _inst_2)) -> (forall (p : Nat), Iff (CharP.{u2} K (AddGroupWithOne.toAddMonoidWithOne.{u2} K (Ring.toAddGroupWithOne.{u2} K (DivisionRing.toRing.{u2} K _inst_1))) p) (CharP.{u1} L (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} L (NonAssocSemiring.toAddCommMonoidWithOne.{u1} L (Semiring.toNonAssocSemiring.{u1} L _inst_2))) p))
 Case conversion may be inaccurate. Consider using '#align ring_hom.char_p_iff_char_p RingHom.charP_iff_charPₓ'. -/
 theorem RingHom.charP_iff_charP {K L : Type _} [DivisionRing K] [Semiring L] [Nontrivial L]
     (f : K →+* L) (p : ℕ) : CharP K p ↔ CharP L p := by
@@ -738,7 +738,7 @@ end frobenius
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p], Function.Injective.{succ u1, succ u1} R R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p], Function.Injective.{succ u1, succ u1} R R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p], Function.Injective.{succ u1, succ u1} R R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
 Case conversion may be inaccurate. Consider using '#align frobenius_inj frobenius_injₓ'. -/
 theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
     Function.Injective (frobenius R p) := fun x h H =>
@@ -752,7 +752,7 @@ theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : Finite.{succ u1} R] [_inst_2 : CommRing.{u1} R] [_inst_3 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_2)))] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_2)))) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))] (a : R), IsSquare.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_2))) a
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Finite.{succ u1} R] [_inst_2 : CommRing.{u1} R] [_inst_3 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_2))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_2)))))] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_2))) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))] (a : R), IsSquare.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))) a
+  forall {R : Type.{u1}} [_inst_1 : Finite.{succ u1} R] [_inst_2 : CommRing.{u1} R] [_inst_3 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_2))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_2)))))] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_2))) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))] (a : R), IsSquare.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))) a
 Case conversion may be inaccurate. Consider using '#align is_square_of_char_two' isSquare_of_charTwo'ₓ'. -/
 /-- If `ring_char R = 2`, where `R` is a finite reduced commutative ring,
 then every `a : R` is a square. -/
@@ -812,7 +812,7 @@ variable [CommRing R] [IsReduced R] {R}
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) (k : Nat) (m : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R), Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p k) m)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x m) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))] (p : Nat) (k : Nat) (m : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R), Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p k) m)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x m) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))] (p : Nat) (k : Nat) (m : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R), Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) x (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p k) m)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) x m) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
 Case conversion may be inaccurate. Consider using '#align char_p.pow_prime_pow_mul_eq_one_iff CharP.pow_prime_pow_mul_eq_one_iffₓ'. -/
 @[simp]
 theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x : R) :
@@ -1055,7 +1055,7 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_3 : Ring.{u1} R] [_inst_4 : Fintype.{u1} R] (p : Nat) [hp : Fact (Nat.Prime p)] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_4) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) -> (forall (i : Nat), (LE.le.{0} Nat Nat.hasLe i n) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_3))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_3))))))) p) i) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3))))))))) -> (Eq.{1} Nat i n)) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_3))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_3 : Ring.{u1} R] [_inst_4 : Fintype.{u1} R] (p : Nat) [hp : Fact (Nat.Prime p)] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_4) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) -> (forall (i : Nat), (LE.le.{0} Nat instLENat i n) -> (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p i)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_3)))))) -> (Eq.{1} Nat i n)) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_3)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))
+  forall (R : Type.{u1}) [_inst_3 : Ring.{u1} R] [_inst_4 : Fintype.{u1} R] (p : Nat) [hp : Fact (Nat.Prime p)] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_4) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) -> (forall (i : Nat), (LE.le.{0} Nat instLENat i n) -> (Eq.{succ u1} R (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (Ring.toSemiring.{u1} R _inst_3)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p i)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_3)))))) -> (Eq.{1} Nat i n)) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_3)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))
 Case conversion may be inaccurate. Consider using '#align char_p_of_prime_pow_injective charP_of_prime_pow_injectiveₓ'. -/
 theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fact p.Prime] (n : ℕ)
     (hn : Fintype.card R = p ^ n) (hR : ∀ i ≤ n, (p ^ i : R) = 0 → i = n) : CharP R (p ^ n) :=
Diff
@@ -148,7 +148,7 @@ end CommSemiring
 variable (R)
 
 #print CharP /-
-/- ./././Mathport/Syntax/Translate/Command.lean:388:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
+/- ./././Mathport/Syntax/Translate/Command.lean:393:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
 /-- The generator of the kernel of the unique homomorphism ℕ → R for a semiring R.
 
 *Warning*: for a semiring `R`, `char_p R 0` and `char_zero R` need not coincide.
Diff
@@ -211,17 +211,25 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
     rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 
-theorem CharP.int_cast_eq_int_cast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℤ} :
+/- warning: char_p.int_cast_eq_int_cast -> CharP.intCast_eq_intCast is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] {a : Int} {b : Int}, Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) a) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) b)) (Int.ModEq ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a b)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] {a : Int} {b : Int}, Iff (Eq.{succ u1} R (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int instNatCastInt p) a b)
+Case conversion may be inaccurate. Consider using '#align char_p.int_cast_eq_int_cast CharP.intCast_eq_intCastₓ'. -/
+theorem CharP.intCast_eq_intCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℤ} :
     (a : R) = b ↔ a ≡ b [ZMOD p] := by
   rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
-#align char_p.int_cast_eq_int_cast CharP.int_cast_eq_int_cast
+#align char_p.int_cast_eq_int_cast CharP.intCast_eq_intCast
 
-theorem CharP.nat_cast_eq_nat_cast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℕ} :
+#print CharP.natCast_eq_natCast /-
+theorem CharP.natCast_eq_natCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℕ} :
     (a : R) = b ↔ a ≡ b [MOD p] :=
   by
   rw [← Int.cast_ofNat, ← Int.cast_ofNat b]
-  exact (CharP.int_cast_eq_int_cast _ _).trans Int.coe_nat_modEq_iff
-#align char_p.nat_cast_eq_nat_cast CharP.nat_cast_eq_nat_cast
+  exact (CharP.intCast_eq_intCast _ _).trans Int.coe_nat_modEq_iff
+#align char_p.nat_cast_eq_nat_cast CharP.natCast_eq_natCast
+-/
 
 #print CharP.eq /-
 theorem CharP.eq [AddMonoidWithOne R] {p q : ℕ} (c1 : CharP R p) (c2 : CharP R q) : p = q :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
 
 ! This file was ported from Lean 3 source module algebra.char_p.basic
-! leanprover-community/mathlib commit 10bf4f825ad729c5653adc039dafa3622e7f93c9
+! leanprover-community/mathlib commit 47a1a73351de8dd6c8d3d32b569c8e434b03ca47
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -211,16 +211,17 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
     rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 
-/- warning: char_p.int_coe_eq_int_coe_iff -> CharP.int_cast_eq_int_cast_iff is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) a) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) b)) (Int.ModEq ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a b)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int instNatCastInt p) a b)
-Case conversion may be inaccurate. Consider using '#align char_p.int_coe_eq_int_coe_iff CharP.int_cast_eq_int_cast_iffₓ'. -/
-theorem CharP.int_cast_eq_int_cast_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a b : ℤ) :
-    (a : R) = (b : R) ↔ a ≡ b [ZMOD p] := by
+theorem CharP.int_cast_eq_int_cast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℤ} :
+    (a : R) = b ↔ a ≡ b [ZMOD p] := by
   rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
-#align char_p.int_coe_eq_int_coe_iff CharP.int_cast_eq_int_cast_iff
+#align char_p.int_cast_eq_int_cast CharP.int_cast_eq_int_cast
+
+theorem CharP.nat_cast_eq_nat_cast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℕ} :
+    (a : R) = b ↔ a ≡ b [MOD p] :=
+  by
+  rw [← Int.cast_ofNat, ← Int.cast_ofNat b]
+  exact (CharP.int_cast_eq_int_cast _ _).trans Int.coe_nat_modEq_iff
+#align char_p.nat_cast_eq_nat_cast CharP.nat_cast_eq_nat_cast
 
 #print CharP.eq /-
 theorem CharP.eq [AddMonoidWithOne R] {p q : ℕ} (c1 : CharP R p) (c2 : CharP R q) : p = q :=
@@ -452,16 +453,6 @@ theorem sub_pow_char_pow [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] {n :
   sub_pow_char_pow_of_commute _ _ _ (Commute.all _ _)
 #align sub_pow_char_pow sub_pow_char_pow
 
-/- warning: eq_iff_modeq_int -> eq_iff_modEq_int is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) a) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) b)) (Int.ModEq ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a b)
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (Ring.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (Ring.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int instNatCastInt p) a b)
-Case conversion may be inaccurate. Consider using '#align eq_iff_modeq_int eq_iff_modEq_intₓ'. -/
-theorem eq_iff_modEq_int [Ring R] (p : ℕ) [CharP R p] (a b : ℤ) : (a : R) = b ↔ a ≡ b [ZMOD p] := by
-  rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
-#align eq_iff_modeq_int eq_iff_modEq_int
-
 /- warning: char_p.neg_one_ne_one -> CharP.neg_one_ne_one is a dubious translation:
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p] [_inst_3 : Fact (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) p)], Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))
Diff
@@ -33,6 +33,12 @@ namespace Commute
 
 variable [Semiring R] {p : ℕ} {x y : R}
 
+/- warning: commute.add_pow_prime_pow_eq -> Commute.add_pow_prime_pow_eq is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (forall (n : Nat), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n) k))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.hasDiv) (Nat.choose (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n) k) p)))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (forall (n : Nat), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n) k))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.instDivNat) (Nat.choose (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n) k) p)))))))
+Case conversion may be inaccurate. Consider using '#align commute.add_pow_prime_pow_eq Commute.add_pow_prime_pow_eqₓ'. -/
 protected theorem add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ) :
     (x + y) ^ p ^ n =
       x ^ p ^ n + y ^ p ^ n +
@@ -50,17 +56,35 @@ protected theorem add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ
     rw [Nat.div_mul_cancel (hp.dvd_choose_pow hi.1.ne' hi.2.Ne)]
 #align commute.add_pow_prime_pow_eq Commute.add_pow_prime_pow_eq
 
+/- warning: commute.add_pow_prime_eq -> Commute.add_pow_prime_eq is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) p) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) p k))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.hasDiv) (Nat.choose p k) p)))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) p) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) p k))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.instDivNat) (Nat.choose p k) p)))))))
+Case conversion may be inaccurate. Consider using '#align commute.add_pow_prime_eq Commute.add_pow_prime_eqₓ'. -/
 protected theorem add_pow_prime_eq (hp : p.Prime) (h : Commute x y) :
     (x + y) ^ p =
       x ^ p + y ^ p + p * ∑ k in Finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
   by simpa using h.add_pow_prime_pow_eq hp 1
 #align commute.add_pow_prime_eq Commute.add_pow_prime_eq
 
+/- warning: commute.exists_add_pow_prime_pow_eq -> Commute.exists_add_pow_prime_pow_eq is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (forall (n : Nat), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) p) r))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (forall (n : Nat), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) p) r))))
+Case conversion may be inaccurate. Consider using '#align commute.exists_add_pow_prime_pow_eq Commute.exists_add_pow_prime_pow_eqₓ'. -/
 protected theorem exists_add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ) :
     ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
   ⟨_, h.add_pow_prime_pow_eq hp n⟩
 #align commute.exists_add_pow_prime_pow_eq Commute.exists_add_pow_prime_pow_eq
 
+/- warning: commute.exists_add_pow_prime_eq -> Commute.exists_add_pow_prime_eq is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))))) p) r))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {p : Nat} {x : R} {y : R}, (Nat.Prime p) -> (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R _inst_1) p) r))))
+Case conversion may be inaccurate. Consider using '#align commute.exists_add_pow_prime_eq Commute.exists_add_pow_prime_eqₓ'. -/
 protected theorem exists_add_pow_prime_eq (hp : p.Prime) (h : Commute x y) :
     ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
   ⟨_, h.add_pow_prime_eq hp⟩
@@ -72,6 +96,12 @@ section CommSemiring
 
 variable [CommSemiring R] {p : ℕ} {x y : R}
 
+/- warning: add_pow_prime_pow_eq -> add_pow_prime_pow_eq is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R) (n : Nat), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n) k))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.hasDiv) (Nat.choose (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n) k) p)))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R) (n : Nat), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n) k))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.instDivNat) (Nat.choose (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n) k) p)))))))
+Case conversion may be inaccurate. Consider using '#align add_pow_prime_pow_eq add_pow_prime_pow_eqₓ'. -/
 theorem add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
     (x + y) ^ p ^ n =
       x ^ p ^ n + y ^ p ^ n +
@@ -79,17 +109,35 @@ theorem add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
   (Commute.all x y).add_pow_prime_pow_eq hp n
 #align add_pow_prime_pow_eq add_pow_prime_pow_eq
 
+/- warning: add_pow_prime_eq -> add_pow_prime_eq is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) Nat.locallyFiniteOrder (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) p) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) p k))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.hasDiv) (Nat.choose p k) p)))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) p) (Finset.sum.{u1, 0} R Nat (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (Finset.Ioo.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) instLocallyFiniteOrderNatToPreorderToPartialOrderStrictOrderedSemiring (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) p) (fun (k : Nat) => HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x k) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) p k))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (HDiv.hDiv.{0, 0, 0} Nat Nat Nat (instHDiv.{0} Nat Nat.instDivNat) (Nat.choose p k) p)))))))
+Case conversion may be inaccurate. Consider using '#align add_pow_prime_eq add_pow_prime_eqₓ'. -/
 theorem add_pow_prime_eq (hp : p.Prime) (x y : R) :
     (x + y) ^ p =
       x ^ p + y ^ p + p * ∑ k in Finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
   (Commute.all x y).add_pow_prime_eq hp
 #align add_pow_prime_eq add_pow_prime_eq
 
+/- warning: exists_add_pow_prime_pow_eq -> exists_add_pow_prime_pow_eq is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R) (n : Nat), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) p) r))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R) (n : Nat), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) p) r))))
+Case conversion may be inaccurate. Consider using '#align exists_add_pow_prime_pow_eq exists_add_pow_prime_pow_eqₓ'. -/
 theorem exists_add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
     ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
   (Commute.all x y).exists_add_pow_prime_pow_eq hp n
 #align exists_add_pow_prime_pow_eq exists_add_pow_prime_pow_eq
 
+/- warning: exists_add_pow_prime_eq -> exists_add_pow_prime_eq is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) p) r))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Nat}, (Nat.Prime p) -> (forall (x : R) (y : R), Exists.{succ u1} R (fun (r : R) => Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) p) r))))
+Case conversion may be inaccurate. Consider using '#align exists_add_pow_prime_eq exists_add_pow_prime_eqₓ'. -/
 theorem exists_add_pow_prime_eq (hp : p.Prime) (x y : R) :
     ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
   (Commute.all x y).exists_add_pow_prime_eq hp
@@ -324,7 +372,7 @@ theorem add_pow_char_of_commute [Semiring R] {p : ℕ} [hp : Fact p.Prime] [Char
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} {n : Nat} [hp : Fact (Nat.Prime p)] [_inst_2 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [n : Fact (Nat.Prime p)] [hp : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] {_inst_2 : Nat} (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p _inst_2)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p _inst_2)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p _inst_2))))
+  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} {n : Nat} [hp : Fact (Nat.Prime p)] [_inst_2 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))))
 Case conversion may be inaccurate. Consider using '#align add_pow_char_pow_of_commute add_pow_char_pow_of_commuteₓ'. -/
 theorem add_pow_char_pow_of_commute [Semiring R] {p n : ℕ} [hp : Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n :=
@@ -537,7 +585,7 @@ theorem frobenius_one : frobenius R p 1 = 1 :=
 lean 3 declaration is
   forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (f : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R), Eq.{succ u1} S (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f x))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
 Case conversion may be inaccurate. Consider using '#align monoid_hom.map_frobenius MonoidHom.map_frobeniusₓ'. -/
 theorem MonoidHom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
   f.map_pow x p
@@ -547,7 +595,7 @@ theorem MonoidHom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
 lean 3 declaration is
   forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (g : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R), Eq.{succ u1} S (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g x))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
 Case conversion may be inaccurate. Consider using '#align ring_hom.map_frobenius RingHom.map_frobeniusₓ'. -/
 theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
   g.map_pow x p
@@ -557,7 +605,7 @@ theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
 lean 3 declaration is
   forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (f : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u1} S (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f (Nat.iterate.{succ u2} R (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u1} S (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f x))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
 Case conversion may be inaccurate. Consider using '#align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobeniusₓ'. -/
 theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
     f ((frobenius R p^[n]) x) = (frobenius S p^[n]) (f x) :=
@@ -568,7 +616,7 @@ theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
 lean 3 declaration is
   forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (g : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u1} S (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g (Nat.iterate.{succ u2} R (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u1} S (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g x))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
 Case conversion may be inaccurate. Consider using '#align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobeniusₓ'. -/
 theorem RingHom.map_iterate_frobenius (n : ℕ) :
     g ((frobenius R p^[n]) x) = (frobenius S p^[n]) (g x) :=
@@ -649,16 +697,12 @@ theorem multiset_sum_pow_char (s : Multiset R) : s.Sum ^ p = (s.map (· ^ p)).Su
 #align multiset_sum_pow_char multiset_sum_pow_char
 -/
 
-/- warning: sum_pow_char -> sum_pow_char is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] {ι : Type.{u2}} (s : Finset.{u2} ι) (f : ι -> R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) s (fun (i : ι) => f i)) p) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) s (fun (i : ι) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (f i) p))
-but is expected to have type
-  forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] {ι : Type.{u1}} (s : Finset.{u1} ι) (f : ι -> R), Eq.{succ u2} R (HPow.hPow.{u2, 0, u2} R Nat R (instHPow.{u2, 0} R Nat (Monoid.Pow.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (Finset.sum.{u2, u1} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) s (fun (i : ι) => f i)) p) (Finset.sum.{u2, u1} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) s (fun (i : ι) => HPow.hPow.{u2, 0, u2} R Nat R (instHPow.{u2, 0} R Nat (Monoid.Pow.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (f i) p))
-Case conversion may be inaccurate. Consider using '#align sum_pow_char sum_pow_charₓ'. -/
+#print sum_pow_char /-
 theorem sum_pow_char {ι : Type _} (s : Finset ι) (f : ι → R) :
     (∑ i in s, f i) ^ p = ∑ i in s, f i ^ p :=
   (frobenius R p).map_sum _ _
 #align sum_pow_char sum_pow_char
+-/
 
 end CommSemiring
 
@@ -1043,7 +1087,7 @@ instance [CharP S q] : CharP (R × S) (Nat.lcm p q)
 lean 3 declaration is
   forall (R : Type.{u2}) (S : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u2} R] [_inst_2 : AddMonoidWithOne.{u1} S] (p : Nat) [_inst_3 : CharP.{u2} R _inst_1 p] [_inst_4 : CharP.{u1} S _inst_2 p], CharP.{max u2 u1} (Prod.{u2, u1} R S) (Prod.addMonoidWithOne.{u2, u1} R S _inst_1 _inst_2) p
 but is expected to have type
-  forall (R : Type.{u1}) (S : Type.{u2}) [_inst_1 : AddMonoidWithOne.{u1} R] [_inst_2 : AddMonoidWithOne.{u2} S] (p : Nat) [_inst_3 : CharP.{u1} R _inst_1 p] [_inst_4 : CharP.{u2} S _inst_2 p], CharP.{max u2 u1} (Prod.{u1, u2} R S) (Prod.instAddMonoidWithOneProd.{u1, u2} R S _inst_1 _inst_2) p
+  forall (R : Type.{u2}) (S : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u2} R] [_inst_2 : AddMonoidWithOne.{u1} S] (p : Nat) [_inst_3 : CharP.{u2} R _inst_1 p] [_inst_4 : CharP.{u1} S _inst_2 p], CharP.{max u1 u2} (Prod.{u2, u1} R S) (Prod.instAddMonoidWithOneProd.{u2, u1} R S _inst_1 _inst_2) p
 Case conversion may be inaccurate. Consider using '#align prod.char_p Prod.charPₓ'. -/
 /-- The characteristic of the product of two rings of the same characteristic
   is the same as the characteristic of the rings -/
@@ -1052,15 +1096,11 @@ instance Prod.charP [CharP S p] : CharP (R × S) p := by convert Nat.lcm.charP R
 
 end Prod
 
-/- warning: ulift.char_p -> ULift.charP is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u2}) [_inst_1 : AddMonoidWithOne.{u2} R] (p : Nat) [_inst_2 : CharP.{u2} R _inst_1 p], CharP.{max u2 u1} (ULift.{u1, u2} R) (ULift.addMonoidWithOne.{u2, u1} R _inst_1) p
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], CharP.{max u2 u1} (ULift.{u2, u1} R) (ULift.addMonoidWithOne.{u1, u2} R _inst_1) p
-Case conversion may be inaccurate. Consider using '#align ulift.char_p ULift.charPₓ'. -/
+#print ULift.charP /-
 instance ULift.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP (ULift.{v} R) p
     where cast_eq_zero_iff n := Iff.trans (ULift.ext_iff _ _) <| CharP.cast_eq_zero_iff R p n
 #align ulift.char_p ULift.charP
+-/
 
 #print MulOpposite.charP /-
 instance MulOpposite.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP Rᵐᵒᵖ p
Diff
@@ -335,7 +335,7 @@ theorem add_pow_char_pow_of_commute [Semiring R] {p n : ℕ} [hp : Fact p.Prime]
 
 /- warning: sub_pow_char_of_commute -> sub_pow_char_of_commute is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) y p)))
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) y p)))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) y p)))
 Case conversion may be inaccurate. Consider using '#align sub_pow_char_of_commute sub_pow_char_of_commuteₓ'. -/
@@ -348,7 +348,7 @@ theorem sub_pow_char_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x
 
 /- warning: sub_pow_char_pow_of_commute -> sub_pow_char_pow_of_commute is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))))
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))))
 Case conversion may be inaccurate. Consider using '#align sub_pow_char_pow_of_commute sub_pow_char_pow_of_commuteₓ'. -/
@@ -384,7 +384,7 @@ theorem add_pow_char_pow [CommSemiring R] {p : ℕ} [Fact p.Prime] [CharP R p] {
 
 /- warning: sub_pow_char -> sub_pow_char is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y p))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y p))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) y p))
 Case conversion may be inaccurate. Consider using '#align sub_pow_char sub_pow_charₓ'. -/
@@ -395,7 +395,7 @@ theorem sub_pow_char [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R)
 
 /- warning: sub_pow_char_pow -> sub_pow_char_pow is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)))
 Case conversion may be inaccurate. Consider using '#align sub_pow_char_pow sub_pow_char_powₓ'. -/
@@ -406,7 +406,7 @@ theorem sub_pow_char_pow [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] {n :
 
 /- warning: eq_iff_modeq_int -> eq_iff_modEq_int is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) a) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) b)) (Int.ModEq ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a b)
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) a) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))) b)) (Int.ModEq ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a b)
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (Ring.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (Ring.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int instNatCastInt p) a b)
 Case conversion may be inaccurate. Consider using '#align eq_iff_modeq_int eq_iff_modEq_intₓ'. -/
@@ -416,7 +416,7 @@ theorem eq_iff_modEq_int [Ring R] (p : ℕ) [CharP R p] (a b : ℤ) : (a : R) =
 
 /- warning: char_p.neg_one_ne_one -> CharP.neg_one_ne_one is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p] [_inst_3 : Fact (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) p)], Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))))
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p] [_inst_3 : Fact (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) p)], Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] [_inst_3 : Fact (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) p)], Ne.{succ u1} R (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))
 Case conversion may be inaccurate. Consider using '#align char_p.neg_one_ne_one CharP.neg_one_ne_oneₓ'. -/
@@ -436,7 +436,7 @@ theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1
 
 /- warning: char_p.neg_one_pow_char -> CharP.neg_one_pow_char is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) p) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) p) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) p) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
 Case conversion may be inaccurate. Consider using '#align char_p.neg_one_pow_char CharP.neg_one_pow_charₓ'. -/
@@ -449,7 +449,7 @@ theorem CharP.neg_one_pow_char [CommRing R] (p : ℕ) [CharP R p] [Fact p.Prime]
 
 /- warning: char_p.neg_one_pow_char_pow -> CharP.neg_one_pow_char_pow is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) (n : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) (n : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) (n : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
 Case conversion may be inaccurate. Consider using '#align char_p.neg_one_pow_char_pow CharP.neg_one_pow_char_powₓ'. -/
@@ -462,7 +462,7 @@ theorem CharP.neg_one_pow_char_pow [CommRing R] (p n : ℕ) [CharP R p] [Fact p.
 
 /- warning: ring_hom.char_p_iff_char_p -> RingHom.charP_iff_charP is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : DivisionRing.{u1} K] [_inst_2 : Semiring.{u2} L] [_inst_3 : Nontrivial.{u2} L], (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u2} L _inst_2)) -> (forall (p : Nat), Iff (CharP.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K _inst_1)))) p) (CharP.{u2} L (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} L (NonAssocSemiring.toAddCommMonoidWithOne.{u2} L (Semiring.toNonAssocSemiring.{u2} L _inst_2))) p))
+  forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : DivisionRing.{u1} K] [_inst_2 : Semiring.{u2} L] [_inst_3 : Nontrivial.{u2} L], (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u2} L _inst_2)) -> (forall (p : Nat), Iff (CharP.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K _inst_1)))) p) (CharP.{u2} L (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} L (NonAssocSemiring.toAddCommMonoidWithOne.{u2} L (Semiring.toNonAssocSemiring.{u2} L _inst_2))) p))
 but is expected to have type
   forall {K : Type.{u2}} {L : Type.{u1}} [_inst_1 : DivisionRing.{u2} K] [_inst_2 : Semiring.{u1} L] [_inst_3 : Nontrivial.{u1} L], (RingHom.{u2, u1} K L (NonAssocRing.toNonAssocSemiring.{u2} K (Ring.toNonAssocRing.{u2} K (DivisionRing.toRing.{u2} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} L _inst_2)) -> (forall (p : Nat), Iff (CharP.{u2} K (AddGroupWithOne.toAddMonoidWithOne.{u2} K (Ring.toAddGroupWithOne.{u2} K (DivisionRing.toRing.{u2} K _inst_1))) p) (CharP.{u1} L (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} L (NonAssocSemiring.toAddCommMonoidWithOne.{u1} L (Semiring.toNonAssocSemiring.{u1} L _inst_2))) p))
 Case conversion may be inaccurate. Consider using '#align ring_hom.char_p_iff_char_p RingHom.charP_iff_charPₓ'. -/
@@ -669,7 +669,7 @@ variable [CommRing R] {S : Type v} [CommRing S] (f : R →* S) (g : R →+* S) (
 
 /- warning: frobenius_neg -> frobenius_neg is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x)) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x)) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) x)) (Neg.neg.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Ring.toNeg.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x))
 Case conversion may be inaccurate. Consider using '#align frobenius_neg frobenius_negₓ'. -/
@@ -679,7 +679,7 @@ theorem frobenius_neg : frobenius R p (-x) = -frobenius R p x :=
 
 /- warning: frobenius_sub -> frobenius_sub is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) y))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) y))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y)) (HSub.hSub.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (instHSub.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Ring.toSub.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) y))
 Case conversion may be inaccurate. Consider using '#align frobenius_sub frobenius_subₓ'. -/
@@ -693,7 +693,7 @@ end frobenius
 
 /- warning: frobenius_inj -> frobenius_inj is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p], Function.Injective.{succ u1, succ u1} R R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p], Function.Injective.{succ u1, succ u1} R R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p], Function.Injective.{succ u1, succ u1} R R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
 Case conversion may be inaccurate. Consider using '#align frobenius_inj frobenius_injₓ'. -/
@@ -707,7 +707,7 @@ theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP
 
 /- warning: is_square_of_char_two' -> isSquare_of_charTwo' is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Finite.{succ u1} R] [_inst_2 : CommRing.{u1} R] [_inst_3 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_2)))] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))] (a : R), IsSquare.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_2))) a
+  forall {R : Type.{u1}} [_inst_1 : Finite.{succ u1} R] [_inst_2 : CommRing.{u1} R] [_inst_3 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_2)))] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_2)))) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))] (a : R), IsSquare.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_2))) a
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : Finite.{succ u1} R] [_inst_2 : CommRing.{u1} R] [_inst_3 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_2))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_2)))))] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_2))) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))] (a : R), IsSquare.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))) a
 Case conversion may be inaccurate. Consider using '#align is_square_of_char_two' isSquare_of_charTwo'ₓ'. -/
@@ -733,25 +733,16 @@ theorem charP_to_charZero (R : Type _) [AddGroupWithOne R] [CharP R 0] : CharZer
 #align char_p.char_p_to_char_zero CharP.charP_to_charZero
 -/
 
-/- warning: char_p.cast_eq_mod -> CharP.cast_eq_mod is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) p] (k : Nat), Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))) k) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))) (HMod.hMod.{0, 0, 0} Nat Nat Nat (instHMod.{0} Nat Nat.hasMod) k p))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) p] (k : Nat), Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R _inst_1) k) (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R _inst_1) (HMod.hMod.{0, 0, 0} Nat Nat Nat (instHMod.{0} Nat Nat.instModNat) k p))
-Case conversion may be inaccurate. Consider using '#align char_p.cast_eq_mod CharP.cast_eq_modₓ'. -/
+#print CharP.cast_eq_mod /-
 theorem cast_eq_mod (p : ℕ) [CharP R p] (k : ℕ) : (k : R) = (k % p : ℕ) :=
   calc
     (k : R) = ↑(k % p + p * (k / p)) := by rw [Nat.mod_add_div]
     _ = ↑(k % p) := by simp [cast_eq_zero]
     
 #align char_p.cast_eq_mod CharP.cast_eq_mod
+-/
 
-/- warning: char_p.char_ne_zero_of_finite -> CharP.char_ne_zero_of_finite is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) p] [_inst_3 : Finite.{succ u1} R], Ne.{1} Nat p (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) p] [_inst_3 : Finite.{succ u1} R], Ne.{1} Nat p (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
-Case conversion may be inaccurate. Consider using '#align char_p.char_ne_zero_of_finite CharP.char_ne_zero_of_finiteₓ'. -/
+#print CharP.char_ne_zero_of_finite /-
 /-- The characteristic of a finite ring cannot be zero. -/
 theorem char_ne_zero_of_finite (p : ℕ) [CharP R p] [Finite R] : p ≠ 0 :=
   by
@@ -760,6 +751,7 @@ theorem char_ne_zero_of_finite (p : ℕ) [CharP R p] [Finite R] : p ≠ 0 :=
   cases nonempty_fintype R
   exact absurd Nat.cast_injective (not_injective_infinite_finite (coe : ℕ → R))
 #align char_p.char_ne_zero_of_finite CharP.char_ne_zero_of_finite
+-/
 
 #print CharP.ringChar_ne_zero_of_finite /-
 theorem ringChar_ne_zero_of_finite [Finite R] : ringChar R ≠ 0 :=
@@ -775,7 +767,7 @@ variable [CommRing R] [IsReduced R] {R}
 
 /- warning: char_p.pow_prime_pow_mul_eq_one_iff -> CharP.pow_prime_pow_mul_eq_one_iff is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) (k : Nat) (m : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R), Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p k) m)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x m) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) (k : Nat) (m : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R), Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p k) m)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x m) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))] (p : Nat) (k : Nat) (m : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R), Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p k) m)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x m) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
 Case conversion may be inaccurate. Consider using '#align char_p.pow_prime_pow_mul_eq_one_iff CharP.pow_prime_pow_mul_eq_one_iffₓ'. -/
@@ -875,7 +867,7 @@ variable (R) [Ring R] [NoZeroDivisors R] [Nontrivial R] [Finite R]
 
 /- warning: char_p.char_is_prime -> CharP.char_is_prime is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : Finite.{succ u1} R] (p : Nat) [_inst_5 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p], Nat.Prime p
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : Finite.{succ u1} R] (p : Nat) [_inst_5 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))) p], Nat.Prime p
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : Finite.{succ u1} R] (p : Nat) [_inst_5 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p], Nat.Prime p
 Case conversion may be inaccurate. Consider using '#align char_p.char_is_prime CharP.char_is_primeₓ'. -/
@@ -958,7 +950,7 @@ theorem Ring.two_ne_zero {R : Type _} [NonAssocSemiring R] [Nontrivial R] (hR :
 
 /- warning: ring.neg_one_ne_one_of_char_ne_two -> Ring.neg_one_ne_one_of_char_ne_two is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))))
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1)))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))))))))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (Ne.{succ u1} R (Neg.neg.{u1} R (AddGroupWithOne.toNeg.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R _inst_1))))
 Case conversion may be inaccurate. Consider using '#align ring.neg_one_ne_one_of_char_ne_two Ring.neg_one_ne_one_of_char_ne_twoₓ'. -/
@@ -972,7 +964,7 @@ theorem Ring.neg_one_ne_one_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontri
 
 /- warning: ring.eq_self_iff_eq_zero_of_char_ne_two -> Ring.eq_self_iff_eq_zero_of_char_ne_two is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1))))], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (forall {a : R}, Iff (Eq.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))) a) a) (Eq.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))))))))
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1))))], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (forall {a : R}, Iff (Eq.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))))) a) a) (Eq.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))))))))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (forall {a : R}, Iff (Eq.{succ u1} R (Neg.neg.{u1} R (AddGroupWithOne.toNeg.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) a) a) (Eq.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))))))
 Case conversion may be inaccurate. Consider using '#align ring.eq_self_iff_eq_zero_of_char_ne_two Ring.eq_self_iff_eq_zero_of_char_ne_twoₓ'. -/
@@ -993,7 +985,7 @@ variable (R) [NonAssocRing R] [Fintype R] (n : ℕ)
 
 /- warning: char_p_of_ne_zero -> charP_of_ne_zero is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Fintype.{u1} R] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_2) n) -> (forall (i : Nat), (LT.lt.{0} Nat Nat.hasLt i n) -> (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))) i) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))))))) -> (Eq.{1} Nat i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) n)
+  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Fintype.{u1} R] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_2) n) -> (forall (i : Nat), (LT.lt.{0} Nat Nat.hasLt i n) -> (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))))))) i) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))))))) -> (Eq.{1} Nat i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) n)
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Fintype.{u1} R] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_2) n) -> (forall (i : Nat), (LT.lt.{0} Nat instLTNat i n) -> (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R _inst_1) i) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))))) -> (Eq.{1} Nat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) n)
 Case conversion may be inaccurate. Consider using '#align char_p_of_ne_zero charP_of_ne_zeroₓ'. -/
@@ -1018,7 +1010,7 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
 
 /- warning: char_p_of_prime_pow_injective -> charP_of_prime_pow_injective is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_3 : Ring.{u1} R] [_inst_4 : Fintype.{u1} R] (p : Nat) [hp : Fact (Nat.Prime p)] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_4) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) -> (forall (i : Nat), (LE.le.{0} Nat Nat.hasLe i n) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_3))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3))))))) p) i) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3))))))))) -> (Eq.{1} Nat i n)) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))
+  forall (R : Type.{u1}) [_inst_3 : Ring.{u1} R] [_inst_4 : Fintype.{u1} R] (p : Nat) [hp : Fact (Nat.Prime p)] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_4) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) -> (forall (i : Nat), (LE.le.{0} Nat Nat.hasLe i n) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_3))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_3))))))) p) i) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3))))))))) -> (Eq.{1} Nat i n)) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_3))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))
 but is expected to have type
   forall (R : Type.{u1}) [_inst_3 : Ring.{u1} R] [_inst_4 : Fintype.{u1} R] (p : Nat) [hp : Fact (Nat.Prime p)] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_4) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) -> (forall (i : Nat), (LE.le.{0} Nat instLENat i n) -> (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p i)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_3)))))) -> (Eq.{1} Nat i n)) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_3)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))
 Case conversion may be inaccurate. Consider using '#align char_p_of_prime_pow_injective charP_of_prime_pow_injectiveₓ'. -/
@@ -1080,7 +1072,7 @@ section
 
 /- warning: int.cast_inj_on_of_ring_char_ne_two -> Int.cast_injOn_of_ringChar_ne_two is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Set.InjOn.{0, u1} Int R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.hasInsert.{0} Int) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.hasInsert.{0} Int) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))) (Singleton.singleton.{0, 0} Int (Set.{0} Int) (Set.hasSingleton.{0} Int) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Set.InjOn.{0, u1} Int R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))))))) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.hasInsert.{0} Int) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.hasInsert.{0} Int) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))) (Singleton.singleton.{0, 0} Int (Set.{0} Int) (Set.hasSingleton.{0} Int) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (Set.InjOn.{0, u1} Int R (Int.cast.{u1} R (NonAssocRing.toIntCast.{u1} R _inst_1)) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.instInsertSet.{0} Int) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.instInsertSet.{0} Int) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)) (Singleton.singleton.{0, 0} Int (Set.{0} Int) (Set.instSingletonSet.{0} Int) (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
 Case conversion may be inaccurate. Consider using '#align int.cast_inj_on_of_ring_char_ne_two Int.cast_injOn_of_ringChar_ne_twoₓ'. -/
Diff
@@ -733,16 +733,25 @@ theorem charP_to_charZero (R : Type _) [AddGroupWithOne R] [CharP R 0] : CharZer
 #align char_p.char_p_to_char_zero CharP.charP_to_charZero
 -/
 
-#print CharP.cast_eq_mod /-
+/- warning: char_p.cast_eq_mod -> CharP.cast_eq_mod is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) p] (k : Nat), Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))) k) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))) (HMod.hMod.{0, 0, 0} Nat Nat Nat (instHMod.{0} Nat Nat.hasMod) k p))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) p] (k : Nat), Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R _inst_1) k) (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R _inst_1) (HMod.hMod.{0, 0, 0} Nat Nat Nat (instHMod.{0} Nat Nat.instModNat) k p))
+Case conversion may be inaccurate. Consider using '#align char_p.cast_eq_mod CharP.cast_eq_modₓ'. -/
 theorem cast_eq_mod (p : ℕ) [CharP R p] (k : ℕ) : (k : R) = (k % p : ℕ) :=
   calc
     (k : R) = ↑(k % p + p * (k / p)) := by rw [Nat.mod_add_div]
     _ = ↑(k % p) := by simp [cast_eq_zero]
     
 #align char_p.cast_eq_mod CharP.cast_eq_mod
--/
 
-#print CharP.char_ne_zero_of_finite /-
+/- warning: char_p.char_ne_zero_of_finite -> CharP.char_ne_zero_of_finite is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) p] [_inst_3 : Finite.{succ u1} R], Ne.{1} Nat p (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) p] [_inst_3 : Finite.{succ u1} R], Ne.{1} Nat p (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
+Case conversion may be inaccurate. Consider using '#align char_p.char_ne_zero_of_finite CharP.char_ne_zero_of_finiteₓ'. -/
 /-- The characteristic of a finite ring cannot be zero. -/
 theorem char_ne_zero_of_finite (p : ℕ) [CharP R p] [Finite R] : p ≠ 0 :=
   by
@@ -751,7 +760,6 @@ theorem char_ne_zero_of_finite (p : ℕ) [CharP R p] [Finite R] : p ≠ 0 :=
   cases nonempty_fintype R
   exact absurd Nat.cast_injective (not_injective_infinite_finite (coe : ℕ → R))
 #align char_p.char_ne_zero_of_finite CharP.char_ne_zero_of_finite
--/
 
 #print CharP.ringChar_ne_zero_of_finite /-
 theorem ringChar_ne_zero_of_finite [Finite R] : ringChar R ≠ 0 :=
@@ -952,7 +960,7 @@ theorem Ring.two_ne_zero {R : Type _} [NonAssocSemiring R] [Nontrivial R] (hR :
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (Ne.{succ u1} R (Neg.neg.{u1} R (AddGroupWithOne.toNeg.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R _inst_1))))
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (Ne.{succ u1} R (Neg.neg.{u1} R (AddGroupWithOne.toNeg.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R _inst_1))))
 Case conversion may be inaccurate. Consider using '#align ring.neg_one_ne_one_of_char_ne_two Ring.neg_one_ne_one_of_char_ne_twoₓ'. -/
 -- We have `char_p.neg_one_ne_one`, which assumes `[ring R] (p : ℕ) [char_p R p] [fact (2 < p)]`.
 -- This is a version using `ring_char` instead.
@@ -966,7 +974,7 @@ theorem Ring.neg_one_ne_one_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontri
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1))))], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (forall {a : R}, Iff (Eq.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))) a) a) (Eq.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))))))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (forall {a : R}, Iff (Eq.{succ u1} R (Neg.neg.{u1} R (AddGroupWithOne.toNeg.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) a) a) (Eq.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))))))
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (forall {a : R}, Iff (Eq.{succ u1} R (Neg.neg.{u1} R (AddGroupWithOne.toNeg.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) a) a) (Eq.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))))))
 Case conversion may be inaccurate. Consider using '#align ring.eq_self_iff_eq_zero_of_char_ne_two Ring.eq_self_iff_eq_zero_of_char_ne_twoₓ'. -/
 /-- Characteristic `≠ 2` in a domain implies that `-a = a` iff `a = 0`. -/
 theorem Ring.eq_self_iff_eq_zero_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontrivial R]
@@ -987,7 +995,7 @@ variable (R) [NonAssocRing R] [Fintype R] (n : ℕ)
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Fintype.{u1} R] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_2) n) -> (forall (i : Nat), (LT.lt.{0} Nat Nat.hasLt i n) -> (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))) i) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))))))) -> (Eq.{1} Nat i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) n)
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Fintype.{u1} R] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_2) n) -> (forall (i : Nat), (LT.lt.{0} Nat instLTNat i n) -> (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R _inst_1) i) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))))) -> (Eq.{1} Nat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) n)
+  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Fintype.{u1} R] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_2) n) -> (forall (i : Nat), (LT.lt.{0} Nat instLTNat i n) -> (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R _inst_1) i) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))))) -> (Eq.{1} Nat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (NonAssocRing.toAddCommGroupWithOne.{u1} R _inst_1))) n)
 Case conversion may be inaccurate. Consider using '#align char_p_of_ne_zero charP_of_ne_zeroₓ'. -/
 theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0 → i = 0) :
     CharP R n :=
Diff
@@ -1062,15 +1062,11 @@ instance ULift.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP (ULift.{
     where cast_eq_zero_iff n := Iff.trans (ULift.ext_iff _ _) <| CharP.cast_eq_zero_iff R p n
 #align ulift.char_p ULift.charP
 
-/- warning: mul_opposite.char_p -> MulOpposite.charP is a dubious translation:
-lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], CharP.{u1} (MulOpposite.{u1} R) (MulOpposite.addMonoidWithOne.{u1} R _inst_1) p
-but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], CharP.{u1} (MulOpposite.{u1} R) (MulOpposite.instAddMonoidWithOneMulOpposite.{u1} R _inst_1) p
-Case conversion may be inaccurate. Consider using '#align mul_opposite.char_p MulOpposite.charPₓ'. -/
+#print MulOpposite.charP /-
 instance MulOpposite.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP Rᵐᵒᵖ p
     where cast_eq_zero_iff n := MulOpposite.unop_inj.symm.trans <| CharP.cast_eq_zero_iff R p n
 #align mul_opposite.char_p MulOpposite.charP
+-/
 
 section
 
Diff
@@ -149,7 +149,7 @@ theorem CharP.addOrderOf_one (R) [Semiring R] : CharP R (addOrderOf (1 : R)) :=
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) a) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1)))))))) (Dvd.Dvd.{0} Int (semigroupDvd.{0} Int Int.semigroup) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a)
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) a) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (NegZeroClass.toZero.{u1} R (SubNegZeroMonoid.toNegZeroClass.{u1} R (SubtractionMonoid.toSubNegZeroMonoid.{u1} R (AddGroup.toSubtractionMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R _inst_1)))))))) (Dvd.dvd.{0} Int Int.instDvdInt (Nat.cast.{0} Int Int.instNatCastInt p) a)
+  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) a) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (NegZeroClass.toZero.{u1} R (SubNegZeroMonoid.toNegZeroClass.{u1} R (SubtractionMonoid.toSubNegZeroMonoid.{u1} R (AddGroup.toSubtractionMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R _inst_1)))))))) (Dvd.dvd.{0} Int Int.instDvdInt (Nat.cast.{0} Int instNatCastInt p) a)
 Case conversion may be inaccurate. Consider using '#align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iffₓ'. -/
 theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a : ℤ) :
     (a : R) = 0 ↔ (p : ℤ) ∣ a :=
@@ -167,7 +167,7 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) a) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) b)) (Int.ModEq ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a b)
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int Int.instNatCastInt p) a b)
+  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int instNatCastInt p) a b)
 Case conversion may be inaccurate. Consider using '#align char_p.int_coe_eq_int_coe_iff CharP.int_cast_eq_int_cast_iffₓ'. -/
 theorem CharP.int_cast_eq_int_cast_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a b : ℤ) :
     (a : R) = (b : R) ↔ a ≡ b [ZMOD p] := by
@@ -408,7 +408,7 @@ theorem sub_pow_char_pow [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] {n :
 lean 3 declaration is
   forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) a) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) b)) (Int.ModEq ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a b)
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (Ring.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (Ring.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int Int.instNatCastInt p) a b)
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (Ring.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (Ring.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int instNatCastInt p) a b)
 Case conversion may be inaccurate. Consider using '#align eq_iff_modeq_int eq_iff_modEq_intₓ'. -/
 theorem eq_iff_modEq_int [Ring R] (p : ℕ) [CharP R p] (a b : ℤ) : (a : R) = b ↔ a ≡ b [ZMOD p] := by
   rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
 
 ! This file was ported from Lean 3 source module algebra.char_p.basic
-! leanprover-community/mathlib commit ceb887ddf3344dab425292e497fa2af91498437c
+! leanprover-community/mathlib commit 10bf4f825ad729c5653adc039dafa3622e7f93c9
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.RingTheory.Nilpotent
 
 /-!
 # Characteristic of semirings
+
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
 -/
 
 
Diff
@@ -4,14 +4,12 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
 
 ! This file was ported from Lean 3 source module algebra.char_p.basic
-! leanprover-community/mathlib commit 05a78c9451101108e638a0f213fb1bed82483545
+! leanprover-community/mathlib commit ceb887ddf3344dab425292e497fa2af91498437c
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
-import Mathbin.Algebra.Hom.Iterate
 import Mathbin.Data.Int.Modeq
-import Mathbin.Data.Nat.Choose.Dvd
-import Mathbin.Data.Nat.Choose.Sum
+import Mathbin.Data.Nat.Multiplicity
 import Mathbin.GroupTheory.OrderOfElement
 import Mathbin.RingTheory.Nilpotent
 
@@ -22,7 +20,81 @@ import Mathbin.RingTheory.Nilpotent
 
 universe u v
 
-variable (R : Type u)
+open Finset
+
+open BigOperators
+
+variable {R : Type _}
+
+namespace Commute
+
+variable [Semiring R] {p : ℕ} {x y : R}
+
+protected theorem add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ) :
+    (x + y) ^ p ^ n =
+      x ^ p ^ n + y ^ p ^ n +
+        p * ∑ k in Ioo 0 (p ^ n), x ^ k * y ^ (p ^ n - k) * ↑((p ^ n).choose k / p) :=
+  by
+  trans x ^ p ^ n + y ^ p ^ n + ∑ k in Ioo 0 (p ^ n), x ^ k * y ^ (p ^ n - k) * (p ^ n).choose k
+  ·
+    simp_rw [h.add_pow, ← Nat.Ico_zero_eq_range, Nat.Ico_succ_right, Icc_eq_cons_Ico (zero_le _),
+      Finset.sum_cons, Ico_eq_cons_Ioo (pow_pos hp.pos _), Finset.sum_cons, tsub_self, tsub_zero,
+      pow_zero, Nat.choose_zero_right, Nat.choose_self, Nat.cast_one, mul_one, one_mul, ← add_assoc]
+  · congr 1
+    simp_rw [Finset.mul_sum, Nat.cast_comm, mul_assoc _ _ (p : R), ← Nat.cast_mul]
+    refine' Finset.sum_congr rfl fun i hi => _
+    rw [mem_Ioo] at hi
+    rw [Nat.div_mul_cancel (hp.dvd_choose_pow hi.1.ne' hi.2.Ne)]
+#align commute.add_pow_prime_pow_eq Commute.add_pow_prime_pow_eq
+
+protected theorem add_pow_prime_eq (hp : p.Prime) (h : Commute x y) :
+    (x + y) ^ p =
+      x ^ p + y ^ p + p * ∑ k in Finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
+  by simpa using h.add_pow_prime_pow_eq hp 1
+#align commute.add_pow_prime_eq Commute.add_pow_prime_eq
+
+protected theorem exists_add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ) :
+    ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
+  ⟨_, h.add_pow_prime_pow_eq hp n⟩
+#align commute.exists_add_pow_prime_pow_eq Commute.exists_add_pow_prime_pow_eq
+
+protected theorem exists_add_pow_prime_eq (hp : p.Prime) (h : Commute x y) :
+    ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
+  ⟨_, h.add_pow_prime_eq hp⟩
+#align commute.exists_add_pow_prime_eq Commute.exists_add_pow_prime_eq
+
+end Commute
+
+section CommSemiring
+
+variable [CommSemiring R] {p : ℕ} {x y : R}
+
+theorem add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
+    (x + y) ^ p ^ n =
+      x ^ p ^ n + y ^ p ^ n +
+        p * ∑ k in Finset.Ioo 0 (p ^ n), x ^ k * y ^ (p ^ n - k) * ↑((p ^ n).choose k / p) :=
+  (Commute.all x y).add_pow_prime_pow_eq hp n
+#align add_pow_prime_pow_eq add_pow_prime_pow_eq
+
+theorem add_pow_prime_eq (hp : p.Prime) (x y : R) :
+    (x + y) ^ p =
+      x ^ p + y ^ p + p * ∑ k in Finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
+  (Commute.all x y).add_pow_prime_eq hp
+#align add_pow_prime_eq add_pow_prime_eq
+
+theorem exists_add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
+    ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
+  (Commute.all x y).exists_add_pow_prime_pow_eq hp n
+#align exists_add_pow_prime_pow_eq exists_add_pow_prime_pow_eq
+
+theorem exists_add_pow_prime_eq (hp : p.Prime) (x y : R) :
+    ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
+  (Commute.all x y).exists_add_pow_prime_eq hp
+#align exists_add_pow_prime_eq exists_add_pow_prime_eq
+
+end CommSemiring
+
+variable (R)
 
 #print CharP /-
 /- ./././Mathport/Syntax/Translate/Command.lean:388:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
@@ -48,6 +120,7 @@ lean 3 declaration is
 but is expected to have type
   forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], Eq.{succ u1} R (Nat.cast.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1) p) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (AddMonoid.toZero.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1))))
 Case conversion may be inaccurate. Consider using '#align char_p.cast_eq_zero CharP.cast_eq_zeroₓ'. -/
+@[simp]
 theorem CharP.cast_eq_zero [AddMonoidWithOne R] (p : ℕ) [CharP R p] : (p : R) = 0 :=
   (CharP.cast_eq_zero_iff R p p).2 (dvd_refl p)
 #align char_p.cast_eq_zero CharP.cast_eq_zero
@@ -233,41 +306,28 @@ end ringChar
 
 /- warning: add_pow_char_of_commute -> add_pow_char_of_commute is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)))
+  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [hp : Fact (Nat.Prime p)] [_inst_2 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)))
+  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [hp : Fact (Nat.Prime p)] [_inst_2 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)))
 Case conversion may be inaccurate. Consider using '#align add_pow_char_of_commute add_pow_char_of_commuteₓ'. -/
-theorem add_pow_char_of_commute [Semiring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R)
+theorem add_pow_char_of_commute [Semiring R] {p : ℕ} [hp : Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x + y) ^ p = x ^ p + y ^ p :=
   by
-  rw [Commute.add_pow h, Finset.sum_range_succ_comm, tsub_self, pow_zero, Nat.choose_self]
-  rw [Nat.cast_one, mul_one, mul_one]; congr 1
-  convert Finset.sum_eq_single 0 _ _
-  · simp only [mul_one, one_mul, Nat.choose_zero_right, tsub_zero, Nat.cast_one, pow_zero]
-  · intro b h1 h2
-    suffices (p.choose b : R) = 0 by
-      rw [this]
-      simp
-    rw [CharP.cast_eq_zero_iff R p]
-    exact Nat.Prime.dvd_choose_self (Fact.out _) h2 (Finset.mem_range.1 h1)
-  · intro h1
-    contrapose! h1
-    rw [Finset.mem_range]
-    exact Nat.Prime.pos (Fact.out _)
+  let ⟨r, hr⟩ := h.exists_add_pow_prime_eq hp.out
+  simp [hr]
 #align add_pow_char_of_commute add_pow_char_of_commute
 
 /- warning: add_pow_char_pow_of_commute -> add_pow_char_pow_of_commute is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))))
+  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} {n : Nat} [hp : Fact (Nat.Prime p)] [_inst_2 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))))
 but is expected to have type
-  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))))
+  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [n : Fact (Nat.Prime p)] [hp : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] {_inst_2 : Nat} (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p _inst_2)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p _inst_2)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p _inst_2))))
 Case conversion may be inaccurate. Consider using '#align add_pow_char_pow_of_commute add_pow_char_pow_of_commuteₓ'. -/
-theorem add_pow_char_pow_of_commute [Semiring R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ}
-    (x y : R) (h : Commute x y) : (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n :=
+theorem add_pow_char_pow_of_commute [Semiring R] {p n : ℕ} [hp : Fact p.Prime] [CharP R p] (x y : R)
+    (h : Commute x y) : (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n :=
   by
-  induction n; · simp
-  rw [pow_succ', pow_mul, pow_mul, pow_mul, n_ih]
-  apply add_pow_char_of_commute; apply Commute.pow_pow h
+  let ⟨r, hr⟩ := h.exists_add_pow_prime_pow_eq hp.out n
+  simp [hr]
 #align add_pow_char_pow_of_commute add_pow_char_pow_of_commute
 
 /- warning: sub_pow_char_of_commute -> sub_pow_char_of_commute is a dubious translation:
@@ -472,7 +532,7 @@ theorem frobenius_one : frobenius R p 1 = 1 :=
 
 /- warning: monoid_hom.map_frobenius -> MonoidHom.map_frobenius is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} S (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (fun (_x : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) f (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (fun (_x : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) f x))
+  forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (f : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R), Eq.{succ u1} S (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f x))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
 Case conversion may be inaccurate. Consider using '#align monoid_hom.map_frobenius MonoidHom.map_frobeniusₓ'. -/
@@ -482,7 +542,7 @@ theorem MonoidHom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
 
 /- warning: ring_hom.map_frobenius -> RingHom.map_frobenius is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) g (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) g x))
+  forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (g : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R), Eq.{succ u1} S (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g x))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
 Case conversion may be inaccurate. Consider using '#align ring_hom.map_frobenius RingHom.map_frobeniusₓ'. -/
@@ -492,7 +552,7 @@ theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
 
 /- warning: monoid_hom.map_iterate_frobenius -> MonoidHom.map_iterate_frobenius is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} S (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (fun (_x : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) f (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (fun (_x : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) f x))
+  forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (f : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u1} S (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f (Nat.iterate.{succ u2} R (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u1} S (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u1) (succ u2), max (succ u2) (succ u1)} (MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (fun (_x : MonoidHom.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u2, u1} R S (MulZeroOneClass.toMulOneClass.{u2} R (NonAssocSemiring.toMulZeroOneClass.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} S (NonAssocSemiring.toMulZeroOneClass.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) f x))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
 Case conversion may be inaccurate. Consider using '#align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobeniusₓ'. -/
@@ -503,7 +563,7 @@ theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
 
 /- warning: ring_hom.map_iterate_frobenius -> RingHom.map_iterate_frobenius is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) g (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) g x))
+  forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (g : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] [_inst_5 : CharP.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u1} S (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g (Nat.iterate.{succ u2} R (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (fun (_x : RingHom.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u2, u2} R R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))) (frobenius.{u2} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u1} S (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u1, u1} S S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (frobenius.{u1} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (fun (_x : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) g x))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
 Case conversion may be inaccurate. Consider using '#align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobeniusₓ'. -/
@@ -978,7 +1038,7 @@ instance [CharP S q] : CharP (R × S) (Nat.lcm p q)
 
 /- warning: prod.char_p -> Prod.charP is a dubious translation:
 lean 3 declaration is
-  forall (R : Type.{u1}) (S : Type.{u2}) [_inst_1 : AddMonoidWithOne.{u1} R] [_inst_2 : AddMonoidWithOne.{u2} S] (p : Nat) [_inst_3 : CharP.{u1} R _inst_1 p] [_inst_4 : CharP.{u2} S _inst_2 p], CharP.{max u1 u2} (Prod.{u1, u2} R S) (Prod.addMonoidWithOne.{u1, u2} R S _inst_1 _inst_2) p
+  forall (R : Type.{u2}) (S : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u2} R] [_inst_2 : AddMonoidWithOne.{u1} S] (p : Nat) [_inst_3 : CharP.{u2} R _inst_1 p] [_inst_4 : CharP.{u1} S _inst_2 p], CharP.{max u2 u1} (Prod.{u2, u1} R S) (Prod.addMonoidWithOne.{u2, u1} R S _inst_1 _inst_2) p
 but is expected to have type
   forall (R : Type.{u1}) (S : Type.{u2}) [_inst_1 : AddMonoidWithOne.{u1} R] [_inst_2 : AddMonoidWithOne.{u2} S] (p : Nat) [_inst_3 : CharP.{u1} R _inst_1 p] [_inst_4 : CharP.{u2} S _inst_2 p], CharP.{max u2 u1} (Prod.{u1, u2} R S) (Prod.instAddMonoidWithOneProd.{u1, u2} R S _inst_1 _inst_2) p
 Case conversion may be inaccurate. Consider using '#align prod.char_p Prod.charPₓ'. -/
@@ -989,11 +1049,15 @@ instance Prod.charP [CharP S p] : CharP (R × S) p := by convert Nat.lcm.charP R
 
 end Prod
 
-#print ULift.charP /-
+/- warning: ulift.char_p -> ULift.charP is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u2}) [_inst_1 : AddMonoidWithOne.{u2} R] (p : Nat) [_inst_2 : CharP.{u2} R _inst_1 p], CharP.{max u2 u1} (ULift.{u1, u2} R) (ULift.addMonoidWithOne.{u2, u1} R _inst_1) p
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], CharP.{max u2 u1} (ULift.{u2, u1} R) (ULift.addMonoidWithOne.{u1, u2} R _inst_1) p
+Case conversion may be inaccurate. Consider using '#align ulift.char_p ULift.charPₓ'. -/
 instance ULift.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP (ULift.{v} R) p
     where cast_eq_zero_iff n := Iff.trans (ULift.ext_iff _ _) <| CharP.cast_eq_zero_iff R p n
 #align ulift.char_p ULift.charP
--/
 
 /- warning: mul_opposite.char_p -> MulOpposite.charP is a dubious translation:
 lean 3 declaration is
Diff
@@ -24,6 +24,7 @@ universe u v
 
 variable (R : Type u)
 
+#print CharP /-
 /- ./././Mathport/Syntax/Translate/Command.lean:388:30: infer kinds are unsupported in Lean 4: #[`cast_eq_zero_iff] [] -/
 /-- The generator of the kernel of the unique homomorphism ℕ → R for a semiring R.
 
@@ -39,20 +40,41 @@ This example is formalized in `counterexamples/char_p_zero_ne_char_zero`.
 class CharP [AddMonoidWithOne R] (p : ℕ) : Prop where
   cast_eq_zero_iff : ∀ x : ℕ, (x : R) = 0 ↔ p ∣ x
 #align char_p CharP
+-/
 
+/- warning: char_p.cast_eq_zero -> CharP.cast_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1)))) p) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1))))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], Eq.{succ u1} R (Nat.cast.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1) p) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (AddMonoid.toZero.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1))))
+Case conversion may be inaccurate. Consider using '#align char_p.cast_eq_zero CharP.cast_eq_zeroₓ'. -/
 theorem CharP.cast_eq_zero [AddMonoidWithOne R] (p : ℕ) [CharP R p] : (p : R) = 0 :=
   (CharP.cast_eq_zero_iff R p p).2 (dvd_refl p)
 #align char_p.cast_eq_zero CharP.cast_eq_zero
 
+/- warning: char_p.cast_card_eq_zero -> CharP.cast_card_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] [_inst_2 : Fintype.{u1} R], Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1))))) (Fintype.card.{u1} R _inst_2)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1)))))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] [_inst_2 : Fintype.{u1} R], Eq.{succ u1} R (Nat.cast.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1)) (Fintype.card.{u1} R _inst_2)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (NegZeroClass.toZero.{u1} R (SubNegZeroMonoid.toNegZeroClass.{u1} R (SubtractionMonoid.toSubNegZeroMonoid.{u1} R (AddGroup.toSubtractionMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align char_p.cast_card_eq_zero CharP.cast_card_eq_zeroₓ'. -/
 @[simp]
 theorem CharP.cast_card_eq_zero [AddGroupWithOne R] [Fintype R] : (Fintype.card R : R) = 0 := by
   rw [← nsmul_one, card_nsmul_eq_zero]
 #align char_p.cast_card_eq_zero CharP.cast_card_eq_zero
 
+#print CharP.addOrderOf_one /-
 theorem CharP.addOrderOf_one (R) [Semiring R] : CharP R (addOrderOf (1 : R)) :=
   ⟨fun n => by rw [← Nat.smul_one_eq_coe, addOrderOf_dvd_iff_nsmul_eq_zero]⟩
 #align char_p.add_order_of_one CharP.addOrderOf_one
+-/
 
+/- warning: char_p.int_cast_eq_zero_iff -> CharP.int_cast_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) a) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1)))))))) (Dvd.Dvd.{0} Int (semigroupDvd.{0} Int Int.semigroup) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) a) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (NegZeroClass.toZero.{u1} R (SubNegZeroMonoid.toNegZeroClass.{u1} R (SubtractionMonoid.toSubNegZeroMonoid.{u1} R (AddGroup.toSubtractionMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R _inst_1)))))))) (Dvd.dvd.{0} Int Int.instDvdInt (Nat.cast.{0} Int Int.instNatCastInt p) a)
+Case conversion may be inaccurate. Consider using '#align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iffₓ'. -/
 theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a : ℤ) :
     (a : R) = 0 ↔ (p : ℤ) ∣ a :=
   by
@@ -65,20 +87,31 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
     rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 
-theorem CharP.int_coe_eq_int_coe_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a b : ℤ) :
+/- warning: char_p.int_coe_eq_int_coe_iff -> CharP.int_cast_eq_int_cast_iff is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) a) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R _inst_1)))) b)) (Int.ModEq ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a b)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : AddGroupWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R _inst_1) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (AddGroupWithOne.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int Int.instNatCastInt p) a b)
+Case conversion may be inaccurate. Consider using '#align char_p.int_coe_eq_int_coe_iff CharP.int_cast_eq_int_cast_iffₓ'. -/
+theorem CharP.int_cast_eq_int_cast_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a b : ℤ) :
     (a : R) = (b : R) ↔ a ≡ b [ZMOD p] := by
   rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
-#align char_p.int_coe_eq_int_coe_iff CharP.int_coe_eq_int_coe_iff
+#align char_p.int_coe_eq_int_coe_iff CharP.int_cast_eq_int_cast_iff
 
+#print CharP.eq /-
 theorem CharP.eq [AddMonoidWithOne R] {p q : ℕ} (c1 : CharP R p) (c2 : CharP R q) : p = q :=
   Nat.dvd_antisymm ((CharP.cast_eq_zero_iff R p q).1 (CharP.cast_eq_zero _ _))
     ((CharP.cast_eq_zero_iff R q p).1 (CharP.cast_eq_zero _ _))
 #align char_p.eq CharP.eq
+-/
 
-instance CharP.of_charZero [AddMonoidWithOne R] [CharZero R] : CharP R 0 :=
+#print CharP.ofCharZero /-
+instance CharP.ofCharZero [AddMonoidWithOne R] [CharZero R] : CharP R 0 :=
   ⟨fun x => by rw [zero_dvd_iff, ← Nat.cast_zero, Nat.cast_inj]⟩
-#align char_p.of_char_zero CharP.of_charZero
+#align char_p.of_char_zero CharP.ofCharZero
+-/
 
+#print CharP.exists /-
 theorem CharP.exists [NonAssocSemiring R] : ∃ p, CharP R p :=
   letI := Classical.decEq R
   by_cases
@@ -105,64 +138,105 @@ theorem CharP.exists [NonAssocSemiring R] : ∃ p, CharP R p :=
             of_not_not (not_not_of_not_imp <| Nat.find_spec (not_forall.1 H)),
             MulZeroClass.zero_mul]⟩⟩⟩
 #align char_p.exists CharP.exists
+-/
 
-theorem CharP.existsUnique [NonAssocSemiring R] : ∃! p, CharP R p :=
+#print CharP.exists_unique /-
+theorem CharP.exists_unique [NonAssocSemiring R] : ∃! p, CharP R p :=
   let ⟨c, H⟩ := CharP.exists R
   ⟨c, H, fun y H2 => CharP.eq R H2 H⟩
-#align char_p.exists_unique CharP.existsUnique
+#align char_p.exists_unique CharP.exists_unique
+-/
 
+#print CharP.congr /-
 theorem CharP.congr {R : Type u} [AddMonoidWithOne R] {p : ℕ} (q : ℕ) [hq : CharP R q] (h : q = p) :
     CharP R p :=
   h ▸ hq
 #align char_p.congr CharP.congr
+-/
 
+#print ringChar /-
 /-- Noncomputable function that outputs the unique characteristic of a semiring. -/
 noncomputable def ringChar [NonAssocSemiring R] : ℕ :=
-  Classical.choose (CharP.existsUnique R)
+  Classical.choose (CharP.exists_unique R)
 #align ring_char ringChar
+-/
 
 namespace ringChar
 
 variable [NonAssocSemiring R]
 
+/- warning: ring_char.spec -> ringChar.spec is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] (x : Nat), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)))))) x) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))))))) (Dvd.Dvd.{0} Nat Nat.hasDvd (ringChar.{u1} R _inst_1) x)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] (x : Nat), Iff (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocSemiring.toNatCast.{u1} R _inst_1) x) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))))) (Dvd.dvd.{0} Nat Nat.instDvdNat (ringChar.{u1} R _inst_1) x)
+Case conversion may be inaccurate. Consider using '#align ring_char.spec ringChar.specₓ'. -/
 theorem spec : ∀ x : ℕ, (x : R) = 0 ↔ ringChar R ∣ x := by
-  letI := (Classical.choose_spec (CharP.existsUnique R)).1 <;> unfold ringChar <;>
+  letI := (Classical.choose_spec (CharP.exists_unique R)).1 <;> unfold ringChar <;>
     exact CharP.cast_eq_zero_iff R (ringChar R)
 #align ring_char.spec ringChar.spec
 
+#print ringChar.eq /-
 theorem eq (p : ℕ) [C : CharP R p] : ringChar R = p :=
-  ((Classical.choose_spec (CharP.existsUnique R)).2 p C).symm
+  ((Classical.choose_spec (CharP.exists_unique R)).2 p C).symm
 #align ring_char.eq ringChar.eq
+-/
 
+#print ringChar.charP /-
 instance charP : CharP R (ringChar R) :=
   ⟨spec R⟩
 #align ring_char.char_p ringChar.charP
+-/
 
 variable {R}
 
+#print ringChar.of_eq /-
 theorem of_eq {p : ℕ} (h : ringChar R = p) : CharP R p :=
   CharP.congr (ringChar R) h
 #align ring_char.of_eq ringChar.of_eq
+-/
 
+#print ringChar.eq_iff /-
 theorem eq_iff {p : ℕ} : ringChar R = p ↔ CharP R p :=
   ⟨of_eq, @eq R _ p⟩
 #align ring_char.eq_iff ringChar.eq_iff
+-/
 
+/- warning: ring_char.dvd -> ringChar.dvd is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] {x : Nat}, (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)))))) x) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))))))) -> (Dvd.Dvd.{0} Nat Nat.hasDvd (ringChar.{u1} R _inst_1) x)
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] {x : Nat}, (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocSemiring.toNatCast.{u1} R _inst_1) x) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))))) -> (Dvd.dvd.{0} Nat Nat.instDvdNat (ringChar.{u1} R _inst_1) x)
+Case conversion may be inaccurate. Consider using '#align ring_char.dvd ringChar.dvdₓ'. -/
 theorem dvd {x : ℕ} (hx : (x : R) = 0) : ringChar R ∣ x :=
   (spec R x).1 hx
 #align ring_char.dvd ringChar.dvd
 
+#print ringChar.eq_zero /-
 @[simp]
 theorem eq_zero [CharZero R] : ringChar R = 0 :=
   eq R 0
 #align ring_char.eq_zero ringChar.eq_zero
+-/
 
+/- warning: ring_char.nat.cast_ring_char -> ringChar.Nat.cast_ringChar is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R], Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)))))) (ringChar.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R], Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocSemiring.toNatCast.{u1} R _inst_1) (ringChar.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))))
+Case conversion may be inaccurate. Consider using '#align ring_char.nat.cast_ring_char ringChar.Nat.cast_ringCharₓ'. -/
 @[simp]
 theorem Nat.cast_ringChar : (ringChar R : R) = 0 := by rw [ringChar.spec]
 #align ring_char.nat.cast_ring_char ringChar.Nat.cast_ringChar
 
 end ringChar
 
+/- warning: add_pow_char_of_commute -> add_pow_char_of_commute is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y p)))
+Case conversion may be inaccurate. Consider using '#align add_pow_char_of_commute add_pow_char_of_commuteₓ'. -/
 theorem add_pow_char_of_commute [Semiring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x + y) ^ p = x ^ p + y ^ p :=
   by
@@ -182,6 +256,12 @@ theorem add_pow_char_of_commute [Semiring R] {p : ℕ} [Fact p.Prime] [CharP R p
     exact Nat.Prime.pos (Fact.out _)
 #align add_pow_char_of_commute add_pow_char_of_commute
 
+/- warning: add_pow_char_pow_of_commute -> add_pow_char_pow_of_commute is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : Semiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))))
+Case conversion may be inaccurate. Consider using '#align add_pow_char_pow_of_commute add_pow_char_pow_of_commuteₓ'. -/
 theorem add_pow_char_pow_of_commute [Semiring R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ}
     (x y : R) (h : Commute x y) : (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n :=
   by
@@ -190,6 +270,12 @@ theorem add_pow_char_pow_of_commute [Semiring R] {p : ℕ} [Fact p.Prime] [CharP
   apply add_pow_char_of_commute; apply Commute.pow_pow h
 #align add_pow_char_pow_of_commute add_pow_char_pow_of_commute
 
+/- warning: sub_pow_char_of_commute -> sub_pow_char_of_commute is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p] (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) y p)))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) y p)))
+Case conversion may be inaccurate. Consider using '#align sub_pow_char_of_commute sub_pow_char_of_commuteₓ'. -/
 theorem sub_pow_char_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x - y) ^ p = x ^ p - y ^ p :=
   by
@@ -197,6 +283,12 @@ theorem sub_pow_char_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x
   simp; repeat' infer_instance
 #align sub_pow_char_of_commute sub_pow_char_of_commute
 
+/- warning: sub_pow_char_pow_of_commute -> sub_pow_char_pow_of_commute is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_1))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] {n : Nat} (x : R) (y : R), (Commute.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) x y) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R _inst_1)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))))
+Case conversion may be inaccurate. Consider using '#align sub_pow_char_pow_of_commute sub_pow_char_pow_of_commuteₓ'. -/
 theorem sub_pow_char_pow_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ} (x y : R)
     (h : Commute x y) : (x - y) ^ p ^ n = x ^ p ^ n - y ^ p ^ n :=
   by
@@ -205,30 +297,66 @@ theorem sub_pow_char_pow_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p
   apply sub_pow_char_of_commute; apply Commute.pow_pow h
 #align sub_pow_char_pow_of_commute sub_pow_char_pow_of_commute
 
+/- warning: add_pow_char -> add_pow_char is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) p) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y p))
+Case conversion may be inaccurate. Consider using '#align add_pow_char add_pow_charₓ'. -/
 theorem add_pow_char [CommSemiring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R) :
     (x + y) ^ p = x ^ p + y ^ p :=
   add_pow_char_of_commute _ _ _ (Commute.all _ _)
 #align add_pow_char add_pow_char
 
+/- warning: add_pow_char_pow -> add_pow_char_pow is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)))
+Case conversion may be inaccurate. Consider using '#align add_pow_char_pow add_pow_char_powₓ'. -/
 theorem add_pow_char_pow [CommSemiring R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ} (x y : R) :
     (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n :=
   add_pow_char_pow_of_commute _ _ _ (Commute.all _ _)
 #align add_pow_char_pow add_pow_char_pow
 
+/- warning: sub_pow_char -> sub_pow_char is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y p))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y) p) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x p) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) y p))
+Case conversion may be inaccurate. Consider using '#align sub_pow_char sub_pow_charₓ'. -/
 theorem sub_pow_char [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R) :
     (x - y) ^ p = x ^ p - y ^ p :=
   sub_pow_char_of_commute _ _ _ (Commute.all _ _)
 #align sub_pow_char sub_pow_char
 
+/- warning: sub_pow_char_pow -> sub_pow_char_pow is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] {p : Nat} [_inst_2 : Fact (Nat.Prime p)] [_inst_3 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] {n : Nat} (x : R) (y : R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) y (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)))
+Case conversion may be inaccurate. Consider using '#align sub_pow_char_pow sub_pow_char_powₓ'. -/
 theorem sub_pow_char_pow [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ} (x y : R) :
     (x - y) ^ p ^ n = x ^ p ^ n - y ^ p ^ n :=
   sub_pow_char_pow_of_commute _ _ _ (Commute.all _ _)
 #align sub_pow_char_pow sub_pow_char_pow
 
+/- warning: eq_iff_modeq_int -> eq_iff_modEq_int is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) a) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) b)) (Int.ModEq ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) p) a b)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] (a : Int) (b : Int), Iff (Eq.{succ u1} R (Int.cast.{u1} R (Ring.toIntCast.{u1} R _inst_1) a) (Int.cast.{u1} R (Ring.toIntCast.{u1} R _inst_1) b)) (Int.ModEq (Nat.cast.{0} Int Int.instNatCastInt p) a b)
+Case conversion may be inaccurate. Consider using '#align eq_iff_modeq_int eq_iff_modEq_intₓ'. -/
 theorem eq_iff_modEq_int [Ring R] (p : ℕ) [CharP R p] (a b : ℤ) : (a : R) = b ↔ a ≡ b [ZMOD p] := by
   rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
 #align eq_iff_modeq_int eq_iff_modEq_int
 
+/- warning: char_p.neg_one_ne_one -> CharP.neg_one_ne_one is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p] [_inst_3 : Fact (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) p)], Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p] [_inst_3 : Fact (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) p)], Ne.{succ u1} R (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))
+Case conversion may be inaccurate. Consider using '#align char_p.neg_one_ne_one CharP.neg_one_ne_oneₓ'. -/
 theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1 : R) ≠ (1 : R) :=
   by
   suffices (2 : R) ≠ 0 by
@@ -243,6 +371,12 @@ theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1
   linarith
 #align char_p.neg_one_ne_one CharP.neg_one_ne_one
 
+/- warning: char_p.neg_one_pow_char -> CharP.neg_one_pow_char is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) p) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) p) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align char_p.neg_one_pow_char CharP.neg_one_pow_charₓ'. -/
 theorem CharP.neg_one_pow_char [CommRing R] (p : ℕ) [CharP R p] [Fact p.Prime] :
     (-1 : R) ^ p = -1 := by
   rw [eq_neg_iff_add_eq_zero]
@@ -250,6 +384,12 @@ theorem CharP.neg_one_pow_char [CommRing R] (p : ℕ) [CharP R p] [Fact p.Prime]
   rw [← add_pow_char, add_left_neg, zero_pow (Fact.out (Nat.Prime p)).Pos]
 #align char_p.neg_one_pow_char CharP.neg_one_pow_char
 
+/- warning: char_p.neg_one_pow_char_pow -> CharP.neg_one_pow_char_pow is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) (n : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) (n : Nat) [_inst_2 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] [_inst_3 : Fact (Nat.Prime p)], Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align char_p.neg_one_pow_char_pow CharP.neg_one_pow_char_powₓ'. -/
 theorem CharP.neg_one_pow_char_pow [CommRing R] (p n : ℕ) [CharP R p] [Fact p.Prime] :
     (-1 : R) ^ p ^ n = -1 := by
   rw [eq_neg_iff_add_eq_zero]
@@ -257,6 +397,12 @@ theorem CharP.neg_one_pow_char_pow [CommRing R] (p n : ℕ) [CharP R p] [Fact p.
   rw [← add_pow_char_pow, add_left_neg, zero_pow (pow_pos (Fact.out (Nat.Prime p)).Pos _)]
 #align char_p.neg_one_pow_char_pow CharP.neg_one_pow_char_pow
 
+/- warning: ring_hom.char_p_iff_char_p -> RingHom.charP_iff_charP is a dubious translation:
+lean 3 declaration is
+  forall {K : Type.{u1}} {L : Type.{u2}} [_inst_1 : DivisionRing.{u1} K] [_inst_2 : Semiring.{u2} L] [_inst_3 : Nontrivial.{u2} L], (RingHom.{u1, u2} K L (NonAssocRing.toNonAssocSemiring.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K _inst_1))) (Semiring.toNonAssocSemiring.{u2} L _inst_2)) -> (forall (p : Nat), Iff (CharP.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K _inst_1)))) p) (CharP.{u2} L (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} L (NonAssocSemiring.toAddCommMonoidWithOne.{u2} L (Semiring.toNonAssocSemiring.{u2} L _inst_2))) p))
+but is expected to have type
+  forall {K : Type.{u2}} {L : Type.{u1}} [_inst_1 : DivisionRing.{u2} K] [_inst_2 : Semiring.{u1} L] [_inst_3 : Nontrivial.{u1} L], (RingHom.{u2, u1} K L (NonAssocRing.toNonAssocSemiring.{u2} K (Ring.toNonAssocRing.{u2} K (DivisionRing.toRing.{u2} K _inst_1))) (Semiring.toNonAssocSemiring.{u1} L _inst_2)) -> (forall (p : Nat), Iff (CharP.{u2} K (AddGroupWithOne.toAddMonoidWithOne.{u2} K (Ring.toAddGroupWithOne.{u2} K (DivisionRing.toRing.{u2} K _inst_1))) p) (CharP.{u1} L (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} L (NonAssocSemiring.toAddCommMonoidWithOne.{u1} L (Semiring.toNonAssocSemiring.{u1} L _inst_2))) p))
+Case conversion may be inaccurate. Consider using '#align ring_hom.char_p_iff_char_p RingHom.charP_iff_charPₓ'. -/
 theorem RingHom.charP_iff_charP {K L : Type _} [DivisionRing K] [Semiring L] [Nontrivial L]
     (f : K →+* L) (p : ℕ) : CharP K p ↔ CharP L p := by
   simp only [charP_iff, ← f.injective.eq_iff, map_natCast f, f.map_zero]
@@ -269,6 +415,7 @@ section CommSemiring
 variable [CommSemiring R] {S : Type v} [CommSemiring S] (f : R →* S) (g : R →+* S) (p : ℕ)
   [Fact p.Prime] [CharP R p] [CharP S p] (x y : R)
 
+#print frobenius /-
 /-- The frobenius map that sends x to x^p -/
 def frobenius : R →+* R where
   toFun x := x ^ p
@@ -277,50 +424,111 @@ def frobenius : R →+* R where
   map_zero' := zero_pow (Fact.out (Nat.Prime p)).Pos
   map_add' := add_pow_char R
 #align frobenius frobenius
+-/
 
 variable {R}
 
+/- warning: frobenius_def -> frobenius_def is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p)
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x p)
+Case conversion may be inaccurate. Consider using '#align frobenius_def frobenius_defₓ'. -/
 theorem frobenius_def : frobenius R p x = x ^ p :=
   rfl
 #align frobenius_def frobenius_def
 
+/- warning: iterate_frobenius -> iterate_frobenius is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x) (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))
+Case conversion may be inaccurate. Consider using '#align iterate_frobenius iterate_frobeniusₓ'. -/
 theorem iterate_frobenius (n : ℕ) : (frobenius R p^[n]) x = x ^ p ^ n :=
   by
   induction n; · simp
   rw [Function.iterate_succ', pow_succ', pow_mul, Function.comp_apply, frobenius_def, n_ih]
 #align iterate_frobenius iterate_frobenius
 
+/- warning: frobenius_mul -> frobenius_mul is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) x y)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (NonUnitalNonAssocSemiring.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Semiring.toNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
+Case conversion may be inaccurate. Consider using '#align frobenius_mul frobenius_mulₓ'. -/
 theorem frobenius_mul : frobenius R p (x * y) = frobenius R p x * frobenius R p y :=
   (frobenius R p).map_mul x y
 #align frobenius_mul frobenius_mul
 
+/- warning: frobenius_one -> frobenius_one is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) _inst_1))))
+Case conversion may be inaccurate. Consider using '#align frobenius_one frobenius_oneₓ'. -/
 theorem frobenius_one : frobenius R p 1 = 1 :=
   one_pow _
 #align frobenius_one frobenius_one
 
+/- warning: monoid_hom.map_frobenius -> MonoidHom.map_frobenius is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} S (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (fun (_x : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) f (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (fun (_x : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) f x))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
+Case conversion may be inaccurate. Consider using '#align monoid_hom.map_frobenius MonoidHom.map_frobeniusₓ'. -/
 theorem MonoidHom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
   f.map_pow x p
 #align monoid_hom.map_frobenius MonoidHom.map_frobenius
 
+/- warning: ring_hom.map_frobenius -> RingHom.map_frobenius is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) g (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) g x))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
+Case conversion may be inaccurate. Consider using '#align ring_hom.map_frobenius RingHom.map_frobeniusₓ'. -/
 theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
   g.map_pow x p
 #align ring_hom.map_frobenius RingHom.map_frobenius
 
+/- warning: monoid_hom.map_iterate_frobenius -> MonoidHom.map_iterate_frobenius is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} S (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (fun (_x : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) f (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (fun (_x : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) => R -> S) (MonoidHom.hasCoeToFun.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) f x))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (f : MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u2} S (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u1, u2} (MonoidHom.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (MonoidHom.monoidHomClass.{u1, u2} R S (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u2} S (NonAssocSemiring.toMulZeroOneClass.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))) f x))
+Case conversion may be inaccurate. Consider using '#align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobeniusₓ'. -/
 theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
     f ((frobenius R p^[n]) x) = (frobenius S p^[n]) (f x) :=
   Function.Semiconj.iterate_right (f.map_frobenius p) n x
 #align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobenius
 
+/- warning: ring_hom.map_iterate_frobenius -> RingHom.map_iterate_frobenius is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) g (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (coeFn.{succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => S -> S) (RingHom.hasCoeToFun.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (fun (_x : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) g x))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (g : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] [_inst_5 : CharP.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) p] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (a : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) a) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4)) n x)) (Nat.iterate.{succ u2} S (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S (fun (_x : S) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : S) => S) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u2, u2} S S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (frobenius.{u2} S _inst_2 p _inst_3 _inst_5)) n (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) g x))
+Case conversion may be inaccurate. Consider using '#align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobeniusₓ'. -/
 theorem RingHom.map_iterate_frobenius (n : ℕ) :
     g ((frobenius R p^[n]) x) = (frobenius S p^[n]) (g x) :=
   g.toMonoidHom.map_iterate_frobenius p x n
 #align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobenius
 
+/- warning: monoid_hom.iterate_map_frobenius -> MonoidHom.iterate_map_frobenius is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (fun (_x : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) => R -> R) (MonoidHom.hasCoeToFun.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) f) n (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (fun (_x : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) => R -> R) (MonoidHom.hasCoeToFun.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) f) n x))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MonoidHom.monoidHomClass.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) f) n (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulOneClass.toMul.{u1} R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MonoidHom.monoidHomClass.{u1, u1} R R (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (MulZeroOneClass.toMulOneClass.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) f) n x))
+Case conversion may be inaccurate. Consider using '#align monoid_hom.iterate_map_frobenius MonoidHom.iterate_map_frobeniusₓ'. -/
 theorem MonoidHom.iterate_map_frobenius (f : R →* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
     (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
   f.iterate_map_pow _ _ _
 #align monoid_hom.iterate_map_frobenius MonoidHom.iterate_map_frobenius
 
+/- warning: ring_hom.iterate_map_frobenius -> RingHom.iterate_map_frobenius is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) f) n (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) f) n x))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (x : R) (f : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (p : Nat) [_inst_6 : Fact (Nat.Prime p)] [_inst_7 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) f) n (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_6 _inst_7) (Nat.iterate.{succ u1} R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) f) n x))
+Case conversion may be inaccurate. Consider using '#align ring_hom.iterate_map_frobenius RingHom.iterate_map_frobeniusₓ'. -/
 theorem RingHom.iterate_map_frobenius (f : R →+* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
     (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
   f.iterate_map_pow _ _ _
@@ -328,14 +536,32 @@ theorem RingHom.iterate_map_frobenius (f : R →+* R) (p : ℕ) [Fact p.Prime] [
 
 variable (R)
 
+/- warning: frobenius_zero -> frobenius_zero is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p], Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) 0 (Zero.toOfNat0.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (CommMonoidWithZero.toZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) (CommSemiring.toCommMonoidWithZero.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) _inst_1))))
+Case conversion may be inaccurate. Consider using '#align frobenius_zero frobenius_zeroₓ'. -/
 theorem frobenius_zero : frobenius R p 0 = 0 :=
   (frobenius R p).map_zero
 #align frobenius_zero frobenius_zero
 
+/- warning: frobenius_add -> frobenius_add is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) x y)) (HAdd.hAdd.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (instHAdd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Distrib.toAdd.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (NonUnitalNonAssocSemiring.toDistrib.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Semiring.toNonAssocSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) _inst_1)))))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) y))
+Case conversion may be inaccurate. Consider using '#align frobenius_add frobenius_addₓ'. -/
 theorem frobenius_add : frobenius R p (x + y) = frobenius R p x + frobenius R p y :=
   (frobenius R p).map_add x y
 #align frobenius_add frobenius_add
 
+/- warning: frobenius_nat_cast -> frobenius_nat_cast is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) n)) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) n)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (n : Nat), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (frobenius.{u1} R _inst_1 p _inst_3 _inst_4) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (Nat.cast.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (Semiring.toNatCast.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) (CommSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Nat.cast.{u1} R (Semiring.toNatCast.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n)) _inst_1)) n)
+Case conversion may be inaccurate. Consider using '#align frobenius_nat_cast frobenius_nat_castₓ'. -/
 theorem frobenius_nat_cast (n : ℕ) : frobenius R p n = n :=
   map_natCast (frobenius R p) n
 #align frobenius_nat_cast frobenius_nat_cast
@@ -344,14 +570,28 @@ open BigOperators
 
 variable {R}
 
+/- warning: list_sum_pow_char -> list_sum_pow_char is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (l : List.{u1} R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (List.sum.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) l) p) (List.sum.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (List.map.{u1, u1} R R (fun (_x : R) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) _x p) l))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] (l : List.{u1} R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (List.sum.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) l) p) (List.sum.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)) (List.map.{u1, u1} R R (fun (_x : R) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) _x p) l))
+Case conversion may be inaccurate. Consider using '#align list_sum_pow_char list_sum_pow_charₓ'. -/
 theorem list_sum_pow_char (l : List R) : l.Sum ^ p = (l.map (· ^ p)).Sum :=
   (frobenius R p).map_list_sum _
 #align list_sum_pow_char list_sum_pow_char
 
+#print multiset_sum_pow_char /-
 theorem multiset_sum_pow_char (s : Multiset R) : s.Sum ^ p = (s.map (· ^ p)).Sum :=
   (frobenius R p).map_multiset_sum _
 #align multiset_sum_pow_char multiset_sum_pow_char
+-/
 
+/- warning: sum_pow_char -> sum_pow_char is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p] {ι : Type.{u2}} (s : Finset.{u2} ι) (f : ι -> R), Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) s (fun (i : ι) => f i)) p) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) s (fun (i : ι) => HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (f i) p))
+but is expected to have type
+  forall {R : Type.{u2}} [_inst_1 : CommSemiring.{u2} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u2} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} R (NonAssocSemiring.toAddCommMonoidWithOne.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) p] {ι : Type.{u1}} (s : Finset.{u1} ι) (f : ι -> R), Eq.{succ u2} R (HPow.hPow.{u2, 0, u2} R Nat R (instHPow.{u2, 0} R Nat (Monoid.Pow.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (Finset.sum.{u2, u1} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) s (fun (i : ι) => f i)) p) (Finset.sum.{u2, u1} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1)))) s (fun (i : ι) => HPow.hPow.{u2, 0, u2} R Nat R (instHPow.{u2, 0} R Nat (Monoid.Pow.{u2} R (MonoidWithZero.toMonoid.{u2} R (Semiring.toMonoidWithZero.{u2} R (CommSemiring.toSemiring.{u2} R _inst_1))))) (f i) p))
+Case conversion may be inaccurate. Consider using '#align sum_pow_char sum_pow_charₓ'. -/
 theorem sum_pow_char {ι : Type _} (s : Finset ι) (f : ι → R) :
     (∑ i in s, f i) ^ p = ∑ i in s, f i ^ p :=
   (frobenius R p).map_sum _ _
@@ -364,10 +604,22 @@ section CommRing
 variable [CommRing R] {S : Type v} [CommRing S] (f : R →* S) (g : R →+* S) (p : ℕ) [Fact p.Prime]
   [CharP R p] [CharP S p] (x y : R)
 
+/- warning: frobenius_neg -> frobenius_neg is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x)) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) x)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) x)) (Neg.neg.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Ring.toNeg.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x))
+Case conversion may be inaccurate. Consider using '#align frobenius_neg frobenius_negₓ'. -/
 theorem frobenius_neg : frobenius R p (-x) = -frobenius R p x :=
   (frobenius R p).map_neg x
 #align frobenius_neg frobenius_neg
 
+/- warning: frobenius_sub -> frobenius_sub is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R) (y : R), Eq.{succ u1} R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x y)) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) y))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R) (y : R), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) x y)) (HSub.hSub.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) y) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (instHSub.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (Ring.toSub.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) (CommRing.toRing.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) x) _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) x) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4) y))
+Case conversion may be inaccurate. Consider using '#align frobenius_sub frobenius_subₓ'. -/
 theorem frobenius_sub : frobenius R p (x - y) = frobenius R p x - frobenius R p y :=
   (frobenius R p).map_sub x y
 #align frobenius_sub frobenius_sub
@@ -376,6 +628,12 @@ end CommRing
 
 end frobenius
 
+/- warning: frobenius_inj -> frobenius_inj is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p], Function.Injective.{succ u1, succ u1} R R (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) => R -> R) (RingHom.hasCoeToFun.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))] (p : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p], Function.Injective.{succ u1, succ u1} R R (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => R) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (frobenius.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) p _inst_3 _inst_4))
+Case conversion may be inaccurate. Consider using '#align frobenius_inj frobenius_injₓ'. -/
 theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
     Function.Injective (frobenius R p) := fun x h H =>
   by
@@ -384,15 +642,21 @@ theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP
   exact IsReduced.eq_zero _ ⟨_, H⟩
 #align frobenius_inj frobenius_inj
 
+/- warning: is_square_of_char_two' -> isSquare_of_charTwo' is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Finite.{succ u1} R] [_inst_2 : CommRing.{u1} R] [_inst_3 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_2)))] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))] (a : R), IsSquare.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R (CommRing.toRing.{u1} R _inst_2))) a
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Finite.{succ u1} R] [_inst_2 : CommRing.{u1} R] [_inst_3 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_2))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_2)))))] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_2))) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))] (a : R), IsSquare.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_2)))) a
+Case conversion may be inaccurate. Consider using '#align is_square_of_char_two' isSquare_of_charTwo'ₓ'. -/
 /-- If `ring_char R = 2`, where `R` is a finite reduced commutative ring,
 then every `a : R` is a square. -/
-theorem isSquare_of_char_two' {R : Type _} [Finite R] [CommRing R] [IsReduced R] [CharP R 2]
+theorem isSquare_of_charTwo' {R : Type _} [Finite R] [CommRing R] [IsReduced R] [CharP R 2]
     (a : R) : IsSquare a := by
   cases nonempty_fintype R
   exact
     Exists.imp (fun b h => pow_two b ▸ Eq.symm h)
       (((Fintype.bijective_iff_injective_and_card _).mpr ⟨frobenius_inj R 2, rfl⟩).Surjective a)
-#align is_square_of_char_two' isSquare_of_char_two'
+#align is_square_of_char_two' isSquare_of_charTwo'
 
 namespace CharP
 
@@ -400,17 +664,22 @@ section
 
 variable [NonAssocRing R]
 
+#print CharP.charP_to_charZero /-
 theorem charP_to_charZero (R : Type _) [AddGroupWithOne R] [CharP R 0] : CharZero R :=
   charZero_of_inj_zero fun n h0 => eq_zero_of_zero_dvd ((cast_eq_zero_iff R 0 n).mp h0)
 #align char_p.char_p_to_char_zero CharP.charP_to_charZero
+-/
 
+#print CharP.cast_eq_mod /-
 theorem cast_eq_mod (p : ℕ) [CharP R p] (k : ℕ) : (k : R) = (k % p : ℕ) :=
   calc
     (k : R) = ↑(k % p + p * (k / p)) := by rw [Nat.mod_add_div]
     _ = ↑(k % p) := by simp [cast_eq_zero]
     
 #align char_p.cast_eq_mod CharP.cast_eq_mod
+-/
 
+#print CharP.char_ne_zero_of_finite /-
 /-- The characteristic of a finite ring cannot be zero. -/
 theorem char_ne_zero_of_finite (p : ℕ) [CharP R p] [Finite R] : p ≠ 0 :=
   by
@@ -419,10 +688,13 @@ theorem char_ne_zero_of_finite (p : ℕ) [CharP R p] [Finite R] : p ≠ 0 :=
   cases nonempty_fintype R
   exact absurd Nat.cast_injective (not_injective_infinite_finite (coe : ℕ → R))
 #align char_p.char_ne_zero_of_finite CharP.char_ne_zero_of_finite
+-/
 
+#print CharP.ringChar_ne_zero_of_finite /-
 theorem ringChar_ne_zero_of_finite [Finite R] : ringChar R ≠ 0 :=
   char_ne_zero_of_finite R (ringChar R)
 #align char_p.ring_char_ne_zero_of_finite CharP.ringChar_ne_zero_of_finite
+-/
 
 end
 
@@ -430,6 +702,12 @@ section CommRing
 
 variable [CommRing R] [IsReduced R] {R}
 
+/- warning: char_p.pow_prime_pow_mul_eq_one_iff -> CharP.pow_prime_pow_mul_eq_one_iff is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))] (p : Nat) (k : Nat) (m : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) p] (x : R), Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p k) m)) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R (CommRing.toRing.{u1} R _inst_1)))) x m) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] [_inst_2 : IsReduced.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))] (p : Nat) (k : Nat) (m : Nat) [_inst_3 : Fact (Nat.Prime p)] [_inst_4 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))) p] (x : R), Iff (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p k) m)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (MonoidWithZero.toMonoid.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) x m) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align char_p.pow_prime_pow_mul_eq_one_iff CharP.pow_prime_pow_mul_eq_one_iffₓ'. -/
 @[simp]
 theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x : R) :
     x ^ (p ^ k * m) = 1 ↔ x ^ m = 1 :=
@@ -450,15 +728,23 @@ open Nat
 
 variable [NonAssocSemiring R]
 
+#print CharP.char_ne_one /-
 theorem char_ne_one [Nontrivial R] (p : ℕ) [hc : CharP R p] : p ≠ 1 := fun hp : p = 1 =>
   have : (1 : R) = 0 := by simpa using (cast_eq_zero_iff R p 1).mpr (hp ▸ dvd_refl p)
   absurd this one_ne_zero
 #align char_p.char_ne_one CharP.char_ne_one
+-/
 
 section NoZeroDivisors
 
 variable [NoZeroDivisors R]
 
+/- warning: char_p.char_is_prime_of_two_le -> CharP.char_is_prime_of_two_le is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)))] (p : Nat) [hc : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], (LE.le.{0} Nat Nat.hasLe (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) p) -> (Nat.Prime p)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))] (p : Nat) [hc : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], (LE.le.{0} Nat instLENat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) p) -> (Nat.Prime p)
+Case conversion may be inaccurate. Consider using '#align char_p.char_is_prime_of_two_le CharP.char_is_prime_of_two_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (d «expr ∣ » p) -/
 theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.Prime p :=
   suffices ∀ (d) (_ : d ∣ p), d = 1 ∨ d = p from Nat.prime_def_lt''.mpr ⟨hp, this⟩
@@ -483,6 +769,12 @@ section Nontrivial
 
 variable [Nontrivial R]
 
+/- warning: char_p.char_is_prime_or_zero -> CharP.char_is_prime_or_zero is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)))] [_inst_3 : Nontrivial.{u1} R] (p : Nat) [hc : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], Or (Nat.Prime p) (Eq.{1} Nat p (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))] [_inst_3 : Nontrivial.{u1} R] (p : Nat) [hc : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], Or (Nat.Prime p) (Eq.{1} Nat p (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))
+Case conversion may be inaccurate. Consider using '#align char_p.char_is_prime_or_zero CharP.char_is_prime_or_zeroₓ'. -/
 theorem char_is_prime_or_zero (p : ℕ) [hc : CharP R p] : Nat.Prime p ∨ p = 0 :=
   match p, hc with
   | 0, _ => Or.inr rfl
@@ -490,6 +782,12 @@ theorem char_is_prime_or_zero (p : ℕ) [hc : CharP R p] : Nat.Prime p ∨ p = 0
   | m + 2, hc => Or.inl (@char_is_prime_of_two_le R _ _ (m + 2) hc (Nat.le_add_left 2 m))
 #align char_p.char_is_prime_or_zero CharP.char_is_prime_or_zero
 
+/- warning: char_p.char_is_prime_of_pos -> CharP.char_is_prime_of_pos is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)))] [_inst_3 : Nontrivial.{u1} R] (p : Nat) [_inst_4 : NeZero.{0} Nat Nat.hasZero p] [_inst_5 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], Fact (Nat.Prime p)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))] [_inst_3 : Nontrivial.{u1} R] (p : Nat) [_inst_4 : NeZero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero) p] [_inst_5 : CharP.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)) p], Fact (Nat.Prime p)
+Case conversion may be inaccurate. Consider using '#align char_p.char_is_prime_of_pos CharP.char_is_prime_of_posₓ'. -/
 theorem char_is_prime_of_pos (p : ℕ) [NeZero p] [CharP R p] : Fact p.Prime :=
   ⟨(CharP.char_is_prime_or_zero R _).resolve_right <| NeZero.ne p⟩
 #align char_p.char_is_prime_of_pos CharP.char_is_prime_of_pos
@@ -504,6 +802,12 @@ section Ring
 
 variable (R) [Ring R] [NoZeroDivisors R] [Nontrivial R] [Finite R]
 
+/- warning: char_p.char_is_prime -> CharP.char_is_prime is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : Finite.{succ u1} R] (p : Nat) [_inst_5 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) p], Nat.Prime p
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : Ring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))] [_inst_3 : Nontrivial.{u1} R] [_inst_4 : Finite.{succ u1} R] (p : Nat) [_inst_5 : CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_1)) p], Nat.Prime p
+Case conversion may be inaccurate. Consider using '#align char_p.char_is_prime CharP.char_is_primeₓ'. -/
 theorem char_is_prime (p : ℕ) [CharP R p] : p.Prime :=
   Or.resolve_right (char_is_prime_or_zero R p) (char_ne_zero_of_finite R p)
 #align char_p.char_is_prime CharP.char_is_prime
@@ -526,10 +830,13 @@ instance (priority := 100) [CharP R 1] : Subsingleton R :=
       _ = 0 := by rw [MulZeroClass.zero_mul]
       
 
+#print CharP.false_of_nontrivial_of_char_one /-
 theorem false_of_nontrivial_of_char_one [Nontrivial R] [CharP R 1] : False :=
   false_of_nontrivial_of_subsingleton R
 #align char_p.false_of_nontrivial_of_char_one CharP.false_of_nontrivial_of_char_one
+-/
 
+#print CharP.ringChar_ne_one /-
 theorem ringChar_ne_one [Nontrivial R] : ringChar R ≠ 1 :=
   by
   intro h
@@ -537,12 +844,21 @@ theorem ringChar_ne_one [Nontrivial R] : ringChar R ≠ 1 :=
   symm
   rw [← Nat.cast_one, ringChar.spec, h]
 #align char_p.ring_char_ne_one CharP.ringChar_ne_one
+-/
 
+#print CharP.nontrivial_of_char_ne_one /-
 theorem nontrivial_of_char_ne_one {v : ℕ} (hv : v ≠ 1) [hr : CharP R v] : Nontrivial R :=
   ⟨⟨(1 : ℕ), 0, fun h =>
       hv <| by rwa [CharP.cast_eq_zero_iff _ v, Nat.dvd_one] at h <;> assumption⟩⟩
 #align char_p.nontrivial_of_char_ne_one CharP.nontrivial_of_char_ne_one
+-/
 
+/- warning: char_p.ring_char_of_prime_eq_zero -> CharP.ringChar_of_prime_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : Nontrivial.{u1} R] {p : Nat}, (Nat.Prime p) -> (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1)))))) p) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))))))) -> (Eq.{1} Nat (ringChar.{u1} R _inst_1) p)
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : Nontrivial.{u1} R] {p : Nat}, (Nat.Prime p) -> (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocSemiring.toNatCast.{u1} R _inst_1) p) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1))))) -> (Eq.{1} Nat (ringChar.{u1} R _inst_1) p)
+Case conversion may be inaccurate. Consider using '#align char_p.ring_char_of_prime_eq_zero CharP.ringChar_of_prime_eq_zeroₓ'. -/
 theorem ringChar_of_prime_eq_zero [Nontrivial R] {p : ℕ} (hprime : Nat.Prime p)
     (hp0 : (p : R) = 0) : ringChar R = p :=
   Or.resolve_left ((Nat.dvd_prime hprime).1 (ringChar.dvd hp0)) ringChar_ne_one
@@ -554,6 +870,12 @@ end CharP
 
 section
 
+/- warning: ring.two_ne_zero -> Ring.two_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R _inst_1) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Ne.{succ u1} R (OfNat.ofNat.{u1} R 2 (OfNat.mk.{u1} R 2 (bit0.{u1} R (Distrib.toHasAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1))) (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} R (NonAssocSemiring.toAddCommMonoidWithOne.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R _inst_1)))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : NonAssocSemiring.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R _inst_1) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (Ne.{succ u1} R (OfNat.ofNat.{u1} R 2 (instOfNat.{u1} R 2 (NonAssocSemiring.toNatCast.{u1} R _inst_1) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align ring.two_ne_zero Ring.two_ne_zeroₓ'. -/
 /-- We have `2 ≠ 0` in a nontrivial ring whose characteristic is not `2`. -/
 @[protected]
 theorem Ring.two_ne_zero {R : Type _} [NonAssocSemiring R] [Nontrivial R] (hR : ringChar R ≠ 2) :
@@ -563,6 +885,12 @@ theorem Ring.two_ne_zero {R : Type _} [NonAssocSemiring R] [Nontrivial R] (hR :
   exact mt (or_iff_left hR).mp CharP.ringChar_ne_one
 #align ring.two_ne_zero Ring.two_ne_zero
 
+/- warning: ring.neg_one_ne_one_of_char_ne_two -> Ring.neg_one_ne_one_of_char_ne_two is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Ne.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1))))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (Ne.{succ u1} R (Neg.neg.{u1} R (AddGroupWithOne.toNeg.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R _inst_1)))) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R _inst_1))))
+Case conversion may be inaccurate. Consider using '#align ring.neg_one_ne_one_of_char_ne_two Ring.neg_one_ne_one_of_char_ne_twoₓ'. -/
 -- We have `char_p.neg_one_ne_one`, which assumes `[ring R] (p : ℕ) [char_p R p] [fact (2 < p)]`.
 -- This is a version using `ring_char` instead.
 /-- Characteristic `≠ 2` and nontrivial implies that `-1 ≠ 1`. -/
@@ -571,6 +899,12 @@ theorem Ring.neg_one_ne_one_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontri
   Ring.two_ne_zero hR (neg_eq_iff_add_eq_zero.mp h)
 #align ring.neg_one_ne_one_of_char_ne_two Ring.neg_one_ne_one_of_char_ne_two
 
+/- warning: ring.eq_self_iff_eq_zero_of_char_ne_two -> Ring.eq_self_iff_eq_zero_of_char_ne_two is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1))))], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (forall {a : R}, Iff (Eq.{succ u1} R (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))) a) a) (Eq.{succ u1} R a (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)) (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (forall {a : R}, Iff (Eq.{succ u1} R (Neg.neg.{u1} R (AddGroupWithOne.toNeg.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) a) a) (Eq.{succ u1} R a (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align ring.eq_self_iff_eq_zero_of_char_ne_two Ring.eq_self_iff_eq_zero_of_char_ne_twoₓ'. -/
 /-- Characteristic `≠ 2` in a domain implies that `-a = a` iff `a = 0`. -/
 theorem Ring.eq_self_iff_eq_zero_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontrivial R]
     [NoZeroDivisors R] (hR : ringChar R ≠ 2) {a : R} : -a = a ↔ a = 0 :=
@@ -586,6 +920,12 @@ section
 
 variable (R) [NonAssocRing R] [Fintype R] (n : ℕ)
 
+/- warning: char_p_of_ne_zero -> charP_of_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Fintype.{u1} R] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_2) n) -> (forall (i : Nat), (LT.lt.{0} Nat Nat.hasLt i n) -> (Eq.{succ u1} R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))) i) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R _inst_1)))))))) -> (Eq.{1} Nat i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) n)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Fintype.{u1} R] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_2) n) -> (forall (i : Nat), (LT.lt.{0} Nat instLTNat i n) -> (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R _inst_1) i) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MulZeroOneClass.toZero.{u1} R (NonAssocSemiring.toMulZeroOneClass.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)))))) -> (Eq.{1} Nat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)) n)
+Case conversion may be inaccurate. Consider using '#align char_p_of_ne_zero charP_of_ne_zeroₓ'. -/
 theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0 → i = 0) :
     CharP R n :=
   {
@@ -605,6 +945,12 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
         rw [Nat.cast_mul, H, MulZeroClass.zero_mul] }
 #align char_p_of_ne_zero charP_of_ne_zero
 
+/- warning: char_p_of_prime_pow_injective -> charP_of_prime_pow_injective is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_3 : Ring.{u1} R] [_inst_4 : Fintype.{u1} R] (p : Nat) [hp : Fact (Nat.Prime p)] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_4) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n)) -> (forall (i : Nat), (LE.le.{0} Nat Nat.hasLe i n) -> (Eq.{succ u1} R (HPow.hPow.{u1, 0, u1} R Nat R (instHPow.{u1, 0} R Nat (Monoid.Pow.{u1} R (Ring.toMonoid.{u1} R _inst_3))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3))))))) p) i) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3))))))))) -> (Eq.{1} Nat i n)) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3))) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat (Monoid.Pow.{0} Nat Nat.monoid)) p n))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_3 : Ring.{u1} R] [_inst_4 : Fintype.{u1} R] (p : Nat) [hp : Fact (Nat.Prime p)] (n : Nat), (Eq.{1} Nat (Fintype.card.{u1} R _inst_4) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n)) -> (forall (i : Nat), (LE.le.{0} Nat instLENat i n) -> (Eq.{succ u1} R (Nat.cast.{u1} R (NonAssocRing.toNatCast.{u1} R (Ring.toNonAssocRing.{u1} R _inst_3)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p i)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_3)))))) -> (Eq.{1} Nat i n)) -> (CharP.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (Ring.toAddGroupWithOne.{u1} R _inst_3)) (HPow.hPow.{0, 0, 0} Nat Nat Nat (instHPow.{0, 0} Nat Nat instPowNat) p n))
+Case conversion may be inaccurate. Consider using '#align char_p_of_prime_pow_injective charP_of_prime_pow_injectiveₓ'. -/
 theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fact p.Prime] (n : ℕ)
     (hn : Fintype.card R = p ^ n) (hR : ∀ i ≤ n, (p ^ i : R) = 0 → i = n) : CharP R (p ^ n) :=
   by
@@ -630,6 +976,12 @@ instance [CharP S q] : CharP (R × S) (Nat.lcm p q)
     where cast_eq_zero_iff := by
     simp [Prod.ext_iff, CharP.cast_eq_zero_iff R p, CharP.cast_eq_zero_iff S q, Nat.lcm_dvd_iff]
 
+/- warning: prod.char_p -> Prod.charP is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) (S : Type.{u2}) [_inst_1 : AddMonoidWithOne.{u1} R] [_inst_2 : AddMonoidWithOne.{u2} S] (p : Nat) [_inst_3 : CharP.{u1} R _inst_1 p] [_inst_4 : CharP.{u2} S _inst_2 p], CharP.{max u1 u2} (Prod.{u1, u2} R S) (Prod.addMonoidWithOne.{u1, u2} R S _inst_1 _inst_2) p
+but is expected to have type
+  forall (R : Type.{u1}) (S : Type.{u2}) [_inst_1 : AddMonoidWithOne.{u1} R] [_inst_2 : AddMonoidWithOne.{u2} S] (p : Nat) [_inst_3 : CharP.{u1} R _inst_1 p] [_inst_4 : CharP.{u2} S _inst_2 p], CharP.{max u2 u1} (Prod.{u1, u2} R S) (Prod.instAddMonoidWithOneProd.{u1, u2} R S _inst_1 _inst_2) p
+Case conversion may be inaccurate. Consider using '#align prod.char_p Prod.charPₓ'. -/
 /-- The characteristic of the product of two rings of the same characteristic
   is the same as the characteristic of the rings -/
 instance Prod.charP [CharP S p] : CharP (R × S) p := by convert Nat.lcm.charP R S p p <;> simp
@@ -637,16 +989,30 @@ instance Prod.charP [CharP S p] : CharP (R × S) p := by convert Nat.lcm.charP R
 
 end Prod
 
+#print ULift.charP /-
 instance ULift.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP (ULift.{v} R) p
     where cast_eq_zero_iff n := Iff.trans (ULift.ext_iff _ _) <| CharP.cast_eq_zero_iff R p n
 #align ulift.char_p ULift.charP
+-/
 
+/- warning: mul_opposite.char_p -> MulOpposite.charP is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], CharP.{u1} (MulOpposite.{u1} R) (MulOpposite.addMonoidWithOne.{u1} R _inst_1) p
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p], CharP.{u1} (MulOpposite.{u1} R) (MulOpposite.instAddMonoidWithOneMulOpposite.{u1} R _inst_1) p
+Case conversion may be inaccurate. Consider using '#align mul_opposite.char_p MulOpposite.charPₓ'. -/
 instance MulOpposite.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP Rᵐᵒᵖ p
     where cast_eq_zero_iff n := MulOpposite.unop_inj.symm.trans <| CharP.cast_eq_zero_iff R p n
 #align mul_opposite.char_p MulOpposite.charP
 
 section
 
+/- warning: int.cast_inj_on_of_ring_char_ne_two -> Int.cast_injOn_of_ringChar_ne_two is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) -> (Set.InjOn.{0, u1} Int R ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int R (HasLiftT.mk.{1, succ u1} Int R (CoeTCₓ.coe.{1, succ u1} Int R (Int.castCoe.{u1} R (AddGroupWithOne.toHasIntCast.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R _inst_1)))))) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.hasInsert.{0} Int) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.hasInsert.{0} Int) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))) (Singleton.singleton.{0, 0} Int (Set.{0} Int) (Set.hasSingleton.{0} Int) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : NonAssocRing.{u1} R] [_inst_2 : Nontrivial.{u1} R], (Ne.{1} Nat (ringChar.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R _inst_1)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) -> (Set.InjOn.{0, u1} Int R (Int.cast.{u1} R (NonAssocRing.toIntCast.{u1} R _inst_1)) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.instInsertSet.{0} Int) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) (Insert.insert.{0, 0} Int (Set.{0} Int) (Set.instInsertSet.{0} Int) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)) (Singleton.singleton.{0, 0} Int (Set.{0} Int) (Set.instSingletonSet.{0} Int) (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
+Case conversion may be inaccurate. Consider using '#align int.cast_inj_on_of_ring_char_ne_two Int.cast_injOn_of_ringChar_ne_twoₓ'. -/
 /-- If two integers from `{0, 1, -1}` result in equal elements in a ring `R`
 that is nontrivial and of characteristic not `2`, then they are equal. -/
 theorem Int.cast_injOn_of_ringChar_ne_two {R : Type _} [NonAssocRing R] [Nontrivial R]
@@ -685,10 +1051,22 @@ namespace NeZero
 
 variable (R) [AddMonoidWithOne R] {r : R} {n p : ℕ} {a : ℕ+}
 
+/- warning: ne_zero.of_not_dvd -> NeZero.of_not_dvd is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] {n : Nat} {p : Nat} [_inst_2 : CharP.{u1} R _inst_1 p], (Not (Dvd.Dvd.{0} Nat Nat.hasDvd p n)) -> (NeZero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1)))) n))
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] {n : Nat} {p : Nat} [_inst_2 : CharP.{u1} R _inst_1 p], (Not (Dvd.dvd.{0} Nat Nat.instDvdNat p n)) -> (NeZero.{u1} R (AddMonoid.toZero.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1)) (Nat.cast.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1) n))
+Case conversion may be inaccurate. Consider using '#align ne_zero.of_not_dvd NeZero.of_not_dvdₓ'. -/
 theorem of_not_dvd [CharP R p] (h : ¬p ∣ n) : NeZero (n : R) :=
   ⟨(CharP.cast_eq_zero_iff R p n).Not.mpr h⟩
 #align ne_zero.of_not_dvd NeZero.of_not_dvd
 
+/- warning: ne_zero.not_char_dvd -> NeZero.not_char_dvd is a dubious translation:
+lean 3 declaration is
+  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p] (k : Nat) [h : NeZero.{u1} R (AddZeroClass.toHasZero.{u1} R (AddMonoid.toAddZeroClass.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat R (HasLiftT.mk.{1, succ u1} Nat R (CoeTCₓ.coe.{1, succ u1} Nat R (Nat.castCoe.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1)))) k)], Not (Dvd.Dvd.{0} Nat Nat.hasDvd p k)
+but is expected to have type
+  forall (R : Type.{u1}) [_inst_1 : AddMonoidWithOne.{u1} R] (p : Nat) [_inst_2 : CharP.{u1} R _inst_1 p] (k : Nat) [h : NeZero.{u1} R (AddMonoid.toZero.{u1} R (AddMonoidWithOne.toAddMonoid.{u1} R _inst_1)) (Nat.cast.{u1} R (AddMonoidWithOne.toNatCast.{u1} R _inst_1) k)], Not (Dvd.dvd.{0} Nat Nat.instDvdNat p k)
+Case conversion may be inaccurate. Consider using '#align ne_zero.not_char_dvd NeZero.not_char_dvdₓ'. -/
 theorem not_char_dvd (p : ℕ) [CharP R p] (k : ℕ) [h : NeZero (k : R)] : ¬p ∣ k := by
   rwa [← CharP.cast_eq_zero_iff R p k, ← Ne.def, ← neZero_iff]
 #align ne_zero.not_char_dvd NeZero.not_char_dvd
Diff
@@ -97,12 +97,13 @@ theorem CharP.exists [NonAssocSemiring R] : ∃ p, CharP R p :=
                   ⟨by
                     rwa [← Nat.mod_add_div x (Nat.find (not_forall.1 H)), Nat.cast_add,
                       Nat.cast_mul,
-                      of_not_not (not_not_of_not_imp <| Nat.find_spec (not_forall.1 H)), zero_mul,
-                      add_zero] at H1,
+                      of_not_not (not_not_of_not_imp <| Nat.find_spec (not_forall.1 H)),
+                      MulZeroClass.zero_mul, add_zero] at H1,
                     H2⟩)),
           fun H1 => by
           rw [← Nat.mul_div_cancel' H1, Nat.cast_mul,
-            of_not_not (not_not_of_not_imp <| Nat.find_spec (not_forall.1 H)), zero_mul]⟩⟩⟩
+            of_not_not (not_not_of_not_imp <| Nat.find_spec (not_forall.1 H)),
+            MulZeroClass.zero_mul]⟩⟩⟩
 #align char_p.exists CharP.exists
 
 theorem CharP.existsUnique [NonAssocSemiring R] : ∃! p, CharP R p :=
@@ -522,7 +523,7 @@ instance (priority := 100) [CharP R 1] : Subsingleton R :=
       r = 1 * r := by rw [one_mul]
       _ = (1 : ℕ) * r := by rw [Nat.cast_one]
       _ = 0 * r := by rw [CharP.cast_eq_zero]
-      _ = 0 := by rw [zero_mul]
+      _ = 0 := by rw [MulZeroClass.zero_mul]
       
 
 theorem false_of_nontrivial_of_char_one [Nontrivial R] [CharP R 1] : False :=
@@ -594,13 +595,14 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
       intro k
       constructor
       · intro h
-        rw [← Nat.mod_add_div k n, Nat.cast_add, Nat.cast_mul, H, zero_mul, add_zero] at h
+        rw [← Nat.mod_add_div k n, Nat.cast_add, Nat.cast_mul, H, MulZeroClass.zero_mul,
+          add_zero] at h
         rw [Nat.dvd_iff_mod_eq_zero]
         apply hR _ (Nat.mod_lt _ _) h
         rw [← hn, Fintype.card_pos_iff]
         exact ⟨0⟩
       · rintro ⟨k, rfl⟩
-        rw [Nat.cast_mul, H, zero_mul] }
+        rw [Nat.cast_mul, H, MulZeroClass.zero_mul] }
 #align char_p_of_ne_zero charP_of_ne_zero
 
 theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fact p.Prime] (n : ℕ)
Diff
@@ -458,7 +458,7 @@ section NoZeroDivisors
 
 variable [NoZeroDivisors R]
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (d «expr ∣ » p) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (d «expr ∣ » p) -/
 theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.Prime p :=
   suffices ∀ (d) (_ : d ∣ p), d = 1 ∨ d = p from Nat.prime_def_lt''.mpr ⟨hp, this⟩
   fun (d : ℕ) (hdvd : ∃ e, p = d * e) =>
Diff
@@ -50,7 +50,7 @@ theorem CharP.cast_card_eq_zero [AddGroupWithOne R] [Fintype R] : (Fintype.card
 #align char_p.cast_card_eq_zero CharP.cast_card_eq_zero
 
 theorem CharP.addOrderOf_one (R) [Semiring R] : CharP R (addOrderOf (1 : R)) :=
-  ⟨fun n => by rw [← Nat.smul_one_eq_coe, add_orderOf_dvd_iff_nsmul_eq_zero]⟩
+  ⟨fun n => by rw [← Nat.smul_one_eq_coe, addOrderOf_dvd_iff_nsmul_eq_zero]⟩
 #align char_p.add_order_of_one CharP.addOrderOf_one
 
 theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a : ℤ) :

Changes in mathlib4

mathlib3
mathlib4
chore: remove a subsingleton instance which leads to unreasonable instance search paths (#12445)
Diff
@@ -466,8 +466,9 @@ section NonAssocSemiring
 
 variable {R} [NonAssocSemiring R]
 
--- see Note [lower instance priority]
-instance (priority := 100) CharOne.subsingleton [CharP R 1] : Subsingleton R :=
+-- This lemma is not an instance, to make sure that trying to prove `α` is a subsingleton does
+-- not try to find a ring structure on `α`, which can be expensive.
+lemma CharOne.subsingleton [CharP R 1] : Subsingleton R :=
   Subsingleton.intro <|
     suffices ∀ r : R, r = 0 from fun a b => show a = b by rw [this a, this b]
     fun r =>
@@ -477,8 +478,9 @@ instance (priority := 100) CharOne.subsingleton [CharP R 1] : Subsingleton R :=
       _ = 0 * r := by rw [CharP.cast_eq_zero]
       _ = 0 := by rw [zero_mul]
 
-theorem false_of_nontrivial_of_char_one [Nontrivial R] [CharP R 1] : False :=
-  false_of_nontrivial_of_subsingleton R
+theorem false_of_nontrivial_of_char_one [Nontrivial R] [CharP R 1] : False := by
+  have : Subsingleton R := CharOne.subsingleton
+  exact false_of_nontrivial_of_subsingleton R
 #align char_p.false_of_nontrivial_of_char_one CharP.false_of_nontrivial_of_char_one
 
 theorem ringChar_ne_one [Nontrivial R] : ringChar R ≠ 1 := by
chore: split RingTheory.Nilpotent (#12184)

Mathlib.RingTheory.Nilpotent has a few very simple definitions (Mathlib.Data.Nat.Lattice is sufficient to state them), but needs some pretty heavy imports (ideals, linear algebra) towards the end. This change moves the heavier parts into a new file.

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
 -/
 import Mathlib.Algebra.CharP.ExpChar
-import Mathlib.RingTheory.Nilpotent
+import Mathlib.RingTheory.Nilpotent.Defs
 
 #align_import algebra.char_p.basic from "leanprover-community/mathlib"@"47a1a73351de8dd6c8d3d32b569c8e434b03ca47"
 
chore: use a variable in Data.Nat.Cast.Defs (#12254)
Diff
@@ -521,7 +521,7 @@ protected theorem Ring.two_ne_zero {R : Type*} [NonAssocSemiring R] [Nontrivial
 /-- Characteristic `≠ 2` and nontrivial implies that `-1 ≠ 1`. -/
 theorem Ring.neg_one_ne_one_of_char_ne_two {R : Type*} [NonAssocRing R] [Nontrivial R]
     (hR : ringChar R ≠ 2) : (-1 : R) ≠ 1 := fun h =>
-  Ring.two_ne_zero hR (one_add_one_eq_two (α := R) ▸ neg_eq_iff_add_eq_zero.mp h)
+  Ring.two_ne_zero hR (one_add_one_eq_two (R := R) ▸ neg_eq_iff_add_eq_zero.mp h)
 #align ring.neg_one_ne_one_of_char_ne_two Ring.neg_one_ne_one_of_char_ne_two
 
 /-- Characteristic `≠ 2` in a domain implies that `-a = a` iff `a = 0`. -/
chore: Rename nat_cast/int_cast/rat_cast to natCast/intCast/ratCast (#11486)

Now that I am defining NNRat.cast, I want a definitive answer to this naming issue. Plenty of lemmas in mathlib already use natCast/intCast/ratCast over nat_cast/int_cast/rat_cast, and this matches with the general expectation that underscore-separated name parts correspond to a single declaration.

Diff
@@ -140,7 +140,7 @@ theorem CharP.addOrderOf_one (R) [Semiring R] : CharP R (addOrderOf (1 : R)) :=
   ⟨fun n => by rw [← Nat.smul_one_eq_coe, addOrderOf_dvd_iff_nsmul_eq_zero]⟩
 #align char_p.add_order_of_one CharP.addOrderOf_one
 
-theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a : ℤ) :
+theorem CharP.intCast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a : ℤ) :
     (a : R) = 0 ↔ (p : ℤ) ∣ a := by
   rcases lt_trichotomy a 0 with (h | rfl | h)
   · rw [← neg_eq_zero, ← Int.cast_neg, ← dvd_neg]
@@ -149,11 +149,11 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
   · simp only [Int.cast_zero, eq_self_iff_true, dvd_zero]
   · lift a to ℕ using le_of_lt h with b
     rw [Int.cast_natCast, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
-#align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
+#align char_p.int_cast_eq_zero_iff CharP.intCast_eq_zero_iff
 
 theorem CharP.intCast_eq_intCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℤ} :
     (a : R) = b ↔ a ≡ b [ZMOD p] := by
-  rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
+  rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.intCast_eq_zero_iff R p, Int.modEq_iff_dvd]
 #align char_p.int_cast_eq_int_cast CharP.intCast_eq_intCast
 
 theorem CharP.natCast_eq_natCast' [AddMonoidWithOne R] (p : ℕ) [CharP R p] {a b : ℕ}
chore: backports from #11997, adaptations for nightly-2024-04-07 (#12176)

These are changes from #11997, the latest adaptation PR for nightly-2024-04-07, which can be made directly on master.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -625,7 +625,7 @@ theorem of_not_dvd [CharP R p] (h : ¬p ∣ n) : NeZero (n : R) :=
 #align ne_zero.of_not_dvd NeZero.of_not_dvd
 
 theorem not_char_dvd (p : ℕ) [CharP R p] (k : ℕ) [h : NeZero (k : R)] : ¬p ∣ k := by
-  rwa [← CharP.cast_eq_zero_iff R p k, ← Ne.def, ← neZero_iff]
+  rwa [← CharP.cast_eq_zero_iff R p k, ← Ne, ← neZero_iff]
 #align ne_zero.not_char_dvd NeZero.not_char_dvd
 
 end NeZero
chore: remove porting notes about redundant binder updates (#12101)

All these are about some code (now commented out) which performs a (now) redundant binder information update. I don't see how this is useful information going forward, hence propose simply deleting them.

Diff
@@ -455,7 +455,6 @@ end Semiring
 section Ring
 
 variable [Ring R] [NoZeroDivisors R] [Nontrivial R] [Finite R]
--- Porting note: removed redundant binder annotation update `(R)`
 
 theorem char_is_prime (p : ℕ) [CharP R p] : p.Prime :=
   Or.resolve_right (char_is_prime_or_zero R p) (char_ne_zero_of_finite R p)
@@ -539,7 +538,6 @@ end
 section
 
 variable [NonAssocRing R] [Fintype R] (n : ℕ)
--- Porting note: removed redundant binder annotation update `(R)`
 
 theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0 → i = 0) :
     CharP R n :=
@@ -621,7 +619,6 @@ end
 namespace NeZero
 
 variable [AddMonoidWithOne R] {r : R} {n p : ℕ} {a : ℕ+}
--- Porting note: removed redundant binder annotation update `(R)`
 
 theorem of_not_dvd [CharP R p] (h : ¬p ∣ n) : NeZero (n : R) :=
   ⟨(CharP.cast_eq_zero_iff R p n).not.mpr h⟩
chore(Data/Int/Cast): fix confusion between OfNat and Nat.cast lemmas (#11861)

This renames

  • Int.cast_ofNat to Int.cast_natCast
  • Int.int_cast_ofNat to Int.cast_ofNat

I think the history here is that this lemma was previously about Int.ofNat, before we globally fixed the simp-normal form to be Nat.cast.

Since the Int.cast_ofNat name is repurposed, it can't be deprecated. Int.int_cast_ofNat is such a wonky name that it was probably never used.

Diff
@@ -145,10 +145,10 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
   rcases lt_trichotomy a 0 with (h | rfl | h)
   · rw [← neg_eq_zero, ← Int.cast_neg, ← dvd_neg]
     lift -a to ℕ using neg_nonneg.mpr (le_of_lt h) with b
-    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
+    rw [Int.cast_natCast, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
   · simp only [Int.cast_zero, eq_self_iff_true, dvd_zero]
   · lift a to ℕ using le_of_lt h with b
-    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
+    rw [Int.cast_natCast, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 
 theorem CharP.intCast_eq_intCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℤ} :
chore: remove some unnecessary 'open BigOperators' (#11880)

Could we have an open linter, that checked for unused opened namespaces?

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -15,8 +15,6 @@ import Mathlib.RingTheory.Nilpotent
 
 open Finset
 
-open BigOperators
-
 section
 
 variable (R : Type*) [CommRing R] [IsReduced R] (p n : ℕ) [ExpChar R p]
chore(Data/Int): Rename coe_nat to natCast (#11637)

Reduce the diff of #11499

Renames

All in the Int namespace:

  • ofNat_eq_castofNat_eq_natCast
  • cast_eq_cast_iff_NatnatCast_inj
  • natCast_eq_ofNatofNat_eq_natCast
  • coe_nat_subnatCast_sub
  • coe_nat_nonnegnatCast_nonneg
  • sign_coe_add_onesign_natCast_add_one
  • nat_succ_eq_int_succnatCast_succ
  • succ_neg_nat_succsucc_neg_natCast_succ
  • coe_pred_of_posnatCast_pred_of_pos
  • coe_nat_divnatCast_div
  • coe_nat_edivnatCast_ediv
  • sign_coe_nat_of_nonzerosign_natCast_of_ne_zero
  • toNat_coe_nattoNat_natCast
  • toNat_coe_nat_add_onetoNat_natCast_add_one
  • coe_nat_dvdnatCast_dvd_natCast
  • coe_nat_dvd_leftnatCast_dvd
  • coe_nat_dvd_rightdvd_natCast
  • le_coe_nat_suble_natCast_sub
  • succ_coe_nat_possucc_natCast_pos
  • coe_nat_modEq_iffnatCast_modEq_iff
  • coe_natAbsnatCast_natAbs
  • coe_nat_eq_zeronatCast_eq_zero
  • coe_nat_ne_zeronatCast_ne_zero
  • coe_nat_ne_zero_iff_posnatCast_ne_zero_iff_pos
  • abs_coe_natabs_natCast
  • coe_nat_nonpos_iffnatCast_nonpos_iff

Also rename Nat.coe_nat_dvd to Nat.cast_dvd_cast

Diff
@@ -145,10 +145,10 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
   rcases lt_trichotomy a 0 with (h | rfl | h)
   · rw [← neg_eq_zero, ← Int.cast_neg, ← dvd_neg]
     lift -a to ℕ using neg_nonneg.mpr (le_of_lt h) with b
-    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
+    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
   · simp only [Int.cast_zero, eq_self_iff_true, dvd_zero]
   · lift a to ℕ using le_of_lt h with b
-    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
+    rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.natCast_dvd_natCast]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 
 theorem CharP.intCast_eq_intCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℤ} :
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11801)
Diff
@@ -513,7 +513,7 @@ section
 /-- We have `2 ≠ 0` in a nontrivial ring whose characteristic is not `2`. -/
 protected theorem Ring.two_ne_zero {R : Type*} [NonAssocSemiring R] [Nontrivial R]
     (hR : ringChar R ≠ 2) : (2 : R) ≠ 0 := by
-  rw [Ne.def, (by norm_cast : (2 : R) = (2 : ℕ)), ringChar.spec, Nat.dvd_prime Nat.prime_two]
+  rw [Ne, (by norm_cast : (2 : R) = (2 : ℕ)), ringChar.spec, Nat.dvd_prime Nat.prime_two]
   exact mt (or_iff_left hR).mp CharP.ringChar_ne_one
 #align ring.two_ne_zero Ring.two_ne_zero
 
change the order of operation in zsmulRec and nsmulRec (#11451)

We change the following field in the definition of an additive commutative monoid:

 nsmul_succ : ∀ (n : ℕ) (x : G),
-  AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+  AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x

where the latter is more natural

We adjust the definitions of ^ in monoids, groups, etc. Originally there was a warning comment about why this natural order was preferred

use x * npowRec n x and not npowRec n x * x in the definition to make sure that definitional unfolding of npowRec is blocked, to avoid deep recursion issues.

but it seems to no longer apply.

Remarks on the PR :

  • pow_succ and pow_succ' have switched their meanings.
  • Most of the time, the proofs were adjusted by priming/unpriming one lemma, or exchanging left and right; a few proofs were more complicated to adjust.
  • In particular, [Mathlib/NumberTheory/RamificationInertia.lean] used Ideal.IsPrime.mul_mem_pow which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul.
  • the docstring for Cauchy condensation test in [Mathlib/Analysis/PSeries.lean] was mathematically incorrect, I added the mention that the function is antitone.
Diff
@@ -296,7 +296,7 @@ theorem sub_pow_char_pow_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p
   induction n with
   | zero => simp
   | succ n n_ih =>
-      rw [pow_succ', pow_mul, pow_mul, pow_mul, n_ih]
+      rw [pow_succ, pow_mul, pow_mul, pow_mul, n_ih]
       apply sub_pow_char_of_commute; apply Commute.pow_pow h
 #align sub_pow_char_pow_of_commute sub_pow_char_pow_of_commute
 
chore(*): migrate from RingHom.map_* to _root_.map_* (#11660)

Cherry-picked from #9607 Co-authored-by: @semorrison

Diff
@@ -354,7 +354,7 @@ theorem CharP.neg_one_pow_char_pow [Ring R] (p n : ℕ) [CharP R p] [Fact p.Prim
 
 theorem RingHom.charP_iff_charP {K L : Type*} [DivisionRing K] [Semiring L] [Nontrivial L]
     (f : K →+* L) (p : ℕ) : CharP K p ↔ CharP L p := by
-  simp only [charP_iff, ← f.injective.eq_iff, map_natCast f, f.map_zero]
+  simp only [charP_iff, ← f.injective.eq_iff, map_natCast f, map_zero f]
 #align ring_hom.char_p_iff_char_p RingHom.charP_iff_charP
 
 namespace CharP
style: remove redundant instance arguments (#11581)

I removed some redundant instance arguments throughout Mathlib. To do this, I used VS Code's regex search. See https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/repeating.20instances.20from.20variable.20command I closed the previous PR for this and reopened it.

Diff
@@ -388,7 +388,7 @@ theorem ringChar_ne_zero_of_finite [Finite R] : ringChar R ≠ 0 :=
   char_ne_zero_of_finite R (ringChar R)
 #align char_p.ring_char_ne_zero_of_finite CharP.ringChar_ne_zero_of_finite
 
-theorem ringChar_zero_iff_CharZero [NonAssocRing R] : ringChar R = 0 ↔ CharZero R := by
+theorem ringChar_zero_iff_CharZero : ringChar R = 0 ↔ CharZero R := by
   rw [ringChar.eq_iff, charP_zero_iff_charZero]
 
 end
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -109,7 +109,7 @@ class CharP [AddMonoidWithOne R] (p : ℕ) : Prop where
 #align char_p CharP
 #align char_p_iff charP_iff
 
--- porting note: the field of the structure had implicit arguments where they were
+-- Porting note: the field of the structure had implicit arguments where they were
 -- explicit in Lean 3
 theorem CharP.cast_eq_zero_iff (R : Type u) [AddMonoidWithOne R] (p : ℕ) [CharP R p] (x : ℕ) :
     (x : R) = 0 ↔ p ∣ x :=
@@ -327,7 +327,7 @@ theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1
     rw [← sub_eq_zero, sub_neg_eq_add] at h
     norm_num at h
     exact this h
-    -- porting note: this could probably be golfed
+    -- Porting note: this could probably be golfed
   intro h
   rw [show (2 : R) = (2 : ℕ) by norm_cast] at h
   have := (CharP.cast_eq_zero_iff R p 2).mp h
@@ -455,7 +455,7 @@ end Semiring
 section Ring
 
 variable [Ring R] [NoZeroDivisors R] [Nontrivial R] [Finite R]
--- porting note: removed redundant binder annotation update `(R)`
+-- Porting note: removed redundant binder annotation update `(R)`
 
 theorem char_is_prime (p : ℕ) [CharP R p] : p.Prime :=
   Or.resolve_right (char_is_prime_or_zero R p) (char_ne_zero_of_finite R p)
@@ -539,7 +539,7 @@ end
 section
 
 variable [NonAssocRing R] [Fintype R] (n : ℕ)
--- porting note: removed redundant binder annotation update `(R)`
+-- Porting note: removed redundant binder annotation update `(R)`
 
 theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0 → i = 0) :
     CharP R n :=
@@ -621,7 +621,7 @@ end
 namespace NeZero
 
 variable [AddMonoidWithOne R] {r : R} {n p : ℕ} {a : ℕ+}
--- porting note: removed redundant binder annotation update `(R)`
+-- Porting note: removed redundant binder annotation update `(R)`
 
 theorem of_not_dvd [CharP R p] (h : ¬p ∣ n) : NeZero (n : R) :=
   ⟨(CharP.cast_eq_zero_iff R p n).not.mpr h⟩
refactor: optimize proofs with omega (#11093)

I ran tryAtEachStep on all files under Mathlib to find all locations where omega succeeds. For each that was a linarith without an only, I tried replacing it with omega, and I verified that elaboration time got smaller. (In almost all cases, there was a noticeable speedup.) I also replaced some slow aesops along the way.

Diff
@@ -333,7 +333,7 @@ theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1
   have := (CharP.cast_eq_zero_iff R p 2).mp h
   have := Nat.le_of_dvd (by decide) this
   rw [fact_iff] at *
-  linarith
+  omega
 #align char_p.neg_one_ne_one CharP.neg_one_ne_one
 
 theorem CharP.neg_one_pow_char [Ring R] (p : ℕ) [CharP R p] [Fact p.Prime] :
chore(Init/Fin): deprecate Fin.eq_of_veq and Fin.veq_of_eq (#10626)

We have Fin.eq_of_val_eq and Fin.val_eq_of_eq in Lean core now. Also slightly shake the tree.

Diff
@@ -652,6 +652,6 @@ namespace Fin
 
 instance charP (n : ℕ) : CharP (Fin (n + 1)) (n + 1) where
     cast_eq_zero_iff' := by
-      simp [Fin.eq_iff_veq, Nat.dvd_iff_mod_eq_zero]
+      simp [Fin.ext_iff, Nat.dvd_iff_mod_eq_zero]
 
 end Fin
chore: add lemmas for nat literals corresponding to lemmas for nat casts (#8006)

I loogled for every occurrence of "cast", Nat and "natCast" and where the casted nat was n, and made sure there were corresponding @[simp] lemmas for 0, 1, and OfNat.ofNat n. This is necessary in general for simp confluence. Example:

import Mathlib

variable {α : Type*} [LinearOrderedRing α] (m n : ℕ) [m.AtLeastTwo] [n.AtLeastTwo]

example : ((OfNat.ofNat m : ℕ) : α) ≤ ((OfNat.ofNat n : ℕ) : α) ↔ (OfNat.ofNat m : ℕ) ≤ (OfNat.ofNat n : ℕ) := by
  simp only [Nat.cast_le] -- this `@[simp]` lemma can apply

example : ((OfNat.ofNat m : ℕ) : α) ≤ ((OfNat.ofNat n : ℕ) : α) ↔ (OfNat.ofNat m : α) ≤ (OfNat.ofNat n : α) := by
  simp only [Nat.cast_ofNat] -- and so can this one

example : (OfNat.ofNat m : α) ≤ (OfNat.ofNat n : α) ↔ (OfNat.ofNat m : ℕ) ≤ (OfNat.ofNat n : ℕ) := by
  simp -- fails! `simp` doesn't have a lemma to bridge their results. confluence issue.

As far as I know, the only file this PR leaves with ofNat gaps is PartENat.lean. #8002 is addressing that file in parallel.

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -120,6 +120,17 @@ theorem CharP.cast_eq_zero [AddMonoidWithOne R] (p : ℕ) [CharP R p] : (p : R)
   (CharP.cast_eq_zero_iff R p p).2 (dvd_refl p)
 #align char_p.cast_eq_zero CharP.cast_eq_zero
 
+-- See note [no_index around OfNat.ofNat]
+--
+-- TODO: This lemma needs to be `@[simp]` for confluence in the presence of `CharP.cast_eq_zero` and
+-- `Nat.cast_ofNat`, but with `no_index` on its entire LHS, it matches literally every expression so
+-- is too expensive. If lean4#2867 is fixed in a performant way, this can be made `@[simp]`.
+--
+-- @[simp]
+theorem CharP.ofNat_eq_zero [AddMonoidWithOne R] (p : ℕ) [p.AtLeastTwo] [CharP R p] :
+    (no_index (OfNat.ofNat p : R)) = 0 :=
+  cast_eq_zero R p
+
 @[simp]
 theorem CharP.cast_card_eq_zero [AddGroupWithOne R] [Fintype R] : (Fintype.card R : R) = 0 := by
   rw [← nsmul_one, card_nsmul_eq_zero]
chore: classify simp can do this porting notes (#10619)

Classify by adding issue number (#10618) to porting notes claiming anything semantically equivalent to simp can prove this or simp can simplify this.

Diff
@@ -256,7 +256,7 @@ theorem eq_zero [CharZero R] : ringChar R = 0 :=
   eq R 0
 #align ring_char.eq_zero ringChar.eq_zero
 
--- @[simp] -- Porting note: simp can prove this
+-- @[simp] -- Porting note (#10618): simp can prove this
 theorem Nat.cast_ringChar : (ringChar R : R) = 0 := by rw [ringChar.spec]
 #align ring_char.nat.cast_ring_char ringChar.Nat.cast_ringChar
 
feat(FieldTheory/PurelyInseparable): definition and basic results of purely inseparable extensions (#9488)

Main defintions:

  • IsPurelyInseparable: typeclass for purely inseparable field extension: an algebraic extension E / F is purely inseparable if and only if the minimal polynomial of every element of E ∖ F is not separable.

Main results (not exhaustive):

  • isPurelyInseparable_iff_mem_pow: a field extension E / F of exponential characteristic q is purely inseparable if and only if for every element x of E, there exists a natural number n such that x ^ (q ^ n) is contained in F.

  • IsPurelyInseparable.trans: if E / F and K / E are both purely inseparable extensions, then K / F is also purely inseparable.

  • isPurelyInseparable_iff_natSepDegree_eq_one: E / F is purely inseparable if and only if for every element x of E, its minimal polynomial has separable degree one.

  • isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C: a field extension E / F of exponential characteristic q is purely inseparable if and only if for every element x of E, the minimal polynomial of x over F is of form X ^ (q ^ n) - y for some natural number n and some element y of F.

  • isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow: a field extension E / F of exponential characteristic q is purely inseparable if and only if for every element x of E, the minimal polynomial of x over F is of form (X - x) ^ (q ^ n) for some natural number n.

  • isPurelyInseparable_iff_finSepDegree_eq_one: an algebraic extension is purely inseparable if and only if it has (finite) separable degree one.

    TODO: remove the algebraic assumption. (will be in later PR)

  • IsPurelyInseparable.normal: a purely inseparable extension is normal.

  • separableClosure.isPurelyInseparable: if E / F is algebraic, then E is purely inseparable over the (relative) separable closure of E / F.

  • IsPurelyInseparable.injective_comp_algebraMap: if E / F is purely inseparable, then for any reduced ring L, the map (E →+* L) → (F →+* L) induced by algebraMap F E is injective. In other words, a purely inseparable field extension is an epimorphism in the category of fields.

  • isPurelyInseparable_adjoin_iff_mem_pow: if F is of exponential characteristic q, then F(S) / F is a purely inseparable extension if and only if for any x ∈ S, x ^ (q ^ n) is contained in F for some n : ℕ.

  • Field.finSepDegree_eq: if E / F is algebraic, then the Field.finSepDegree F E is equal to Field.sepDegree F E as a natural number. This means that the cardinality of Field.Emb F E and the degree of (separableClosure F E) / F are both finite or infinite, and when they are finite, they coincide.

TODO: (will be in later PR)

  • IsPurelyInseparable.of_injective_comp_algebraMap: if L is an algebraically closed field containing E, such that the map (E →+* L) → (F →+* L) induced by algebraMap F E is injective, then E / F is purely inseparable. In other words, epimorphisms in the category of fields must be purely inseparable extensions. Need to use the fact that Emb F E is infintie when E / F is (purely) transcendental.

  • Prove that the (infinite) inseparable degree are multiplicative; linearly disjoint argument is needed.

Co-authored-by: Junyan Xu <junyanxumath@gmail.com> Co-authored-by: Junyan Xu <junyanxu.math@gmail.com>

Diff
@@ -17,13 +17,21 @@ open Finset
 
 open BigOperators
 
-theorem frobenius_inj (R : Type*) [CommRing R] [IsReduced R] (p : ℕ) [ExpChar R p] :
-    Function.Injective (frobenius R p) := fun x h H => by
+section
+
+variable (R : Type*) [CommRing R] [IsReduced R] (p n : ℕ) [ExpChar R p]
+
+theorem iterateFrobenius_inj : Function.Injective (iterateFrobenius R p n) := fun x y H ↦ by
   rw [← sub_eq_zero] at H ⊢
-  rw [← frobenius_sub] at H
+  simp_rw [iterateFrobenius_def, ← sub_pow_expChar_pow] at H
   exact IsReduced.eq_zero _ ⟨_, H⟩
+
+theorem frobenius_inj : Function.Injective (frobenius R p) :=
+  iterateFrobenius_one (R := R) p ▸ iterateFrobenius_inj R p 1
 #align frobenius_inj frobenius_inj
 
+end
+
 /-- If `ringChar R = 2`, where `R` is a finite reduced commutative ring,
 then every `a : R` is a square. -/
 theorem isSquare_of_charTwo' {R : Type*} [Finite R] [CommRing R] [IsReduced R] [CharP R 2]
@@ -39,12 +47,9 @@ variable {R : Type*} [CommRing R] [IsReduced R]
 @[simp]
 theorem ExpChar.pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [ExpChar R p] (x : R) :
     x ^ (p ^ k * m) = 1 ↔ x ^ m = 1 := by
-  induction' k with k hk
-  · rw [pow_zero, one_mul]
-  · refine' ⟨fun h => _, fun h => _⟩
-    · rw [pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at h
-      exact hk.1 (frobenius_inj R p h)
-    · rw [pow_mul', h, one_pow]
+  rw [pow_mul']
+  convert ← (iterateFrobenius_inj R p k).eq_iff
+  apply map_one
 #align char_p.pow_prime_pow_mul_eq_one_iff ExpChar.pow_prime_pow_mul_eq_one_iff
 
 @[deprecated] alias CharP.pow_prime_pow_mul_eq_one_iff := ExpChar.pow_prime_pow_mul_eq_one_iff
refactor: generalize CharP+Prime to ExpChar in frobenius (#10016)

Consequently, the part about frobenius in Algebra/CharP/Basic is moved to CharP/ExpChar, and imports are adjusted as necessary.

  • Add instances from CharP+Fact(Nat.Prime) and CharZero to ExpChar, to allow lemmas generalized to ExpChar still apply to CharP.

  • Remove lemmas in Algebra/CharP/ExpChar from [#9799](https://github.com/leanprover-community/mathlib4/commit/1e74fcfff8d5ffe5a3a9881864cf10fa39f619e6) because they coincide with the generalized lemmas, and golf the other lemmas (in Algebra/CharP/Basic).

  • Define the RingHom iterateFrobenius and the semilinear map LinearMap.(iterate)Frobenius for an algebra. When the characteristic is zero (ExpChar is 1), these are all equal to the identity map (· ^ 1). Also define iterateFrobeniusEquiv for perfect rings.

  • Fix and/or generalize other files.

Co-authored-by: Junyan Xu <junyanxu.math@gmail.com> Co-authored-by: acmepjz <acme_pjz@hotmail.com>

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2018 Kenny Lau. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
 -/
-import Mathlib.Algebra.CharP.Basic
+import Mathlib.Algebra.CharP.ExpChar
 import Mathlib.RingTheory.Nilpotent
 
 #align_import algebra.char_p.basic from "leanprover-community/mathlib"@"47a1a73351de8dd6c8d3d32b569c8e434b03ca47"
@@ -17,7 +17,7 @@ open Finset
 
 open BigOperators
 
-theorem frobenius_inj (R : Type*) [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
+theorem frobenius_inj (R : Type*) [CommRing R] [IsReduced R] (p : ℕ) [ExpChar R p] :
     Function.Injective (frobenius R p) := fun x h H => by
   rw [← sub_eq_zero] at H ⊢
   rw [← frobenius_sub] at H
@@ -34,12 +34,10 @@ theorem isSquare_of_charTwo' {R : Type*} [Finite R] [CommRing R] [IsReduced R] [
       (((Fintype.bijective_iff_injective_and_card _).mpr ⟨frobenius_inj R 2, rfl⟩).surjective a)
 #align is_square_of_char_two' isSquare_of_charTwo'
 
-namespace CharP
-
 variable {R : Type*} [CommRing R] [IsReduced R]
 
 @[simp]
-theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x : R) :
+theorem ExpChar.pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [ExpChar R p] (x : R) :
     x ^ (p ^ k * m) = 1 ↔ x ^ m = 1 := by
   induction' k with k hk
   · rw [pow_zero, one_mul]
@@ -47,6 +45,6 @@ theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x
     · rw [pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at h
       exact hk.1 (frobenius_inj R p h)
     · rw [pow_mul', h, one_pow]
-#align char_p.pow_prime_pow_mul_eq_one_iff CharP.pow_prime_pow_mul_eq_one_iff
+#align char_p.pow_prime_pow_mul_eq_one_iff ExpChar.pow_prime_pow_mul_eq_one_iff
 
-end CharP
+@[deprecated] alias CharP.pow_prime_pow_mul_eq_one_iff := ExpChar.pow_prime_pow_mul_eq_one_iff
refactor: generalize CharP+Prime to ExpChar in frobenius (#10016)

Consequently, the part about frobenius in Algebra/CharP/Basic is moved to CharP/ExpChar, and imports are adjusted as necessary.

  • Add instances from CharP+Fact(Nat.Prime) and CharZero to ExpChar, to allow lemmas generalized to ExpChar still apply to CharP.

  • Remove lemmas in Algebra/CharP/ExpChar from [#9799](https://github.com/leanprover-community/mathlib4/commit/1e74fcfff8d5ffe5a3a9881864cf10fa39f619e6) because they coincide with the generalized lemmas, and golf the other lemmas (in Algebra/CharP/Basic).

  • Define the RingHom iterateFrobenius and the semilinear map LinearMap.(iterate)Frobenius for an algebra. When the characteristic is zero (ExpChar is 1), these are all equal to the identity map (· ^ 1). Also define iterateFrobeniusEquiv for perfect rings.

  • Fix and/or generalize other files.

Co-authored-by: Junyan Xu <junyanxu.math@gmail.com> Co-authored-by: acmepjz <acme_pjz@hotmail.com>

Diff
@@ -346,140 +346,6 @@ theorem RingHom.charP_iff_charP {K L : Type*} [DivisionRing K] [Semiring L] [Non
   simp only [charP_iff, ← f.injective.eq_iff, map_natCast f, f.map_zero]
 #align ring_hom.char_p_iff_char_p RingHom.charP_iff_charP
 
-section frobenius
-
-section CommSemiring
-
-variable [CommSemiring R] {S : Type v} [CommSemiring S] (f : R →* S) (g : R →+* S) (p : ℕ)
-  [Fact p.Prime] [CharP R p] [CharP S p] (x y : R)
-
-/-- The frobenius map that sends x to x^p -/
-def frobenius : R →+* R where
-  toFun x := x ^ p
-  map_one' := one_pow p
-  map_mul' x y := mul_pow x y p
-  map_zero' := zero_pow (Fact.out (p := Nat.Prime p)).ne_zero
-  map_add' := add_pow_char R
-#align frobenius frobenius
-
-variable {R}
-
-theorem frobenius_def : frobenius R p x = x ^ p :=
-  rfl
-#align frobenius_def frobenius_def
-
-theorem iterate_frobenius (n : ℕ) : (frobenius R p)^[n] x = x ^ p ^ n := by
-  induction n with
-  | zero => simp
-  | succ n n_ih =>
-      rw [Function.iterate_succ', pow_succ', pow_mul, Function.comp_apply, frobenius_def, n_ih]
-#align iterate_frobenius iterate_frobenius
-
-theorem frobenius_mul : frobenius R p (x * y) = frobenius R p x * frobenius R p y :=
-  (frobenius R p).map_mul x y
-#align frobenius_mul frobenius_mul
-
-theorem frobenius_one : frobenius R p 1 = 1 :=
-  one_pow _
-#align frobenius_one frobenius_one
-
-theorem MonoidHom.map_frobenius : f (frobenius R p x) = frobenius S p (f x) :=
-  f.map_pow x p
-#align monoid_hom.map_frobenius MonoidHom.map_frobenius
-
-theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
-  g.map_pow x p
-#align ring_hom.map_frobenius RingHom.map_frobenius
-
-theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
-    f ((frobenius R p)^[n] x) = (frobenius S p)^[n] (f x) :=
-  Function.Semiconj.iterate_right (f.map_frobenius p) n x
-#align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobenius
-
-theorem RingHom.map_iterate_frobenius (n : ℕ) :
-    g ((frobenius R p)^[n] x) = (frobenius S p)^[n] (g x) :=
-  g.toMonoidHom.map_iterate_frobenius p x n
-#align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobenius
-
-theorem MonoidHom.iterate_map_frobenius (f : R →* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
-    f^[n] (frobenius R p x) = frobenius R p (f^[n] x) :=
-  f.iterate_map_pow _ _ _
-#align monoid_hom.iterate_map_frobenius MonoidHom.iterate_map_frobenius
-
-theorem RingHom.iterate_map_frobenius (f : R →+* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
-    f^[n] (frobenius R p x) = frobenius R p (f^[n] x) :=
-  f.iterate_map_pow _ _ _
-#align ring_hom.iterate_map_frobenius RingHom.iterate_map_frobenius
-
-variable (R)
-
-theorem frobenius_zero : frobenius R p 0 = 0 :=
-  (frobenius R p).map_zero
-#align frobenius_zero frobenius_zero
-
-theorem frobenius_add : frobenius R p (x + y) = frobenius R p x + frobenius R p y :=
-  (frobenius R p).map_add x y
-#align frobenius_add frobenius_add
-
-theorem frobenius_nat_cast (n : ℕ) : frobenius R p n = n :=
-  map_natCast (frobenius R p) n
-#align frobenius_nat_cast frobenius_nat_cast
-
-open BigOperators
-
-variable {R}
-
-theorem list_sum_pow_char (l : List R) : l.sum ^ p = (l.map (· ^ p : R → R)).sum :=
-  (frobenius R p).map_list_sum _
-#align list_sum_pow_char list_sum_pow_char
-
-theorem multiset_sum_pow_char (s : Multiset R) : s.sum ^ p = (s.map (· ^ p : R → R)).sum :=
-  (frobenius R p).map_multiset_sum _
-#align multiset_sum_pow_char multiset_sum_pow_char
-
-theorem sum_pow_char {ι : Type*} (s : Finset ι) (f : ι → R) :
-    (∑ i in s, f i) ^ p = ∑ i in s, f i ^ p :=
-  (frobenius R p).map_sum _ _
-#align sum_pow_char sum_pow_char
-
-variable (n : ℕ)
-
-theorem list_sum_pow_char_pow (l : List R) : l.sum ^ p ^ n = (l.map (· ^ p ^ n : R → R)).sum := by
-  induction n with
-  | zero => simp_rw [pow_zero, pow_one, List.map_id']
-  | succ n ih => simp_rw [pow_succ', pow_mul, ih, list_sum_pow_char, List.map_map]; rfl
-
-theorem multiset_sum_pow_char_pow (s : Multiset R) :
-    s.sum ^ p ^ n = (s.map (· ^ p ^ n : R → R)).sum := by
-  induction n with
-  | zero => simp_rw [pow_zero, pow_one, Multiset.map_id']
-  | succ n ih => simp_rw [pow_succ', pow_mul, ih, multiset_sum_pow_char, Multiset.map_map]; rfl
-
-theorem sum_pow_char_pow {ι : Type*} (s : Finset ι) (f : ι → R) :
-    (∑ i in s, f i) ^ p ^ n = ∑ i in s, f i ^ p ^ n := by
-  induction n with
-  | zero => simp_rw [pow_zero, pow_one]
-  | succ n ih => simp_rw [pow_succ', pow_mul, ih, sum_pow_char]
-
-end CommSemiring
-
-section CommRing
-
-variable [CommRing R] {S : Type v} [CommRing S] (f : R →* S) (g : R →+* S) (p : ℕ) [Fact p.Prime]
-  [CharP R p] [CharP S p] (x y : R)
-
-theorem frobenius_neg : frobenius R p (-x) = -frobenius R p x :=
-  (frobenius R p).map_neg x
-#align frobenius_neg frobenius_neg
-
-theorem frobenius_sub : frobenius R p (x - y) = frobenius R p x - frobenius R p y :=
-  (frobenius R p).map_sub x y
-#align frobenius_sub frobenius_sub
-
-end CommRing
-
-end frobenius
-
 namespace CharP
 
 section
@@ -710,6 +576,12 @@ instance Prod.charP [CharP S p] : CharP (R × S) p := by
   convert Nat.lcm.charP R S p p; simp
 #align prod.char_p Prod.charP
 
+instance Prod.charZero_of_left [CharZero R] : CharZero (R × S) where
+  cast_injective _ _ h := CharZero.cast_injective congr(Prod.fst $h)
+
+instance Prod.charZero_of_right [CharZero S] : CharZero (R × S) where
+  cast_injective _ _ h := CharZero.cast_injective congr(Prod.snd $h)
+
 end Prod
 
 instance ULift.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP (ULift.{v} R) p where
feat: The support of f ^ n (#9617)

This involves moving lemmas from Algebra.GroupPower.Ring to Algebra.GroupWithZero.Basic and changing some 0 < n assumptions to n ≠ 0.

From LeanAPAP

Diff
@@ -330,7 +330,7 @@ theorem CharP.neg_one_pow_char [Ring R] (p : ℕ) [CharP R p] [Fact p.Prime] :
   rw [eq_neg_iff_add_eq_zero]
   nth_rw 2 [← one_pow p]
   rw [← add_pow_char_of_commute R _ _ (Commute.one_right _), add_left_neg,
-    zero_pow (Fact.out (p := Nat.Prime p)).pos]
+    zero_pow (Fact.out (p := Nat.Prime p)).ne_zero]
 #align char_p.neg_one_pow_char CharP.neg_one_pow_char
 
 theorem CharP.neg_one_pow_char_pow [Ring R] (p n : ℕ) [CharP R p] [Fact p.Prime] :
@@ -338,7 +338,7 @@ theorem CharP.neg_one_pow_char_pow [Ring R] (p n : ℕ) [CharP R p] [Fact p.Prim
   rw [eq_neg_iff_add_eq_zero]
   nth_rw 2 [← one_pow (p ^ n)]
   rw [← add_pow_char_pow_of_commute R _ _ (Commute.one_right _), add_left_neg,
-    zero_pow (pow_pos (Fact.out (p := Nat.Prime p)).pos _)]
+    zero_pow (pow_ne_zero _ (Fact.out (p := Nat.Prime p)).ne_zero)]
 #align char_p.neg_one_pow_char_pow CharP.neg_one_pow_char_pow
 
 theorem RingHom.charP_iff_charP {K L : Type*} [DivisionRing K] [Semiring L] [Nontrivial L]
@@ -358,7 +358,7 @@ def frobenius : R →+* R where
   toFun x := x ^ p
   map_one' := one_pow p
   map_mul' x y := mul_pow x y p
-  map_zero' := zero_pow (Fact.out (p := Nat.Prime p)).pos
+  map_zero' := zero_pow (Fact.out (p := Nat.Prime p)).ne_zero
   map_add' := add_pow_char R
 #align frobenius frobenius
 
chore: tidy various files (#9903)
Diff
@@ -445,21 +445,21 @@ theorem sum_pow_char {ι : Type*} (s : Finset ι) (f : ι → R) :
 variable (n : ℕ)
 
 theorem list_sum_pow_char_pow (l : List R) : l.sum ^ p ^ n = (l.map (· ^ p ^ n : R → R)).sum := by
-  induction n
-  case zero => simp_rw [pow_zero, pow_one, List.map_id']
-  case succ n ih => simp_rw [pow_succ', pow_mul, ih, list_sum_pow_char, List.map_map]; rfl
+  induction n with
+  | zero => simp_rw [pow_zero, pow_one, List.map_id']
+  | succ n ih => simp_rw [pow_succ', pow_mul, ih, list_sum_pow_char, List.map_map]; rfl
 
 theorem multiset_sum_pow_char_pow (s : Multiset R) :
     s.sum ^ p ^ n = (s.map (· ^ p ^ n : R → R)).sum := by
-  induction n
-  case zero => simp_rw [pow_zero, pow_one, Multiset.map_id']
-  case succ n ih => simp_rw [pow_succ', pow_mul, ih, multiset_sum_pow_char, Multiset.map_map]; rfl
+  induction n with
+  | zero => simp_rw [pow_zero, pow_one, Multiset.map_id']
+  | succ n ih => simp_rw [pow_succ', pow_mul, ih, multiset_sum_pow_char, Multiset.map_map]; rfl
 
 theorem sum_pow_char_pow {ι : Type*} (s : Finset ι) (f : ι → R) :
     (∑ i in s, f i) ^ p ^ n = ∑ i in s, f i ^ p ^ n := by
-  induction n
-  case zero => simp_rw [pow_zero, pow_one]
-  case succ n ih => simp_rw [pow_succ', pow_mul, ih, sum_pow_char]
+  induction n with
+  | zero => simp_rw [pow_zero, pow_one]
+  | succ n ih => simp_rw [pow_succ', pow_mul, ih, sum_pow_char]
 
 end CommSemiring
 
feat(Algebra/CharP/{Basic|ExpChar}): add sum_pow_{char|expChar}_pow (#9799)
Diff
@@ -442,6 +442,25 @@ theorem sum_pow_char {ι : Type*} (s : Finset ι) (f : ι → R) :
   (frobenius R p).map_sum _ _
 #align sum_pow_char sum_pow_char
 
+variable (n : ℕ)
+
+theorem list_sum_pow_char_pow (l : List R) : l.sum ^ p ^ n = (l.map (· ^ p ^ n : R → R)).sum := by
+  induction n
+  case zero => simp_rw [pow_zero, pow_one, List.map_id']
+  case succ n ih => simp_rw [pow_succ', pow_mul, ih, list_sum_pow_char, List.map_map]; rfl
+
+theorem multiset_sum_pow_char_pow (s : Multiset R) :
+    s.sum ^ p ^ n = (s.map (· ^ p ^ n : R → R)).sum := by
+  induction n
+  case zero => simp_rw [pow_zero, pow_one, Multiset.map_id']
+  case succ n ih => simp_rw [pow_succ', pow_mul, ih, multiset_sum_pow_char, Multiset.map_map]; rfl
+
+theorem sum_pow_char_pow {ι : Type*} (s : Finset ι) (f : ι → R) :
+    (∑ i in s, f i) ^ p ^ n = ∑ i in s, f i ^ p ^ n := by
+  induction n
+  case zero => simp_rw [pow_zero, pow_one]
+  case succ n ih => simp_rw [pow_succ', pow_mul, ih, sum_pow_char]
+
 end CommSemiring
 
 section CommRing
feat(Algebra/CharP/ExpChar): add more results for ExpChar parallel to CharP (#9573)
Diff
@@ -540,6 +540,12 @@ theorem char_is_prime_or_zero (p : ℕ) [hc : CharP R p] : Nat.Prime p ∨ p = 0
   | m + 2, hc => Or.inl (@char_is_prime_of_two_le R _ _ (m + 2) hc (Nat.le_add_left 2 m))
 #align char_p.char_is_prime_or_zero CharP.char_is_prime_or_zero
 
+theorem exists' (R : Type*) [NonAssocRing R] [NoZeroDivisors R] [Nontrivial R] :
+    CharZero R ∨ ∃ p : ℕ, Fact p.Prime ∧ CharP R p := by
+  obtain ⟨p, hchar⟩ := CharP.exists R
+  rcases char_is_prime_or_zero R p with h | rfl
+  exacts [Or.inr ⟨p, Fact.mk h, hchar⟩, Or.inl (charP_to_charZero R)]
+
 theorem char_is_prime_of_pos (p : ℕ) [NeZero p] [CharP R p] : Fact p.Prime :=
   ⟨(CharP.char_is_prime_or_zero R _).resolve_right <| NeZero.ne p⟩
 #align char_p.char_is_prime_of_pos CharP.char_is_prime_of_pos
refactor: decapitalize names in @[mk_iff] (#9378)
  • @[mk_iff] class MyPred now generates myPred_iff, not MyPred_iff
  • add Lean.Name.decapitalize
  • fix indentation and a few typos in the docs/comments.

Partially addresses issue #9129

Diff
@@ -103,7 +103,7 @@ For instance, endowing `{0, 1}` with addition given by `max` (i.e. `1` is absorb
 `CharZero {0, 1}` does not hold and yet `CharP {0, 1} 0` does.
 This example is formalized in `Counterexamples/CharPZeroNeCharZero.lean`.
 -/
-@[mk_iff charP_iff]
+@[mk_iff]
 class CharP [AddMonoidWithOne R] (p : ℕ) : Prop where
   cast_eq_zero_iff' : ∀ x : ℕ, (x : R) = 0 ↔ p ∣ x
 #align char_p CharP
feat: Fin CharP and lemmas for Fin rollover (#9033)

Co-authored-by: Yakov Pechersky <pechersky@users.noreply.github.com> Co-authored-by: Junyan Xu <junyanxu.math@gmail.com>

Diff
@@ -739,3 +739,11 @@ theorem charZero_iff_forall_prime_ne_zero
     exact CharP.charP_to_charZero R
 
 end CharZero
+
+namespace Fin
+
+instance charP (n : ℕ) : CharP (Fin (n + 1)) (n + 1) where
+    cast_eq_zero_iff' := by
+      simp [Fin.eq_iff_veq, Nat.dvd_iff_mod_eq_zero]
+
+end Fin
feat: add CharP.natCast_eq_natCast_mod and relax typeclass assumptions (#9050)
Diff
@@ -145,12 +145,30 @@ theorem CharP.intCast_eq_intCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b
   rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
 #align char_p.int_cast_eq_int_cast CharP.intCast_eq_intCast
 
-theorem CharP.natCast_eq_natCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℕ} :
-    (a : R) = b ↔ a ≡ b [MOD p] := by
-  rw [← Int.cast_ofNat, ← Int.cast_ofNat b]
-  exact (CharP.intCast_eq_intCast _ _).trans Int.coe_nat_modEq_iff
+theorem CharP.natCast_eq_natCast' [AddMonoidWithOne R] (p : ℕ) [CharP R p] {a b : ℕ}
+    (h : a ≡ b [MOD p]) : (a : R) = b := by
+  wlog hle : a ≤ b
+  · exact (this R p h.symm (le_of_not_le hle)).symm
+  rw [Nat.modEq_iff_dvd' hle] at h
+  rw [← Nat.sub_add_cancel hle, Nat.cast_add, (CharP.cast_eq_zero_iff R p _).mpr h, zero_add]
+
+theorem CharP.natCast_eq_natCast [AddMonoidWithOne R] [IsRightCancelAdd R] (p : ℕ) [CharP R p]
+    {a b : ℕ} : (a : R) = b ↔ a ≡ b [MOD p] := by
+  wlog hle : a ≤ b
+  · rw [eq_comm, this R p (le_of_not_le hle), Nat.ModEq.comm]
+  rw [Nat.modEq_iff_dvd' hle, ← CharP.cast_eq_zero_iff R p (b - a),
+    ← add_right_cancel_iff (G := R) (a := a) (b := b - a), zero_add, ← Nat.cast_add,
+    Nat.sub_add_cancel hle, eq_comm]
 #align char_p.nat_cast_eq_nat_cast CharP.natCast_eq_natCast
 
+theorem CharP.intCast_eq_intCast_mod [AddGroupWithOne R] (p : ℕ) [CharP R p] {a : ℤ} :
+    (a : R) = a % (p : ℤ) :=
+  (CharP.intCast_eq_intCast R p).mpr (Int.mod_modEq a p).symm
+
+theorem CharP.natCast_eq_natCast_mod [AddMonoidWithOne R] (p : ℕ) [CharP R p] {a : ℕ} :
+    (a : R) = a % p :=
+  CharP.natCast_eq_natCast' R p (Nat.mod_modEq a p).symm
+
 theorem CharP.eq [AddMonoidWithOne R] {p q : ℕ} (_c1 : CharP R p) (_c2 : CharP R q) : p = q :=
   Nat.dvd_antisymm ((CharP.cast_eq_zero_iff R p q).1 (CharP.cast_eq_zero _ _))
     ((CharP.cast_eq_zero_iff R q p).1 (CharP.cast_eq_zero _ _))
feat(Algebra/CharP/ExpChar): add some results parallel to CharP (#8860)
  • change the condition of CharP.neg_one_pow_char and CharP.neg_one_pow_char_pow from CommRing to Ring
  • add ExpChar.exists, expChar_of_injective_algebraMap
  • add add_pow_expChar and 9 similar functions parallel to that of CharP
  • add {charP|charZero|expChar}_of_injective_ringHom
Diff
@@ -307,18 +307,20 @@ theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1
   linarith
 #align char_p.neg_one_ne_one CharP.neg_one_ne_one
 
-theorem CharP.neg_one_pow_char [CommRing R] (p : ℕ) [CharP R p] [Fact p.Prime] :
+theorem CharP.neg_one_pow_char [Ring R] (p : ℕ) [CharP R p] [Fact p.Prime] :
     (-1 : R) ^ p = -1 := by
   rw [eq_neg_iff_add_eq_zero]
   nth_rw 2 [← one_pow p]
-  rw [← add_pow_char, add_left_neg, zero_pow (Fact.out (p := Nat.Prime p)).pos]
+  rw [← add_pow_char_of_commute R _ _ (Commute.one_right _), add_left_neg,
+    zero_pow (Fact.out (p := Nat.Prime p)).pos]
 #align char_p.neg_one_pow_char CharP.neg_one_pow_char
 
-theorem CharP.neg_one_pow_char_pow [CommRing R] (p n : ℕ) [CharP R p] [Fact p.Prime] :
+theorem CharP.neg_one_pow_char_pow [Ring R] (p n : ℕ) [CharP R p] [Fact p.Prime] :
     (-1 : R) ^ p ^ n = -1 := by
   rw [eq_neg_iff_add_eq_zero]
   nth_rw 2 [← one_pow (p ^ n)]
-  rw [← add_pow_char_pow, add_left_neg, zero_pow (pow_pos (Fact.out (p := Nat.Prime p)).pos _)]
+  rw [← add_pow_char_pow_of_commute R _ _ (Commute.one_right _), add_left_neg,
+    zero_pow (pow_pos (Fact.out (p := Nat.Prime p)).pos _)]
 #align char_p.neg_one_pow_char_pow CharP.neg_one_pow_char_pow
 
 theorem RingHom.charP_iff_charP {K L : Type*} [DivisionRing K] [Semiring L] [Nontrivial L]
chore: split Algebra.CharP.Basic, reduce imports in RingTheory.Multiplicity (#8637)

This was adding unnecessary imports to Data.ZMod.Basic.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

chore: split Algebra.CharP.Basic, reduce imports in RingTheory.Multiplicity (#8637)

This was adding unnecessary imports to Data.ZMod.Basic.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -5,8 +5,10 @@ Authors: Kenny Lau, Joey van Langen, Casper Putz
 -/
 import Mathlib.Data.Int.ModEq
 import Mathlib.Data.Nat.Multiplicity
+import Mathlib.Data.Nat.Choose.Sum
+import Mathlib.Data.Nat.Cast.Prod
+import Mathlib.Algebra.Group.ULift
 import Mathlib.GroupTheory.OrderOfElement
-import Mathlib.RingTheory.Nilpotent
 
 #align_import algebra.char_p.basic from "leanprover-community/mathlib"@"47a1a73351de8dd6c8d3d32b569c8e434b03ca47"
 
@@ -439,23 +441,6 @@ end CommRing
 
 end frobenius
 
-theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
-    Function.Injective (frobenius R p) := fun x h H => by
-  rw [← sub_eq_zero] at H ⊢
-  rw [← frobenius_sub] at H
-  exact IsReduced.eq_zero _ ⟨_, H⟩
-#align frobenius_inj frobenius_inj
-
-/-- If `ringChar R = 2`, where `R` is a finite reduced commutative ring,
-then every `a : R` is a square. -/
-theorem isSquare_of_charTwo' {R : Type*} [Finite R] [CommRing R] [IsReduced R] [CharP R 2]
-    (a : R) : IsSquare a := by
-  cases nonempty_fintype R
-  exact
-    Exists.imp (fun b h => pow_two b ▸ Eq.symm h)
-      (((Fintype.bijective_iff_injective_and_card _).mpr ⟨frobenius_inj R 2, rfl⟩).surjective a)
-#align is_square_of_char_two' isSquare_of_charTwo'
-
 namespace CharP
 
 section
@@ -492,23 +477,6 @@ theorem ringChar_zero_iff_CharZero [NonAssocRing R] : ringChar R = 0 ↔ CharZer
 
 end
 
-section CommRing
-
-variable [CommRing R] [IsReduced R] {R}
-
-@[simp]
-theorem pow_prime_pow_mul_eq_one_iff (p k m : ℕ) [Fact p.Prime] [CharP R p] (x : R) :
-    x ^ (p ^ k * m) = 1 ↔ x ^ m = 1 := by
-  induction' k with k hk
-  · rw [pow_zero, one_mul]
-  · refine' ⟨fun h => _, fun h => _⟩
-    · rw [pow_succ, mul_assoc, pow_mul', ← frobenius_def, ← frobenius_one p] at h
-      exact hk.1 (frobenius_inj R p h)
-    · rw [pow_mul', h, one_pow]
-#align char_p.pow_prime_pow_mul_eq_one_iff CharP.pow_prime_pow_mul_eq_one_iff
-
-end CommRing
-
 section Semiring
 
 variable [NonAssocSemiring R]
chore: bump to v4.3.0-rc2 (#8366)

PR contents

This is the supremum of

along with some minor fixes from failures on nightly-testing as Mathlib master is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0 branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

leanprover/lean4#2778

We can get rid of all the

local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)

macros across Mathlib (and in any projects that want to write natural number powers of reals).

leanprover/lean4#2722

Changes the default behaviour of simp to (config := {decide := false}). This makes simp (and consequentially norm_num) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp or norm_num to decide or rfl, or adding (config := {decide := true}).

leanprover/lean4#2783

This changed the behaviour of simp so that simp [f] will only unfold "fully applied" occurrences of f. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true }). We may in future add a syntax for this, e.g. simp [!f]; please provide feedback! In the meantime, we have made the following changes:

  • switching to using explicit lemmas that have the intended level of application
  • (config := { unfoldPartialApp := true }) in some places, to recover the old behaviour
  • Using @[eqns] to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp and Function.flip.

This change in Lean may require further changes down the line (e.g. adding the !f syntax, and/or upstreaming the special treatment for Function.comp and Function.flip, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!

Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>

Diff
@@ -716,8 +716,8 @@ theorem Int.cast_injOn_of_ringChar_ne_two {R : Type*} [NonAssocRing R] [Nontrivi
   rintro _ (rfl | rfl | rfl) _ (rfl | rfl | rfl) h <;>
   simp only
     [cast_neg, cast_one, cast_zero, neg_eq_zero, one_ne_zero, zero_ne_one, zero_eq_neg] at h ⊢
-  · exact (Ring.neg_one_ne_one_of_char_ne_two hR).symm h
-  · exact (Ring.neg_one_ne_one_of_char_ne_two hR) h
+  · exact ((Ring.neg_one_ne_one_of_char_ne_two hR).symm h).elim
+  · exact ((Ring.neg_one_ne_one_of_char_ne_two hR) h).elim
 #align int.cast_inj_on_of_ring_char_ne_two Int.cast_injOn_of_ringChar_ne_two
 
 end
fix: patch for std4#195 (more succ/pred lemmas for Nat) (#6203)
Diff
@@ -511,8 +511,6 @@ end CommRing
 
 section Semiring
 
-open Nat
-
 variable [NonAssocSemiring R]
 
 theorem char_ne_one [Nontrivial R] (p : ℕ) [hc : CharP R p] : p ≠ 1 := fun hp : p = 1 =>
@@ -529,7 +527,7 @@ theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.
   fun (d : ℕ) (hdvd : ∃ e, p = d * e) =>
   let ⟨e, hmul⟩ := hdvd
   have : (p : R) = 0 := (cast_eq_zero_iff R p p).mpr (dvd_refl p)
-  have : (d : R) * e = 0 := @cast_mul R _ d e ▸ hmul ▸ this
+  have : (d : R) * e = 0 := @Nat.cast_mul R _ d e ▸ hmul ▸ this
   Or.elim (eq_zero_or_eq_zero_of_mul_eq_zero this)
     (fun hd : (d : R) = 0 =>
       have : p ∣ d := (cast_eq_zero_iff R p d).mp hd
chore: only four spaces for subsequent lines (#7286)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -110,7 +110,7 @@ class CharP [AddMonoidWithOne R] (p : ℕ) : Prop where
 -- porting note: the field of the structure had implicit arguments where they were
 -- explicit in Lean 3
 theorem CharP.cast_eq_zero_iff (R : Type u) [AddMonoidWithOne R] (p : ℕ) [CharP R p] (x : ℕ) :
-  (x : R) = 0 ↔ p ∣ x :=
+    (x : R) = 0 ↔ p ∣ x :=
 CharP.cast_eq_zero_iff' (R := R) (p := p) x
 
 @[simp]
chore: fix doc-strings about (c vs C)ounterexamples (#6691)

This PR just touches doc-strings. It fixes capitalization issues involving Counterexamples and adds a missing line-break for better display.

Diff
@@ -99,8 +99,8 @@ variable (R)
 
 For instance, endowing `{0, 1}` with addition given by `max` (i.e. `1` is absorbing), shows that
 `CharZero {0, 1}` does not hold and yet `CharP {0, 1} 0` does.
-This example is formalized in `counterexamples/char_p_zero_ne_char_zero`.
- -/
+This example is formalized in `Counterexamples/CharPZeroNeCharZero.lean`.
+-/
 @[mk_iff charP_iff]
 class CharP [AddMonoidWithOne R] (p : ℕ) : Prop where
   cast_eq_zero_iff' : ∀ x : ℕ, (x : R) = 0 ↔ p ∣ x
feat(Mathlib/Algebra/CharP/Basic): add ringChar_zero_iff_CharZero (#6572)

Zulip discussion

Diff
@@ -466,6 +466,9 @@ theorem charP_to_charZero (R : Type*) [AddGroupWithOne R] [CharP R 0] : CharZero
   charZero_of_inj_zero fun n h0 => eq_zero_of_zero_dvd ((cast_eq_zero_iff R 0 n).mp h0)
 #align char_p.char_p_to_char_zero CharP.charP_to_charZero
 
+theorem charP_zero_iff_charZero (R : Type*) [AddGroupWithOne R] : CharP R 0 ↔ CharZero R :=
+  ⟨fun _ ↦ charP_to_charZero R, fun _ ↦ ofCharZero R⟩
+
 theorem cast_eq_mod (p : ℕ) [CharP R p] (k : ℕ) : (k : R) = (k % p : ℕ) :=
   calc
     (k : R) = ↑(k % p + p * (k / p)) := by rw [Nat.mod_add_div]
@@ -484,6 +487,9 @@ theorem ringChar_ne_zero_of_finite [Finite R] : ringChar R ≠ 0 :=
   char_ne_zero_of_finite R (ringChar R)
 #align char_p.ring_char_ne_zero_of_finite CharP.ringChar_ne_zero_of_finite
 
+theorem ringChar_zero_iff_CharZero [NonAssocRing R] : ringChar R = 0 ↔ CharZero R := by
+  rw [ringChar.eq_iff, charP_zero_iff_charZero]
+
 end
 
 section CommRing
chore: drop MulZeroClass. in mul_zero/zero_mul (#6682)

Search&replace MulZeroClass.mul_zero -> mul_zero, MulZeroClass.zero_mul -> zero_mul.

These were introduced by Mathport, as the full name of mul_zero is actually MulZeroClass.mul_zero (it's exported with the short name).

Diff
@@ -177,12 +177,12 @@ theorem CharP.exists [NonAssocSemiring R] : ∃ p, CharP R p :=
                     rwa [← Nat.mod_add_div x (Nat.find (not_forall.1 H)), Nat.cast_add,
                       Nat.cast_mul,
                       of_not_not (not_not_of_not_imp <| Nat.find_spec (not_forall.1 H)),
-                      MulZeroClass.zero_mul, add_zero] at H1,
+                      zero_mul, add_zero] at H1,
                     H2⟩)),
           fun H1 => by
           rw [← Nat.mul_div_cancel' H1, Nat.cast_mul,
             of_not_not (not_not_of_not_imp <| Nat.find_spec (not_forall.1 H)),
-            MulZeroClass.zero_mul]⟩⟩⟩
+            zero_mul]⟩⟩⟩
 #align char_p.exists CharP.exists
 
 theorem CharP.exists_unique [NonAssocSemiring R] : ∃! p, CharP R p :=
@@ -582,7 +582,7 @@ instance (priority := 100) CharOne.subsingleton [CharP R 1] : Subsingleton R :=
       r = 1 * r := by rw [one_mul]
       _ = (1 : ℕ) * r := by rw [Nat.cast_one]
       _ = 0 * r := by rw [CharP.cast_eq_zero]
-      _ = 0 := by rw [MulZeroClass.zero_mul]
+      _ = 0 := by rw [zero_mul]
 
 theorem false_of_nontrivial_of_char_one [Nontrivial R] [CharP R 1] : False :=
   false_of_nontrivial_of_subsingleton R
@@ -654,14 +654,14 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
       intro k
       constructor
       · intro h
-        rw [← Nat.mod_add_div k n, Nat.cast_add, Nat.cast_mul, H, MulZeroClass.zero_mul,
+        rw [← Nat.mod_add_div k n, Nat.cast_add, Nat.cast_mul, H, zero_mul,
           add_zero] at h
         rw [Nat.dvd_iff_mod_eq_zero]
         apply hR _ (Nat.mod_lt _ _) h
         rw [← hn, gt_iff_lt, Fintype.card_pos_iff]
         exact ⟨0⟩
       · rintro ⟨k, rfl⟩
-        rw [Nat.cast_mul, H, MulZeroClass.zero_mul] }
+        rw [Nat.cast_mul, H, zero_mul] }
 #align char_p_of_ne_zero charP_of_ne_zero
 
 theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fact p.Prime] (n : ℕ)
feat: charZero_iff_forall_prime_ne_zero (#6518)
Diff
@@ -732,3 +732,18 @@ theorem not_char_dvd (p : ℕ) [CharP R p] (k : ℕ) [h : NeZero (k : R)] : ¬p
 #align ne_zero.not_char_dvd NeZero.not_char_dvd
 
 end NeZero
+
+namespace CharZero
+
+theorem charZero_iff_forall_prime_ne_zero
+    [NonAssocRing R] [NoZeroDivisors R] [Nontrivial R] :
+    CharZero R ↔ ∀ p : ℕ, p.Prime → (p : R) ≠ 0 := by
+  refine ⟨fun h p hp => by simp [hp.ne_zero], fun h => ?_⟩
+  let p := ringChar R
+  cases CharP.char_is_prime_or_zero R p with
+  | inl hp => simpa using h p hp
+  | inr h =>
+    haveI : CharP R 0 := h ▸ inferInstance
+    exact CharP.charP_to_charZero R
+
+end CharZero
chore(Mathlib/Algebra/CharP/Basic): golf cast_injOn_of_ringChar_ne_two (#6573)

Just the shortening of a proof, letting simp do the work.

Diff
@@ -709,30 +709,11 @@ section
 that is nontrivial and of characteristic not `2`, then they are equal. -/
 theorem Int.cast_injOn_of_ringChar_ne_two {R : Type*} [NonAssocRing R] [Nontrivial R]
     (hR : ringChar R ≠ 2) : ({0, 1, -1} : Set ℤ).InjOn ((↑) : ℤ → R) := by
-  intro a ha b hb h
-  apply eq_of_sub_eq_zero
-  by_contra hf
-  replace ha : a = 0 ∨ a = 1 ∨ a = -1 := ha
-  replace hb : b = 0 ∨ b = 1 ∨ b = -1 := hb
-  have hh : a - b = 1 ∨ b - a = 1 ∨ a - b = 2 ∨ b - a = 2 := by
-    rcases ha with (ha | ha | ha) <;> rcases hb with (hb | hb | hb)
-    pick_goal 5
-    pick_goal 9
-    -- move goals with `a = b` to the front
-    iterate 3 rw [ha, hb, sub_self] at hf; tauto
-    -- 6 goals remain
-    all_goals rw [ha, hb]; norm_num
-  have h' : ((a - b : ℤ) : R) = 0 := by exact_mod_cast sub_eq_zero_of_eq h
-  have h'' : ((b - a : ℤ) : R) = 0 := by exact_mod_cast sub_eq_zero_of_eq h.symm
-  rcases hh with (hh | hh | hh | hh)
-  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h'
-    exact one_ne_zero h'
-  · rw [hh, (by norm_cast : ((1 : ℤ) : R) = 1)] at h''
-    exact one_ne_zero h''
-  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h'
-    exact Ring.two_ne_zero hR h'
-  · rw [hh, (by norm_cast : ((2 : ℤ) : R) = 2)] at h''
-    exact Ring.two_ne_zero hR h''
+  rintro _ (rfl | rfl | rfl) _ (rfl | rfl | rfl) h <;>
+  simp only
+    [cast_neg, cast_one, cast_zero, neg_eq_zero, one_ne_zero, zero_ne_one, zero_eq_neg] at h ⊢
+  · exact (Ring.neg_one_ne_one_of_char_ne_two hR).symm h
+  · exact (Ring.neg_one_ne_one_of_char_ne_two hR) h
 #align int.cast_inj_on_of_ring_char_ne_two Int.cast_injOn_of_ringChar_ne_two
 
 end
feat: charP_iff_prime_eq_zero (#6516)
Diff
@@ -569,7 +569,7 @@ theorem char_is_prime (p : ℕ) [CharP R p] : p.Prime :=
 
 end Ring
 
-section CharOne
+section NonAssocSemiring
 
 variable {R} [NonAssocSemiring R]
 
@@ -605,7 +605,12 @@ theorem ringChar_of_prime_eq_zero [Nontrivial R] {p : ℕ} (hprime : Nat.Prime p
   Or.resolve_left ((Nat.dvd_prime hprime).1 (ringChar.dvd hp0)) ringChar_ne_one
 #align char_p.ring_char_of_prime_eq_zero CharP.ringChar_of_prime_eq_zero
 
-end CharOne
+theorem charP_iff_prime_eq_zero [Nontrivial R] {p : ℕ} (hp : p.Prime) :
+    CharP R p ↔ (p : R) = 0 :=
+  ⟨fun _ => cast_eq_zero R p,
+   fun hp0 => (ringChar_of_prime_eq_zero hp hp0) ▸ inferInstance⟩
+
+end NonAssocSemiring
 
 end CharP
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -21,7 +21,7 @@ open Finset
 
 open BigOperators
 
-variable {R : Type _}
+variable {R : Type*}
 
 namespace Commute
 
@@ -319,7 +319,7 @@ theorem CharP.neg_one_pow_char_pow [CommRing R] (p n : ℕ) [CharP R p] [Fact p.
   rw [← add_pow_char_pow, add_left_neg, zero_pow (pow_pos (Fact.out (p := Nat.Prime p)).pos _)]
 #align char_p.neg_one_pow_char_pow CharP.neg_one_pow_char_pow
 
-theorem RingHom.charP_iff_charP {K L : Type _} [DivisionRing K] [Semiring L] [Nontrivial L]
+theorem RingHom.charP_iff_charP {K L : Type*} [DivisionRing K] [Semiring L] [Nontrivial L]
     (f : K →+* L) (p : ℕ) : CharP K p ↔ CharP L p := by
   simp only [charP_iff, ← f.injective.eq_iff, map_natCast f, f.map_zero]
 #align ring_hom.char_p_iff_char_p RingHom.charP_iff_charP
@@ -415,7 +415,7 @@ theorem multiset_sum_pow_char (s : Multiset R) : s.sum ^ p = (s.map (· ^ p : R
   (frobenius R p).map_multiset_sum _
 #align multiset_sum_pow_char multiset_sum_pow_char
 
-theorem sum_pow_char {ι : Type _} (s : Finset ι) (f : ι → R) :
+theorem sum_pow_char {ι : Type*} (s : Finset ι) (f : ι → R) :
     (∑ i in s, f i) ^ p = ∑ i in s, f i ^ p :=
   (frobenius R p).map_sum _ _
 #align sum_pow_char sum_pow_char
@@ -448,7 +448,7 @@ theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP
 
 /-- If `ringChar R = 2`, where `R` is a finite reduced commutative ring,
 then every `a : R` is a square. -/
-theorem isSquare_of_charTwo' {R : Type _} [Finite R] [CommRing R] [IsReduced R] [CharP R 2]
+theorem isSquare_of_charTwo' {R : Type*} [Finite R] [CommRing R] [IsReduced R] [CharP R 2]
     (a : R) : IsSquare a := by
   cases nonempty_fintype R
   exact
@@ -462,7 +462,7 @@ section
 
 variable [NonAssocRing R]
 
-theorem charP_to_charZero (R : Type _) [AddGroupWithOne R] [CharP R 0] : CharZero R :=
+theorem charP_to_charZero (R : Type*) [AddGroupWithOne R] [CharP R 0] : CharZero R :=
   charZero_of_inj_zero fun n h0 => eq_zero_of_zero_dvd ((cast_eq_zero_iff R 0 n).mp h0)
 #align char_p.char_p_to_char_zero CharP.charP_to_charZero
 
@@ -612,7 +612,7 @@ end CharP
 section
 
 /-- We have `2 ≠ 0` in a nontrivial ring whose characteristic is not `2`. -/
-protected theorem Ring.two_ne_zero {R : Type _} [NonAssocSemiring R] [Nontrivial R]
+protected theorem Ring.two_ne_zero {R : Type*} [NonAssocSemiring R] [Nontrivial R]
     (hR : ringChar R ≠ 2) : (2 : R) ≠ 0 := by
   rw [Ne.def, (by norm_cast : (2 : R) = (2 : ℕ)), ringChar.spec, Nat.dvd_prime Nat.prime_two]
   exact mt (or_iff_left hR).mp CharP.ringChar_ne_one
@@ -621,13 +621,13 @@ protected theorem Ring.two_ne_zero {R : Type _} [NonAssocSemiring R] [Nontrivial
 -- We have `CharP.neg_one_ne_one`, which assumes `[Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)]`.
 -- This is a version using `ringChar` instead.
 /-- Characteristic `≠ 2` and nontrivial implies that `-1 ≠ 1`. -/
-theorem Ring.neg_one_ne_one_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontrivial R]
+theorem Ring.neg_one_ne_one_of_char_ne_two {R : Type*} [NonAssocRing R] [Nontrivial R]
     (hR : ringChar R ≠ 2) : (-1 : R) ≠ 1 := fun h =>
   Ring.two_ne_zero hR (one_add_one_eq_two (α := R) ▸ neg_eq_iff_add_eq_zero.mp h)
 #align ring.neg_one_ne_one_of_char_ne_two Ring.neg_one_ne_one_of_char_ne_two
 
 /-- Characteristic `≠ 2` in a domain implies that `-a = a` iff `a = 0`. -/
-theorem Ring.eq_self_iff_eq_zero_of_char_ne_two {R : Type _} [NonAssocRing R] [Nontrivial R]
+theorem Ring.eq_self_iff_eq_zero_of_char_ne_two {R : Type*} [NonAssocRing R] [Nontrivial R]
     [NoZeroDivisors R] (hR : ringChar R ≠ 2) {a : R} : -a = a ↔ a = 0 :=
   ⟨fun h =>
     (mul_eq_zero.mp <| (two_mul a).trans <| neg_eq_iff_add_eq_zero.mp h).resolve_left
@@ -702,7 +702,7 @@ section
 
 /-- If two integers from `{0, 1, -1}` result in equal elements in a ring `R`
 that is nontrivial and of characteristic not `2`, then they are equal. -/
-theorem Int.cast_injOn_of_ringChar_ne_two {R : Type _} [NonAssocRing R] [Nontrivial R]
+theorem Int.cast_injOn_of_ringChar_ne_two {R : Type*} [NonAssocRing R] [Nontrivial R]
     (hR : ringChar R ≠ 2) : ({0, 1, -1} : Set ℤ).InjOn ((↑) : ℤ → R) := by
   intro a ha b hb h
   apply eq_of_sub_eq_zero
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2018 Kenny Lau. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
-
-! This file was ported from Lean 3 source module algebra.char_p.basic
-! leanprover-community/mathlib commit 47a1a73351de8dd6c8d3d32b569c8e434b03ca47
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Int.ModEq
 import Mathlib.Data.Nat.Multiplicity
 import Mathlib.GroupTheory.OrderOfElement
 import Mathlib.RingTheory.Nilpotent
 
+#align_import algebra.char_p.basic from "leanprover-community/mathlib"@"47a1a73351de8dd6c8d3d32b569c8e434b03ca47"
+
 /-!
 # Characteristic of semirings
 -/
chore: bump to nightly-2023-07-01 (#5409)

Open in Gitpod

Co-authored-by: Komyyy <pol_tta@outlook.jp> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -587,7 +587,6 @@ instance (priority := 100) CharOne.subsingleton [CharP R 1] : Subsingleton R :=
       _ = 0 * r := by rw [CharP.cast_eq_zero]
       _ = 0 := by rw [MulZeroClass.zero_mul]
 
-
 theorem false_of_nontrivial_of_char_one [Nontrivial R] [CharP R 1] : False :=
   false_of_nontrivial_of_subsingleton R
 #align char_p.false_of_nontrivial_of_char_one CharP.false_of_nontrivial_of_char_one
chore: tidy various files (#5628)
Diff
@@ -664,14 +664,13 @@ theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0
 #align char_p_of_ne_zero charP_of_ne_zero
 
 theorem charP_of_prime_pow_injective (R) [Ring R] [Fintype R] (p : ℕ) [hp : Fact p.Prime] (n : ℕ)
-    (hn : Fintype.card R = p ^ n) (hR : ∀ i ≤ n, (p ^ i : R) = 0 → i = n) : CharP R (p ^ n) := by
+    (hn : Fintype.card R = p ^ n) (hR : ∀ i ≤ n, (p : R) ^ i = 0 → i = n) : CharP R (p ^ n) := by
   obtain ⟨c, hc⟩ := CharP.exists R
-  skip
   have hcpn : c ∣ p ^ n := by rw [← CharP.cast_eq_zero_iff R c, ← hn, CharP.cast_card_eq_zero]
   obtain ⟨i, hi, hc⟩ : ∃ i ≤ n, c = p ^ i := by rwa [Nat.dvd_prime_pow hp.1] at hcpn
   obtain rfl : i = n := by
     apply hR i hi
-    rw [← hc, CharP.cast_eq_zero]
+    rw [← Nat.cast_pow, ← hc, CharP.cast_eq_zero]
   rwa [← hc]
 #align char_p_of_prime_pow_injective charP_of_prime_pow_injective
 
@@ -695,12 +694,12 @@ instance Prod.charP [CharP S p] : CharP (R × S) p := by
 
 end Prod
 
-instance ULift.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP (ULift.{v} R) p
-    where cast_eq_zero_iff' n := Iff.trans (ULift.ext_iff _ _) <| CharP.cast_eq_zero_iff R p n
+instance ULift.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP (ULift.{v} R) p where
+  cast_eq_zero_iff' n := Iff.trans (ULift.ext_iff _ _) <| CharP.cast_eq_zero_iff R p n
 #align ulift.char_p ULift.charP
 
-instance MulOpposite.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP Rᵐᵒᵖ p
-    where cast_eq_zero_iff' n := MulOpposite.unop_inj.symm.trans <| CharP.cast_eq_zero_iff R p n
+instance MulOpposite.charP [AddMonoidWithOne R] (p : ℕ) [CharP R p] : CharP Rᵐᵒᵖ p where
+  cast_eq_zero_iff' n := MulOpposite.unop_inj.symm.trans <| CharP.cast_eq_zero_iff R p n
 #align mul_opposite.char_p MulOpposite.charP
 
 section
fix precedence of Nat.iterate (#5589)
Diff
@@ -349,7 +349,7 @@ theorem frobenius_def : frobenius R p x = x ^ p :=
   rfl
 #align frobenius_def frobenius_def
 
-theorem iterate_frobenius (n : ℕ) : (frobenius R p^[n]) x = x ^ p ^ n := by
+theorem iterate_frobenius (n : ℕ) : (frobenius R p)^[n] x = x ^ p ^ n := by
   induction n with
   | zero => simp
   | succ n n_ih =>
@@ -373,22 +373,22 @@ theorem RingHom.map_frobenius : g (frobenius R p x) = frobenius S p (g x) :=
 #align ring_hom.map_frobenius RingHom.map_frobenius
 
 theorem MonoidHom.map_iterate_frobenius (n : ℕ) :
-    f ((frobenius R p^[n]) x) = (frobenius S p^[n]) (f x) :=
+    f ((frobenius R p)^[n] x) = (frobenius S p)^[n] (f x) :=
   Function.Semiconj.iterate_right (f.map_frobenius p) n x
 #align monoid_hom.map_iterate_frobenius MonoidHom.map_iterate_frobenius
 
 theorem RingHom.map_iterate_frobenius (n : ℕ) :
-    g ((frobenius R p^[n]) x) = (frobenius S p^[n]) (g x) :=
+    g ((frobenius R p)^[n] x) = (frobenius S p)^[n] (g x) :=
   g.toMonoidHom.map_iterate_frobenius p x n
 #align ring_hom.map_iterate_frobenius RingHom.map_iterate_frobenius
 
 theorem MonoidHom.iterate_map_frobenius (f : R →* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
-    (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
+    f^[n] (frobenius R p x) = frobenius R p (f^[n] x) :=
   f.iterate_map_pow _ _ _
 #align monoid_hom.iterate_map_frobenius MonoidHom.iterate_map_frobenius
 
 theorem RingHom.iterate_map_frobenius (f : R →+* R) (p : ℕ) [Fact p.Prime] [CharP R p] (n : ℕ) :
-    (f^[n]) (frobenius R p x) = frobenius R p ((f^[n]) x) :=
+    f^[n] (frobenius R p x) = frobenius R p (f^[n] x) :=
   f.iterate_map_pow _ _ _
 #align ring_hom.iterate_map_frobenius RingHom.iterate_map_frobenius
 
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -444,7 +444,7 @@ end frobenius
 
 theorem frobenius_inj [CommRing R] [IsReduced R] (p : ℕ) [Fact p.Prime] [CharP R p] :
     Function.Injective (frobenius R p) := fun x h H => by
-  rw [← sub_eq_zero] at H⊢
+  rw [← sub_eq_zero] at H ⊢
   rw [← frobenius_sub] at H
   exact IsReduced.eq_zero _ ⟨_, H⟩
 #align frobenius_inj frobenius_inj
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -473,7 +473,6 @@ theorem cast_eq_mod (p : ℕ) [CharP R p] (k : ℕ) : (k : R) = (k % p : ℕ) :=
   calc
     (k : R) = ↑(k % p + p * (k / p)) := by rw [Nat.mod_add_div]
     _ = ↑(k % p) := by simp [cast_eq_zero]
-
 #align char_p.cast_eq_mod CharP.cast_eq_mod
 
 /-- The characteristic of a finite ring cannot be zero. -/
feat: Dot notation aliases (#3303)

Match https://github.com/leanprover-community/mathlib/pull/18698 and a bit of https://github.com/leanprover-community/mathlib/pull/18785.

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -531,11 +531,11 @@ theorem char_is_prime_of_two_le (p : ℕ) [hc : CharP R p] (hp : 2 ≤ p) : Nat.
   Or.elim (eq_zero_or_eq_zero_of_mul_eq_zero this)
     (fun hd : (d : R) = 0 =>
       have : p ∣ d := (cast_eq_zero_iff R p d).mp hd
-      show d = 1 ∨ d = p from Or.inr (dvd_antisymm ⟨e, hmul⟩ this))
+      show d = 1 ∨ d = p from Or.inr (this.antisymm' ⟨e, hmul⟩))
     fun he : (e : R) = 0 =>
     have : p ∣ e := (cast_eq_zero_iff R p e).mp he
     have : e ∣ p := dvd_of_mul_left_eq d (Eq.symm hmul)
-    have : e = p := dvd_antisymm ‹e ∣ p› ‹p ∣ e›
+    have : e = p := ‹e ∣ p›.antisymm ‹p ∣ e›
     have h₀ : 0 < p := two_pos.trans_le hp
     have : d * p = 1 * p := by rw [‹e = p›] at hmul; rw [one_mul]; exact Eq.symm hmul
     show d = 1 ∨ d = p from Or.inl (mul_right_cancel₀ h₀.ne' this)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
 
 ! This file was ported from Lean 3 source module algebra.char_p.basic
-! leanprover-community/mathlib commit ceb887ddf3344dab425292e497fa2af91498437c
+! leanprover-community/mathlib commit 47a1a73351de8dd6c8d3d32b569c8e434b03ca47
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -141,10 +141,16 @@ theorem CharP.int_cast_eq_zero_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a
     rw [Int.cast_ofNat, CharP.cast_eq_zero_iff R p, Int.coe_nat_dvd]
 #align char_p.int_cast_eq_zero_iff CharP.int_cast_eq_zero_iff
 
-theorem CharP.int_cast_eq_int_cast_iff [AddGroupWithOne R] (p : ℕ) [CharP R p] (a b : ℤ) :
-    (a : R) = (b : R) ↔ a ≡ b [ZMOD p] := by
+theorem CharP.intCast_eq_intCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℤ} :
+    (a : R) = b ↔ a ≡ b [ZMOD p] := by
   rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
-#align char_p.int_coe_eq_int_coe_iff CharP.int_cast_eq_int_cast_iff
+#align char_p.int_cast_eq_int_cast CharP.intCast_eq_intCast
+
+theorem CharP.natCast_eq_natCast [AddGroupWithOne R] (p : ℕ) [CharP R p] {a b : ℕ} :
+    (a : R) = b ↔ a ≡ b [MOD p] := by
+  rw [← Int.cast_ofNat, ← Int.cast_ofNat b]
+  exact (CharP.intCast_eq_intCast _ _).trans Int.coe_nat_modEq_iff
+#align char_p.nat_cast_eq_nat_cast CharP.natCast_eq_natCast
 
 theorem CharP.eq [AddMonoidWithOne R] {p q : ℕ} (_c1 : CharP R p) (_c2 : CharP R q) : p = q :=
   Nat.dvd_antisymm ((CharP.cast_eq_zero_iff R p q).1 (CharP.cast_eq_zero _ _))
@@ -286,10 +292,6 @@ theorem sub_pow_char_pow [CommRing R] {p : ℕ} [Fact p.Prime] [CharP R p] {n :
   sub_pow_char_pow_of_commute _ _ _ (Commute.all _ _)
 #align sub_pow_char_pow sub_pow_char_pow
 
-theorem eq_iff_modEq_int [Ring R] (p : ℕ) [CharP R p] (a b : ℤ) : (a : R) = b ↔ a ≡ b [ZMOD p] := by
-  rw [eq_comm, ← sub_eq_zero, ← Int.cast_sub, CharP.int_cast_eq_zero_iff R p, Int.modEq_iff_dvd]
-#align eq_iff_modeq_int eq_iff_modEq_int
-
 theorem CharP.neg_one_ne_one [Ring R] (p : ℕ) [CharP R p] [Fact (2 < p)] : (-1 : R) ≠ (1 : R) := by
   suffices (2 : R) ≠ 0 by
     intro h
chore: re-port Algebra.CharP.Basic (#3191)

This forward-ports changes from leanprover-community/mathlib#11364

One unrelated downstream file times out, presumably due to the import graph subtly changing.

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -4,14 +4,12 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kenny Lau, Joey van Langen, Casper Putz
 
 ! This file was ported from Lean 3 source module algebra.char_p.basic
-! leanprover-community/mathlib commit 05a78c9451101108e638a0f213fb1bed82483545
+! leanprover-community/mathlib commit ceb887ddf3344dab425292e497fa2af91498437c
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
-import Mathlib.Algebra.Hom.Iterate
 import Mathlib.Data.Int.ModEq
-import Mathlib.Data.Nat.Choose.Dvd
-import Mathlib.Data.Nat.Choose.Sum
+import Mathlib.Data.Nat.Multiplicity
 import Mathlib.GroupTheory.OrderOfElement
 import Mathlib.RingTheory.Nilpotent
 
@@ -22,7 +20,79 @@ import Mathlib.RingTheory.Nilpotent
 
 universe u v
 
-variable (R : Type u)
+open Finset
+
+open BigOperators
+
+variable {R : Type _}
+
+namespace Commute
+
+variable [Semiring R] {p : ℕ} {x y : R}
+
+protected theorem add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ) :
+    (x + y) ^ p ^ n =
+      x ^ p ^ n + y ^ p ^ n +
+        p * ∑ k in Ioo 0 (p ^ n), x ^ k * y ^ (p ^ n - k) * ↑((p ^ n).choose k / p) := by
+  trans x ^ p ^ n + y ^ p ^ n + ∑ k in Ioo 0 (p ^ n), x ^ k * y ^ (p ^ n - k) * (p ^ n).choose k
+  · simp_rw [h.add_pow, ← Nat.Ico_zero_eq_range, Nat.Ico_succ_right, Icc_eq_cons_Ico (zero_le _),
+      Finset.sum_cons, Ico_eq_cons_Ioo (pow_pos hp.pos _), Finset.sum_cons, tsub_self, tsub_zero,
+      pow_zero, Nat.choose_zero_right, Nat.choose_self, Nat.cast_one, mul_one, one_mul, ← add_assoc]
+  · congr 1
+    simp_rw [Finset.mul_sum, Nat.cast_comm, mul_assoc _ _ (p : R), ← Nat.cast_mul]
+    refine' Finset.sum_congr rfl fun i hi => _
+    rw [mem_Ioo] at hi
+    rw [Nat.div_mul_cancel (hp.dvd_choose_pow hi.1.ne' hi.2.ne)]
+#align commute.add_pow_prime_pow_eq Commute.add_pow_prime_pow_eq
+
+protected theorem add_pow_prime_eq (hp : p.Prime) (h : Commute x y) :
+    (x + y) ^ p =
+      x ^ p + y ^ p + p * ∑ k in Finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
+  by simpa using h.add_pow_prime_pow_eq hp 1
+#align commute.add_pow_prime_eq Commute.add_pow_prime_eq
+
+protected theorem exists_add_pow_prime_pow_eq (hp : p.Prime) (h : Commute x y) (n : ℕ) :
+    ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
+  ⟨_, h.add_pow_prime_pow_eq hp n⟩
+#align commute.exists_add_pow_prime_pow_eq Commute.exists_add_pow_prime_pow_eq
+
+protected theorem exists_add_pow_prime_eq (hp : p.Prime) (h : Commute x y) :
+    ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
+  ⟨_, h.add_pow_prime_eq hp⟩
+#align commute.exists_add_pow_prime_eq Commute.exists_add_pow_prime_eq
+
+end Commute
+
+section CommSemiring
+
+variable [CommSemiring R] {p : ℕ} {x y : R}
+
+theorem add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
+    (x + y) ^ p ^ n =
+      x ^ p ^ n + y ^ p ^ n +
+        p * ∑ k in Finset.Ioo 0 (p ^ n), x ^ k * y ^ (p ^ n - k) * ↑((p ^ n).choose k / p) :=
+  (Commute.all x y).add_pow_prime_pow_eq hp n
+#align add_pow_prime_pow_eq add_pow_prime_pow_eq
+
+theorem add_pow_prime_eq (hp : p.Prime) (x y : R) :
+    (x + y) ^ p =
+      x ^ p + y ^ p + p * ∑ k in Finset.Ioo 0 p, x ^ k * y ^ (p - k) * ↑(p.choose k / p) :=
+  (Commute.all x y).add_pow_prime_eq hp
+#align add_pow_prime_eq add_pow_prime_eq
+
+theorem exists_add_pow_prime_pow_eq (hp : p.Prime) (x y : R) (n : ℕ) :
+    ∃ r, (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n + p * r :=
+  (Commute.all x y).exists_add_pow_prime_pow_eq hp n
+#align exists_add_pow_prime_pow_eq exists_add_pow_prime_pow_eq
+
+theorem exists_add_pow_prime_eq (hp : p.Prime) (x y : R) :
+    ∃ r, (x + y) ^ p = x ^ p + y ^ p + p * r :=
+  (Commute.all x y).exists_add_pow_prime_eq hp
+#align exists_add_pow_prime_eq exists_add_pow_prime_eq
+
+end CommSemiring
+
+variable (R)
 
 /-- The generator of the kernel of the unique homomorphism ℕ → R for a semiring R.
 
@@ -46,6 +116,7 @@ theorem CharP.cast_eq_zero_iff (R : Type u) [AddMonoidWithOne R] (p : ℕ) [Char
   (x : R) = 0 ↔ p ∣ x :=
 CharP.cast_eq_zero_iff' (R := R) (p := p) x
 
+@[simp]
 theorem CharP.cast_eq_zero [AddMonoidWithOne R] (p : ℕ) [CharP R p] : (p : R) = 0 :=
   (CharP.cast_eq_zero_iff R p p).2 (dvd_refl p)
 #align char_p.cast_eq_zero CharP.cast_eq_zero
@@ -162,39 +233,22 @@ theorem eq_zero [CharZero R] : ringChar R = 0 :=
   eq R 0
 #align ring_char.eq_zero ringChar.eq_zero
 
-@[simp]
+-- @[simp] -- Porting note: simp can prove this
 theorem Nat.cast_ringChar : (ringChar R : R) = 0 := by rw [ringChar.spec]
 #align ring_char.nat.cast_ring_char ringChar.Nat.cast_ringChar
 
 end ringChar
 
-theorem add_pow_char_of_commute [Semiring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R)
+theorem add_pow_char_of_commute [Semiring R] {p : ℕ} [hp : Fact p.Prime] [CharP R p] (x y : R)
     (h : Commute x y) : (x + y) ^ p = x ^ p + y ^ p := by
-  rw [Commute.add_pow h, Finset.sum_range_succ_comm, tsub_self, pow_zero, Nat.choose_self]
-  rw [Nat.cast_one, mul_one, mul_one]; congr 1
-  convert Finset.sum_eq_single (f := fun (x_1 : ℕ) => x ^ x_1 * y ^ (p - x_1) * (Nat.choose p x_1))
-    (s := Finset.range p) 0
-    (by
-      intro b h1 h2
-      suffices (p.choose b : R) = 0 by
-        simp [this]
-      rw [CharP.cast_eq_zero_iff R p]
-      exact Nat.Prime.dvd_choose_self Fact.out h2 (Finset.mem_range.1 h1))
-    (by
-      intro h1
-      contrapose! h1
-      rw [Finset.mem_range]
-      exact Nat.Prime.pos Fact.out)
-  simp only [mul_one, one_mul, Nat.choose_zero_right, tsub_zero, Nat.cast_one, pow_zero]
+  let ⟨r, hr⟩ := h.exists_add_pow_prime_eq hp.out
+  simp [hr]
 #align add_pow_char_of_commute add_pow_char_of_commute
 
-theorem add_pow_char_pow_of_commute [Semiring R] {p : ℕ} [Fact p.Prime] [CharP R p] {n : ℕ}
+theorem add_pow_char_pow_of_commute [Semiring R] {p n : ℕ} [hp : Fact p.Prime] [CharP R p]
     (x y : R) (h : Commute x y) : (x + y) ^ p ^ n = x ^ p ^ n + y ^ p ^ n := by
-  induction n with
-  | zero => simp
-  | succ n n_ih =>
-      rw [pow_succ', pow_mul, pow_mul, pow_mul, n_ih]
-      apply add_pow_char_of_commute; apply Commute.pow_pow h
+  let ⟨r, hr⟩ := h.exists_add_pow_prime_pow_eq hp.out n
+  simp [hr]
 #align add_pow_char_pow_of_commute add_pow_char_pow_of_commute
 
 theorem sub_pow_char_of_commute [Ring R] {p : ℕ} [Fact p.Prime] [CharP R p] (x y : R)
@@ -509,7 +563,7 @@ end Semiring
 section Ring
 
 variable [Ring R] [NoZeroDivisors R] [Nontrivial R] [Finite R]
--- porting note: redundant binder annotation update
+-- porting note: removed redundant binder annotation update `(R)`
 
 theorem char_is_prime (p : ℕ) [CharP R p] : p.Prime :=
   Or.resolve_right (char_is_prime_or_zero R p) (char_ne_zero_of_finite R p)
@@ -589,12 +643,11 @@ end
 section
 
 variable [NonAssocRing R] [Fintype R] (n : ℕ)
--- porting note: redundant binder annotation update
+-- porting note: removed redundant binder annotation update `(R)`
 
 theorem charP_of_ne_zero (hn : Fintype.card R = n) (hR : ∀ i < n, (i : R) = 0 → i = 0) :
     CharP R n :=
-  { cast_eq_zero_iff' :=
-      by
+  { cast_eq_zero_iff' := by
       have H : (n : R) = 0 := by rw [← hn, CharP.cast_card_eq_zero]
       intro k
       constructor
@@ -660,8 +713,7 @@ theorem Int.cast_injOn_of_ringChar_ne_two {R : Type _} [NonAssocRing R] [Nontriv
   by_contra hf
   replace ha : a = 0 ∨ a = 1 ∨ a = -1 := ha
   replace hb : b = 0 ∨ b = 1 ∨ b = -1 := hb
-  have hh : a - b = 1 ∨ b - a = 1 ∨ a - b = 2 ∨ b - a = 2 :=
-    by
+  have hh : a - b = 1 ∨ b - a = 1 ∨ a - b = 2 ∨ b - a = 2 := by
     rcases ha with (ha | ha | ha) <;> rcases hb with (hb | hb | hb)
     pick_goal 5
     pick_goal 9
@@ -687,7 +739,7 @@ end
 namespace NeZero
 
 variable [AddMonoidWithOne R] {r : R} {n p : ℕ} {a : ℕ+}
--- porting note: redundant binder annotation update
+-- porting note: removed redundant binder annotation update `(R)`
 
 theorem of_not_dvd [CharP R p] (h : ¬p ∣ n) : NeZero (n : R) :=
   ⟨(CharP.cast_eq_zero_iff R p n).not.mpr h⟩
feat: port Algebra.CharP.Basic (#2845)

Dependencies 8 + 477

478 files ported (98.4%)
196997 lines ported (98.4%)
Show graph

The unported dependencies are