algebra.group.prod
⟷
Mathlib.Algebra.Group.Prod
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
prod_prod_prod
equivs (#19235)
These send ((a, b), (c, d))
to ((a, c), (b, d))
, and this commit provides this bundled as equiv
, add_equiv
, mul_equiv
, ring_equiv
, and linear_equiv
.
We already have something analogous for tensor_product
.
@@ -465,6 +465,26 @@ def prod_comm : M × N ≃* N × M :=
variables {M' N' : Type*} [mul_one_class M'] [mul_one_class N']
+section
+variables (M N M' N')
+
+/-- Four-way commutativity of `prod`. The name matches `mul_mul_mul_comm`. -/
+@[to_additive prod_prod_prod_comm "Four-way commutativity of `prod`.
+The name matches `mul_mul_mul_comm`", simps apply]
+def prod_prod_prod_comm : (M × N) × (M' × N') ≃* (M × M') × (N × N') :=
+{ to_fun := λ mnmn, ((mnmn.1.1, mnmn.2.1), (mnmn.1.2, mnmn.2.2)),
+ inv_fun := λ mmnn, ((mmnn.1.1, mmnn.2.1), (mmnn.1.2, mmnn.2.2)),
+ map_mul' := λ mnmn mnmn', rfl,
+ ..equiv.prod_prod_prod_comm M N M' N', }
+
+@[simp, to_additive] lemma prod_prod_prod_comm_to_equiv :
+ (prod_prod_prod_comm M N M' N').to_equiv = equiv.prod_prod_prod_comm M N M' N' := rfl
+
+@[simp] lemma prod_prod_prod_comm_symm :
+ (prod_prod_prod_comm M N M' N').symm = prod_prod_prod_comm M M' N N' := rfl
+
+end
+
/--Product of multiplicative isomorphisms; the maps come from `equiv.prod_congr`.-/
@[to_additive prod_congr "Product of additive isomorphisms; the maps come from `equiv.prod_congr`."]
def prod_congr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -5,7 +5,7 @@ Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
-/
import Algebra.Group.Opposite
import Algebra.GroupWithZero.Units.Basic
-import Algebra.Hom.Units
+import Algebra.Group.Units.Hom
#align_import algebra.group.prod from "leanprover-community/mathlib"@"cd391184c85986113f8c00844cfe6dda1d34be3d"
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
-/
-import Mathbin.Algebra.Group.Opposite
-import Mathbin.Algebra.GroupWithZero.Units.Basic
-import Mathbin.Algebra.Hom.Units
+import Algebra.Group.Opposite
+import Algebra.GroupWithZero.Units.Basic
+import Algebra.Hom.Units
#align_import algebra.group.prod from "leanprover-community/mathlib"@"cd391184c85986113f8c00844cfe6dda1d34be3d"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -268,7 +268,7 @@ instance [Monoid M] [Monoid N] : Monoid (M × N) :=
instance [DivInvMonoid G] [DivInvMonoid H] : DivInvMonoid (G × H) :=
{ Prod.monoid, Prod.hasInv,
Prod.hasDiv with
- div_eq_mul_inv := fun a b => mk.inj_iff.mpr ⟨div_eq_mul_inv _ _, div_eq_mul_inv _ _⟩
+ div_eq_hMul_inv := fun a b => mk.inj_iff.mpr ⟨div_eq_mul_inv _ _, div_eq_mul_inv _ _⟩
zpow := fun z a => ⟨DivInvMonoid.zpow z a.1, DivInvMonoid.zpow z a.2⟩
zpow_zero' := fun z => ext (DivInvMonoid.zpow_zero' _) (DivInvMonoid.zpow_zero' _)
zpow_succ' := fun z a => ext (DivInvMonoid.zpow_succ' _ _) (DivInvMonoid.zpow_succ' _ _)
@@ -279,7 +279,7 @@ instance [DivisionMonoid G] [DivisionMonoid H] : DivisionMonoid (G × H) :=
{ Prod.divInvMonoid,
Prod.hasInvolutiveInv with
mul_inv_rev := fun a b => ext (mul_inv_rev _ _) (mul_inv_rev _ _)
- inv_eq_of_mul := fun a b h =>
+ inv_eq_of_hMul := fun a b h =>
ext (inv_eq_of_mul_eq_one_right <| congr_arg fst h)
(inv_eq_of_mul_eq_one_right <| congr_arg snd h) }
@@ -290,18 +290,18 @@ instance [DivisionCommMonoid G] [DivisionCommMonoid H] : DivisionCommMonoid (G
@[to_additive]
instance [Group G] [Group H] : Group (G × H) :=
{ Prod.divInvMonoid with
- mul_left_inv := fun a => mk.inj_iff.mpr ⟨mul_left_inv _, mul_left_inv _⟩ }
+ hMul_left_inv := fun a => mk.inj_iff.mpr ⟨mul_left_inv _, mul_left_inv _⟩ }
@[to_additive]
instance [LeftCancelSemigroup G] [LeftCancelSemigroup H] : LeftCancelSemigroup (G × H) :=
{ Prod.semigroup with
- mul_left_cancel := fun a b c h =>
+ hMul_left_cancel := fun a b c h =>
Prod.ext (mul_left_cancel (Prod.ext_iff.1 h).1) (mul_left_cancel (Prod.ext_iff.1 h).2) }
@[to_additive]
instance [RightCancelSemigroup G] [RightCancelSemigroup H] : RightCancelSemigroup (G × H) :=
{ Prod.semigroup with
- mul_right_cancel := fun a b c h =>
+ hMul_right_cancel := fun a b c h =>
Prod.ext (mul_right_cancel (Prod.ext_iff.1 h).1) (mul_right_cancel (Prod.ext_iff.1 h).2) }
@[to_additive]
@@ -391,7 +391,7 @@ theorem coe_snd : ⇑(snd M N) = Prod.snd :=
protected def prod (f : M →ₙ* N) (g : M →ₙ* P) : M →ₙ* N × P
where
toFun := Pi.prod f g
- map_mul' x y := Prod.ext (f.map_mul x y) (g.map_mul x y)
+ map_mul' x y := Prod.ext (f.map_hMul x y) (g.map_hMul x y)
#align mul_hom.prod MulHom.prod
#align add_hom.prod AddHom.prod
-/
@@ -638,7 +638,7 @@ protected def prod (f : M →* N) (g : M →* P) : M →* N × P
where
toFun := Pi.prod f g
map_one' := Prod.ext f.map_one g.map_one
- map_mul' x y := Prod.ext (f.map_mul x y) (g.map_mul x y)
+ map_mul' x y := Prod.ext (f.map_hMul x y) (g.map_hMul x y)
#align monoid_hom.prod MonoidHom.prod
#align add_monoid_hom.prod AddMonoidHom.prod
-/
@@ -873,7 +873,7 @@ end
@[to_additive prod_congr "Product of additive isomorphisms; the maps come from `equiv.prod_congr`."]
def prodCongr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
{ f.toEquiv.prodCongr g.toEquiv with
- map_mul' := fun x y => Prod.ext (f.map_mul _ _) (g.map_mul _ _) }
+ map_mul' := fun x y => Prod.ext (f.map_hMul _ _) (g.map_hMul _ _) }
#align mul_equiv.prod_congr MulEquiv.prodCongr
#align add_equiv.prod_congr AddEquiv.prodCongr
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
-
-! This file was ported from Lean 3 source module algebra.group.prod
-! leanprover-community/mathlib commit cd391184c85986113f8c00844cfe6dda1d34be3d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Algebra.Group.Opposite
import Mathbin.Algebra.GroupWithZero.Units.Basic
import Mathbin.Algebra.Hom.Units
+#align_import algebra.group.prod from "leanprover-community/mathlib"@"cd391184c85986113f8c00844cfe6dda1d34be3d"
+
/-!
# Monoid, group etc structures on `M × N`
mathlib commit https://github.com/leanprover-community/mathlib/commit/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa
@@ -837,6 +837,7 @@ section
variable (M N M' N')
+#print MulEquiv.prodProdProdComm /-
/-- Four-way commutativity of `prod`. The name matches `mul_mul_mul_comm`. -/
@[to_additive prod_prod_prod_comm
"Four-way commutativity of `prod`.\nThe name matches `mul_mul_mul_comm`",
@@ -850,18 +851,23 @@ def prodProdProdComm : (M × N) × M' × N' ≃* (M × M') × N × N' :=
map_mul' := fun mnmn mnmn' => rfl }
#align mul_equiv.prod_prod_prod_comm MulEquiv.prodProdProdComm
#align add_equiv.prod_prod_prod_comm AddEquiv.prodProdProdComm
+-/
+#print MulEquiv.prodProdProdComm_toEquiv /-
@[simp, to_additive]
theorem prodProdProdComm_toEquiv :
(prodProdProdComm M N M' N').toEquiv = Equiv.prodProdProdComm M N M' N' :=
rfl
#align mul_equiv.prod_prod_prod_comm_to_equiv MulEquiv.prodProdProdComm_toEquiv
-#align add_equiv.sum_sum_sum_comm_to_equiv AddEquiv.sum_sum_sum_comm_toEquiv
+#align add_equiv.sum_sum_sum_comm_to_equiv AddEquiv.prodProdProdComm_toEquiv
+-/
+#print MulEquiv.prodProdProdComm_symm /-
@[simp]
theorem prodProdProdComm_symm : (prodProdProdComm M N M' N').symm = prodProdProdComm M M' N N' :=
rfl
#align mul_equiv.prod_prod_prod_comm_symm MulEquiv.prodProdProdComm_symm
+-/
end
mathlib commit https://github.com/leanprover-community/mathlib/commit/d608fc5d4e69d4cc21885913fb573a88b0deb521
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
! This file was ported from Lean 3 source module algebra.group.prod
-! leanprover-community/mathlib commit 448144f7ae193a8990cb7473c9e9a01990f64ac7
+! leanprover-community/mathlib commit cd391184c85986113f8c00844cfe6dda1d34be3d
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -833,6 +833,38 @@ theorem coe_prodComm_symm : ⇑(prodComm : M × N ≃* N × M).symm = Prod.swap
variable {M' N' : Type _} [MulOneClass M'] [MulOneClass N']
+section
+
+variable (M N M' N')
+
+/-- Four-way commutativity of `prod`. The name matches `mul_mul_mul_comm`. -/
+@[to_additive prod_prod_prod_comm
+ "Four-way commutativity of `prod`.\nThe name matches `mul_mul_mul_comm`",
+ simps apply]
+def prodProdProdComm : (M × N) × M' × N' ≃* (M × M') × N × N' :=
+ {
+ Equiv.prodProdProdComm M N M'
+ N' with
+ toFun := fun mnmn => ((mnmn.1.1, mnmn.2.1), (mnmn.1.2, mnmn.2.2))
+ invFun := fun mmnn => ((mmnn.1.1, mmnn.2.1), (mmnn.1.2, mmnn.2.2))
+ map_mul' := fun mnmn mnmn' => rfl }
+#align mul_equiv.prod_prod_prod_comm MulEquiv.prodProdProdComm
+#align add_equiv.prod_prod_prod_comm AddEquiv.prodProdProdComm
+
+@[simp, to_additive]
+theorem prodProdProdComm_toEquiv :
+ (prodProdProdComm M N M' N').toEquiv = Equiv.prodProdProdComm M N M' N' :=
+ rfl
+#align mul_equiv.prod_prod_prod_comm_to_equiv MulEquiv.prodProdProdComm_toEquiv
+#align add_equiv.sum_sum_sum_comm_to_equiv AddEquiv.sum_sum_sum_comm_toEquiv
+
+@[simp]
+theorem prodProdProdComm_symm : (prodProdProdComm M N M' N').symm = prodProdProdComm M M' N N' :=
+ rfl
+#align mul_equiv.prod_prod_prod_comm_symm MulEquiv.prodProdProdComm_symm
+
+end
+
#print MulEquiv.prodCongr /-
/-- Product of multiplicative isomorphisms; the maps come from `equiv.prod_congr`.-/
@[to_additive prod_congr "Product of additive isomorphisms; the maps come from `equiv.prod_congr`."]
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -47,116 +47,150 @@ namespace Prod
instance [Mul M] [Mul N] : Mul (M × N) :=
⟨fun p q => ⟨p.1 * q.1, p.2 * q.2⟩⟩
+#print Prod.fst_mul /-
@[simp, to_additive]
theorem fst_mul [Mul M] [Mul N] (p q : M × N) : (p * q).1 = p.1 * q.1 :=
rfl
#align prod.fst_mul Prod.fst_mul
#align prod.fst_add Prod.fst_add
+-/
+#print Prod.snd_mul /-
@[simp, to_additive]
theorem snd_mul [Mul M] [Mul N] (p q : M × N) : (p * q).2 = p.2 * q.2 :=
rfl
#align prod.snd_mul Prod.snd_mul
#align prod.snd_add Prod.snd_add
+-/
+#print Prod.mk_mul_mk /-
@[simp, to_additive]
theorem mk_mul_mk [Mul M] [Mul N] (a₁ a₂ : M) (b₁ b₂ : N) :
(a₁, b₁) * (a₂, b₂) = (a₁ * a₂, b₁ * b₂) :=
rfl
#align prod.mk_mul_mk Prod.mk_mul_mk
#align prod.mk_add_mk Prod.mk_add_mk
+-/
+#print Prod.swap_mul /-
@[simp, to_additive]
theorem swap_mul [Mul M] [Mul N] (p q : M × N) : (p * q).symm = p.symm * q.symm :=
rfl
#align prod.swap_mul Prod.swap_mul
#align prod.swap_add Prod.swap_add
+-/
+#print Prod.mul_def /-
@[to_additive]
theorem mul_def [Mul M] [Mul N] (p q : M × N) : p * q = (p.1 * q.1, p.2 * q.2) :=
rfl
#align prod.mul_def Prod.mul_def
#align prod.add_def Prod.add_def
+-/
+#print Prod.one_mk_mul_one_mk /-
@[to_additive]
theorem one_mk_mul_one_mk [Monoid M] [Mul N] (b₁ b₂ : N) : ((1 : M), b₁) * (1, b₂) = (1, b₁ * b₂) :=
by rw [mk_mul_mk, mul_one]
#align prod.one_mk_mul_one_mk Prod.one_mk_mul_one_mk
#align prod.zero_mk_add_zero_mk Prod.zero_mk_add_zero_mk
+-/
+#print Prod.mk_one_mul_mk_one /-
@[to_additive]
theorem mk_one_mul_mk_one [Mul M] [Monoid N] (a₁ a₂ : M) : (a₁, (1 : N)) * (a₂, 1) = (a₁ * a₂, 1) :=
by rw [mk_mul_mk, mul_one]
#align prod.mk_one_mul_mk_one Prod.mk_one_mul_mk_one
#align prod.mk_zero_add_mk_zero Prod.mk_zero_add_mk_zero
+-/
@[to_additive]
instance [One M] [One N] : One (M × N) :=
⟨(1, 1)⟩
+#print Prod.fst_one /-
@[simp, to_additive]
theorem fst_one [One M] [One N] : (1 : M × N).1 = 1 :=
rfl
#align prod.fst_one Prod.fst_one
#align prod.fst_zero Prod.fst_zero
+-/
+#print Prod.snd_one /-
@[simp, to_additive]
theorem snd_one [One M] [One N] : (1 : M × N).2 = 1 :=
rfl
#align prod.snd_one Prod.snd_one
#align prod.snd_zero Prod.snd_zero
+-/
+#print Prod.one_eq_mk /-
@[to_additive]
theorem one_eq_mk [One M] [One N] : (1 : M × N) = (1, 1) :=
rfl
#align prod.one_eq_mk Prod.one_eq_mk
#align prod.zero_eq_mk Prod.zero_eq_mk
+-/
+#print Prod.mk_eq_one /-
@[simp, to_additive]
theorem mk_eq_one [One M] [One N] {x : M} {y : N} : (x, y) = 1 ↔ x = 1 ∧ y = 1 :=
mk.inj_iff
#align prod.mk_eq_one Prod.mk_eq_one
#align prod.mk_eq_zero Prod.mk_eq_zero
+-/
+#print Prod.swap_one /-
@[simp, to_additive]
theorem swap_one [One M] [One N] : (1 : M × N).symm = 1 :=
rfl
#align prod.swap_one Prod.swap_one
#align prod.swap_zero Prod.swap_zero
+-/
+#print Prod.fst_mul_snd /-
@[to_additive]
theorem fst_mul_snd [MulOneClass M] [MulOneClass N] (p : M × N) : (p.fst, 1) * (1, p.snd) = p :=
ext (mul_one p.1) (one_mul p.2)
#align prod.fst_mul_snd Prod.fst_mul_snd
#align prod.fst_add_snd Prod.fst_add_snd
+-/
@[to_additive]
instance [Inv M] [Inv N] : Inv (M × N) :=
⟨fun p => (p.1⁻¹, p.2⁻¹)⟩
+#print Prod.fst_inv /-
@[simp, to_additive]
theorem fst_inv [Inv G] [Inv H] (p : G × H) : p⁻¹.1 = p.1⁻¹ :=
rfl
#align prod.fst_inv Prod.fst_inv
#align prod.fst_neg Prod.fst_neg
+-/
+#print Prod.snd_inv /-
@[simp, to_additive]
theorem snd_inv [Inv G] [Inv H] (p : G × H) : p⁻¹.2 = p.2⁻¹ :=
rfl
#align prod.snd_inv Prod.snd_inv
#align prod.snd_neg Prod.snd_neg
+-/
+#print Prod.inv_mk /-
@[simp, to_additive]
theorem inv_mk [Inv G] [Inv H] (a : G) (b : H) : (a, b)⁻¹ = (a⁻¹, b⁻¹) :=
rfl
#align prod.inv_mk Prod.inv_mk
#align prod.neg_mk Prod.neg_mk
+-/
+#print Prod.swap_inv /-
@[simp, to_additive]
theorem swap_inv [Inv G] [Inv H] (p : G × H) : p⁻¹.symm = p.symm⁻¹ :=
rfl
#align prod.swap_inv Prod.swap_inv
#align prod.swap_neg Prod.swap_neg
+-/
@[to_additive]
instance [InvolutiveInv M] [InvolutiveInv N] : InvolutiveInv (M × N) :=
@@ -166,30 +200,38 @@ instance [InvolutiveInv M] [InvolutiveInv N] : InvolutiveInv (M × N) :=
instance [Div M] [Div N] : Div (M × N) :=
⟨fun p q => ⟨p.1 / q.1, p.2 / q.2⟩⟩
+#print Prod.fst_div /-
@[simp, to_additive]
theorem fst_div [Div G] [Div H] (a b : G × H) : (a / b).1 = a.1 / b.1 :=
rfl
#align prod.fst_div Prod.fst_div
#align prod.fst_sub Prod.fst_sub
+-/
+#print Prod.snd_div /-
@[simp, to_additive]
theorem snd_div [Div G] [Div H] (a b : G × H) : (a / b).2 = a.2 / b.2 :=
rfl
#align prod.snd_div Prod.snd_div
#align prod.snd_sub Prod.snd_sub
+-/
+#print Prod.mk_div_mk /-
@[simp, to_additive]
theorem mk_div_mk [Div G] [Div H] (x₁ x₂ : G) (y₁ y₂ : H) :
(x₁, y₁) / (x₂, y₂) = (x₁ / x₂, y₁ / y₂) :=
rfl
#align prod.mk_div_mk Prod.mk_div_mk
#align prod.mk_sub_mk Prod.mk_sub_mk
+-/
+#print Prod.swap_div /-
@[simp, to_additive]
theorem swap_div [Div G] [Div H] (a b : G × H) : (a / b).symm = a.symm / b.symm :=
rfl
#align prod.swap_div Prod.swap_div
#align prod.swap_sub Prod.swap_sub
+-/
instance [MulZeroClass M] [MulZeroClass N] : MulZeroClass (M × N) :=
{ Prod.hasZero,
@@ -328,17 +370,21 @@ def snd : M × N →ₙ* N :=
variable {M N}
+#print MulHom.coe_fst /-
@[simp, to_additive]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
rfl
#align mul_hom.coe_fst MulHom.coe_fst
#align add_hom.coe_fst AddHom.coe_fst
+-/
+#print MulHom.coe_snd /-
@[simp, to_additive]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
rfl
#align mul_hom.coe_snd MulHom.coe_snd
#align add_hom.coe_snd AddHom.coe_snd
+-/
#print MulHom.prod /-
/-- Combine two `monoid_hom`s `f : M →ₙ* N`, `g : M →ₙ* P` into
@@ -353,35 +399,45 @@ protected def prod (f : M →ₙ* N) (g : M →ₙ* P) : M →ₙ* N × P
#align add_hom.prod AddHom.prod
-/
+#print MulHom.coe_prod /-
@[to_additive coe_prod]
theorem coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.Prod g) = Pi.prod f g :=
rfl
#align mul_hom.coe_prod MulHom.coe_prod
#align add_hom.coe_prod AddHom.coe_prod
+-/
+#print MulHom.prod_apply /-
@[simp, to_additive prod_apply]
theorem prod_apply (f : M →ₙ* N) (g : M →ₙ* P) (x) : f.Prod g x = (f x, g x) :=
rfl
#align mul_hom.prod_apply MulHom.prod_apply
#align add_hom.prod_apply AddHom.prod_apply
+-/
+#print MulHom.fst_comp_prod /-
@[simp, to_additive fst_comp_prod]
theorem fst_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (fst N P).comp (f.Prod g) = f :=
ext fun x => rfl
#align mul_hom.fst_comp_prod MulHom.fst_comp_prod
#align add_hom.fst_comp_prod AddHom.fst_comp_prod
+-/
+#print MulHom.snd_comp_prod /-
@[simp, to_additive snd_comp_prod]
theorem snd_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (snd N P).comp (f.Prod g) = g :=
ext fun x => rfl
#align mul_hom.snd_comp_prod MulHom.snd_comp_prod
#align add_hom.snd_comp_prod AddHom.snd_comp_prod
+-/
+#print MulHom.prod_unique /-
@[simp, to_additive prod_unique]
theorem prod_unique (f : M →ₙ* N × P) : ((fst N P).comp f).Prod ((snd N P).comp f) = f :=
ext fun x => by simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]
#align mul_hom.prod_unique MulHom.prod_unique
#align add_hom.prod_unique AddHom.prod_unique
+-/
end Prod
@@ -399,24 +455,30 @@ def prodMap : M × N →ₙ* M' × N' :=
#align add_hom.prod_map AddHom.prodMap
-/
+#print MulHom.prodMap_def /-
@[to_additive prod_map_def]
theorem prodMap_def : prodMap f g = (f.comp (fst M N)).Prod (g.comp (snd M N)) :=
rfl
#align mul_hom.prod_map_def MulHom.prodMap_def
#align add_hom.prod_map_def AddHom.prodMap_def
+-/
+#print MulHom.coe_prodMap /-
@[simp, to_additive coe_prod_map]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
rfl
#align mul_hom.coe_prod_map MulHom.coe_prodMap
#align add_hom.coe_prod_map AddHom.coe_prodMap
+-/
+#print MulHom.prod_comp_prodMap /-
@[to_additive prod_comp_prod_map]
theorem prod_comp_prodMap (f : P →ₙ* M) (g : P →ₙ* N) (f' : M →ₙ* M') (g' : N →ₙ* N') :
(f'.Prod_map g').comp (f.Prod g) = (f'.comp f).Prod (g'.comp g) :=
rfl
#align mul_hom.prod_comp_prod_map MulHom.prod_comp_prodMap
#align add_hom.prod_comp_prod_map AddHom.prod_comp_prodMap
+-/
end Prod_map
@@ -424,6 +486,7 @@ section Coprod
variable [Mul M] [Mul N] [CommSemigroup P] (f : M →ₙ* P) (g : N →ₙ* P)
+#print MulHom.coprod /-
/-- Coproduct of two `mul_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 * g p.2`. -/
@[to_additive
@@ -432,19 +495,24 @@ def coprod : M × N →ₙ* P :=
f.comp (fst M N) * g.comp (snd M N)
#align mul_hom.coprod MulHom.coprod
#align add_hom.coprod AddHom.coprod
+-/
+#print MulHom.coprod_apply /-
@[simp, to_additive]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
rfl
#align mul_hom.coprod_apply MulHom.coprod_apply
#align add_hom.coprod_apply AddHom.coprod_apply
+-/
+#print MulHom.comp_coprod /-
@[to_additive]
theorem comp_coprod {Q : Type _} [CommSemigroup Q] (h : P →ₙ* Q) (f : M →ₙ* P) (g : N →ₙ* P) :
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
ext fun x => by simp
#align mul_hom.comp_coprod MulHom.comp_coprod
#align add_hom.comp_coprod AddHom.comp_coprod
+-/
end Coprod
@@ -454,6 +522,7 @@ namespace MonoidHom
variable (M N) [MulOneClass M] [MulOneClass N]
+#print MonoidHom.fst /-
/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/
@[to_additive
"Given additive monoids `A`, `B`, the natural projection homomorphism\nfrom `A × B` to `A`"]
@@ -461,7 +530,9 @@ def fst : M × N →* M :=
⟨Prod.fst, rfl, fun _ _ => rfl⟩
#align monoid_hom.fst MonoidHom.fst
#align add_monoid_hom.fst AddMonoidHom.fst
+-/
+#print MonoidHom.snd /-
/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/
@[to_additive
"Given additive monoids `A`, `B`, the natural projection homomorphism\nfrom `A × B` to `B`"]
@@ -469,7 +540,9 @@ def snd : M × N →* N :=
⟨Prod.snd, rfl, fun _ _ => rfl⟩
#align monoid_hom.snd MonoidHom.snd
#align add_monoid_hom.snd AddMonoidHom.snd
+-/
+#print MonoidHom.inl /-
/-- Given monoids `M`, `N`, the natural inclusion homomorphism from `M` to `M × N`. -/
@[to_additive
"Given additive monoids `A`, `B`, the natural inclusion homomorphism\nfrom `A` to `A × B`."]
@@ -477,7 +550,9 @@ def inl : M →* M × N :=
⟨fun x => (x, 1), rfl, fun _ _ => Prod.ext rfl (one_mul 1).symm⟩
#align monoid_hom.inl MonoidHom.inl
#align add_monoid_hom.inl AddMonoidHom.inl
+-/
+#print MonoidHom.inr /-
/-- Given monoids `M`, `N`, the natural inclusion homomorphism from `N` to `M × N`. -/
@[to_additive
"Given additive monoids `A`, `B`, the natural inclusion homomorphism\nfrom `B` to `A × B`."]
@@ -485,50 +560,65 @@ def inr : N →* M × N :=
⟨fun y => (1, y), rfl, fun _ _ => Prod.ext (one_mul 1).symm rfl⟩
#align monoid_hom.inr MonoidHom.inr
#align add_monoid_hom.inr AddMonoidHom.inr
+-/
variable {M N}
+#print MonoidHom.coe_fst /-
@[simp, to_additive]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
rfl
#align monoid_hom.coe_fst MonoidHom.coe_fst
#align add_monoid_hom.coe_fst AddMonoidHom.coe_fst
+-/
+#print MonoidHom.coe_snd /-
@[simp, to_additive]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
rfl
#align monoid_hom.coe_snd MonoidHom.coe_snd
#align add_monoid_hom.coe_snd AddMonoidHom.coe_snd
+-/
+#print MonoidHom.inl_apply /-
@[simp, to_additive]
theorem inl_apply (x) : inl M N x = (x, 1) :=
rfl
#align monoid_hom.inl_apply MonoidHom.inl_apply
#align add_monoid_hom.inl_apply AddMonoidHom.inl_apply
+-/
+#print MonoidHom.inr_apply /-
@[simp, to_additive]
theorem inr_apply (y) : inr M N y = (1, y) :=
rfl
#align monoid_hom.inr_apply MonoidHom.inr_apply
#align add_monoid_hom.inr_apply AddMonoidHom.inr_apply
+-/
+#print MonoidHom.fst_comp_inl /-
@[simp, to_additive]
theorem fst_comp_inl : (fst M N).comp (inl M N) = id M :=
rfl
#align monoid_hom.fst_comp_inl MonoidHom.fst_comp_inl
#align add_monoid_hom.fst_comp_inl AddMonoidHom.fst_comp_inl
+-/
+#print MonoidHom.snd_comp_inl /-
@[simp, to_additive]
theorem snd_comp_inl : (snd M N).comp (inl M N) = 1 :=
rfl
#align monoid_hom.snd_comp_inl MonoidHom.snd_comp_inl
#align add_monoid_hom.snd_comp_inl AddMonoidHom.snd_comp_inl
+-/
+#print MonoidHom.fst_comp_inr /-
@[simp, to_additive]
theorem fst_comp_inr : (fst M N).comp (inr M N) = 1 :=
rfl
#align monoid_hom.fst_comp_inr MonoidHom.fst_comp_inr
#align add_monoid_hom.fst_comp_inr AddMonoidHom.fst_comp_inr
+-/
#print MonoidHom.snd_comp_inr /-
@[simp, to_additive]
@@ -542,6 +632,7 @@ section Prod
variable [MulOneClass P]
+#print MonoidHom.prod /-
/-- Combine two `monoid_hom`s `f : M →* N`, `g : M →* P` into `f.prod g : M →* N × P`
given by `(f.prod g) x = (f x, g x)`. -/
@[to_additive Prod
@@ -553,36 +644,47 @@ protected def prod (f : M →* N) (g : M →* P) : M →* N × P
map_mul' x y := Prod.ext (f.map_mul x y) (g.map_mul x y)
#align monoid_hom.prod MonoidHom.prod
#align add_monoid_hom.prod AddMonoidHom.prod
+-/
+#print MonoidHom.coe_prod /-
@[to_additive coe_prod]
theorem coe_prod (f : M →* N) (g : M →* P) : ⇑(f.Prod g) = Pi.prod f g :=
rfl
#align monoid_hom.coe_prod MonoidHom.coe_prod
#align add_monoid_hom.coe_prod AddMonoidHom.coe_prod
+-/
+#print MonoidHom.prod_apply /-
@[simp, to_additive prod_apply]
theorem prod_apply (f : M →* N) (g : M →* P) (x) : f.Prod g x = (f x, g x) :=
rfl
#align monoid_hom.prod_apply MonoidHom.prod_apply
#align add_monoid_hom.prod_apply AddMonoidHom.prod_apply
+-/
+#print MonoidHom.fst_comp_prod /-
@[simp, to_additive fst_comp_prod]
theorem fst_comp_prod (f : M →* N) (g : M →* P) : (fst N P).comp (f.Prod g) = f :=
ext fun x => rfl
#align monoid_hom.fst_comp_prod MonoidHom.fst_comp_prod
#align add_monoid_hom.fst_comp_prod AddMonoidHom.fst_comp_prod
+-/
+#print MonoidHom.snd_comp_prod /-
@[simp, to_additive snd_comp_prod]
theorem snd_comp_prod (f : M →* N) (g : M →* P) : (snd N P).comp (f.Prod g) = g :=
ext fun x => rfl
#align monoid_hom.snd_comp_prod MonoidHom.snd_comp_prod
#align add_monoid_hom.snd_comp_prod AddMonoidHom.snd_comp_prod
+-/
+#print MonoidHom.prod_unique /-
@[simp, to_additive prod_unique]
theorem prod_unique (f : M →* N × P) : ((fst N P).comp f).Prod ((snd N P).comp f) = f :=
ext fun x => by simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]
#align monoid_hom.prod_unique MonoidHom.prod_unique
#align add_monoid_hom.prod_unique AddMonoidHom.prod_unique
+-/
end Prod
@@ -591,31 +693,39 @@ section Prod_map
variable {M' : Type _} {N' : Type _} [MulOneClass M'] [MulOneClass N'] [MulOneClass P] (f : M →* M')
(g : N →* N')
+#print MonoidHom.prodMap /-
/-- `prod.map` as a `monoid_hom`. -/
@[to_additive Prod_map "`prod.map` as an `add_monoid_hom`"]
def prodMap : M × N →* M' × N' :=
(f.comp (fst M N)).Prod (g.comp (snd M N))
#align monoid_hom.prod_map MonoidHom.prodMap
#align add_monoid_hom.prod_map AddMonoidHom.prodMap
+-/
+#print MonoidHom.prodMap_def /-
@[to_additive prod_map_def]
theorem prodMap_def : prodMap f g = (f.comp (fst M N)).Prod (g.comp (snd M N)) :=
rfl
#align monoid_hom.prod_map_def MonoidHom.prodMap_def
#align add_monoid_hom.prod_map_def AddMonoidHom.prodMap_def
+-/
+#print MonoidHom.coe_prodMap /-
@[simp, to_additive coe_prod_map]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
rfl
#align monoid_hom.coe_prod_map MonoidHom.coe_prodMap
#align add_monoid_hom.coe_prod_map AddMonoidHom.coe_prodMap
+-/
+#print MonoidHom.prod_comp_prodMap /-
@[to_additive prod_comp_prod_map]
theorem prod_comp_prodMap (f : P →* M) (g : P →* N) (f' : M →* M') (g' : N →* N') :
(f'.Prod_map g').comp (f.Prod g) = (f'.comp f).Prod (g'.comp g) :=
rfl
#align monoid_hom.prod_comp_prod_map MonoidHom.prod_comp_prodMap
#align add_monoid_hom.prod_comp_prod_map AddMonoidHom.prod_comp_prodMap
+-/
end Prod_map
@@ -623,6 +733,7 @@ section Coprod
variable [CommMonoid P] (f : M →* P) (g : N →* P)
+#print MonoidHom.coprod /-
/-- Coproduct of two `monoid_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 * g p.2`. -/
@[to_additive
@@ -631,44 +742,57 @@ def coprod : M × N →* P :=
f.comp (fst M N) * g.comp (snd M N)
#align monoid_hom.coprod MonoidHom.coprod
#align add_monoid_hom.coprod AddMonoidHom.coprod
+-/
+#print MonoidHom.coprod_apply /-
@[simp, to_additive]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
rfl
#align monoid_hom.coprod_apply MonoidHom.coprod_apply
#align add_monoid_hom.coprod_apply AddMonoidHom.coprod_apply
+-/
+#print MonoidHom.coprod_comp_inl /-
@[simp, to_additive]
theorem coprod_comp_inl : (f.coprod g).comp (inl M N) = f :=
ext fun x => by simp [coprod_apply]
#align monoid_hom.coprod_comp_inl MonoidHom.coprod_comp_inl
#align add_monoid_hom.coprod_comp_inl AddMonoidHom.coprod_comp_inl
+-/
+#print MonoidHom.coprod_comp_inr /-
@[simp, to_additive]
theorem coprod_comp_inr : (f.coprod g).comp (inr M N) = g :=
ext fun x => by simp [coprod_apply]
#align monoid_hom.coprod_comp_inr MonoidHom.coprod_comp_inr
#align add_monoid_hom.coprod_comp_inr AddMonoidHom.coprod_comp_inr
+-/
+#print MonoidHom.coprod_unique /-
@[simp, to_additive]
theorem coprod_unique (f : M × N →* P) : (f.comp (inl M N)).coprod (f.comp (inr M N)) = f :=
ext fun x => by simp [coprod_apply, inl_apply, inr_apply, ← map_mul]
#align monoid_hom.coprod_unique MonoidHom.coprod_unique
#align add_monoid_hom.coprod_unique AddMonoidHom.coprod_unique
+-/
+#print MonoidHom.coprod_inl_inr /-
@[simp, to_additive]
theorem coprod_inl_inr {M N : Type _} [CommMonoid M] [CommMonoid N] :
(inl M N).coprod (inr M N) = id (M × N) :=
coprod_unique (id <| M × N)
#align monoid_hom.coprod_inl_inr MonoidHom.coprod_inl_inr
#align add_monoid_hom.coprod_inl_inr AddMonoidHom.coprod_inl_inr
+-/
+#print MonoidHom.comp_coprod /-
@[to_additive]
theorem comp_coprod {Q : Type _} [CommMonoid Q] (h : P →* Q) (f : M →* P) (g : N →* P) :
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
ext fun x => by simp
#align monoid_hom.comp_coprod MonoidHom.comp_coprod
#align add_monoid_hom.comp_coprod AddMonoidHom.comp_coprod
+-/
end Coprod
@@ -680,6 +804,7 @@ section
variable {M N} [MulOneClass M] [MulOneClass N]
+#print MulEquiv.prodComm /-
/-- The equivalence between `M × N` and `N × M` given by swapping the components
is multiplicative. -/
@[to_additive prod_comm
@@ -688,21 +813,27 @@ def prodComm : M × N ≃* N × M :=
{ Equiv.prodComm M N with map_mul' := fun ⟨x₁, y₁⟩ ⟨x₂, y₂⟩ => rfl }
#align mul_equiv.prod_comm MulEquiv.prodComm
#align add_equiv.prod_comm AddEquiv.prodComm
+-/
+#print MulEquiv.coe_prodComm /-
@[simp, to_additive coe_prod_comm]
theorem coe_prodComm : ⇑(prodComm : M × N ≃* N × M) = Prod.swap :=
rfl
#align mul_equiv.coe_prod_comm MulEquiv.coe_prodComm
#align add_equiv.coe_prod_comm AddEquiv.coe_prodComm
+-/
+#print MulEquiv.coe_prodComm_symm /-
@[simp, to_additive coe_prod_comm_symm]
theorem coe_prodComm_symm : ⇑(prodComm : M × N ≃* N × M).symm = Prod.swap :=
rfl
#align mul_equiv.coe_prod_comm_symm MulEquiv.coe_prodComm_symm
#align add_equiv.coe_prod_comm_symm AddEquiv.coe_prodComm_symm
+-/
variable {M' N' : Type _} [MulOneClass M'] [MulOneClass N']
+#print MulEquiv.prodCongr /-
/-- Product of multiplicative isomorphisms; the maps come from `equiv.prod_congr`.-/
@[to_additive prod_congr "Product of additive isomorphisms; the maps come from `equiv.prod_congr`."]
def prodCongr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
@@ -710,20 +841,25 @@ def prodCongr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
map_mul' := fun x y => Prod.ext (f.map_mul _ _) (g.map_mul _ _) }
#align mul_equiv.prod_congr MulEquiv.prodCongr
#align add_equiv.prod_congr AddEquiv.prodCongr
+-/
+#print MulEquiv.uniqueProd /-
/-- Multiplying by the trivial monoid doesn't change the structure.-/
@[to_additive unique_prod "Multiplying by the trivial monoid doesn't change the structure."]
def uniqueProd [Unique N] : N × M ≃* M :=
{ Equiv.uniqueProd M N with map_mul' := fun x y => rfl }
#align mul_equiv.unique_prod MulEquiv.uniqueProd
#align add_equiv.unique_prod AddEquiv.uniqueProd
+-/
+#print MulEquiv.prodUnique /-
/-- Multiplying by the trivial monoid doesn't change the structure.-/
@[to_additive prod_unique "Multiplying by the trivial monoid doesn't change the structure."]
def prodUnique [Unique N] : M × N ≃* M :=
{ Equiv.prodUnique M N with map_mul' := fun x y => rfl }
#align mul_equiv.prod_unique MulEquiv.prodUnique
#align add_equiv.prod_unique AddEquiv.prodUnique
+-/
end
@@ -731,6 +867,7 @@ section
variable {M N} [Monoid M] [Monoid N]
+#print MulEquiv.prodUnits /-
/-- The monoid equivalence between units of a product of two monoids, and the product of the
units of each monoid. -/
@[to_additive prod_add_units
@@ -744,6 +881,7 @@ def prodUnits : (M × N)ˣ ≃* Mˣ × Nˣ
map_mul' := MonoidHom.map_mul _
#align mul_equiv.prod_units MulEquiv.prodUnits
#align add_equiv.prod_add_units AddEquiv.prodAddUnits
+-/
end
@@ -753,6 +891,7 @@ namespace Units
open MulOpposite
+#print Units.embedProduct /-
/-- Canonical homomorphism of monoids from `αˣ` into `α × αᵐᵒᵖ`.
Used mainly to define the natural topology of `αˣ`. -/
@[to_additive
@@ -766,12 +905,15 @@ def embedProduct (α : Type _) [Monoid α] : αˣ →* α × αᵐᵒᵖ
map_mul' x y := by simp only [mul_inv_rev, op_mul, Units.val_mul, Prod.mk_mul_mk]
#align units.embed_product Units.embedProduct
#align add_units.embed_product AddUnits.embedProduct
+-/
+#print Units.embedProduct_injective /-
@[to_additive]
theorem embedProduct_injective (α : Type _) [Monoid α] : Function.Injective (embedProduct α) :=
fun a₁ a₂ h => Units.ext <| (congr_arg Prod.fst h : _)
#align units.embed_product_injective Units.embedProduct_injective
#align add_units.embed_product_injective AddUnits.embedProduct_injective
+-/
end Units
@@ -782,6 +924,7 @@ section BundledMulDiv
variable {α : Type _}
+#print mulMulHom /-
/-- Multiplication as a multiplicative homomorphism. -/
@[to_additive "Addition as an additive homomorphism.", simps]
def mulMulHom [CommSemigroup α] : α × α →ₙ* α
@@ -790,20 +933,26 @@ def mulMulHom [CommSemigroup α] : α × α →ₙ* α
map_mul' a b := mul_mul_mul_comm _ _ _ _
#align mul_mul_hom mulMulHom
#align add_add_hom addAddHom
+-/
+#print mulMonoidHom /-
/-- Multiplication as a monoid homomorphism. -/
@[to_additive "Addition as an additive monoid homomorphism.", simps]
def mulMonoidHom [CommMonoid α] : α × α →* α :=
{ mulMulHom with map_one' := mul_one _ }
#align mul_monoid_hom mulMonoidHom
#align add_add_monoid_hom addAddMonoidHom
+-/
+#print mulMonoidWithZeroHom /-
/-- Multiplication as a multiplicative homomorphism with zero. -/
@[simps]
def mulMonoidWithZeroHom [CommMonoidWithZero α] : α × α →*₀ α :=
{ mulMonoidHom with map_zero' := MulZeroClass.mul_zero _ }
#align mul_monoid_with_zero_hom mulMonoidWithZeroHom
+-/
+#print divMonoidHom /-
/-- Division as a monoid homomorphism. -/
@[to_additive "Subtraction as an additive monoid homomorphism.", simps]
def divMonoidHom [DivisionCommMonoid α] : α × α →* α
@@ -813,7 +962,9 @@ def divMonoidHom [DivisionCommMonoid α] : α × α →* α
map_mul' a b := mul_div_mul_comm _ _ _ _
#align div_monoid_hom divMonoidHom
#align sub_add_monoid_hom subAddMonoidHom
+-/
+#print divMonoidWithZeroHom /-
/-- Division as a multiplicative homomorphism with zero. -/
@[simps]
def divMonoidWithZeroHom [CommGroupWithZero α] : α × α →*₀ α
@@ -823,6 +974,7 @@ def divMonoidWithZeroHom [CommGroupWithZero α] : α × α →*₀ α
map_one' := div_one _
map_mul' a b := mul_div_mul_comm _ _ _ _
#align div_monoid_with_zero_hom divMonoidWithZeroHom
+-/
end BundledMulDiv
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -47,36 +47,18 @@ namespace Prod
instance [Mul M] [Mul N] : Mul (M × N) :=
⟨fun p q => ⟨p.1 * q.1, p.2 * q.2⟩⟩
-/- warning: prod.fst_mul -> Prod.fst_mul is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] (p : Prod.{u1, u2} M N) (q : Prod.{u1, u2} M N), Eq.{succ u1} M (Prod.fst.{u1, u2} M N (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (instHMul.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2)) p q)) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M _inst_1) (Prod.fst.{u1, u2} M N p) (Prod.fst.{u1, u2} M N q))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N] (p : Prod.{u2, u1} M N) (q : Prod.{u2, u1} M N), Eq.{succ u2} M (Prod.fst.{u2, u1} M N (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (instHMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2)) p q)) (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M _inst_1) (Prod.fst.{u2, u1} M N p) (Prod.fst.{u2, u1} M N q))
-Case conversion may be inaccurate. Consider using '#align prod.fst_mul Prod.fst_mulₓ'. -/
@[simp, to_additive]
theorem fst_mul [Mul M] [Mul N] (p q : M × N) : (p * q).1 = p.1 * q.1 :=
rfl
#align prod.fst_mul Prod.fst_mul
#align prod.fst_add Prod.fst_add
-/- warning: prod.snd_mul -> Prod.snd_mul is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] (p : Prod.{u1, u2} M N) (q : Prod.{u1, u2} M N), Eq.{succ u2} N (Prod.snd.{u1, u2} M N (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (instHMul.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2)) p q)) (HMul.hMul.{u2, u2, u2} N N N (instHMul.{u2} N _inst_2) (Prod.snd.{u1, u2} M N p) (Prod.snd.{u1, u2} M N q))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N] (p : Prod.{u2, u1} M N) (q : Prod.{u2, u1} M N), Eq.{succ u1} N (Prod.snd.{u2, u1} M N (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (instHMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2)) p q)) (HMul.hMul.{u1, u1, u1} N N N (instHMul.{u1} N _inst_2) (Prod.snd.{u2, u1} M N p) (Prod.snd.{u2, u1} M N q))
-Case conversion may be inaccurate. Consider using '#align prod.snd_mul Prod.snd_mulₓ'. -/
@[simp, to_additive]
theorem snd_mul [Mul M] [Mul N] (p q : M × N) : (p * q).2 = p.2 * q.2 :=
rfl
#align prod.snd_mul Prod.snd_mul
#align prod.snd_add Prod.snd_add
-/- warning: prod.mk_mul_mk -> Prod.mk_mul_mk is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] (a₁ : M) (a₂ : M) (b₁ : N) (b₂ : N), Eq.{succ (max u1 u2)} (Prod.{u1, u2} M N) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (instHMul.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2)) (Prod.mk.{u1, u2} M N a₁ b₁) (Prod.mk.{u1, u2} M N a₂ b₂)) (Prod.mk.{u1, u2} M N (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M _inst_1) a₁ a₂) (HMul.hMul.{u2, u2, u2} N N N (instHMul.{u2} N _inst_2) b₁ b₂))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N] (a₁ : M) (a₂ : M) (b₁ : N) (b₂ : N), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} M N) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (instHMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2)) (Prod.mk.{u2, u1} M N a₁ b₁) (Prod.mk.{u2, u1} M N a₂ b₂)) (Prod.mk.{u2, u1} M N (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M _inst_1) a₁ a₂) (HMul.hMul.{u1, u1, u1} N N N (instHMul.{u1} N _inst_2) b₁ b₂))
-Case conversion may be inaccurate. Consider using '#align prod.mk_mul_mk Prod.mk_mul_mkₓ'. -/
@[simp, to_additive]
theorem mk_mul_mk [Mul M] [Mul N] (a₁ a₂ : M) (b₁ b₂ : N) :
(a₁, b₁) * (a₂, b₂) = (a₁ * a₂, b₁ * b₂) :=
@@ -84,48 +66,24 @@ theorem mk_mul_mk [Mul M] [Mul N] (a₁ a₂ : M) (b₁ b₂ : N) :
#align prod.mk_mul_mk Prod.mk_mul_mk
#align prod.mk_add_mk Prod.mk_add_mk
-/- warning: prod.swap_mul -> Prod.swap_mul is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] (p : Prod.{u1, u2} M N) (q : Prod.{u1, u2} M N), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} N M) (Prod.swap.{u1, u2} M N (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (instHMul.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2)) p q)) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} N M) (Prod.{u2, u1} N M) (Prod.{u2, u1} N M) (instHMul.{max u2 u1} (Prod.{u2, u1} N M) (Prod.hasMul.{u2, u1} N M _inst_2 _inst_1)) (Prod.swap.{u1, u2} M N p) (Prod.swap.{u1, u2} M N q))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N] (p : Prod.{u2, u1} M N) (q : Prod.{u2, u1} M N), Eq.{max (succ u2) (succ u1)} (Prod.{u1, u2} N M) (Prod.swap.{u2, u1} M N (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (instHMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2)) p q)) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u1, u2} N M) (Prod.{u1, u2} N M) (instHMul.{max u2 u1} (Prod.{u1, u2} N M) (Prod.instMulProd.{u1, u2} N M _inst_2 _inst_1)) (Prod.swap.{u2, u1} M N p) (Prod.swap.{u2, u1} M N q))
-Case conversion may be inaccurate. Consider using '#align prod.swap_mul Prod.swap_mulₓ'. -/
@[simp, to_additive]
theorem swap_mul [Mul M] [Mul N] (p q : M × N) : (p * q).symm = p.symm * q.symm :=
rfl
#align prod.swap_mul Prod.swap_mul
#align prod.swap_add Prod.swap_add
-/- warning: prod.mul_def -> Prod.mul_def is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] (p : Prod.{u1, u2} M N) (q : Prod.{u1, u2} M N), Eq.{succ (max u1 u2)} (Prod.{u1, u2} M N) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (instHMul.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2)) p q) (Prod.mk.{u1, u2} M N (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M _inst_1) (Prod.fst.{u1, u2} M N p) (Prod.fst.{u1, u2} M N q)) (HMul.hMul.{u2, u2, u2} N N N (instHMul.{u2} N _inst_2) (Prod.snd.{u1, u2} M N p) (Prod.snd.{u1, u2} M N q)))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N] (p : Prod.{u2, u1} M N) (q : Prod.{u2, u1} M N), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} M N) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (instHMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2)) p q) (Prod.mk.{u2, u1} M N (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M _inst_1) (Prod.fst.{u2, u1} M N p) (Prod.fst.{u2, u1} M N q)) (HMul.hMul.{u1, u1, u1} N N N (instHMul.{u1} N _inst_2) (Prod.snd.{u2, u1} M N p) (Prod.snd.{u2, u1} M N q)))
-Case conversion may be inaccurate. Consider using '#align prod.mul_def Prod.mul_defₓ'. -/
@[to_additive]
theorem mul_def [Mul M] [Mul N] (p q : M × N) : p * q = (p.1 * q.1, p.2 * q.2) :=
rfl
#align prod.mul_def Prod.mul_def
#align prod.add_def Prod.add_def
-/- warning: prod.one_mk_mul_one_mk -> Prod.one_mk_mul_one_mk is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Monoid.{u1} M] [_inst_2 : Mul.{u2} N] (b₁ : N) (b₂ : N), Eq.{succ (max u1 u2)} (Prod.{u1, u2} M N) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (instHMul.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) _inst_2)) (Prod.mk.{u1, u2} M N (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) b₁) (Prod.mk.{u1, u2} M N (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) b₂)) (Prod.mk.{u1, u2} M N (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) (HMul.hMul.{u2, u2, u2} N N N (instHMul.{u2} N _inst_2) b₁ b₂))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Monoid.{u2} M] [_inst_2 : Mul.{u1} N] (b₁ : N) (b₂ : N), Eq.{max (succ u1) (succ u2)} (Prod.{u2, u1} M N) (HMul.hMul.{max u2 u1, max u1 u2, max u1 u2} (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (instHMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) _inst_2)) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M _inst_1))) b₁) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M _inst_1))) b₂)) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (Monoid.toOne.{u2} M _inst_1))) (HMul.hMul.{u1, u1, u1} N N N (instHMul.{u1} N _inst_2) b₁ b₂))
-Case conversion may be inaccurate. Consider using '#align prod.one_mk_mul_one_mk Prod.one_mk_mul_one_mkₓ'. -/
@[to_additive]
theorem one_mk_mul_one_mk [Monoid M] [Mul N] (b₁ b₂ : N) : ((1 : M), b₁) * (1, b₂) = (1, b₁ * b₂) :=
by rw [mk_mul_mk, mul_one]
#align prod.one_mk_mul_one_mk Prod.one_mk_mul_one_mk
#align prod.zero_mk_add_zero_mk Prod.zero_mk_add_zero_mk
-/- warning: prod.mk_one_mul_mk_one -> Prod.mk_one_mul_mk_one is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Monoid.{u2} N] (a₁ : M) (a₂ : M), Eq.{succ (max u1 u2)} (Prod.{u1, u2} M N) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (instHMul.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasMul.{u1, u2} M N _inst_1 (MulOneClass.toHasMul.{u2} N (Monoid.toMulOneClass.{u2} N _inst_2)))) (Prod.mk.{u1, u2} M N a₁ (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N (Monoid.toMulOneClass.{u2} N _inst_2)))))) (Prod.mk.{u1, u2} M N a₂ (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N (Monoid.toMulOneClass.{u2} N _inst_2))))))) (Prod.mk.{u1, u2} M N (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M _inst_1) a₁ a₂) (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N (Monoid.toMulOneClass.{u2} N _inst_2))))))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Monoid.{u1} N] (a₁ : M) (a₂ : M), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} M N) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (instHMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulProd.{u2, u1} M N _inst_1 (MulOneClass.toMul.{u1} N (Monoid.toMulOneClass.{u1} N _inst_2)))) (Prod.mk.{u2, u1} M N a₁ (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (Monoid.toOne.{u1} N _inst_2)))) (Prod.mk.{u2, u1} M N a₂ (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (Monoid.toOne.{u1} N _inst_2))))) (Prod.mk.{u2, u1} M N (HMul.hMul.{u2, u2, u2} M M M (instHMul.{u2} M _inst_1) a₁ a₂) (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (Monoid.toOne.{u1} N _inst_2))))
-Case conversion may be inaccurate. Consider using '#align prod.mk_one_mul_mk_one Prod.mk_one_mul_mk_oneₓ'. -/
@[to_additive]
theorem mk_one_mul_mk_one [Mul M] [Monoid N] (a₁ a₂ : M) : (a₁, (1 : N)) * (a₂, 1) = (a₁ * a₂, 1) :=
by rw [mk_mul_mk, mul_one]
@@ -136,72 +94,36 @@ theorem mk_one_mul_mk_one [Mul M] [Monoid N] (a₁ a₂ : M) : (a₁, (1 : N)) *
instance [One M] [One N] : One (M × N) :=
⟨(1, 1)⟩
-/- warning: prod.fst_one -> Prod.fst_one is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : One.{u1} M] [_inst_2 : One.{u2} N], Eq.{succ u1} M (Prod.fst.{u1, u2} M N (OfNat.ofNat.{max u1 u2} (Prod.{u1, u2} M N) 1 (OfNat.mk.{max u1 u2} (Prod.{u1, u2} M N) 1 (One.one.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasOne.{u1, u2} M N _inst_1 _inst_2))))) (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M _inst_1)))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : One.{u2} M] [_inst_2 : One.{u1} N], Eq.{succ u2} M (Prod.fst.{u2, u1} M N (OfNat.ofNat.{max u2 u1} (Prod.{u2, u1} M N) 1 (One.toOfNat1.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instOneProd.{u2, u1} M N _inst_1 _inst_2)))) (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M _inst_1))
-Case conversion may be inaccurate. Consider using '#align prod.fst_one Prod.fst_oneₓ'. -/
@[simp, to_additive]
theorem fst_one [One M] [One N] : (1 : M × N).1 = 1 :=
rfl
#align prod.fst_one Prod.fst_one
#align prod.fst_zero Prod.fst_zero
-/- warning: prod.snd_one -> Prod.snd_one is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : One.{u1} M] [_inst_2 : One.{u2} N], Eq.{succ u2} N (Prod.snd.{u1, u2} M N (OfNat.ofNat.{max u1 u2} (Prod.{u1, u2} M N) 1 (OfNat.mk.{max u1 u2} (Prod.{u1, u2} M N) 1 (One.one.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasOne.{u1, u2} M N _inst_1 _inst_2))))) (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N _inst_2)))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : One.{u2} M] [_inst_2 : One.{u1} N], Eq.{succ u1} N (Prod.snd.{u2, u1} M N (OfNat.ofNat.{max u2 u1} (Prod.{u2, u1} M N) 1 (One.toOfNat1.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instOneProd.{u2, u1} M N _inst_1 _inst_2)))) (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N _inst_2))
-Case conversion may be inaccurate. Consider using '#align prod.snd_one Prod.snd_oneₓ'. -/
@[simp, to_additive]
theorem snd_one [One M] [One N] : (1 : M × N).2 = 1 :=
rfl
#align prod.snd_one Prod.snd_one
#align prod.snd_zero Prod.snd_zero
-/- warning: prod.one_eq_mk -> Prod.one_eq_mk is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : One.{u1} M] [_inst_2 : One.{u2} N], Eq.{max (succ u1) (succ u2)} (Prod.{u1, u2} M N) (OfNat.ofNat.{max u1 u2} (Prod.{u1, u2} M N) 1 (OfNat.mk.{max u1 u2} (Prod.{u1, u2} M N) 1 (One.one.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasOne.{u1, u2} M N _inst_1 _inst_2)))) (Prod.mk.{u1, u2} M N (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M _inst_1))) (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N _inst_2))))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : One.{u2} M] [_inst_2 : One.{u1} N], Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} M N) (OfNat.ofNat.{max u2 u1} (Prod.{u2, u1} M N) 1 (One.toOfNat1.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instOneProd.{u2, u1} M N _inst_1 _inst_2))) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M _inst_1)) (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N _inst_2)))
-Case conversion may be inaccurate. Consider using '#align prod.one_eq_mk Prod.one_eq_mkₓ'. -/
@[to_additive]
theorem one_eq_mk [One M] [One N] : (1 : M × N) = (1, 1) :=
rfl
#align prod.one_eq_mk Prod.one_eq_mk
#align prod.zero_eq_mk Prod.zero_eq_mk
-/- warning: prod.mk_eq_one -> Prod.mk_eq_one is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : One.{u1} M] [_inst_2 : One.{u2} N] {x : M} {y : N}, Iff (Eq.{max (succ u1) (succ u2)} (Prod.{u1, u2} M N) (Prod.mk.{u1, u2} M N x y) (OfNat.ofNat.{max u1 u2} (Prod.{u1, u2} M N) 1 (OfNat.mk.{max u1 u2} (Prod.{u1, u2} M N) 1 (One.one.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasOne.{u1, u2} M N _inst_1 _inst_2))))) (And (Eq.{succ u1} M x (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M _inst_1)))) (Eq.{succ u2} N y (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N _inst_2)))))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : One.{u2} M] [_inst_2 : One.{u1} N] {x : M} {y : N}, Iff (Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} M N) (Prod.mk.{u2, u1} M N x y) (OfNat.ofNat.{max u2 u1} (Prod.{u2, u1} M N) 1 (One.toOfNat1.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instOneProd.{u2, u1} M N _inst_1 _inst_2)))) (And (Eq.{succ u2} M x (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M _inst_1))) (Eq.{succ u1} N y (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N _inst_2))))
-Case conversion may be inaccurate. Consider using '#align prod.mk_eq_one Prod.mk_eq_oneₓ'. -/
@[simp, to_additive]
theorem mk_eq_one [One M] [One N] {x : M} {y : N} : (x, y) = 1 ↔ x = 1 ∧ y = 1 :=
mk.inj_iff
#align prod.mk_eq_one Prod.mk_eq_one
#align prod.mk_eq_zero Prod.mk_eq_zero
-/- warning: prod.swap_one -> Prod.swap_one is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : One.{u1} M] [_inst_2 : One.{u2} N], Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} N M) (Prod.swap.{u1, u2} M N (OfNat.ofNat.{max u1 u2} (Prod.{u1, u2} M N) 1 (OfNat.mk.{max u1 u2} (Prod.{u1, u2} M N) 1 (One.one.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasOne.{u1, u2} M N _inst_1 _inst_2))))) (OfNat.ofNat.{max u2 u1} (Prod.{u2, u1} N M) 1 (OfNat.mk.{max u2 u1} (Prod.{u2, u1} N M) 1 (One.one.{max u2 u1} (Prod.{u2, u1} N M) (Prod.hasOne.{u2, u1} N M _inst_2 _inst_1))))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : One.{u2} M] [_inst_2 : One.{u1} N], Eq.{max (succ u2) (succ u1)} (Prod.{u1, u2} N M) (Prod.swap.{u2, u1} M N (OfNat.ofNat.{max u2 u1} (Prod.{u2, u1} M N) 1 (One.toOfNat1.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instOneProd.{u2, u1} M N _inst_1 _inst_2)))) (OfNat.ofNat.{max u2 u1} (Prod.{u1, u2} N M) 1 (One.toOfNat1.{max u2 u1} (Prod.{u1, u2} N M) (Prod.instOneProd.{u1, u2} N M _inst_2 _inst_1)))
-Case conversion may be inaccurate. Consider using '#align prod.swap_one Prod.swap_oneₓ'. -/
@[simp, to_additive]
theorem swap_one [One M] [One N] : (1 : M × N).symm = 1 :=
rfl
#align prod.swap_one Prod.swap_one
#align prod.swap_zero Prod.swap_zero
-/- warning: prod.fst_mul_snd -> Prod.fst_mul_snd is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] (p : Prod.{u1, u2} M N), Eq.{succ (max u1 u2)} (Prod.{u1, u2} M N) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (instHMul.{max u1 u2} (Prod.{u1, u2} M N) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2))) (Prod.mk.{u1, u2} M N (Prod.fst.{u1, u2} M N p) (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N _inst_2))))) (Prod.mk.{u1, u2} M N (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M _inst_1)))) (Prod.snd.{u1, u2} M N p))) p
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (p : Prod.{u2, u1} M N), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} M N) (HMul.hMul.{max u2 u1, max u1 u2, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (instHMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.mk.{u2, u1} M N (Prod.fst.{u2, u1} M N p) (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (MulOneClass.toOne.{u1} N _inst_2)))) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (MulOneClass.toOne.{u2} M _inst_1))) (Prod.snd.{u2, u1} M N p))) p
-Case conversion may be inaccurate. Consider using '#align prod.fst_mul_snd Prod.fst_mul_sndₓ'. -/
@[to_additive]
theorem fst_mul_snd [MulOneClass M] [MulOneClass N] (p : M × N) : (p.fst, 1) * (1, p.snd) = p :=
ext (mul_one p.1) (one_mul p.2)
@@ -212,48 +134,24 @@ theorem fst_mul_snd [MulOneClass M] [MulOneClass N] (p : M × N) : (p.fst, 1) *
instance [Inv M] [Inv N] : Inv (M × N) :=
⟨fun p => (p.1⁻¹, p.2⁻¹)⟩
-/- warning: prod.fst_inv -> Prod.fst_inv is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {H : Type.{u2}} [_inst_1 : Inv.{u1} G] [_inst_2 : Inv.{u2} H] (p : Prod.{u1, u2} G H), Eq.{succ u1} G (Prod.fst.{u1, u2} G H (Inv.inv.{max u1 u2} (Prod.{u1, u2} G H) (Prod.hasInv.{u1, u2} G H _inst_1 _inst_2) p)) (Inv.inv.{u1} G _inst_1 (Prod.fst.{u1, u2} G H p))
-but is expected to have type
- forall {G : Type.{u2}} {H : Type.{u1}} [_inst_1 : Inv.{u2} G] [_inst_2 : Inv.{u1} H] (p : Prod.{u2, u1} G H), Eq.{succ u2} G (Prod.fst.{u2, u1} G H (Inv.inv.{max u2 u1} (Prod.{u2, u1} G H) (Prod.instInvProd.{u2, u1} G H _inst_1 _inst_2) p)) (Inv.inv.{u2} G _inst_1 (Prod.fst.{u2, u1} G H p))
-Case conversion may be inaccurate. Consider using '#align prod.fst_inv Prod.fst_invₓ'. -/
@[simp, to_additive]
theorem fst_inv [Inv G] [Inv H] (p : G × H) : p⁻¹.1 = p.1⁻¹ :=
rfl
#align prod.fst_inv Prod.fst_inv
#align prod.fst_neg Prod.fst_neg
-/- warning: prod.snd_inv -> Prod.snd_inv is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {H : Type.{u2}} [_inst_1 : Inv.{u1} G] [_inst_2 : Inv.{u2} H] (p : Prod.{u1, u2} G H), Eq.{succ u2} H (Prod.snd.{u1, u2} G H (Inv.inv.{max u1 u2} (Prod.{u1, u2} G H) (Prod.hasInv.{u1, u2} G H _inst_1 _inst_2) p)) (Inv.inv.{u2} H _inst_2 (Prod.snd.{u1, u2} G H p))
-but is expected to have type
- forall {G : Type.{u2}} {H : Type.{u1}} [_inst_1 : Inv.{u2} G] [_inst_2 : Inv.{u1} H] (p : Prod.{u2, u1} G H), Eq.{succ u1} H (Prod.snd.{u2, u1} G H (Inv.inv.{max u2 u1} (Prod.{u2, u1} G H) (Prod.instInvProd.{u2, u1} G H _inst_1 _inst_2) p)) (Inv.inv.{u1} H _inst_2 (Prod.snd.{u2, u1} G H p))
-Case conversion may be inaccurate. Consider using '#align prod.snd_inv Prod.snd_invₓ'. -/
@[simp, to_additive]
theorem snd_inv [Inv G] [Inv H] (p : G × H) : p⁻¹.2 = p.2⁻¹ :=
rfl
#align prod.snd_inv Prod.snd_inv
#align prod.snd_neg Prod.snd_neg
-/- warning: prod.inv_mk -> Prod.inv_mk is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {H : Type.{u2}} [_inst_1 : Inv.{u1} G] [_inst_2 : Inv.{u2} H] (a : G) (b : H), Eq.{succ (max u1 u2)} (Prod.{u1, u2} G H) (Inv.inv.{max u1 u2} (Prod.{u1, u2} G H) (Prod.hasInv.{u1, u2} G H _inst_1 _inst_2) (Prod.mk.{u1, u2} G H a b)) (Prod.mk.{u1, u2} G H (Inv.inv.{u1} G _inst_1 a) (Inv.inv.{u2} H _inst_2 b))
-but is expected to have type
- forall {G : Type.{u2}} {H : Type.{u1}} [_inst_1 : Inv.{u2} G] [_inst_2 : Inv.{u1} H] (a : G) (b : H), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} G H) (Inv.inv.{max u1 u2} (Prod.{u2, u1} G H) (Prod.instInvProd.{u2, u1} G H _inst_1 _inst_2) (Prod.mk.{u2, u1} G H a b)) (Prod.mk.{u2, u1} G H (Inv.inv.{u2} G _inst_1 a) (Inv.inv.{u1} H _inst_2 b))
-Case conversion may be inaccurate. Consider using '#align prod.inv_mk Prod.inv_mkₓ'. -/
@[simp, to_additive]
theorem inv_mk [Inv G] [Inv H] (a : G) (b : H) : (a, b)⁻¹ = (a⁻¹, b⁻¹) :=
rfl
#align prod.inv_mk Prod.inv_mk
#align prod.neg_mk Prod.neg_mk
-/- warning: prod.swap_inv -> Prod.swap_inv is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {H : Type.{u2}} [_inst_1 : Inv.{u1} G] [_inst_2 : Inv.{u2} H] (p : Prod.{u1, u2} G H), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} H G) (Prod.swap.{u1, u2} G H (Inv.inv.{max u1 u2} (Prod.{u1, u2} G H) (Prod.hasInv.{u1, u2} G H _inst_1 _inst_2) p)) (Inv.inv.{max u2 u1} (Prod.{u2, u1} H G) (Prod.hasInv.{u2, u1} H G _inst_2 _inst_1) (Prod.swap.{u1, u2} G H p))
-but is expected to have type
- forall {G : Type.{u2}} {H : Type.{u1}} [_inst_1 : Inv.{u2} G] [_inst_2 : Inv.{u1} H] (p : Prod.{u2, u1} G H), Eq.{max (succ u2) (succ u1)} (Prod.{u1, u2} H G) (Prod.swap.{u2, u1} G H (Inv.inv.{max u2 u1} (Prod.{u2, u1} G H) (Prod.instInvProd.{u2, u1} G H _inst_1 _inst_2) p)) (Inv.inv.{max u2 u1} (Prod.{u1, u2} H G) (Prod.instInvProd.{u1, u2} H G _inst_2 _inst_1) (Prod.swap.{u2, u1} G H p))
-Case conversion may be inaccurate. Consider using '#align prod.swap_inv Prod.swap_invₓ'. -/
@[simp, to_additive]
theorem swap_inv [Inv G] [Inv H] (p : G × H) : p⁻¹.symm = p.symm⁻¹ :=
rfl
@@ -268,36 +166,18 @@ instance [InvolutiveInv M] [InvolutiveInv N] : InvolutiveInv (M × N) :=
instance [Div M] [Div N] : Div (M × N) :=
⟨fun p q => ⟨p.1 / q.1, p.2 / q.2⟩⟩
-/- warning: prod.fst_div -> Prod.fst_div is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {H : Type.{u2}} [_inst_1 : Div.{u1} G] [_inst_2 : Div.{u2} H] (a : Prod.{u1, u2} G H) (b : Prod.{u1, u2} G H), Eq.{succ u1} G (Prod.fst.{u1, u2} G H (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} G H) (Prod.{u1, u2} G H) (Prod.{u1, u2} G H) (instHDiv.{max u1 u2} (Prod.{u1, u2} G H) (Prod.hasDiv.{u1, u2} G H _inst_1 _inst_2)) a b)) (HDiv.hDiv.{u1, u1, u1} G G G (instHDiv.{u1} G _inst_1) (Prod.fst.{u1, u2} G H a) (Prod.fst.{u1, u2} G H b))
-but is expected to have type
- forall {G : Type.{u2}} {H : Type.{u1}} [_inst_1 : Div.{u2} G] [_inst_2 : Div.{u1} H] (a : Prod.{u2, u1} G H) (b : Prod.{u2, u1} G H), Eq.{succ u2} G (Prod.fst.{u2, u1} G H (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} G H) (Prod.{u2, u1} G H) (Prod.{u2, u1} G H) (instHDiv.{max u2 u1} (Prod.{u2, u1} G H) (Prod.instDivProd.{u2, u1} G H _inst_1 _inst_2)) a b)) (HDiv.hDiv.{u2, u2, u2} G G G (instHDiv.{u2} G _inst_1) (Prod.fst.{u2, u1} G H a) (Prod.fst.{u2, u1} G H b))
-Case conversion may be inaccurate. Consider using '#align prod.fst_div Prod.fst_divₓ'. -/
@[simp, to_additive]
theorem fst_div [Div G] [Div H] (a b : G × H) : (a / b).1 = a.1 / b.1 :=
rfl
#align prod.fst_div Prod.fst_div
#align prod.fst_sub Prod.fst_sub
-/- warning: prod.snd_div -> Prod.snd_div is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {H : Type.{u2}} [_inst_1 : Div.{u1} G] [_inst_2 : Div.{u2} H] (a : Prod.{u1, u2} G H) (b : Prod.{u1, u2} G H), Eq.{succ u2} H (Prod.snd.{u1, u2} G H (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} G H) (Prod.{u1, u2} G H) (Prod.{u1, u2} G H) (instHDiv.{max u1 u2} (Prod.{u1, u2} G H) (Prod.hasDiv.{u1, u2} G H _inst_1 _inst_2)) a b)) (HDiv.hDiv.{u2, u2, u2} H H H (instHDiv.{u2} H _inst_2) (Prod.snd.{u1, u2} G H a) (Prod.snd.{u1, u2} G H b))
-but is expected to have type
- forall {G : Type.{u2}} {H : Type.{u1}} [_inst_1 : Div.{u2} G] [_inst_2 : Div.{u1} H] (a : Prod.{u2, u1} G H) (b : Prod.{u2, u1} G H), Eq.{succ u1} H (Prod.snd.{u2, u1} G H (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} G H) (Prod.{u2, u1} G H) (Prod.{u2, u1} G H) (instHDiv.{max u2 u1} (Prod.{u2, u1} G H) (Prod.instDivProd.{u2, u1} G H _inst_1 _inst_2)) a b)) (HDiv.hDiv.{u1, u1, u1} H H H (instHDiv.{u1} H _inst_2) (Prod.snd.{u2, u1} G H a) (Prod.snd.{u2, u1} G H b))
-Case conversion may be inaccurate. Consider using '#align prod.snd_div Prod.snd_divₓ'. -/
@[simp, to_additive]
theorem snd_div [Div G] [Div H] (a b : G × H) : (a / b).2 = a.2 / b.2 :=
rfl
#align prod.snd_div Prod.snd_div
#align prod.snd_sub Prod.snd_sub
-/- warning: prod.mk_div_mk -> Prod.mk_div_mk is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {H : Type.{u2}} [_inst_1 : Div.{u1} G] [_inst_2 : Div.{u2} H] (x₁ : G) (x₂ : G) (y₁ : H) (y₂ : H), Eq.{succ (max u1 u2)} (Prod.{u1, u2} G H) (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} G H) (Prod.{u1, u2} G H) (Prod.{u1, u2} G H) (instHDiv.{max u1 u2} (Prod.{u1, u2} G H) (Prod.hasDiv.{u1, u2} G H _inst_1 _inst_2)) (Prod.mk.{u1, u2} G H x₁ y₁) (Prod.mk.{u1, u2} G H x₂ y₂)) (Prod.mk.{u1, u2} G H (HDiv.hDiv.{u1, u1, u1} G G G (instHDiv.{u1} G _inst_1) x₁ x₂) (HDiv.hDiv.{u2, u2, u2} H H H (instHDiv.{u2} H _inst_2) y₁ y₂))
-but is expected to have type
- forall {G : Type.{u2}} {H : Type.{u1}} [_inst_1 : Div.{u2} G] [_inst_2 : Div.{u1} H] (x₁ : G) (x₂ : G) (y₁ : H) (y₂ : H), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} G H) (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} G H) (Prod.{u2, u1} G H) (Prod.{u2, u1} G H) (instHDiv.{max u2 u1} (Prod.{u2, u1} G H) (Prod.instDivProd.{u2, u1} G H _inst_1 _inst_2)) (Prod.mk.{u2, u1} G H x₁ y₁) (Prod.mk.{u2, u1} G H x₂ y₂)) (Prod.mk.{u2, u1} G H (HDiv.hDiv.{u2, u2, u2} G G G (instHDiv.{u2} G _inst_1) x₁ x₂) (HDiv.hDiv.{u1, u1, u1} H H H (instHDiv.{u1} H _inst_2) y₁ y₂))
-Case conversion may be inaccurate. Consider using '#align prod.mk_div_mk Prod.mk_div_mkₓ'. -/
@[simp, to_additive]
theorem mk_div_mk [Div G] [Div H] (x₁ x₂ : G) (y₁ y₂ : H) :
(x₁, y₁) / (x₂, y₂) = (x₁ / x₂, y₁ / y₂) :=
@@ -305,12 +185,6 @@ theorem mk_div_mk [Div G] [Div H] (x₁ x₂ : G) (y₁ y₂ : H) :
#align prod.mk_div_mk Prod.mk_div_mk
#align prod.mk_sub_mk Prod.mk_sub_mk
-/- warning: prod.swap_div -> Prod.swap_div is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {H : Type.{u2}} [_inst_1 : Div.{u1} G] [_inst_2 : Div.{u2} H] (a : Prod.{u1, u2} G H) (b : Prod.{u1, u2} G H), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} H G) (Prod.swap.{u1, u2} G H (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (Prod.{u1, u2} G H) (Prod.{u1, u2} G H) (Prod.{u1, u2} G H) (instHDiv.{max u1 u2} (Prod.{u1, u2} G H) (Prod.hasDiv.{u1, u2} G H _inst_1 _inst_2)) a b)) (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} H G) (Prod.{u2, u1} H G) (Prod.{u2, u1} H G) (instHDiv.{max u2 u1} (Prod.{u2, u1} H G) (Prod.hasDiv.{u2, u1} H G _inst_2 _inst_1)) (Prod.swap.{u1, u2} G H a) (Prod.swap.{u1, u2} G H b))
-but is expected to have type
- forall {G : Type.{u2}} {H : Type.{u1}} [_inst_1 : Div.{u2} G] [_inst_2 : Div.{u1} H] (a : Prod.{u2, u1} G H) (b : Prod.{u2, u1} G H), Eq.{max (succ u2) (succ u1)} (Prod.{u1, u2} H G) (Prod.swap.{u2, u1} G H (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u2, u1} G H) (Prod.{u2, u1} G H) (Prod.{u2, u1} G H) (instHDiv.{max u2 u1} (Prod.{u2, u1} G H) (Prod.instDivProd.{u2, u1} G H _inst_1 _inst_2)) a b)) (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (Prod.{u1, u2} H G) (Prod.{u1, u2} H G) (Prod.{u1, u2} H G) (instHDiv.{max u2 u1} (Prod.{u1, u2} H G) (Prod.instDivProd.{u1, u2} H G _inst_2 _inst_1)) (Prod.swap.{u2, u1} G H a) (Prod.swap.{u2, u1} G H b))
-Case conversion may be inaccurate. Consider using '#align prod.swap_div Prod.swap_divₓ'. -/
@[simp, to_additive]
theorem swap_div [Div G] [Div H] (a b : G × H) : (a / b).symm = a.symm / b.symm :=
rfl
@@ -454,24 +328,12 @@ def snd : M × N →ₙ* N :=
variable {M N}
-/- warning: mul_hom.coe_fst -> MulHom.coe_fst is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N], Eq.{max (succ (max u1 u2)) (succ u1)} ((Prod.{u1, u2} M N) -> M) (coeFn.{max (succ u1) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u1)} (MulHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) (fun (_x : MulHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) => (Prod.{u1, u2} M N) -> M) (MulHom.hasCoeToFun.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) (MulHom.fst.{u1, u2} M N _inst_1 _inst_2)) (Prod.fst.{u1, u2} M N)
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MulHom.mulHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1)) (MulHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
-Case conversion may be inaccurate. Consider using '#align mul_hom.coe_fst MulHom.coe_fstₓ'. -/
@[simp, to_additive]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
rfl
#align mul_hom.coe_fst MulHom.coe_fst
#align add_hom.coe_fst AddHom.coe_fst
-/- warning: mul_hom.coe_snd -> MulHom.coe_snd is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N], Eq.{max (succ (max u1 u2)) (succ u2)} ((Prod.{u1, u2} M N) -> N) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u2)} (MulHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) (fun (_x : MulHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) => (Prod.{u1, u2} M N) -> N) (MulHom.hasCoeToFun.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) (MulHom.snd.{u1, u2} M N _inst_1 _inst_2)) (Prod.snd.{u1, u2} M N)
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MulHom.mulHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2)) (MulHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
-Case conversion may be inaccurate. Consider using '#align mul_hom.coe_snd MulHom.coe_sndₓ'. -/
@[simp, to_additive]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
rfl
@@ -491,60 +353,30 @@ protected def prod (f : M →ₙ* N) (g : M →ₙ* P) : M →ₙ* N × P
#align add_hom.prod AddHom.prod
-/
-/- warning: mul_hom.coe_prod -> MulHom.coe_prod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, u2} M N _inst_1 _inst_2) (g : MulHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u1) (succ (max u2 u3))} (M -> (Prod.{u2, u3} N P)) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MulHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u1, u2, u3} M (fun (ᾰ : M) => N) (fun (ᾰ : M) => P) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MulHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MulHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MulHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g))
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g))
-Case conversion may be inaccurate. Consider using '#align mul_hom.coe_prod MulHom.coe_prodₓ'. -/
@[to_additive coe_prod]
theorem coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.Prod g) = Pi.prod f g :=
rfl
#align mul_hom.coe_prod MulHom.coe_prod
#align add_hom.coe_prod AddHom.coe_prod
-/- warning: mul_hom.prod_apply -> MulHom.prod_apply is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, u2} M N _inst_1 _inst_2) (g : MulHom.{u1, u3} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u3)} (Prod.{u2, u3} N P) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MulHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u3} N P (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MulHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MulHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MulHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f x) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g x))
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g x))
-Case conversion may be inaccurate. Consider using '#align mul_hom.prod_apply MulHom.prod_applyₓ'. -/
@[simp, to_additive prod_apply]
theorem prod_apply (f : M →ₙ* N) (g : M →ₙ* P) (x) : f.Prod g x = (f x, g x) :=
rfl
#align mul_hom.prod_apply MulHom.prod_apply
#align add_hom.prod_apply AddHom.prod_apply
-/- warning: mul_hom.fst_comp_prod -> MulHom.fst_comp_prod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, u2} M N _inst_1 _inst_2) (g : MulHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u2) (succ u1)} (MulHom.{u1, u2} M N _inst_1 _inst_2) (MulHom.comp.{u1, max u2 u3, u2} M (Prod.{u2, u3} N P) N _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3) _inst_2 (MulHom.fst.{u2, u3} N P _inst_2 _inst_3) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) f
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (succ u3) (succ u2)} (MulHom.{u3, u2} M N _inst_1 _inst_2) (MulHom.comp.{u3, max u2 u1, u2} M (Prod.{u2, u1} N P) N _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) _inst_2 (MulHom.fst.{u2, u1} N P _inst_2 _inst_3) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) f
-Case conversion may be inaccurate. Consider using '#align mul_hom.fst_comp_prod MulHom.fst_comp_prodₓ'. -/
@[simp, to_additive fst_comp_prod]
theorem fst_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (fst N P).comp (f.Prod g) = f :=
ext fun x => rfl
#align mul_hom.fst_comp_prod MulHom.fst_comp_prod
#align add_hom.fst_comp_prod AddHom.fst_comp_prod
-/- warning: mul_hom.snd_comp_prod -> MulHom.snd_comp_prod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, u2} M N _inst_1 _inst_2) (g : MulHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u3) (succ u1)} (MulHom.{u1, u3} M P _inst_1 _inst_3) (MulHom.comp.{u1, max u2 u3, u3} M (Prod.{u2, u3} N P) P _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3) _inst_3 (MulHom.snd.{u2, u3} N P _inst_2 _inst_3) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) g
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (succ u3) (succ u1)} (MulHom.{u3, u1} M P _inst_1 _inst_3) (MulHom.comp.{u3, max u2 u1, u1} M (Prod.{u2, u1} N P) P _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) _inst_3 (MulHom.snd.{u2, u1} N P _inst_2 _inst_3) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) g
-Case conversion may be inaccurate. Consider using '#align mul_hom.snd_comp_prod MulHom.snd_comp_prodₓ'. -/
@[simp, to_additive snd_comp_prod]
theorem snd_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (snd N P).comp (f.Prod g) = g :=
ext fun x => rfl
#align mul_hom.snd_comp_prod MulHom.snd_comp_prod
#align add_hom.snd_comp_prod AddHom.snd_comp_prod
-/- warning: mul_hom.prod_unique -> MulHom.prod_unique is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)), Eq.{max (succ (max u2 u3)) (succ u1)} (MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 (MulHom.comp.{u1, max u2 u3, u2} M (Prod.{u2, u3} N P) N _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3) _inst_2 (MulHom.fst.{u2, u3} N P _inst_2 _inst_3) f) (MulHom.comp.{u1, max u2 u3, u3} M (Prod.{u2, u3} N P) P _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3) _inst_3 (MulHom.snd.{u2, u3} N P _inst_2 _inst_3) f)) f
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u1}} {P : Type.{u2}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u1} N] [_inst_3 : Mul.{u2} P] (f : MulHom.{u3, max u2 u1} M (Prod.{u1, u2} N P) _inst_1 (Prod.instMulProd.{u1, u2} N P _inst_2 _inst_3)), Eq.{max (max (succ u3) (succ u1)) (succ u2)} (MulHom.{u3, max u2 u1} M (Prod.{u1, u2} N P) _inst_1 (Prod.instMulProd.{u1, u2} N P _inst_2 _inst_3)) (MulHom.prod.{u3, u1, u2} M N P _inst_1 _inst_2 _inst_3 (MulHom.comp.{u3, max u1 u2, u1} M (Prod.{u1, u2} N P) N _inst_1 (Prod.instMulProd.{u1, u2} N P _inst_2 _inst_3) _inst_2 (MulHom.fst.{u1, u2} N P _inst_2 _inst_3) f) (MulHom.comp.{u3, max u1 u2, u2} M (Prod.{u1, u2} N P) P _inst_1 (Prod.instMulProd.{u1, u2} N P _inst_2 _inst_3) _inst_3 (MulHom.snd.{u1, u2} N P _inst_2 _inst_3) f)) f
-Case conversion may be inaccurate. Consider using '#align mul_hom.prod_unique MulHom.prod_uniqueₓ'. -/
@[simp, to_additive prod_unique]
theorem prod_unique (f : M →ₙ* N × P) : ((fst N P).comp f).Prod ((snd N P).comp f) = f :=
ext fun x => by simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]
@@ -567,36 +399,18 @@ def prodMap : M × N →ₙ* M' × N' :=
#align add_hom.prod_map AddHom.prodMap
-/
-/- warning: mul_hom.prod_map_def -> MulHom.prodMap_def is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {M' : Type.{u3}} {N' : Type.{u4}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} M'] [_inst_4 : Mul.{u4} N'] (f : MulHom.{u1, u3} M M' _inst_1 _inst_3) (g : MulHom.{u2, u4} N N' _inst_2 _inst_4), Eq.{max (succ (max u3 u4)) (succ (max u1 u2))} (MulHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) (MulHom.prodMap.{u1, u2, u3, u4} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g) (MulHom.prod.{max u1 u2, u3, u4} (Prod.{u1, u2} M N) M' N' (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_3 _inst_4 (MulHom.comp.{max u1 u2, u1, u3} (Prod.{u1, u2} M N) M M' (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1 _inst_3 f (MulHom.fst.{u1, u2} M N _inst_1 _inst_2)) (MulHom.comp.{max u1 u2, u2, u4} (Prod.{u1, u2} M N) N N' (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2 _inst_4 g (MulHom.snd.{u1, u2} M N _inst_1 _inst_2)))
-but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} {M' : Type.{u2}} {N' : Type.{u1}} [_inst_1 : Mul.{u4} M] [_inst_2 : Mul.{u3} N] [_inst_3 : Mul.{u2} M'] [_inst_4 : Mul.{u1} N'] (f : MulHom.{u4, u2} M M' _inst_1 _inst_3) (g : MulHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (MulHom.prodMap.{u4, u3, u2, u1} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g) (MulHom.prod.{max u4 u3, u2, u1} (Prod.{u4, u3} M N) M' N' (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) _inst_3 _inst_4 (MulHom.comp.{max u4 u3, u4, u2} (Prod.{u4, u3} M N) M M' (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) _inst_1 _inst_3 f (MulHom.fst.{u4, u3} M N _inst_1 _inst_2)) (MulHom.comp.{max u4 u3, u3, u1} (Prod.{u4, u3} M N) N N' (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) _inst_2 _inst_4 g (MulHom.snd.{u4, u3} M N _inst_1 _inst_2)))
-Case conversion may be inaccurate. Consider using '#align mul_hom.prod_map_def MulHom.prodMap_defₓ'. -/
@[to_additive prod_map_def]
theorem prodMap_def : prodMap f g = (f.comp (fst M N)).Prod (g.comp (snd M N)) :=
rfl
#align mul_hom.prod_map_def MulHom.prodMap_def
#align add_hom.prod_map_def AddHom.prodMap_def
-/- warning: mul_hom.coe_prod_map -> MulHom.coe_prodMap is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {M' : Type.{u3}} {N' : Type.{u4}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} M'] [_inst_4 : Mul.{u4} N'] (f : MulHom.{u1, u3} M M' _inst_1 _inst_3) (g : MulHom.{u2, u4} N N' _inst_2 _inst_4), Eq.{max (succ (max u1 u2)) (succ (max u3 u4))} ((Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (coeFn.{max (succ (max u3 u4)) (succ (max u1 u2)), max (succ (max u1 u2)) (succ (max u3 u4))} (MulHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) (fun (_x : MulHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) => (Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (MulHom.hasCoeToFun.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) (MulHom.prodMap.{u1, u2, u3, u4} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u1, u3, u2, u4} M M' N N' (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M M' _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M M' _inst_1 _inst_3) => M -> M') (MulHom.hasCoeToFun.{u1, u3} M M' _inst_1 _inst_3) f) (coeFn.{max (succ u4) (succ u2), max (succ u2) (succ u4)} (MulHom.{u2, u4} N N' _inst_2 _inst_4) (fun (_x : MulHom.{u2, u4} N N' _inst_2 _inst_4) => N -> N') (MulHom.hasCoeToFun.{u2, u4} N N' _inst_2 _inst_4) g))
-but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} {M' : Type.{u2}} {N' : Type.{u1}} [_inst_1 : Mul.{u4} M] [_inst_2 : Mul.{u3} N] [_inst_3 : Mul.{u2} M'] [_inst_4 : Mul.{u1} N'] (f : MulHom.{u4, u2} M M' _inst_1 _inst_3) (g : MulHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4) (MulHom.mulHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4))) (MulHom.prodMap.{u4, u3, u2, u1} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MulHom.mulHomClass.{u4, u2} M M' _inst_1 _inst_3)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MulHom.mulHomClass.{u3, u1} N N' _inst_2 _inst_4)) g))
-Case conversion may be inaccurate. Consider using '#align mul_hom.coe_prod_map MulHom.coe_prodMapₓ'. -/
@[simp, to_additive coe_prod_map]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
rfl
#align mul_hom.coe_prod_map MulHom.coe_prodMap
#align add_hom.coe_prod_map AddHom.coe_prodMap
-/- warning: mul_hom.prod_comp_prod_map -> MulHom.prod_comp_prodMap is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} {M' : Type.{u4}} {N' : Type.{u5}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u4} M'] [_inst_4 : Mul.{u5} N'] [_inst_5 : Mul.{u3} P] (f : MulHom.{u3, u1} P M _inst_5 _inst_1) (g : MulHom.{u3, u2} P N _inst_5 _inst_2) (f' : MulHom.{u1, u4} M M' _inst_1 _inst_3) (g' : MulHom.{u2, u5} N N' _inst_2 _inst_4), Eq.{max (succ (max u4 u5)) (succ u3)} (MulHom.{u3, max u4 u5} P (Prod.{u4, u5} M' N') _inst_5 (Prod.hasMul.{u4, u5} M' N' _inst_3 _inst_4)) (MulHom.comp.{u3, max u1 u2, max u4 u5} P (Prod.{u1, u2} M N) (Prod.{u4, u5} M' N') _inst_5 (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u4, u5} M' N' _inst_3 _inst_4) (MulHom.prodMap.{u1, u2, u4, u5} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f' g') (MulHom.prod.{u3, u1, u2} P M N _inst_5 _inst_1 _inst_2 f g)) (MulHom.prod.{u3, u4, u5} P M' N' _inst_5 _inst_3 _inst_4 (MulHom.comp.{u3, u1, u4} P M M' _inst_5 _inst_1 _inst_3 f' f) (MulHom.comp.{u3, u2, u5} P N N' _inst_5 _inst_2 _inst_4 g' g))
-but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} {P : Type.{u5}} {M' : Type.{u2}} {N' : Type.{u1}} [_inst_1 : Mul.{u4} M] [_inst_2 : Mul.{u3} N] [_inst_3 : Mul.{u2} M'] [_inst_4 : Mul.{u1} N'] [_inst_5 : Mul.{u5} P] (f : MulHom.{u5, u4} P M _inst_5 _inst_1) (g : MulHom.{u5, u3} P N _inst_5 _inst_2) (f' : MulHom.{u4, u2} M M' _inst_1 _inst_3) (g' : MulHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (succ u5) (succ u2)) (succ u1)} (MulHom.{u5, max u2 u1} P (Prod.{u2, u1} M' N') _inst_5 (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (MulHom.comp.{u5, max u4 u3, max u2 u1} P (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') _inst_5 (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4) (MulHom.prodMap.{u4, u3, u2, u1} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f' g') (MulHom.prod.{u5, u4, u3} P M N _inst_5 _inst_1 _inst_2 f g)) (MulHom.prod.{u5, u2, u1} P M' N' _inst_5 _inst_3 _inst_4 (MulHom.comp.{u5, u4, u2} P M M' _inst_5 _inst_1 _inst_3 f' f) (MulHom.comp.{u5, u3, u1} P N N' _inst_5 _inst_2 _inst_4 g' g))
-Case conversion may be inaccurate. Consider using '#align mul_hom.prod_comp_prod_map MulHom.prod_comp_prodMapₓ'. -/
@[to_additive prod_comp_prod_map]
theorem prod_comp_prodMap (f : P →ₙ* M) (g : P →ₙ* N) (f' : M →ₙ* M') (g' : N →ₙ* N') :
(f'.Prod_map g').comp (f.Prod g) = (f'.comp f).Prod (g'.comp g) :=
@@ -610,12 +424,6 @@ section Coprod
variable [Mul M] [Mul N] [CommSemigroup P] (f : M →ₙ* P) (g : N →ₙ* P)
-/- warning: mul_hom.coprod -> MulHom.coprod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u3} P], (MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) -> (MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) -> (MulHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3)))
-but is expected to have type
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u3} P], (MulHom.{u1, u3} M P _inst_1 (Semigroup.toMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) -> (MulHom.{u2, u3} N P _inst_2 (Semigroup.toMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) -> (MulHom.{max u2 u1, u3} (Prod.{u1, u2} M N) P (Prod.instMulProd.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3)))
-Case conversion may be inaccurate. Consider using '#align mul_hom.coprod MulHom.coprodₓ'. -/
/-- Coproduct of two `mul_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 * g p.2`. -/
@[to_additive
@@ -625,24 +433,12 @@ def coprod : M × N →ₙ* P :=
#align mul_hom.coprod MulHom.coprod
#align add_hom.coprod AddHom.coprod
-/- warning: mul_hom.coprod_apply -> MulHom.coprod_apply is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u3} P] (f : MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (g : MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (p : Prod.{u1, u2} M N), Eq.{succ u3} P (coeFn.{max (succ u3) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u3)} (MulHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => (Prod.{u1, u2} M N) -> P) (MulHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (MulHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u3, u3, u3} P P P (instHMul.{u3} P (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) f (Prod.fst.{u1, u2} M N p)) (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => N -> P) (MulHom.hasCoeToFun.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) g (Prod.snd.{u1, u2} M N p)))
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u1} P] (f : MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (g : MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) (MulHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (Semigroup.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommSemigroup.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) g (Prod.snd.{u3, u2} M N p)))
-Case conversion may be inaccurate. Consider using '#align mul_hom.coprod_apply MulHom.coprod_applyₓ'. -/
@[simp, to_additive]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
rfl
#align mul_hom.coprod_apply MulHom.coprod_apply
#align add_hom.coprod_apply AddHom.coprod_apply
-/- warning: mul_hom.comp_coprod -> MulHom.comp_coprod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u3} P] {Q : Type.{u4}} [_inst_4 : CommSemigroup.{u4} Q] (h : MulHom.{u3, u4} P Q (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3)) (Semigroup.toHasMul.{u4} Q (CommSemigroup.toSemigroup.{u4} Q _inst_4))) (f : MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (g : MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))), Eq.{max (succ u4) (succ (max u1 u2))} (MulHom.{max u1 u2, u4} (Prod.{u1, u2} M N) Q (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u4} Q (CommSemigroup.toSemigroup.{u4} Q _inst_4))) (MulHom.comp.{max u1 u2, u3, u4} (Prod.{u1, u2} M N) P Q (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3)) (Semigroup.toHasMul.{u4} Q (CommSemigroup.toSemigroup.{u4} Q _inst_4)) h (MulHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (MulHom.coprod.{u1, u2, u4} M N Q _inst_1 _inst_2 _inst_4 (MulHom.comp.{u1, u3, u4} M P Q _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3)) (Semigroup.toHasMul.{u4} Q (CommSemigroup.toSemigroup.{u4} Q _inst_4)) h f) (MulHom.comp.{u2, u3, u4} N P Q _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3)) (Semigroup.toHasMul.{u4} Q (CommSemigroup.toSemigroup.{u4} Q _inst_4)) h g))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} {P : Type.{u3}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N] [_inst_3 : CommSemigroup.{u3} P] {Q : Type.{u4}} [_inst_4 : CommSemigroup.{u4} Q] (h : MulHom.{u3, u4} P Q (Semigroup.toMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3)) (Semigroup.toMul.{u4} Q (CommSemigroup.toSemigroup.{u4} Q _inst_4))) (f : MulHom.{u2, u3} M P _inst_1 (Semigroup.toMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (g : MulHom.{u1, u3} N P _inst_2 (Semigroup.toMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))), Eq.{max (max (succ u2) (succ u1)) (succ u4)} (MulHom.{max u2 u1, u4} (Prod.{u2, u1} M N) Q (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) (Semigroup.toMul.{u4} Q (CommSemigroup.toSemigroup.{u4} Q _inst_4))) (MulHom.comp.{max u2 u1, u3, u4} (Prod.{u2, u1} M N) P Q (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) (Semigroup.toMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3)) (Semigroup.toMul.{u4} Q (CommSemigroup.toSemigroup.{u4} Q _inst_4)) h (MulHom.coprod.{u2, u1, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (MulHom.coprod.{u2, u1, u4} M N Q _inst_1 _inst_2 _inst_4 (MulHom.comp.{u2, u3, u4} M P Q _inst_1 (Semigroup.toMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3)) (Semigroup.toMul.{u4} Q (CommSemigroup.toSemigroup.{u4} Q _inst_4)) h f) (MulHom.comp.{u1, u3, u4} N P Q _inst_2 (Semigroup.toMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3)) (Semigroup.toMul.{u4} Q (CommSemigroup.toSemigroup.{u4} Q _inst_4)) h g))
-Case conversion may be inaccurate. Consider using '#align mul_hom.comp_coprod MulHom.comp_coprodₓ'. -/
@[to_additive]
theorem comp_coprod {Q : Type _} [CommSemigroup Q] (h : P →ₙ* Q) (f : M →ₙ* P) (g : N →ₙ* P) :
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
@@ -658,12 +454,6 @@ namespace MonoidHom
variable (M N) [MulOneClass M] [MulOneClass N]
-/- warning: monoid_hom.fst -> MonoidHom.fst is a dubious translation:
-lean 3 declaration is
- forall (M : Type.{u1}) (N : Type.{u2}) [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], MonoidHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1
-but is expected to have type
- forall (M : Type.{u1}) (N : Type.{u2}) [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], MonoidHom.{max u2 u1, u1} (Prod.{u1, u2} M N) M (Prod.instMulOneClassProd.{u1, u2} M N _inst_1 _inst_2) _inst_1
-Case conversion may be inaccurate. Consider using '#align monoid_hom.fst MonoidHom.fstₓ'. -/
/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/
@[to_additive
"Given additive monoids `A`, `B`, the natural projection homomorphism\nfrom `A × B` to `A`"]
@@ -672,12 +462,6 @@ def fst : M × N →* M :=
#align monoid_hom.fst MonoidHom.fst
#align add_monoid_hom.fst AddMonoidHom.fst
-/- warning: monoid_hom.snd -> MonoidHom.snd is a dubious translation:
-lean 3 declaration is
- forall (M : Type.{u1}) (N : Type.{u2}) [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], MonoidHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2
-but is expected to have type
- forall (M : Type.{u1}) (N : Type.{u2}) [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], MonoidHom.{max u2 u1, u2} (Prod.{u1, u2} M N) N (Prod.instMulOneClassProd.{u1, u2} M N _inst_1 _inst_2) _inst_2
-Case conversion may be inaccurate. Consider using '#align monoid_hom.snd MonoidHom.sndₓ'. -/
/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/
@[to_additive
"Given additive monoids `A`, `B`, the natural projection homomorphism\nfrom `A × B` to `B`"]
@@ -686,12 +470,6 @@ def snd : M × N →* N :=
#align monoid_hom.snd MonoidHom.snd
#align add_monoid_hom.snd AddMonoidHom.snd
-/- warning: monoid_hom.inl -> MonoidHom.inl is a dubious translation:
-lean 3 declaration is
- forall (M : Type.{u1}) (N : Type.{u2}) [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], MonoidHom.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)
-but is expected to have type
- forall (M : Type.{u1}) (N : Type.{u2}) [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], MonoidHom.{u1, max u2 u1} M (Prod.{u1, u2} M N) _inst_1 (Prod.instMulOneClassProd.{u1, u2} M N _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align monoid_hom.inl MonoidHom.inlₓ'. -/
/-- Given monoids `M`, `N`, the natural inclusion homomorphism from `M` to `M × N`. -/
@[to_additive
"Given additive monoids `A`, `B`, the natural inclusion homomorphism\nfrom `A` to `A × B`."]
@@ -700,12 +478,6 @@ def inl : M →* M × N :=
#align monoid_hom.inl MonoidHom.inl
#align add_monoid_hom.inl AddMonoidHom.inl
-/- warning: monoid_hom.inr -> MonoidHom.inr is a dubious translation:
-lean 3 declaration is
- forall (M : Type.{u1}) (N : Type.{u2}) [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], MonoidHom.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)
-but is expected to have type
- forall (M : Type.{u1}) (N : Type.{u2}) [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], MonoidHom.{u2, max u2 u1} N (Prod.{u1, u2} M N) _inst_2 (Prod.instMulOneClassProd.{u1, u2} M N _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align monoid_hom.inr MonoidHom.inrₓ'. -/
/-- Given monoids `M`, `N`, the natural inclusion homomorphism from `N` to `M × N`. -/
@[to_additive
"Given additive monoids `A`, `B`, the natural inclusion homomorphism\nfrom `B` to `A × B`."]
@@ -716,84 +488,42 @@ def inr : N →* M × N :=
variable {M N}
-/- warning: monoid_hom.coe_fst -> MonoidHom.coe_fst is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u1 u2)) (succ u1)} ((Prod.{u1, u2} M N) -> M) (coeFn.{max (succ u1) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u1)} (MonoidHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) (fun (_x : MonoidHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) => (Prod.{u1, u2} M N) -> M) (MonoidHom.hasCoeToFun.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) (MonoidHom.fst.{u1, u2} M N _inst_1 _inst_2)) (Prod.fst.{u1, u2} M N)
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u2} M _inst_1) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MonoidHom.monoidHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1))) (MonoidHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
-Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_fst MonoidHom.coe_fstₓ'. -/
@[simp, to_additive]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
rfl
#align monoid_hom.coe_fst MonoidHom.coe_fst
#align add_monoid_hom.coe_fst AddMonoidHom.coe_fst
-/- warning: monoid_hom.coe_snd -> MonoidHom.coe_snd is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u1 u2)) (succ u2)} ((Prod.{u1, u2} M N) -> N) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u2)} (MonoidHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) (fun (_x : MonoidHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) => (Prod.{u1, u2} M N) -> N) (MonoidHom.hasCoeToFun.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) (MonoidHom.snd.{u1, u2} M N _inst_1 _inst_2)) (Prod.snd.{u1, u2} M N)
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} N _inst_2) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MonoidHom.monoidHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2))) (MonoidHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
-Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_snd MonoidHom.coe_sndₓ'. -/
@[simp, to_additive]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
rfl
#align monoid_hom.coe_snd MonoidHom.coe_snd
#align add_monoid_hom.coe_snd AddMonoidHom.coe_snd
-/- warning: monoid_hom.inl_apply -> MonoidHom.inl_apply is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] (x : M), Eq.{max (succ u1) (succ u2)} (Prod.{u1, u2} M N) (coeFn.{max (succ (max u1 u2)) (succ u1), max (succ u1) (succ (max u1 u2))} (MonoidHom.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (fun (_x : MonoidHom.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) => M -> (Prod.{u1, u2} M N)) (MonoidHom.hasCoeToFun.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.inl.{u1, u2} M N _inst_1 _inst_2) x) (Prod.mk.{u1, u2} M N x (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N _inst_2)))))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} M N) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, max (succ u2) (succ u1)} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u2, max u2 u1} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inl.{u2, u1} M N _inst_1 _inst_2) x) (Prod.mk.{u2, u1} M N x (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (MulOneClass.toOne.{u1} N _inst_2))))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.inl_apply MonoidHom.inl_applyₓ'. -/
@[simp, to_additive]
theorem inl_apply (x) : inl M N x = (x, 1) :=
rfl
#align monoid_hom.inl_apply MonoidHom.inl_apply
#align add_monoid_hom.inl_apply AddMonoidHom.inl_apply
-/- warning: monoid_hom.inr_apply -> MonoidHom.inr_apply is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] (y : N), Eq.{max (succ u1) (succ u2)} (Prod.{u1, u2} M N) (coeFn.{max (succ (max u1 u2)) (succ u2), max (succ u2) (succ (max u1 u2))} (MonoidHom.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (fun (_x : MonoidHom.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) => N -> (Prod.{u1, u2} M N)) (MonoidHom.hasCoeToFun.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.inr.{u1, u2} M N _inst_1 _inst_2) y) (Prod.mk.{u1, u2} M N (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M _inst_1)))) y)
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (y : N), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => Prod.{u2, u1} M N) y) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u1, max u2 u1} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inr.{u2, u1} M N _inst_1 _inst_2) y) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (MulOneClass.toOne.{u2} M _inst_1))) y)
-Case conversion may be inaccurate. Consider using '#align monoid_hom.inr_apply MonoidHom.inr_applyₓ'. -/
@[simp, to_additive]
theorem inr_apply (y) : inr M N y = (1, y) :=
rfl
#align monoid_hom.inr_apply MonoidHom.inr_apply
#align add_monoid_hom.inr_apply AddMonoidHom.inr_apply
-/- warning: monoid_hom.fst_comp_inl -> MonoidHom.fst_comp_inl is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{succ u1} (MonoidHom.{u1, u1} M M _inst_1 _inst_1) (MonoidHom.comp.{u1, max u1 u2, u1} M (Prod.{u1, u2} M N) M _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1 (MonoidHom.fst.{u1, u2} M N _inst_1 _inst_2) (MonoidHom.inl.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.id.{u1} M _inst_1)
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{succ u2} (MonoidHom.{u2, u2} M M _inst_1 _inst_1) (MonoidHom.comp.{u2, max u2 u1, u2} M (Prod.{u2, u1} M N) M _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MonoidHom.fst.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.inl.{u2, u1} M N _inst_1 _inst_2)) (MonoidHom.id.{u2} M _inst_1)
-Case conversion may be inaccurate. Consider using '#align monoid_hom.fst_comp_inl MonoidHom.fst_comp_inlₓ'. -/
@[simp, to_additive]
theorem fst_comp_inl : (fst M N).comp (inl M N) = id M :=
rfl
#align monoid_hom.fst_comp_inl MonoidHom.fst_comp_inl
#align add_monoid_hom.fst_comp_inl AddMonoidHom.fst_comp_inl
-/- warning: monoid_hom.snd_comp_inl -> MonoidHom.snd_comp_inl is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ u2) (succ u1)} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (MonoidHom.comp.{u1, max u1 u2, u2} M (Prod.{u1, u2} M N) N _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2 (MonoidHom.snd.{u1, u2} M N _inst_1 _inst_2) (MonoidHom.inl.{u1, u2} M N _inst_1 _inst_2)) (OfNat.ofNat.{max u2 u1} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) 1 (OfNat.mk.{max u2 u1} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) 1 (One.one.{max u2 u1} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (MonoidHom.hasOne.{u1, u2} M N _inst_1 _inst_2))))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (MonoidHom.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.comp.{u2, max u2 u1, u1} M (Prod.{u2, u1} M N) N _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MonoidHom.snd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.inl.{u2, u1} M N _inst_1 _inst_2)) (OfNat.ofNat.{max u2 u1} (MonoidHom.{u2, u1} M N _inst_1 _inst_2) 1 (One.toOfNat1.{max u2 u1} (MonoidHom.{u2, u1} M N _inst_1 _inst_2) (instOneMonoidHom.{u2, u1} M N _inst_1 _inst_2)))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.snd_comp_inl MonoidHom.snd_comp_inlₓ'. -/
@[simp, to_additive]
theorem snd_comp_inl : (snd M N).comp (inl M N) = 1 :=
rfl
#align monoid_hom.snd_comp_inl MonoidHom.snd_comp_inl
#align add_monoid_hom.snd_comp_inl AddMonoidHom.snd_comp_inl
-/- warning: monoid_hom.fst_comp_inr -> MonoidHom.fst_comp_inr is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ u1) (succ u2)} (MonoidHom.{u2, u1} N M _inst_2 _inst_1) (MonoidHom.comp.{u2, max u1 u2, u1} N (Prod.{u1, u2} M N) M _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1 (MonoidHom.fst.{u1, u2} M N _inst_1 _inst_2) (MonoidHom.inr.{u1, u2} M N _inst_1 _inst_2)) (OfNat.ofNat.{max u1 u2} (MonoidHom.{u2, u1} N M _inst_2 _inst_1) 1 (OfNat.mk.{max u1 u2} (MonoidHom.{u2, u1} N M _inst_2 _inst_1) 1 (One.one.{max u1 u2} (MonoidHom.{u2, u1} N M _inst_2 _inst_1) (MonoidHom.hasOne.{u2, u1} N M _inst_2 _inst_1))))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (MonoidHom.{u1, u2} N M _inst_2 _inst_1) (MonoidHom.comp.{u1, max u2 u1, u2} N (Prod.{u2, u1} M N) M _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MonoidHom.fst.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.inr.{u2, u1} M N _inst_1 _inst_2)) (OfNat.ofNat.{max u2 u1} (MonoidHom.{u1, u2} N M _inst_2 _inst_1) 1 (One.toOfNat1.{max u2 u1} (MonoidHom.{u1, u2} N M _inst_2 _inst_1) (instOneMonoidHom.{u1, u2} N M _inst_2 _inst_1)))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.fst_comp_inr MonoidHom.fst_comp_inrₓ'. -/
@[simp, to_additive]
theorem fst_comp_inr : (fst M N).comp (inr M N) = 1 :=
rfl
@@ -812,12 +542,6 @@ section Prod
variable [MulOneClass P]
-/- warning: monoid_hom.prod -> MonoidHom.prod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P], (MonoidHom.{u1, u2} M N _inst_1 _inst_2) -> (MonoidHom.{u1, u3} M P _inst_1 _inst_3) -> (MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3))
-but is expected to have type
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P], (MonoidHom.{u1, u2} M N _inst_1 _inst_2) -> (MonoidHom.{u1, u3} M P _inst_1 _inst_3) -> (MonoidHom.{u1, max u3 u2} M (Prod.{u2, u3} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u3} N P _inst_2 _inst_3))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.prod MonoidHom.prodₓ'. -/
/-- Combine two `monoid_hom`s `f : M →* N`, `g : M →* P` into `f.prod g : M →* N × P`
given by `(f.prod g) x = (f x, g x)`. -/
@[to_additive Prod
@@ -830,60 +554,30 @@ protected def prod (f : M →* N) (g : M →* P) : M →* N × P
#align monoid_hom.prod MonoidHom.prod
#align add_monoid_hom.prod AddMonoidHom.prod
-/- warning: monoid_hom.coe_prod -> MonoidHom.coe_prod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u1) (succ (max u2 u3))} (M -> (Prod.{u2, u3} N P)) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MonoidHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u1, u2, u3} M (fun (ᾰ : M) => N) (fun (ᾰ : M) => P) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MonoidHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g))
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_prod MonoidHom.coe_prodₓ'. -/
@[to_additive coe_prod]
theorem coe_prod (f : M →* N) (g : M →* P) : ⇑(f.Prod g) = Pi.prod f g :=
rfl
#align monoid_hom.coe_prod MonoidHom.coe_prod
#align add_monoid_hom.coe_prod AddMonoidHom.coe_prod
-/- warning: monoid_hom.prod_apply -> MonoidHom.prod_apply is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u1, u3} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u3)} (Prod.{u2, u3} N P) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MonoidHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u3} N P (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MonoidHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f x) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g x))
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g x))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.prod_apply MonoidHom.prod_applyₓ'. -/
@[simp, to_additive prod_apply]
theorem prod_apply (f : M →* N) (g : M →* P) (x) : f.Prod g x = (f x, g x) :=
rfl
#align monoid_hom.prod_apply MonoidHom.prod_apply
#align add_monoid_hom.prod_apply AddMonoidHom.prod_apply
-/- warning: monoid_hom.fst_comp_prod -> MonoidHom.fst_comp_prod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u2) (succ u1)} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (MonoidHom.comp.{u1, max u2 u3, u2} M (Prod.{u2, u3} N P) N _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3) _inst_2 (MonoidHom.fst.{u2, u3} N P _inst_2 _inst_3) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) f
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (succ u3) (succ u2)} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) (MonoidHom.comp.{u3, max u2 u1, u2} M (Prod.{u2, u1} N P) N _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) _inst_2 (MonoidHom.fst.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) f
-Case conversion may be inaccurate. Consider using '#align monoid_hom.fst_comp_prod MonoidHom.fst_comp_prodₓ'. -/
@[simp, to_additive fst_comp_prod]
theorem fst_comp_prod (f : M →* N) (g : M →* P) : (fst N P).comp (f.Prod g) = f :=
ext fun x => rfl
#align monoid_hom.fst_comp_prod MonoidHom.fst_comp_prod
#align add_monoid_hom.fst_comp_prod AddMonoidHom.fst_comp_prod
-/- warning: monoid_hom.snd_comp_prod -> MonoidHom.snd_comp_prod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u3) (succ u1)} (MonoidHom.{u1, u3} M P _inst_1 _inst_3) (MonoidHom.comp.{u1, max u2 u3, u3} M (Prod.{u2, u3} N P) P _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3) _inst_3 (MonoidHom.snd.{u2, u3} N P _inst_2 _inst_3) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) g
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (succ u3) (succ u1)} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) (MonoidHom.comp.{u3, max u2 u1, u1} M (Prod.{u2, u1} N P) P _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) _inst_3 (MonoidHom.snd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) g
-Case conversion may be inaccurate. Consider using '#align monoid_hom.snd_comp_prod MonoidHom.snd_comp_prodₓ'. -/
@[simp, to_additive snd_comp_prod]
theorem snd_comp_prod (f : M →* N) (g : M →* P) : (snd N P).comp (f.Prod g) = g :=
ext fun x => rfl
#align monoid_hom.snd_comp_prod MonoidHom.snd_comp_prod
#align add_monoid_hom.snd_comp_prod AddMonoidHom.snd_comp_prod
-/- warning: monoid_hom.prod_unique -> MonoidHom.prod_unique is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)), Eq.{max (succ (max u2 u3)) (succ u1)} (MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 (MonoidHom.comp.{u1, max u2 u3, u2} M (Prod.{u2, u3} N P) N _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3) _inst_2 (MonoidHom.fst.{u2, u3} N P _inst_2 _inst_3) f) (MonoidHom.comp.{u1, max u2 u3, u3} M (Prod.{u2, u3} N P) P _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3) _inst_3 (MonoidHom.snd.{u2, u3} N P _inst_2 _inst_3) f)) f
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u1}} {P : Type.{u2}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u1} N] [_inst_3 : MulOneClass.{u2} P] (f : MonoidHom.{u3, max u2 u1} M (Prod.{u1, u2} N P) _inst_1 (Prod.instMulOneClassProd.{u1, u2} N P _inst_2 _inst_3)), Eq.{max (max (succ u3) (succ u1)) (succ u2)} (MonoidHom.{u3, max u2 u1} M (Prod.{u1, u2} N P) _inst_1 (Prod.instMulOneClassProd.{u1, u2} N P _inst_2 _inst_3)) (MonoidHom.prod.{u3, u1, u2} M N P _inst_1 _inst_2 _inst_3 (MonoidHom.comp.{u3, max u1 u2, u1} M (Prod.{u1, u2} N P) N _inst_1 (Prod.instMulOneClassProd.{u1, u2} N P _inst_2 _inst_3) _inst_2 (MonoidHom.fst.{u1, u2} N P _inst_2 _inst_3) f) (MonoidHom.comp.{u3, max u1 u2, u2} M (Prod.{u1, u2} N P) P _inst_1 (Prod.instMulOneClassProd.{u1, u2} N P _inst_2 _inst_3) _inst_3 (MonoidHom.snd.{u1, u2} N P _inst_2 _inst_3) f)) f
-Case conversion may be inaccurate. Consider using '#align monoid_hom.prod_unique MonoidHom.prod_uniqueₓ'. -/
@[simp, to_additive prod_unique]
theorem prod_unique (f : M →* N × P) : ((fst N P).comp f).Prod ((snd N P).comp f) = f :=
ext fun x => by simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]
@@ -897,12 +591,6 @@ section Prod_map
variable {M' : Type _} {N' : Type _} [MulOneClass M'] [MulOneClass N'] [MulOneClass P] (f : M →* M')
(g : N →* N')
-/- warning: monoid_hom.prod_map -> MonoidHom.prodMap is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] {M' : Type.{u3}} {N' : Type.{u4}} [_inst_3 : MulOneClass.{u3} M'] [_inst_4 : MulOneClass.{u4} N'], (MonoidHom.{u1, u3} M M' _inst_1 _inst_3) -> (MonoidHom.{u2, u4} N N' _inst_2 _inst_4) -> (MonoidHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4))
-but is expected to have type
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] {M' : Type.{u3}} {N' : Type.{u4}} [_inst_3 : MulOneClass.{u3} M'] [_inst_4 : MulOneClass.{u4} N'], (MonoidHom.{u1, u3} M M' _inst_1 _inst_3) -> (MonoidHom.{u2, u4} N N' _inst_2 _inst_4) -> (MonoidHom.{max u2 u1, max u4 u3} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.instMulOneClassProd.{u1, u2} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u3, u4} M' N' _inst_3 _inst_4))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.prod_map MonoidHom.prodMapₓ'. -/
/-- `prod.map` as a `monoid_hom`. -/
@[to_additive Prod_map "`prod.map` as an `add_monoid_hom`"]
def prodMap : M × N →* M' × N' :=
@@ -910,36 +598,18 @@ def prodMap : M × N →* M' × N' :=
#align monoid_hom.prod_map MonoidHom.prodMap
#align add_monoid_hom.prod_map AddMonoidHom.prodMap
-/- warning: monoid_hom.prod_map_def -> MonoidHom.prodMap_def is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] {M' : Type.{u3}} {N' : Type.{u4}} [_inst_3 : MulOneClass.{u3} M'] [_inst_4 : MulOneClass.{u4} N'] (f : MonoidHom.{u1, u3} M M' _inst_1 _inst_3) (g : MonoidHom.{u2, u4} N N' _inst_2 _inst_4), Eq.{max (succ (max u3 u4)) (succ (max u1 u2))} (MonoidHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) (MonoidHom.prodMap.{u1, u2, u3, u4} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g) (MonoidHom.prod.{max u1 u2, u3, u4} (Prod.{u1, u2} M N) M' N' (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_3 _inst_4 (MonoidHom.comp.{max u1 u2, u1, u3} (Prod.{u1, u2} M N) M M' (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1 _inst_3 f (MonoidHom.fst.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.comp.{max u1 u2, u2, u4} (Prod.{u1, u2} M N) N N' (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2 _inst_4 g (MonoidHom.snd.{u1, u2} M N _inst_1 _inst_2)))
-but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} [_inst_1 : MulOneClass.{u4} M] [_inst_2 : MulOneClass.{u3} N] {M' : Type.{u2}} {N' : Type.{u1}} [_inst_3 : MulOneClass.{u2} M'] [_inst_4 : MulOneClass.{u1} N'] (f : MonoidHom.{u4, u2} M M' _inst_1 _inst_3) (g : MonoidHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (MonoidHom.prodMap.{u4, u3, u2, u1} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g) (MonoidHom.prod.{max u4 u3, u2, u1} (Prod.{u4, u3} M N) M' N' (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) _inst_3 _inst_4 (MonoidHom.comp.{max u4 u3, u4, u2} (Prod.{u4, u3} M N) M M' (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) _inst_1 _inst_3 f (MonoidHom.fst.{u4, u3} M N _inst_1 _inst_2)) (MonoidHom.comp.{max u4 u3, u3, u1} (Prod.{u4, u3} M N) N N' (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) _inst_2 _inst_4 g (MonoidHom.snd.{u4, u3} M N _inst_1 _inst_2)))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.prod_map_def MonoidHom.prodMap_defₓ'. -/
@[to_additive prod_map_def]
theorem prodMap_def : prodMap f g = (f.comp (fst M N)).Prod (g.comp (snd M N)) :=
rfl
#align monoid_hom.prod_map_def MonoidHom.prodMap_def
#align add_monoid_hom.prod_map_def AddMonoidHom.prodMap_def
-/- warning: monoid_hom.coe_prod_map -> MonoidHom.coe_prodMap is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] {M' : Type.{u3}} {N' : Type.{u4}} [_inst_3 : MulOneClass.{u3} M'] [_inst_4 : MulOneClass.{u4} N'] (f : MonoidHom.{u1, u3} M M' _inst_1 _inst_3) (g : MonoidHom.{u2, u4} N N' _inst_2 _inst_4), Eq.{max (succ (max u1 u2)) (succ (max u3 u4))} ((Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (coeFn.{max (succ (max u3 u4)) (succ (max u1 u2)), max (succ (max u1 u2)) (succ (max u3 u4))} (MonoidHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) (fun (_x : MonoidHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) => (Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (MonoidHom.hasCoeToFun.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) (MonoidHom.prodMap.{u1, u2, u3, u4} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u1, u3, u2, u4} M M' N N' (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M M' _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M M' _inst_1 _inst_3) => M -> M') (MonoidHom.hasCoeToFun.{u1, u3} M M' _inst_1 _inst_3) f) (coeFn.{max (succ u4) (succ u2), max (succ u2) (succ u4)} (MonoidHom.{u2, u4} N N' _inst_2 _inst_4) (fun (_x : MonoidHom.{u2, u4} N N' _inst_2 _inst_4) => N -> N') (MonoidHom.hasCoeToFun.{u2, u4} N N' _inst_2 _inst_4) g))
-but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} [_inst_1 : MulOneClass.{u4} M] [_inst_2 : MulOneClass.{u3} N] {M' : Type.{u2}} {N' : Type.{u1}} [_inst_3 : MulOneClass.{u2} M'] [_inst_4 : MulOneClass.{u1} N'] (f : MonoidHom.{u4, u2} M M' _inst_1 _inst_3) (g : MonoidHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (MulOneClass.toMul.{max u4 u3} (Prod.{u4, u3} M N) (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2)) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (MonoidHomClass.toMulHomClass.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4) (MonoidHom.monoidHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)))) (MonoidHom.prodMap.{u4, u3, u2, u1} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' (MulOneClass.toMul.{u4} M _inst_1) (MulOneClass.toMul.{u2} M' _inst_3) (MonoidHomClass.toMulHomClass.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u4, u2} M M' _inst_1 _inst_3))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' (MulOneClass.toMul.{u3} N _inst_2) (MulOneClass.toMul.{u1} N' _inst_4) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MonoidHom.monoidHomClass.{u3, u1} N N' _inst_2 _inst_4))) g))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_prod_map MonoidHom.coe_prodMapₓ'. -/
@[simp, to_additive coe_prod_map]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
rfl
#align monoid_hom.coe_prod_map MonoidHom.coe_prodMap
#align add_monoid_hom.coe_prod_map AddMonoidHom.coe_prodMap
-/- warning: monoid_hom.prod_comp_prod_map -> MonoidHom.prod_comp_prodMap is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] {M' : Type.{u4}} {N' : Type.{u5}} [_inst_3 : MulOneClass.{u4} M'] [_inst_4 : MulOneClass.{u5} N'] [_inst_5 : MulOneClass.{u3} P] (f : MonoidHom.{u3, u1} P M _inst_5 _inst_1) (g : MonoidHom.{u3, u2} P N _inst_5 _inst_2) (f' : MonoidHom.{u1, u4} M M' _inst_1 _inst_3) (g' : MonoidHom.{u2, u5} N N' _inst_2 _inst_4), Eq.{max (succ (max u4 u5)) (succ u3)} (MonoidHom.{u3, max u4 u5} P (Prod.{u4, u5} M' N') _inst_5 (Prod.mulOneClass.{u4, u5} M' N' _inst_3 _inst_4)) (MonoidHom.comp.{u3, max u1 u2, max u4 u5} P (Prod.{u1, u2} M N) (Prod.{u4, u5} M' N') _inst_5 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u4, u5} M' N' _inst_3 _inst_4) (MonoidHom.prodMap.{u1, u2, u4, u5} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f' g') (MonoidHom.prod.{u3, u1, u2} P M N _inst_5 _inst_1 _inst_2 f g)) (MonoidHom.prod.{u3, u4, u5} P M' N' _inst_5 _inst_3 _inst_4 (MonoidHom.comp.{u3, u1, u4} P M M' _inst_5 _inst_1 _inst_3 f' f) (MonoidHom.comp.{u3, u2, u5} P N N' _inst_5 _inst_2 _inst_4 g' g))
-but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} {P : Type.{u5}} [_inst_1 : MulOneClass.{u4} M] [_inst_2 : MulOneClass.{u3} N] {M' : Type.{u2}} {N' : Type.{u1}} [_inst_3 : MulOneClass.{u2} M'] [_inst_4 : MulOneClass.{u1} N'] [_inst_5 : MulOneClass.{u5} P] (f : MonoidHom.{u5, u4} P M _inst_5 _inst_1) (g : MonoidHom.{u5, u3} P N _inst_5 _inst_2) (f' : MonoidHom.{u4, u2} M M' _inst_1 _inst_3) (g' : MonoidHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (succ u5) (succ u2)) (succ u1)} (MonoidHom.{u5, max u2 u1} P (Prod.{u2, u1} M' N') _inst_5 (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (MonoidHom.comp.{u5, max u4 u3, max u2 u1} P (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') _inst_5 (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4) (MonoidHom.prodMap.{u4, u3, u2, u1} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f' g') (MonoidHom.prod.{u5, u4, u3} P M N _inst_5 _inst_1 _inst_2 f g)) (MonoidHom.prod.{u5, u2, u1} P M' N' _inst_5 _inst_3 _inst_4 (MonoidHom.comp.{u5, u4, u2} P M M' _inst_5 _inst_1 _inst_3 f' f) (MonoidHom.comp.{u5, u3, u1} P N N' _inst_5 _inst_2 _inst_4 g' g))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.prod_comp_prod_map MonoidHom.prod_comp_prodMapₓ'. -/
@[to_additive prod_comp_prod_map]
theorem prod_comp_prodMap (f : P →* M) (g : P →* N) (f' : M →* M') (g' : N →* N') :
(f'.Prod_map g').comp (f.Prod g) = (f'.comp f).Prod (g'.comp g) :=
@@ -953,12 +623,6 @@ section Coprod
variable [CommMonoid P] (f : M →* P) (g : N →* P)
-/- warning: monoid_hom.coprod -> MonoidHom.coprod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u3} P], (MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) -> (MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) -> (MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)))
-but is expected to have type
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u3} P], (MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) -> (MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) -> (MonoidHom.{max u2 u1, u3} (Prod.{u1, u2} M N) P (Prod.instMulOneClassProd.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.coprod MonoidHom.coprodₓ'. -/
/-- Coproduct of two `monoid_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 * g p.2`. -/
@[to_additive
@@ -968,60 +632,30 @@ def coprod : M × N →* P :=
#align monoid_hom.coprod MonoidHom.coprod
#align add_monoid_hom.coprod AddMonoidHom.coprod
-/- warning: monoid_hom.coprod_apply -> MonoidHom.coprod_apply is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u3} P] (f : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (g : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (p : Prod.{u1, u2} M N), Eq.{succ u3} P (coeFn.{max (succ u3) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u3)} (MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => (Prod.{u1, u2} M N) -> P) (MonoidHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (MonoidHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u3, u3, u3} P P P (instHMul.{u3} P (MulOneClass.toHasMul.{u3} P (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)))) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) f (Prod.fst.{u1, u2} M N p)) (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => N -> P) (MonoidHom.hasCoeToFun.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) g (Prod.snd.{u1, u2} M N p)))
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u1} P] (f : MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (g : MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (MulOneClass.toMul.{max u3 u2} (Prod.{u3, u2} M N) (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) (MonoidHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (MulOneClass.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (Monoid.toMulOneClass.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommMonoid.toMonoid.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3)))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P (MulOneClass.toMul.{u2} N _inst_2) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) g (Prod.snd.{u3, u2} M N p)))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.coprod_apply MonoidHom.coprod_applyₓ'. -/
@[simp, to_additive]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
rfl
#align monoid_hom.coprod_apply MonoidHom.coprod_apply
#align add_monoid_hom.coprod_apply AddMonoidHom.coprod_apply
-/- warning: monoid_hom.coprod_comp_inl -> MonoidHom.coprod_comp_inl is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u3} P] (f : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (g : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))), Eq.{max (succ u3) (succ u1)} (MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (MonoidHom.comp.{u1, max u1 u2, u3} M (Prod.{u1, u2} M N) P _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) (MonoidHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) (MonoidHom.inl.{u1, u2} M N _inst_1 _inst_2)) f
-but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u1}} {P : Type.{u2}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u1} N] [_inst_3 : CommMonoid.{u2} P] (f : MonoidHom.{u3, u2} M P _inst_1 (Monoid.toMulOneClass.{u2} P (CommMonoid.toMonoid.{u2} P _inst_3))) (g : MonoidHom.{u1, u2} N P _inst_2 (Monoid.toMulOneClass.{u2} P (CommMonoid.toMonoid.{u2} P _inst_3))), Eq.{max (succ u3) (succ u2)} (MonoidHom.{u3, u2} M P _inst_1 (Monoid.toMulOneClass.{u2} P (CommMonoid.toMonoid.{u2} P _inst_3))) (MonoidHom.comp.{u3, max u3 u1, u2} M (Prod.{u3, u1} M N) P _inst_1 (Prod.instMulOneClassProd.{u3, u1} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u2} P (CommMonoid.toMonoid.{u2} P _inst_3)) (MonoidHom.coprod.{u3, u1, u2} M N P _inst_1 _inst_2 _inst_3 f g) (MonoidHom.inl.{u3, u1} M N _inst_1 _inst_2)) f
-Case conversion may be inaccurate. Consider using '#align monoid_hom.coprod_comp_inl MonoidHom.coprod_comp_inlₓ'. -/
@[simp, to_additive]
theorem coprod_comp_inl : (f.coprod g).comp (inl M N) = f :=
ext fun x => by simp [coprod_apply]
#align monoid_hom.coprod_comp_inl MonoidHom.coprod_comp_inl
#align add_monoid_hom.coprod_comp_inl AddMonoidHom.coprod_comp_inl
-/- warning: monoid_hom.coprod_comp_inr -> MonoidHom.coprod_comp_inr is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u3} P] (f : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (g : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))), Eq.{max (succ u3) (succ u2)} (MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (MonoidHom.comp.{u2, max u1 u2, u3} N (Prod.{u1, u2} M N) P _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) (MonoidHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) (MonoidHom.inr.{u1, u2} M N _inst_1 _inst_2)) g
-but is expected to have type
- forall {M : Type.{u1}} {N : Type.{u3}} {P : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u3} N] [_inst_3 : CommMonoid.{u2} P] (f : MonoidHom.{u1, u2} M P _inst_1 (Monoid.toMulOneClass.{u2} P (CommMonoid.toMonoid.{u2} P _inst_3))) (g : MonoidHom.{u3, u2} N P _inst_2 (Monoid.toMulOneClass.{u2} P (CommMonoid.toMonoid.{u2} P _inst_3))), Eq.{max (succ u3) (succ u2)} (MonoidHom.{u3, u2} N P _inst_2 (Monoid.toMulOneClass.{u2} P (CommMonoid.toMonoid.{u2} P _inst_3))) (MonoidHom.comp.{u3, max u1 u3, u2} N (Prod.{u1, u3} M N) P _inst_2 (Prod.instMulOneClassProd.{u1, u3} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u2} P (CommMonoid.toMonoid.{u2} P _inst_3)) (MonoidHom.coprod.{u1, u3, u2} M N P _inst_1 _inst_2 _inst_3 f g) (MonoidHom.inr.{u1, u3} M N _inst_1 _inst_2)) g
-Case conversion may be inaccurate. Consider using '#align monoid_hom.coprod_comp_inr MonoidHom.coprod_comp_inrₓ'. -/
@[simp, to_additive]
theorem coprod_comp_inr : (f.coprod g).comp (inr M N) = g :=
ext fun x => by simp [coprod_apply]
#align monoid_hom.coprod_comp_inr MonoidHom.coprod_comp_inr
#align add_monoid_hom.coprod_comp_inr AddMonoidHom.coprod_comp_inr
-/- warning: monoid_hom.coprod_unique -> MonoidHom.coprod_unique is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u3} P] (f : MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))), Eq.{max (succ u3) (succ (max u1 u2))} (MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (MonoidHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 (MonoidHom.comp.{u1, max u1 u2, u3} M (Prod.{u1, u2} M N) P _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) f (MonoidHom.inl.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.comp.{u2, max u1 u2, u3} N (Prod.{u1, u2} M N) P _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) f (MonoidHom.inr.{u1, u2} M N _inst_1 _inst_2))) f
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u3}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u3} N] [_inst_3 : CommMonoid.{u1} P] (f : MonoidHom.{max u3 u2, u1} (Prod.{u2, u3} M N) P (Prod.instMulOneClassProd.{u2, u3} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))), Eq.{max (max (succ u2) (succ u3)) (succ u1)} (MonoidHom.{max u3 u2, u1} (Prod.{u2, u3} M N) P (Prod.instMulOneClassProd.{u2, u3} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHom.coprod.{u2, u3, u1} M N P _inst_1 _inst_2 _inst_3 (MonoidHom.comp.{u2, max u2 u3, u1} M (Prod.{u2, u3} M N) P _inst_1 (Prod.instMulOneClassProd.{u2, u3} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) f (MonoidHom.inl.{u2, u3} M N _inst_1 _inst_2)) (MonoidHom.comp.{u3, max u2 u3, u1} N (Prod.{u2, u3} M N) P _inst_2 (Prod.instMulOneClassProd.{u2, u3} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) f (MonoidHom.inr.{u2, u3} M N _inst_1 _inst_2))) f
-Case conversion may be inaccurate. Consider using '#align monoid_hom.coprod_unique MonoidHom.coprod_uniqueₓ'. -/
@[simp, to_additive]
theorem coprod_unique (f : M × N →* P) : (f.comp (inl M N)).coprod (f.comp (inr M N)) = f :=
ext fun x => by simp [coprod_apply, inl_apply, inr_apply, ← map_mul]
#align monoid_hom.coprod_unique MonoidHom.coprod_unique
#align add_monoid_hom.coprod_unique AddMonoidHom.coprod_unique
-/- warning: monoid_hom.coprod_inl_inr -> MonoidHom.coprod_inl_inr is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_4 : CommMonoid.{u1} M] [_inst_5 : CommMonoid.{u2} N], Eq.{succ (max u1 u2)} (MonoidHom.{max u1 u2, max u1 u2} (Prod.{u1, u2} M N) (Prod.{u1, u2} M N) (Prod.mulOneClass.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_4)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_5))) (Monoid.toMulOneClass.{max u1 u2} (Prod.{u1, u2} M N) (CommMonoid.toMonoid.{max u1 u2} (Prod.{u1, u2} M N) (Prod.commMonoid.{u1, u2} M N _inst_4 _inst_5)))) (MonoidHom.coprod.{u1, u2, max u1 u2} M N (Prod.{u1, u2} M N) (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_4)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_5)) (Prod.commMonoid.{u1, u2} M N _inst_4 _inst_5) (MonoidHom.inl.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_4)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_5))) (MonoidHom.inr.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_4)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_5)))) (MonoidHom.id.{max u1 u2} (Prod.{u1, u2} M N) (Prod.mulOneClass.{u1, u2} M N (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_4)) (Monoid.toMulOneClass.{u2} N (CommMonoid.toMonoid.{u2} N _inst_5))))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_4 : CommMonoid.{u2} M] [_inst_5 : CommMonoid.{u1} N], Eq.{max (succ u2) (succ u1)} (MonoidHom.{max u1 u2, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_4)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_5))) (Monoid.toMulOneClass.{max u2 u1} (Prod.{u2, u1} M N) (CommMonoid.toMonoid.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instCommMonoidProd.{u2, u1} M N _inst_4 _inst_5)))) (MonoidHom.coprod.{u2, u1, max u2 u1} M N (Prod.{u2, u1} M N) (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_4)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_5)) (Prod.instCommMonoidProd.{u2, u1} M N _inst_4 _inst_5) (MonoidHom.inl.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_4)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_5))) (MonoidHom.inr.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_4)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_5)))) (MonoidHom.id.{max u1 u2} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N (Monoid.toMulOneClass.{u2} M (CommMonoid.toMonoid.{u2} M _inst_4)) (Monoid.toMulOneClass.{u1} N (CommMonoid.toMonoid.{u1} N _inst_5))))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.coprod_inl_inr MonoidHom.coprod_inl_inrₓ'. -/
@[simp, to_additive]
theorem coprod_inl_inr {M N : Type _} [CommMonoid M] [CommMonoid N] :
(inl M N).coprod (inr M N) = id (M × N) :=
@@ -1029,12 +663,6 @@ theorem coprod_inl_inr {M N : Type _} [CommMonoid M] [CommMonoid N] :
#align monoid_hom.coprod_inl_inr MonoidHom.coprod_inl_inr
#align add_monoid_hom.coprod_inl_inr AddMonoidHom.coprod_inl_inr
-/- warning: monoid_hom.comp_coprod -> MonoidHom.comp_coprod is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u3} P] {Q : Type.{u4}} [_inst_4 : CommMonoid.{u4} Q] (h : MonoidHom.{u3, u4} P Q (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) (Monoid.toMulOneClass.{u4} Q (CommMonoid.toMonoid.{u4} Q _inst_4))) (f : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (g : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))), Eq.{max (succ u4) (succ (max u1 u2))} (MonoidHom.{max u1 u2, u4} (Prod.{u1, u2} M N) Q (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u4} Q (CommMonoid.toMonoid.{u4} Q _inst_4))) (MonoidHom.comp.{max u1 u2, u3, u4} (Prod.{u1, u2} M N) P Q (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) (Monoid.toMulOneClass.{u4} Q (CommMonoid.toMonoid.{u4} Q _inst_4)) h (MonoidHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (MonoidHom.coprod.{u1, u2, u4} M N Q _inst_1 _inst_2 _inst_4 (MonoidHom.comp.{u1, u3, u4} M P Q _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) (Monoid.toMulOneClass.{u4} Q (CommMonoid.toMonoid.{u4} Q _inst_4)) h f) (MonoidHom.comp.{u2, u3, u4} N P Q _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) (Monoid.toMulOneClass.{u4} Q (CommMonoid.toMonoid.{u4} Q _inst_4)) h g))
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] [_inst_3 : CommMonoid.{u3} P] {Q : Type.{u4}} [_inst_4 : CommMonoid.{u4} Q] (h : MonoidHom.{u3, u4} P Q (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) (Monoid.toMulOneClass.{u4} Q (CommMonoid.toMonoid.{u4} Q _inst_4))) (f : MonoidHom.{u2, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (g : MonoidHom.{u1, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))), Eq.{max (max (succ u2) (succ u1)) (succ u4)} (MonoidHom.{max u2 u1, u4} (Prod.{u2, u1} M N) Q (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u4} Q (CommMonoid.toMonoid.{u4} Q _inst_4))) (MonoidHom.comp.{max u2 u1, u3, u4} (Prod.{u2, u1} M N) P Q (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) (Monoid.toMulOneClass.{u4} Q (CommMonoid.toMonoid.{u4} Q _inst_4)) h (MonoidHom.coprod.{u2, u1, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (MonoidHom.coprod.{u2, u1, u4} M N Q _inst_1 _inst_2 _inst_4 (MonoidHom.comp.{u2, u3, u4} M P Q _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) (Monoid.toMulOneClass.{u4} Q (CommMonoid.toMonoid.{u4} Q _inst_4)) h f) (MonoidHom.comp.{u1, u3, u4} N P Q _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)) (Monoid.toMulOneClass.{u4} Q (CommMonoid.toMonoid.{u4} Q _inst_4)) h g))
-Case conversion may be inaccurate. Consider using '#align monoid_hom.comp_coprod MonoidHom.comp_coprodₓ'. -/
@[to_additive]
theorem comp_coprod {Q : Type _} [CommMonoid Q] (h : P →* Q) (f : M →* P) (g : N →* P) :
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
@@ -1052,12 +680,6 @@ section
variable {M N} [MulOneClass M] [MulOneClass N]
-/- warning: mul_equiv.prod_comm -> MulEquiv.prodComm is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], MulEquiv.{max u1 u2, max u2 u1} (Prod.{u1, u2} M N) (Prod.{u2, u1} N M) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2)) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1))
-but is expected to have type
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], MulEquiv.{max u2 u1, max u1 u2} (Prod.{u1, u2} M N) (Prod.{u2, u1} N M) (Prod.instMulProd.{u1, u2} M N (MulOneClass.toMul.{u1} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2)) (Prod.instMulProd.{u2, u1} N M (MulOneClass.toMul.{u2} N _inst_2) (MulOneClass.toMul.{u1} M _inst_1))
-Case conversion may be inaccurate. Consider using '#align mul_equiv.prod_comm MulEquiv.prodCommₓ'. -/
/-- The equivalence between `M × N` and `N × M` given by swapping the components
is multiplicative. -/
@[to_additive prod_comm
@@ -1067,24 +689,12 @@ def prodComm : M × N ≃* N × M :=
#align mul_equiv.prod_comm MulEquiv.prodComm
#align add_equiv.prod_comm AddEquiv.prodComm
-/- warning: mul_equiv.coe_prod_comm -> MulEquiv.coe_prodComm is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u1 u2)) (succ (max u2 u1))} ((Prod.{u1, u2} M N) -> (Prod.{u2, u1} N M)) (coeFn.{max (succ (max u1 u2)) (succ (max u2 u1)), max (succ (max u1 u2)) (succ (max u2 u1))} (MulEquiv.{max u1 u2, max u2 u1} (Prod.{u1, u2} M N) (Prod.{u2, u1} N M) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2)) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1))) (fun (_x : MulEquiv.{max u1 u2, max u2 u1} (Prod.{u1, u2} M N) (Prod.{u2, u1} N M) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2)) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1))) => (Prod.{u1, u2} M N) -> (Prod.{u2, u1} N M)) (MulEquiv.hasCoeToFun.{max u1 u2, max u2 u1} (Prod.{u1, u2} M N) (Prod.{u2, u1} N M) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2)) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1))) (MulEquiv.prodComm.{u1, u2} M N _inst_1 _inst_2)) (Prod.swap.{u1, u2} M N)
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u2, u1} M N) => Prod.{u1, u2} N M) ᾰ) (FunLike.coe.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u2, u1} M N) => Prod.{u1, u2} N M) _x) (EmbeddingLike.toFunLike.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (EquivLike.toEmbeddingLike.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (MulEquivClass.toEquivLike.{max u2 u1, max u2 u1, max u2 u1} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (MulEquiv.instMulEquivClassMulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)))))) (MulEquiv.prodComm.{u2, u1} M N _inst_1 _inst_2)) (Prod.swap.{u2, u1} M N)
-Case conversion may be inaccurate. Consider using '#align mul_equiv.coe_prod_comm MulEquiv.coe_prodCommₓ'. -/
@[simp, to_additive coe_prod_comm]
theorem coe_prodComm : ⇑(prodComm : M × N ≃* N × M) = Prod.swap :=
rfl
#align mul_equiv.coe_prod_comm MulEquiv.coe_prodComm
#align add_equiv.coe_prod_comm AddEquiv.coe_prodComm
-/- warning: mul_equiv.coe_prod_comm_symm -> MulEquiv.coe_prodComm_symm is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u2 u1)) (succ (max u1 u2))} ((Prod.{u2, u1} N M) -> (Prod.{u1, u2} M N)) (coeFn.{max (succ (max u2 u1)) (succ (max u1 u2)), max (succ (max u2 u1)) (succ (max u1 u2))} (MulEquiv.{max u2 u1, max u1 u2} (Prod.{u2, u1} N M) (Prod.{u1, u2} M N) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1)) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2))) (fun (_x : MulEquiv.{max u2 u1, max u1 u2} (Prod.{u2, u1} N M) (Prod.{u1, u2} M N) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1)) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2))) => (Prod.{u2, u1} N M) -> (Prod.{u1, u2} M N)) (MulEquiv.hasCoeToFun.{max u2 u1, max u1 u2} (Prod.{u2, u1} N M) (Prod.{u1, u2} M N) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1)) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2))) (MulEquiv.symm.{max u1 u2, max u2 u1} (Prod.{u1, u2} M N) (Prod.{u2, u1} N M) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2)) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1)) (MulEquiv.prodComm.{u1, u2} M N _inst_1 _inst_2))) (Prod.swap.{u2, u1} N M)
-but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u1, u2} N M), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u1, u2} N M) => Prod.{u2, u1} M N) ᾰ) (FunLike.coe.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (fun (_x : Prod.{u1, u2} N M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u1, u2} N M) => Prod.{u2, u1} M N) _x) (EmbeddingLike.toFunLike.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (EquivLike.toEmbeddingLike.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (MulEquivClass.toEquivLike.{max u2 u1, max u2 u1, max u2 u1} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)))))) (MulEquiv.symm.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (MulEquiv.prodComm.{u2, u1} M N _inst_1 _inst_2))) (Prod.swap.{u1, u2} N M)
-Case conversion may be inaccurate. Consider using '#align mul_equiv.coe_prod_comm_symm MulEquiv.coe_prodComm_symmₓ'. -/
@[simp, to_additive coe_prod_comm_symm]
theorem coe_prodComm_symm : ⇑(prodComm : M × N ≃* N × M).symm = Prod.swap :=
rfl
@@ -1093,12 +703,6 @@ theorem coe_prodComm_symm : ⇑(prodComm : M × N ≃* N × M).symm = Prod.swap
variable {M' N' : Type _} [MulOneClass M'] [MulOneClass N']
-/- warning: mul_equiv.prod_congr -> MulEquiv.prodCongr is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] {M' : Type.{u3}} {N' : Type.{u4}} [_inst_3 : MulOneClass.{u3} M'] [_inst_4 : MulOneClass.{u4} N'], (MulEquiv.{u1, u3} M M' (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u3} M' _inst_3)) -> (MulEquiv.{u2, u4} N N' (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u4} N' _inst_4)) -> (MulEquiv.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2)) (Prod.hasMul.{u3, u4} M' N' (MulOneClass.toHasMul.{u3} M' _inst_3) (MulOneClass.toHasMul.{u4} N' _inst_4)))
-but is expected to have type
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] {M' : Type.{u3}} {N' : Type.{u4}} [_inst_3 : MulOneClass.{u3} M'] [_inst_4 : MulOneClass.{u4} N'], (MulEquiv.{u1, u3} M M' (MulOneClass.toMul.{u1} M _inst_1) (MulOneClass.toMul.{u3} M' _inst_3)) -> (MulEquiv.{u2, u4} N N' (MulOneClass.toMul.{u2} N _inst_2) (MulOneClass.toMul.{u4} N' _inst_4)) -> (MulEquiv.{max u2 u1, max u4 u3} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.instMulProd.{u1, u2} M N (MulOneClass.toMul.{u1} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2)) (Prod.instMulProd.{u3, u4} M' N' (MulOneClass.toMul.{u3} M' _inst_3) (MulOneClass.toMul.{u4} N' _inst_4)))
-Case conversion may be inaccurate. Consider using '#align mul_equiv.prod_congr MulEquiv.prodCongrₓ'. -/
/-- Product of multiplicative isomorphisms; the maps come from `equiv.prod_congr`.-/
@[to_additive prod_congr "Product of additive isomorphisms; the maps come from `equiv.prod_congr`."]
def prodCongr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
@@ -1107,12 +711,6 @@ def prodCongr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
#align mul_equiv.prod_congr MulEquiv.prodCongr
#align add_equiv.prod_congr AddEquiv.prodCongr
-/- warning: mul_equiv.unique_prod -> MulEquiv.uniqueProd is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u_5}} {N : Type.{u_6}} [_inst_1 : MulOneClass.{u_5} M] [_inst_2 : MulOneClass.{u_6} N] [_inst_5 : Unique.{succ u_6} N], MulEquiv.{max u_6 u_5, u_5} (Prod.{u_6, u_5} N M) M (Prod.hasMul.{u_6, u_5} N M (MulOneClass.toHasMul.{u_6} N _inst_2) (MulOneClass.toHasMul.{u_5} M _inst_1)) (MulOneClass.toHasMul.{u_5} M _inst_1)
-but is expected to have type
- forall {M : Type.{u_1}} {N : Type.{u_2}} [_inst_1 : MulOneClass.{u_1} M] [_inst_2 : MulOneClass.{u_2} N] [_inst_5 : Unique.{succ u_2} N], MulEquiv.{max u_1 u_2, u_1} (Prod.{u_2, u_1} N M) M (Prod.instMulProd.{u_2, u_1} N M (MulOneClass.toMul.{u_2} N _inst_2) (MulOneClass.toMul.{u_1} M _inst_1)) (MulOneClass.toMul.{u_1} M _inst_1)
-Case conversion may be inaccurate. Consider using '#align mul_equiv.unique_prod MulEquiv.uniqueProdₓ'. -/
/-- Multiplying by the trivial monoid doesn't change the structure.-/
@[to_additive unique_prod "Multiplying by the trivial monoid doesn't change the structure."]
def uniqueProd [Unique N] : N × M ≃* M :=
@@ -1120,12 +718,6 @@ def uniqueProd [Unique N] : N × M ≃* M :=
#align mul_equiv.unique_prod MulEquiv.uniqueProd
#align add_equiv.unique_prod AddEquiv.uniqueProd
-/- warning: mul_equiv.prod_unique -> MulEquiv.prodUnique is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u_5}} {N : Type.{u_6}} [_inst_1 : MulOneClass.{u_5} M] [_inst_2 : MulOneClass.{u_6} N] [_inst_5 : Unique.{succ u_6} N], MulEquiv.{max u_5 u_6, u_5} (Prod.{u_5, u_6} M N) M (Prod.hasMul.{u_5, u_6} M N (MulOneClass.toHasMul.{u_5} M _inst_1) (MulOneClass.toHasMul.{u_6} N _inst_2)) (MulOneClass.toHasMul.{u_5} M _inst_1)
-but is expected to have type
- forall {M : Type.{u_1}} {N : Type.{u_2}} [_inst_1 : MulOneClass.{u_1} M] [_inst_2 : MulOneClass.{u_2} N] [_inst_5 : Unique.{succ u_2} N], MulEquiv.{max u_2 u_1, u_1} (Prod.{u_1, u_2} M N) M (Prod.instMulProd.{u_1, u_2} M N (MulOneClass.toMul.{u_1} M _inst_1) (MulOneClass.toMul.{u_2} N _inst_2)) (MulOneClass.toMul.{u_1} M _inst_1)
-Case conversion may be inaccurate. Consider using '#align mul_equiv.prod_unique MulEquiv.prodUniqueₓ'. -/
/-- Multiplying by the trivial monoid doesn't change the structure.-/
@[to_additive prod_unique "Multiplying by the trivial monoid doesn't change the structure."]
def prodUnique [Unique N] : M × N ≃* M :=
@@ -1139,12 +731,6 @@ section
variable {M N} [Monoid M] [Monoid N]
-/- warning: mul_equiv.prod_units -> MulEquiv.prodUnits is a dubious translation:
-lean 3 declaration is
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Monoid.{u1} M] [_inst_2 : Monoid.{u2} N], MulEquiv.{max u1 u2, max u1 u2} (Units.{max u1 u2} (Prod.{u1, u2} M N) (Prod.monoid.{u1, u2} M N _inst_1 _inst_2)) (Prod.{u1, u2} (Units.{u1} M _inst_1) (Units.{u2} N _inst_2)) (MulOneClass.toHasMul.{max u1 u2} (Units.{max u1 u2} (Prod.{u1, u2} M N) (Prod.monoid.{u1, u2} M N _inst_1 _inst_2)) (Units.mulOneClass.{max u1 u2} (Prod.{u1, u2} M N) (Prod.monoid.{u1, u2} M N _inst_1 _inst_2))) (Prod.hasMul.{u1, u2} (Units.{u1} M _inst_1) (Units.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} (Units.{u1} M _inst_1) (Units.mulOneClass.{u1} M _inst_1)) (MulOneClass.toHasMul.{u2} (Units.{u2} N _inst_2) (Units.mulOneClass.{u2} N _inst_2)))
-but is expected to have type
- forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Monoid.{u1} M] [_inst_2 : Monoid.{u2} N], MulEquiv.{max u2 u1, max u2 u1} (Units.{max u2 u1} (Prod.{u1, u2} M N) (Prod.instMonoidProd.{u1, u2} M N _inst_1 _inst_2)) (Prod.{u1, u2} (Units.{u1} M _inst_1) (Units.{u2} N _inst_2)) (MulOneClass.toMul.{max u1 u2} (Units.{max u2 u1} (Prod.{u1, u2} M N) (Prod.instMonoidProd.{u1, u2} M N _inst_1 _inst_2)) (Units.instMulOneClassUnits.{max u1 u2} (Prod.{u1, u2} M N) (Prod.instMonoidProd.{u1, u2} M N _inst_1 _inst_2))) (Prod.instMulProd.{u1, u2} (Units.{u1} M _inst_1) (Units.{u2} N _inst_2) (MulOneClass.toMul.{u1} (Units.{u1} M _inst_1) (Units.instMulOneClassUnits.{u1} M _inst_1)) (MulOneClass.toMul.{u2} (Units.{u2} N _inst_2) (Units.instMulOneClassUnits.{u2} N _inst_2)))
-Case conversion may be inaccurate. Consider using '#align mul_equiv.prod_units MulEquiv.prodUnitsₓ'. -/
/-- The monoid equivalence between units of a product of two monoids, and the product of the
units of each monoid. -/
@[to_additive prod_add_units
@@ -1167,12 +753,6 @@ namespace Units
open MulOpposite
-/- warning: units.embed_product -> Units.embedProduct is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))
-but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align units.embed_product Units.embedProductₓ'. -/
/-- Canonical homomorphism of monoids from `αˣ` into `α × αᵐᵒᵖ`.
Used mainly to define the natural topology of `αˣ`. -/
@[to_additive
@@ -1187,12 +767,6 @@ def embedProduct (α : Type _) [Monoid α] : αˣ →* α × αᵐᵒᵖ
#align units.embed_product Units.embedProduct
#align add_units.embed_product AddUnits.embedProduct
-/- warning: units.embed_product_injective -> Units.embedProduct_injective is a dubious translation:
-lean 3 declaration is
- forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (fun (_x : MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) => (Units.{u1} α _inst_1) -> (Prod.{u1, u1} α (MulOpposite.{u1} α))) (MonoidHom.hasCoeToFun.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.embedProduct.{u1} α _inst_1))
-but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (fun (_x : Units.{u1} α _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Units.{u1} α _inst_1) => Prod.{u1, u1} α (MulOpposite.{u1} α)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (MulOneClass.toMul.{u1} (Units.{u1} α _inst_1) (Units.instMulOneClassUnits.{u1} α _inst_1)) (MulOneClass.toMul.{u1} (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1))) (MonoidHom.monoidHomClass.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))))) (Units.embedProduct.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align units.embed_product_injective Units.embedProduct_injectiveₓ'. -/
@[to_additive]
theorem embedProduct_injective (α : Type _) [Monoid α] : Function.Injective (embedProduct α) :=
fun a₁ a₂ h => Units.ext <| (congr_arg Prod.fst h : _)
@@ -1208,12 +782,6 @@ section BundledMulDiv
variable {α : Type _}
-/- warning: mul_mul_hom -> mulMulHom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : CommSemigroup.{u1} α], MulHom.{u1, u1} (Prod.{u1, u1} α α) α (Prod.hasMul.{u1, u1} α α (Semigroup.toHasMul.{u1} α (CommSemigroup.toSemigroup.{u1} α _inst_1)) (Semigroup.toHasMul.{u1} α (CommSemigroup.toSemigroup.{u1} α _inst_1))) (Semigroup.toHasMul.{u1} α (CommSemigroup.toSemigroup.{u1} α _inst_1))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : CommSemigroup.{u1} α], MulHom.{u1, u1} (Prod.{u1, u1} α α) α (Prod.instMulProd.{u1, u1} α α (Semigroup.toMul.{u1} α (CommSemigroup.toSemigroup.{u1} α _inst_1)) (Semigroup.toMul.{u1} α (CommSemigroup.toSemigroup.{u1} α _inst_1))) (Semigroup.toMul.{u1} α (CommSemigroup.toSemigroup.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align mul_mul_hom mulMulHomₓ'. -/
/-- Multiplication as a multiplicative homomorphism. -/
@[to_additive "Addition as an additive homomorphism.", simps]
def mulMulHom [CommSemigroup α] : α × α →ₙ* α
@@ -1223,12 +791,6 @@ def mulMulHom [CommSemigroup α] : α × α →ₙ* α
#align mul_mul_hom mulMulHom
#align add_add_hom addAddHom
-/- warning: mul_monoid_hom -> mulMonoidHom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : CommMonoid.{u1} α], MonoidHom.{u1, u1} (Prod.{u1, u1} α α) α (Prod.mulOneClass.{u1, u1} α α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α _inst_1)) (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α _inst_1))) (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α _inst_1))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : CommMonoid.{u1} α], MonoidHom.{u1, u1} (Prod.{u1, u1} α α) α (Prod.instMulOneClassProd.{u1, u1} α α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α _inst_1)) (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α _inst_1))) (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align mul_monoid_hom mulMonoidHomₓ'. -/
/-- Multiplication as a monoid homomorphism. -/
@[to_additive "Addition as an additive monoid homomorphism.", simps]
def mulMonoidHom [CommMonoid α] : α × α →* α :=
@@ -1236,24 +798,12 @@ def mulMonoidHom [CommMonoid α] : α × α →* α :=
#align mul_monoid_hom mulMonoidHom
#align add_add_monoid_hom addAddMonoidHom
-/- warning: mul_monoid_with_zero_hom -> mulMonoidWithZeroHom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α], MonoidWithZeroHom.{u1, u1} (Prod.{u1, u1} α α) α (Prod.mulZeroOneClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : CommMonoidWithZero.{u1} α], MonoidWithZeroHom.{u1, u1} (Prod.{u1, u1} α α) α (Prod.instMulZeroOneClassProd.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (CommMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align mul_monoid_with_zero_hom mulMonoidWithZeroHomₓ'. -/
/-- Multiplication as a multiplicative homomorphism with zero. -/
@[simps]
def mulMonoidWithZeroHom [CommMonoidWithZero α] : α × α →*₀ α :=
{ mulMonoidHom with map_zero' := MulZeroClass.mul_zero _ }
#align mul_monoid_with_zero_hom mulMonoidWithZeroHom
-/- warning: div_monoid_hom -> divMonoidHom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : DivisionCommMonoid.{u1} α], MonoidHom.{u1, u1} (Prod.{u1, u1} α α) α (Prod.mulOneClass.{u1, u1} α α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (DivisionMonoid.toDivInvMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α _inst_1)))) (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (DivisionMonoid.toDivInvMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α _inst_1))))) (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (DivisionMonoid.toDivInvMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α _inst_1))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : DivisionCommMonoid.{u1} α], MonoidHom.{u1, u1} (Prod.{u1, u1} α α) α (Prod.instMulOneClassProd.{u1, u1} α α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (DivisionMonoid.toDivInvMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α _inst_1)))) (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (DivisionMonoid.toDivInvMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α _inst_1))))) (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (DivisionMonoid.toDivInvMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align div_monoid_hom divMonoidHomₓ'. -/
/-- Division as a monoid homomorphism. -/
@[to_additive "Subtraction as an additive monoid homomorphism.", simps]
def divMonoidHom [DivisionCommMonoid α] : α × α →* α
@@ -1264,12 +814,6 @@ def divMonoidHom [DivisionCommMonoid α] : α × α →* α
#align div_monoid_hom divMonoidHom
#align sub_add_monoid_hom subAddMonoidHom
-/- warning: div_monoid_with_zero_hom -> divMonoidWithZeroHom is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : CommGroupWithZero.{u1} α], MonoidWithZeroHom.{u1, u1} (Prod.{u1, u1} α α) α (Prod.mulZeroOneClass.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α (CommGroupWithZero.toGroupWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α (CommGroupWithZero.toGroupWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α (CommGroupWithZero.toGroupWithZero.{u1} α _inst_1)))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : CommGroupWithZero.{u1} α], MonoidWithZeroHom.{u1, u1} (Prod.{u1, u1} α α) α (Prod.instMulZeroOneClassProd.{u1, u1} α α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α (CommGroupWithZero.toGroupWithZero.{u1} α _inst_1))) (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α (CommGroupWithZero.toGroupWithZero.{u1} α _inst_1)))) (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α (CommGroupWithZero.toGroupWithZero.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align div_monoid_with_zero_hom divMonoidWithZeroHomₓ'. -/
/-- Division as a multiplicative homomorphism with zero. -/
@[simps]
def divMonoidWithZeroHom [CommGroupWithZero α] : α × α →*₀ α
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -458,7 +458,7 @@ variable {M N}
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N], Eq.{max (succ (max u1 u2)) (succ u1)} ((Prod.{u1, u2} M N) -> M) (coeFn.{max (succ u1) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u1)} (MulHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) (fun (_x : MulHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) => (Prod.{u1, u2} M N) -> M) (MulHom.hasCoeToFun.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) (MulHom.fst.{u1, u2} M N _inst_1 _inst_2)) (Prod.fst.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MulHom.mulHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1)) (MulHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MulHom.mulHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1)) (MulHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_fst MulHom.coe_fstₓ'. -/
@[simp, to_additive]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
@@ -470,7 +470,7 @@ theorem coe_fst : ⇑(fst M N) = Prod.fst :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N], Eq.{max (succ (max u1 u2)) (succ u2)} ((Prod.{u1, u2} M N) -> N) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u2)} (MulHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) (fun (_x : MulHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) => (Prod.{u1, u2} M N) -> N) (MulHom.hasCoeToFun.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) (MulHom.snd.{u1, u2} M N _inst_1 _inst_2)) (Prod.snd.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MulHom.mulHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2)) (MulHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MulHom.mulHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2)) (MulHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_snd MulHom.coe_sndₓ'. -/
@[simp, to_additive]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
@@ -495,7 +495,7 @@ protected def prod (f : M →ₙ* N) (g : M →ₙ* P) : M →ₙ* N × P
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, u2} M N _inst_1 _inst_2) (g : MulHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u1) (succ (max u2 u3))} (M -> (Prod.{u2, u3} N P)) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MulHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u1, u2, u3} M (fun (ᾰ : M) => N) (fun (ᾰ : M) => P) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MulHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MulHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MulHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g))
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_prod MulHom.coe_prodₓ'. -/
@[to_additive coe_prod]
theorem coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.Prod g) = Pi.prod f g :=
@@ -507,7 +507,7 @@ theorem coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.Prod g) = Pi.prod f
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, u2} M N _inst_1 _inst_2) (g : MulHom.{u1, u3} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u3)} (Prod.{u2, u3} N P) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MulHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u3} N P (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MulHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MulHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MulHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f x) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g x))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g x))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g x))
Case conversion may be inaccurate. Consider using '#align mul_hom.prod_apply MulHom.prod_applyₓ'. -/
@[simp, to_additive prod_apply]
theorem prod_apply (f : M →ₙ* N) (g : M →ₙ* P) (x) : f.Prod g x = (f x, g x) :=
@@ -583,7 +583,7 @@ theorem prodMap_def : prodMap f g = (f.comp (fst M N)).Prod (g.comp (snd M N)) :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {M' : Type.{u3}} {N' : Type.{u4}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} M'] [_inst_4 : Mul.{u4} N'] (f : MulHom.{u1, u3} M M' _inst_1 _inst_3) (g : MulHom.{u2, u4} N N' _inst_2 _inst_4), Eq.{max (succ (max u1 u2)) (succ (max u3 u4))} ((Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (coeFn.{max (succ (max u3 u4)) (succ (max u1 u2)), max (succ (max u1 u2)) (succ (max u3 u4))} (MulHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) (fun (_x : MulHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) => (Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (MulHom.hasCoeToFun.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) (MulHom.prodMap.{u1, u2, u3, u4} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u1, u3, u2, u4} M M' N N' (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M M' _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M M' _inst_1 _inst_3) => M -> M') (MulHom.hasCoeToFun.{u1, u3} M M' _inst_1 _inst_3) f) (coeFn.{max (succ u4) (succ u2), max (succ u2) (succ u4)} (MulHom.{u2, u4} N N' _inst_2 _inst_4) (fun (_x : MulHom.{u2, u4} N N' _inst_2 _inst_4) => N -> N') (MulHom.hasCoeToFun.{u2, u4} N N' _inst_2 _inst_4) g))
but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} {M' : Type.{u2}} {N' : Type.{u1}} [_inst_1 : Mul.{u4} M] [_inst_2 : Mul.{u3} N] [_inst_3 : Mul.{u2} M'] [_inst_4 : Mul.{u1} N'] (f : MulHom.{u4, u2} M M' _inst_1 _inst_3) (g : MulHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4) (MulHom.mulHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4))) (MulHom.prodMap.{u4, u3, u2, u1} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MulHom.mulHomClass.{u4, u2} M M' _inst_1 _inst_3)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MulHom.mulHomClass.{u3, u1} N N' _inst_2 _inst_4)) g))
+ forall {M : Type.{u4}} {N : Type.{u3}} {M' : Type.{u2}} {N' : Type.{u1}} [_inst_1 : Mul.{u4} M] [_inst_2 : Mul.{u3} N] [_inst_3 : Mul.{u2} M'] [_inst_4 : Mul.{u1} N'] (f : MulHom.{u4, u2} M M' _inst_1 _inst_3) (g : MulHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4) (MulHom.mulHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4))) (MulHom.prodMap.{u4, u3, u2, u1} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MulHom.mulHomClass.{u4, u2} M M' _inst_1 _inst_3)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MulHom.mulHomClass.{u3, u1} N N' _inst_2 _inst_4)) g))
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_prod_map MulHom.coe_prodMapₓ'. -/
@[simp, to_additive coe_prod_map]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
@@ -629,7 +629,7 @@ def coprod : M × N →ₙ* P :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u3} P] (f : MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (g : MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (p : Prod.{u1, u2} M N), Eq.{succ u3} P (coeFn.{max (succ u3) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u3)} (MulHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => (Prod.{u1, u2} M N) -> P) (MulHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (MulHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u3, u3, u3} P P P (instHMul.{u3} P (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) f (Prod.fst.{u1, u2} M N p)) (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => N -> P) (MulHom.hasCoeToFun.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) g (Prod.snd.{u1, u2} M N p)))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u1} P] (f : MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (g : MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) (MulHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (Semigroup.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommSemigroup.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) g (Prod.snd.{u3, u2} M N p)))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u1} P] (f : MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (g : MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) (MulHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (Semigroup.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommSemigroup.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) g (Prod.snd.{u3, u2} M N p)))
Case conversion may be inaccurate. Consider using '#align mul_hom.coprod_apply MulHom.coprod_applyₓ'. -/
@[simp, to_additive]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
@@ -720,7 +720,7 @@ variable {M N}
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u1 u2)) (succ u1)} ((Prod.{u1, u2} M N) -> M) (coeFn.{max (succ u1) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u1)} (MonoidHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) (fun (_x : MonoidHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) => (Prod.{u1, u2} M N) -> M) (MonoidHom.hasCoeToFun.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) (MonoidHom.fst.{u1, u2} M N _inst_1 _inst_2)) (Prod.fst.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u2} M _inst_1) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MonoidHom.monoidHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1))) (MonoidHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u2} M _inst_1) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MonoidHom.monoidHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1))) (MonoidHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_fst MonoidHom.coe_fstₓ'. -/
@[simp, to_additive]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
@@ -732,7 +732,7 @@ theorem coe_fst : ⇑(fst M N) = Prod.fst :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u1 u2)) (succ u2)} ((Prod.{u1, u2} M N) -> N) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u2)} (MonoidHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) (fun (_x : MonoidHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) => (Prod.{u1, u2} M N) -> N) (MonoidHom.hasCoeToFun.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) (MonoidHom.snd.{u1, u2} M N _inst_1 _inst_2)) (Prod.snd.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} N _inst_2) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MonoidHom.monoidHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2))) (MonoidHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} N _inst_2) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MonoidHom.monoidHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2))) (MonoidHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_snd MonoidHom.coe_sndₓ'. -/
@[simp, to_additive]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
@@ -744,7 +744,7 @@ theorem coe_snd : ⇑(snd M N) = Prod.snd :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] (x : M), Eq.{max (succ u1) (succ u2)} (Prod.{u1, u2} M N) (coeFn.{max (succ (max u1 u2)) (succ u1), max (succ u1) (succ (max u1 u2))} (MonoidHom.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (fun (_x : MonoidHom.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) => M -> (Prod.{u1, u2} M N)) (MonoidHom.hasCoeToFun.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.inl.{u1, u2} M N _inst_1 _inst_2) x) (Prod.mk.{u1, u2} M N x (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N _inst_2)))))
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} M N) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, max (succ u2) (succ u1)} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u2, max u2 u1} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inl.{u2, u1} M N _inst_1 _inst_2) x) (Prod.mk.{u2, u1} M N x (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (MulOneClass.toOne.{u1} N _inst_2))))
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} M N) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, max (succ u2) (succ u1)} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u2, max u2 u1} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inl.{u2, u1} M N _inst_1 _inst_2) x) (Prod.mk.{u2, u1} M N x (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (MulOneClass.toOne.{u1} N _inst_2))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.inl_apply MonoidHom.inl_applyₓ'. -/
@[simp, to_additive]
theorem inl_apply (x) : inl M N x = (x, 1) :=
@@ -756,7 +756,7 @@ theorem inl_apply (x) : inl M N x = (x, 1) :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] (y : N), Eq.{max (succ u1) (succ u2)} (Prod.{u1, u2} M N) (coeFn.{max (succ (max u1 u2)) (succ u2), max (succ u2) (succ (max u1 u2))} (MonoidHom.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (fun (_x : MonoidHom.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) => N -> (Prod.{u1, u2} M N)) (MonoidHom.hasCoeToFun.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.inr.{u1, u2} M N _inst_1 _inst_2) y) (Prod.mk.{u1, u2} M N (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M _inst_1)))) y)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (y : N), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => Prod.{u2, u1} M N) y) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u1, max u2 u1} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inr.{u2, u1} M N _inst_1 _inst_2) y) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (MulOneClass.toOne.{u2} M _inst_1))) y)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (y : N), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => Prod.{u2, u1} M N) y) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u1, max u2 u1} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inr.{u2, u1} M N _inst_1 _inst_2) y) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (MulOneClass.toOne.{u2} M _inst_1))) y)
Case conversion may be inaccurate. Consider using '#align monoid_hom.inr_apply MonoidHom.inr_applyₓ'. -/
@[simp, to_additive]
theorem inr_apply (y) : inr M N y = (1, y) :=
@@ -834,7 +834,7 @@ protected def prod (f : M →* N) (g : M →* P) : M →* N × P
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u1) (succ (max u2 u3))} (M -> (Prod.{u2, u3} N P)) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MonoidHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u1, u2, u3} M (fun (ᾰ : M) => N) (fun (ᾰ : M) => P) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MonoidHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g))
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_prod MonoidHom.coe_prodₓ'. -/
@[to_additive coe_prod]
theorem coe_prod (f : M →* N) (g : M →* P) : ⇑(f.Prod g) = Pi.prod f g :=
@@ -846,7 +846,7 @@ theorem coe_prod (f : M →* N) (g : M →* P) : ⇑(f.Prod g) = Pi.prod f g :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u1, u3} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u3)} (Prod.{u2, u3} N P) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MonoidHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u3} N P (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MonoidHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f x) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g x))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g x))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g x))
Case conversion may be inaccurate. Consider using '#align monoid_hom.prod_apply MonoidHom.prod_applyₓ'. -/
@[simp, to_additive prod_apply]
theorem prod_apply (f : M →* N) (g : M →* P) (x) : f.Prod g x = (f x, g x) :=
@@ -926,7 +926,7 @@ theorem prodMap_def : prodMap f g = (f.comp (fst M N)).Prod (g.comp (snd M N)) :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] {M' : Type.{u3}} {N' : Type.{u4}} [_inst_3 : MulOneClass.{u3} M'] [_inst_4 : MulOneClass.{u4} N'] (f : MonoidHom.{u1, u3} M M' _inst_1 _inst_3) (g : MonoidHom.{u2, u4} N N' _inst_2 _inst_4), Eq.{max (succ (max u1 u2)) (succ (max u3 u4))} ((Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (coeFn.{max (succ (max u3 u4)) (succ (max u1 u2)), max (succ (max u1 u2)) (succ (max u3 u4))} (MonoidHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) (fun (_x : MonoidHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) => (Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (MonoidHom.hasCoeToFun.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) (MonoidHom.prodMap.{u1, u2, u3, u4} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u1, u3, u2, u4} M M' N N' (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M M' _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M M' _inst_1 _inst_3) => M -> M') (MonoidHom.hasCoeToFun.{u1, u3} M M' _inst_1 _inst_3) f) (coeFn.{max (succ u4) (succ u2), max (succ u2) (succ u4)} (MonoidHom.{u2, u4} N N' _inst_2 _inst_4) (fun (_x : MonoidHom.{u2, u4} N N' _inst_2 _inst_4) => N -> N') (MonoidHom.hasCoeToFun.{u2, u4} N N' _inst_2 _inst_4) g))
but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} [_inst_1 : MulOneClass.{u4} M] [_inst_2 : MulOneClass.{u3} N] {M' : Type.{u2}} {N' : Type.{u1}} [_inst_3 : MulOneClass.{u2} M'] [_inst_4 : MulOneClass.{u1} N'] (f : MonoidHom.{u4, u2} M M' _inst_1 _inst_3) (g : MonoidHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (MulOneClass.toMul.{max u4 u3} (Prod.{u4, u3} M N) (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2)) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (MonoidHomClass.toMulHomClass.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4) (MonoidHom.monoidHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)))) (MonoidHom.prodMap.{u4, u3, u2, u1} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' (MulOneClass.toMul.{u4} M _inst_1) (MulOneClass.toMul.{u2} M' _inst_3) (MonoidHomClass.toMulHomClass.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u4, u2} M M' _inst_1 _inst_3))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' (MulOneClass.toMul.{u3} N _inst_2) (MulOneClass.toMul.{u1} N' _inst_4) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MonoidHom.monoidHomClass.{u3, u1} N N' _inst_2 _inst_4))) g))
+ forall {M : Type.{u4}} {N : Type.{u3}} [_inst_1 : MulOneClass.{u4} M] [_inst_2 : MulOneClass.{u3} N] {M' : Type.{u2}} {N' : Type.{u1}} [_inst_3 : MulOneClass.{u2} M'] [_inst_4 : MulOneClass.{u1} N'] (f : MonoidHom.{u4, u2} M M' _inst_1 _inst_3) (g : MonoidHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (MulOneClass.toMul.{max u4 u3} (Prod.{u4, u3} M N) (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2)) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (MonoidHomClass.toMulHomClass.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4) (MonoidHom.monoidHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)))) (MonoidHom.prodMap.{u4, u3, u2, u1} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' (MulOneClass.toMul.{u4} M _inst_1) (MulOneClass.toMul.{u2} M' _inst_3) (MonoidHomClass.toMulHomClass.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u4, u2} M M' _inst_1 _inst_3))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' (MulOneClass.toMul.{u3} N _inst_2) (MulOneClass.toMul.{u1} N' _inst_4) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MonoidHom.monoidHomClass.{u3, u1} N N' _inst_2 _inst_4))) g))
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_prod_map MonoidHom.coe_prodMapₓ'. -/
@[simp, to_additive coe_prod_map]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
@@ -972,7 +972,7 @@ def coprod : M × N →* P :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u3} P] (f : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (g : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (p : Prod.{u1, u2} M N), Eq.{succ u3} P (coeFn.{max (succ u3) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u3)} (MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => (Prod.{u1, u2} M N) -> P) (MonoidHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (MonoidHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u3, u3, u3} P P P (instHMul.{u3} P (MulOneClass.toHasMul.{u3} P (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)))) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) f (Prod.fst.{u1, u2} M N p)) (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => N -> P) (MonoidHom.hasCoeToFun.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) g (Prod.snd.{u1, u2} M N p)))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u1} P] (f : MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (g : MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (MulOneClass.toMul.{max u3 u2} (Prod.{u3, u2} M N) (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) (MonoidHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (MulOneClass.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (Monoid.toMulOneClass.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommMonoid.toMonoid.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3)))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P (MulOneClass.toMul.{u2} N _inst_2) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) g (Prod.snd.{u3, u2} M N p)))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u1} P] (f : MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (g : MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (MulOneClass.toMul.{max u3 u2} (Prod.{u3, u2} M N) (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) (MonoidHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (MulOneClass.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (Monoid.toMulOneClass.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommMonoid.toMonoid.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3)))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P (MulOneClass.toMul.{u2} N _inst_2) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) g (Prod.snd.{u3, u2} M N p)))
Case conversion may be inaccurate. Consider using '#align monoid_hom.coprod_apply MonoidHom.coprod_applyₓ'. -/
@[simp, to_additive]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
@@ -1191,7 +1191,7 @@ def embedProduct (α : Type _) [Monoid α] : αˣ →* α × αᵐᵒᵖ
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (fun (_x : MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) => (Units.{u1} α _inst_1) -> (Prod.{u1, u1} α (MulOpposite.{u1} α))) (MonoidHom.hasCoeToFun.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.embedProduct.{u1} α _inst_1))
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (fun (_x : Units.{u1} α _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Units.{u1} α _inst_1) => Prod.{u1, u1} α (MulOpposite.{u1} α)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (MulOneClass.toMul.{u1} (Units.{u1} α _inst_1) (Units.instMulOneClassUnits.{u1} α _inst_1)) (MulOneClass.toMul.{u1} (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1))) (MonoidHom.monoidHomClass.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))))) (Units.embedProduct.{u1} α _inst_1))
+ forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (fun (_x : Units.{u1} α _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Units.{u1} α _inst_1) => Prod.{u1, u1} α (MulOpposite.{u1} α)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (MulOneClass.toMul.{u1} (Units.{u1} α _inst_1) (Units.instMulOneClassUnits.{u1} α _inst_1)) (MulOneClass.toMul.{u1} (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1))) (MonoidHom.monoidHomClass.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))))) (Units.embedProduct.{u1} α _inst_1))
Case conversion may be inaccurate. Consider using '#align units.embed_product_injective Units.embedProduct_injectiveₓ'. -/
@[to_additive]
theorem embedProduct_injective (α : Type _) [Monoid α] : Function.Injective (embedProduct α) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -1071,7 +1071,7 @@ def prodComm : M × N ≃* N × M :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u1 u2)) (succ (max u2 u1))} ((Prod.{u1, u2} M N) -> (Prod.{u2, u1} N M)) (coeFn.{max (succ (max u1 u2)) (succ (max u2 u1)), max (succ (max u1 u2)) (succ (max u2 u1))} (MulEquiv.{max u1 u2, max u2 u1} (Prod.{u1, u2} M N) (Prod.{u2, u1} N M) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2)) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1))) (fun (_x : MulEquiv.{max u1 u2, max u2 u1} (Prod.{u1, u2} M N) (Prod.{u2, u1} N M) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2)) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1))) => (Prod.{u1, u2} M N) -> (Prod.{u2, u1} N M)) (MulEquiv.hasCoeToFun.{max u1 u2, max u2 u1} (Prod.{u1, u2} M N) (Prod.{u2, u1} N M) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2)) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1))) (MulEquiv.prodComm.{u1, u2} M N _inst_1 _inst_2)) (Prod.swap.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u2, u1} M N) => Prod.{u1, u2} N M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (MulEquiv.{max u1 u2, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u2, u1} M N) => Prod.{u1, u2} N M) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (MulEquiv.{max u1 u2, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (MulEquiv.{max u1 u2, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (MulEquivClass.toEquivLike.{max u2 u1, max u2 u1, max u2 u1} (MulEquiv.{max u1 u2, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (MulEquiv.instMulEquivClassMulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)))))) (MulEquiv.prodComm.{u2, u1} M N _inst_1 _inst_2)) (Prod.swap.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u2, u1} M N) => Prod.{u1, u2} N M) ᾰ) (FunLike.coe.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u2, u1} M N) => Prod.{u1, u2} N M) _x) (EmbeddingLike.toFunLike.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (EquivLike.toEmbeddingLike.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (MulEquivClass.toEquivLike.{max u2 u1, max u2 u1, max u2 u1} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1))) (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (MulEquiv.instMulEquivClassMulEquiv.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)))))) (MulEquiv.prodComm.{u2, u1} M N _inst_1 _inst_2)) (Prod.swap.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align mul_equiv.coe_prod_comm MulEquiv.coe_prodCommₓ'. -/
@[simp, to_additive coe_prod_comm]
theorem coe_prodComm : ⇑(prodComm : M × N ≃* N × M) = Prod.swap :=
@@ -1083,7 +1083,7 @@ theorem coe_prodComm : ⇑(prodComm : M × N ≃* N × M) = Prod.swap :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u2 u1)) (succ (max u1 u2))} ((Prod.{u2, u1} N M) -> (Prod.{u1, u2} M N)) (coeFn.{max (succ (max u2 u1)) (succ (max u1 u2)), max (succ (max u2 u1)) (succ (max u1 u2))} (MulEquiv.{max u2 u1, max u1 u2} (Prod.{u2, u1} N M) (Prod.{u1, u2} M N) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1)) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2))) (fun (_x : MulEquiv.{max u2 u1, max u1 u2} (Prod.{u2, u1} N M) (Prod.{u1, u2} M N) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1)) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2))) => (Prod.{u2, u1} N M) -> (Prod.{u1, u2} M N)) (MulEquiv.hasCoeToFun.{max u2 u1, max u1 u2} (Prod.{u2, u1} N M) (Prod.{u1, u2} M N) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1)) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2))) (MulEquiv.symm.{max u1 u2, max u2 u1} (Prod.{u1, u2} M N) (Prod.{u2, u1} N M) (Prod.hasMul.{u1, u2} M N (MulOneClass.toHasMul.{u1} M _inst_1) (MulOneClass.toHasMul.{u2} N _inst_2)) (Prod.hasMul.{u2, u1} N M (MulOneClass.toHasMul.{u2} N _inst_2) (MulOneClass.toHasMul.{u1} M _inst_1)) (MulEquiv.prodComm.{u1, u2} M N _inst_1 _inst_2))) (Prod.swap.{u2, u1} N M)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u1, u2} N M), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u1, u2} N M) => Prod.{u2, u1} M N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (fun (_x : Prod.{u1, u2} N M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u1, u2} N M) => Prod.{u2, u1} M N) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (MulEquivClass.toEquivLike.{max u2 u1, max u2 u1, max u2 u1} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)))))) (MulEquiv.symm.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (MulEquiv.prodComm.{u2, u1} M N _inst_1 _inst_2))) (Prod.swap.{u1, u2} N M)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u1, u2} N M), (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u1, u2} N M) => Prod.{u2, u1} M N) ᾰ) (FunLike.coe.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (fun (_x : Prod.{u1, u2} N M) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Prod.{u1, u2} N M) => Prod.{u2, u1} M N) _x) (EmbeddingLike.toFunLike.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (EquivLike.toEmbeddingLike.{succ (max u2 u1), succ (max u2 u1), succ (max u2 u1)} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (MulEquivClass.toEquivLike.{max u2 u1, max u2 u1, max u2 u1} (MulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2))) (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (MulEquiv.instMulEquivClassMulEquiv.{max u2 u1, max u2 u1} (Prod.{u1, u2} N M) (Prod.{u2, u1} M N) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)))))) (MulEquiv.symm.{max u2 u1, max u2 u1} (Prod.{u2, u1} M N) (Prod.{u1, u2} N M) (Prod.instMulProd.{u2, u1} M N (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{u1} N _inst_2)) (Prod.instMulProd.{u1, u2} N M (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{u2} M _inst_1)) (MulEquiv.prodComm.{u2, u1} M N _inst_1 _inst_2))) (Prod.swap.{u1, u2} N M)
Case conversion may be inaccurate. Consider using '#align mul_equiv.coe_prod_comm_symm MulEquiv.coe_prodComm_symmₓ'. -/
@[simp, to_additive coe_prod_comm_symm]
theorem coe_prodComm_symm : ⇑(prodComm : M × N ≃* N × M).symm = Prod.swap :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/b19481deb571022990f1baa9cbf9172e6757a479
@@ -1171,7 +1171,7 @@ open MulOpposite
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))
+ forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))
Case conversion may be inaccurate. Consider using '#align units.embed_product Units.embedProductₓ'. -/
/-- Canonical homomorphism of monoids from `αˣ` into `α × αᵐᵒᵖ`.
Used mainly to define the natural topology of `αˣ`. -/
@@ -1191,7 +1191,7 @@ def embedProduct (α : Type _) [Monoid α] : αˣ →* α × αᵐᵒᵖ
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (fun (_x : MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) => (Units.{u1} α _inst_1) -> (Prod.{u1, u1} α (MulOpposite.{u1} α))) (MonoidHom.hasCoeToFun.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.embedProduct.{u1} α _inst_1))
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (fun (_x : Units.{u1} α _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Units.{u1} α _inst_1) => Prod.{u1, u1} α (MulOpposite.{u1} α)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (MulOneClass.toMul.{u1} (Units.{u1} α _inst_1) (Units.instMulOneClassUnits.{u1} α _inst_1)) (MulOneClass.toMul.{u1} (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1))) (MonoidHom.monoidHomClass.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))))) (Units.embedProduct.{u1} α _inst_1))
+ forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (fun (_x : Units.{u1} α _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Units.{u1} α _inst_1) => Prod.{u1, u1} α (MulOpposite.{u1} α)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (MulOneClass.toMul.{u1} (Units.{u1} α _inst_1) (Units.instMulOneClassUnits.{u1} α _inst_1)) (MulOneClass.toMul.{u1} (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1))) (MonoidHom.monoidHomClass.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))))) (Units.embedProduct.{u1} α _inst_1))
Case conversion may be inaccurate. Consider using '#align units.embed_product_injective Units.embedProduct_injectiveₓ'. -/
@[to_additive]
theorem embedProduct_injective (α : Type _) [Monoid α] : Function.Injective (embedProduct α) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -458,7 +458,7 @@ variable {M N}
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N], Eq.{max (succ (max u1 u2)) (succ u1)} ((Prod.{u1, u2} M N) -> M) (coeFn.{max (succ u1) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u1)} (MulHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) (fun (_x : MulHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) => (Prod.{u1, u2} M N) -> M) (MulHom.hasCoeToFun.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) (MulHom.fst.{u1, u2} M N _inst_1 _inst_2)) (Prod.fst.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MulHom.mulHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1)) (MulHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MulHom.mulHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1)) (MulHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_fst MulHom.coe_fstₓ'. -/
@[simp, to_additive]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
@@ -470,7 +470,7 @@ theorem coe_fst : ⇑(fst M N) = Prod.fst :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N], Eq.{max (succ (max u1 u2)) (succ u2)} ((Prod.{u1, u2} M N) -> N) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u2)} (MulHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) (fun (_x : MulHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) => (Prod.{u1, u2} M N) -> N) (MulHom.hasCoeToFun.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) (MulHom.snd.{u1, u2} M N _inst_1 _inst_2)) (Prod.snd.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MulHom.mulHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2)) (MulHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MulHom.mulHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2)) (MulHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_snd MulHom.coe_sndₓ'. -/
@[simp, to_additive]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
@@ -495,7 +495,7 @@ protected def prod (f : M →ₙ* N) (g : M →ₙ* P) : M →ₙ* N × P
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, u2} M N _inst_1 _inst_2) (g : MulHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u1) (succ (max u2 u3))} (M -> (Prod.{u2, u3} N P)) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MulHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u1, u2, u3} M (fun (ᾰ : M) => N) (fun (ᾰ : M) => P) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MulHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MulHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MulHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g))
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_prod MulHom.coe_prodₓ'. -/
@[to_additive coe_prod]
theorem coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.Prod g) = Pi.prod f g :=
@@ -507,7 +507,7 @@ theorem coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.Prod g) = Pi.prod f
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, u2} M N _inst_1 _inst_2) (g : MulHom.{u1, u3} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u3)} (Prod.{u2, u3} N P) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MulHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u3} N P (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MulHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MulHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MulHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f x) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g x))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g x))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g x))
Case conversion may be inaccurate. Consider using '#align mul_hom.prod_apply MulHom.prod_applyₓ'. -/
@[simp, to_additive prod_apply]
theorem prod_apply (f : M →ₙ* N) (g : M →ₙ* P) (x) : f.Prod g x = (f x, g x) :=
@@ -583,7 +583,7 @@ theorem prodMap_def : prodMap f g = (f.comp (fst M N)).Prod (g.comp (snd M N)) :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {M' : Type.{u3}} {N' : Type.{u4}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} M'] [_inst_4 : Mul.{u4} N'] (f : MulHom.{u1, u3} M M' _inst_1 _inst_3) (g : MulHom.{u2, u4} N N' _inst_2 _inst_4), Eq.{max (succ (max u1 u2)) (succ (max u3 u4))} ((Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (coeFn.{max (succ (max u3 u4)) (succ (max u1 u2)), max (succ (max u1 u2)) (succ (max u3 u4))} (MulHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) (fun (_x : MulHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) => (Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (MulHom.hasCoeToFun.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) (MulHom.prodMap.{u1, u2, u3, u4} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u1, u3, u2, u4} M M' N N' (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M M' _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M M' _inst_1 _inst_3) => M -> M') (MulHom.hasCoeToFun.{u1, u3} M M' _inst_1 _inst_3) f) (coeFn.{max (succ u4) (succ u2), max (succ u2) (succ u4)} (MulHom.{u2, u4} N N' _inst_2 _inst_4) (fun (_x : MulHom.{u2, u4} N N' _inst_2 _inst_4) => N -> N') (MulHom.hasCoeToFun.{u2, u4} N N' _inst_2 _inst_4) g))
but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} {M' : Type.{u2}} {N' : Type.{u1}} [_inst_1 : Mul.{u4} M] [_inst_2 : Mul.{u3} N] [_inst_3 : Mul.{u2} M'] [_inst_4 : Mul.{u1} N'] (f : MulHom.{u4, u2} M M' _inst_1 _inst_3) (g : MulHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4) (MulHom.mulHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4))) (MulHom.prodMap.{u4, u3, u2, u1} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MulHom.mulHomClass.{u4, u2} M M' _inst_1 _inst_3)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MulHom.mulHomClass.{u3, u1} N N' _inst_2 _inst_4)) g))
+ forall {M : Type.{u4}} {N : Type.{u3}} {M' : Type.{u2}} {N' : Type.{u1}} [_inst_1 : Mul.{u4} M] [_inst_2 : Mul.{u3} N] [_inst_3 : Mul.{u2} M'] [_inst_4 : Mul.{u1} N'] (f : MulHom.{u4, u2} M M' _inst_1 _inst_3) (g : MulHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4) (MulHom.mulHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4))) (MulHom.prodMap.{u4, u3, u2, u1} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MulHom.mulHomClass.{u4, u2} M M' _inst_1 _inst_3)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MulHom.mulHomClass.{u3, u1} N N' _inst_2 _inst_4)) g))
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_prod_map MulHom.coe_prodMapₓ'. -/
@[simp, to_additive coe_prod_map]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
@@ -629,7 +629,7 @@ def coprod : M × N →ₙ* P :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u3} P] (f : MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (g : MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (p : Prod.{u1, u2} M N), Eq.{succ u3} P (coeFn.{max (succ u3) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u3)} (MulHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => (Prod.{u1, u2} M N) -> P) (MulHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (MulHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u3, u3, u3} P P P (instHMul.{u3} P (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) f (Prod.fst.{u1, u2} M N p)) (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => N -> P) (MulHom.hasCoeToFun.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) g (Prod.snd.{u1, u2} M N p)))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u1} P] (f : MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (g : MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) (MulHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (Semigroup.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommSemigroup.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) g (Prod.snd.{u3, u2} M N p)))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u1} P] (f : MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (g : MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) (MulHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (Semigroup.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommSemigroup.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) g (Prod.snd.{u3, u2} M N p)))
Case conversion may be inaccurate. Consider using '#align mul_hom.coprod_apply MulHom.coprod_applyₓ'. -/
@[simp, to_additive]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
@@ -720,7 +720,7 @@ variable {M N}
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u1 u2)) (succ u1)} ((Prod.{u1, u2} M N) -> M) (coeFn.{max (succ u1) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u1)} (MonoidHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) (fun (_x : MonoidHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) => (Prod.{u1, u2} M N) -> M) (MonoidHom.hasCoeToFun.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) (MonoidHom.fst.{u1, u2} M N _inst_1 _inst_2)) (Prod.fst.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u2} M _inst_1) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MonoidHom.monoidHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1))) (MonoidHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u2} M _inst_1) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MonoidHom.monoidHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1))) (MonoidHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_fst MonoidHom.coe_fstₓ'. -/
@[simp, to_additive]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
@@ -732,7 +732,7 @@ theorem coe_fst : ⇑(fst M N) = Prod.fst :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u1 u2)) (succ u2)} ((Prod.{u1, u2} M N) -> N) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u2)} (MonoidHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) (fun (_x : MonoidHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) => (Prod.{u1, u2} M N) -> N) (MonoidHom.hasCoeToFun.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) (MonoidHom.snd.{u1, u2} M N _inst_1 _inst_2)) (Prod.snd.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} N _inst_2) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MonoidHom.monoidHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2))) (MonoidHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} N _inst_2) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MonoidHom.monoidHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2))) (MonoidHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_snd MonoidHom.coe_sndₓ'. -/
@[simp, to_additive]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
@@ -744,7 +744,7 @@ theorem coe_snd : ⇑(snd M N) = Prod.snd :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] (x : M), Eq.{max (succ u1) (succ u2)} (Prod.{u1, u2} M N) (coeFn.{max (succ (max u1 u2)) (succ u1), max (succ u1) (succ (max u1 u2))} (MonoidHom.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (fun (_x : MonoidHom.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) => M -> (Prod.{u1, u2} M N)) (MonoidHom.hasCoeToFun.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.inl.{u1, u2} M N _inst_1 _inst_2) x) (Prod.mk.{u1, u2} M N x (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N _inst_2)))))
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} M N) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, max (succ u2) (succ u1)} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u2, max u2 u1} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inl.{u2, u1} M N _inst_1 _inst_2) x) (Prod.mk.{u2, u1} M N x (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (MulOneClass.toOne.{u1} N _inst_2))))
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} M N) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, max (succ u2) (succ u1)} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u2, max u2 u1} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inl.{u2, u1} M N _inst_1 _inst_2) x) (Prod.mk.{u2, u1} M N x (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (MulOneClass.toOne.{u1} N _inst_2))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.inl_apply MonoidHom.inl_applyₓ'. -/
@[simp, to_additive]
theorem inl_apply (x) : inl M N x = (x, 1) :=
@@ -756,7 +756,7 @@ theorem inl_apply (x) : inl M N x = (x, 1) :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] (y : N), Eq.{max (succ u1) (succ u2)} (Prod.{u1, u2} M N) (coeFn.{max (succ (max u1 u2)) (succ u2), max (succ u2) (succ (max u1 u2))} (MonoidHom.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (fun (_x : MonoidHom.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) => N -> (Prod.{u1, u2} M N)) (MonoidHom.hasCoeToFun.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.inr.{u1, u2} M N _inst_1 _inst_2) y) (Prod.mk.{u1, u2} M N (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M _inst_1)))) y)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (y : N), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => Prod.{u2, u1} M N) y) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u1, max u2 u1} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inr.{u2, u1} M N _inst_1 _inst_2) y) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (MulOneClass.toOne.{u2} M _inst_1))) y)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (y : N), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => Prod.{u2, u1} M N) y) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u1, max u2 u1} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inr.{u2, u1} M N _inst_1 _inst_2) y) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (MulOneClass.toOne.{u2} M _inst_1))) y)
Case conversion may be inaccurate. Consider using '#align monoid_hom.inr_apply MonoidHom.inr_applyₓ'. -/
@[simp, to_additive]
theorem inr_apply (y) : inr M N y = (1, y) :=
@@ -834,7 +834,7 @@ protected def prod (f : M →* N) (g : M →* P) : M →* N × P
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u1) (succ (max u2 u3))} (M -> (Prod.{u2, u3} N P)) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MonoidHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u1, u2, u3} M (fun (ᾰ : M) => N) (fun (ᾰ : M) => P) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MonoidHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g))
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_prod MonoidHom.coe_prodₓ'. -/
@[to_additive coe_prod]
theorem coe_prod (f : M →* N) (g : M →* P) : ⇑(f.Prod g) = Pi.prod f g :=
@@ -846,7 +846,7 @@ theorem coe_prod (f : M →* N) (g : M →* P) : ⇑(f.Prod g) = Pi.prod f g :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u1, u3} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u3)} (Prod.{u2, u3} N P) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MonoidHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u3} N P (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MonoidHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f x) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g x))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g x))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g x))
Case conversion may be inaccurate. Consider using '#align monoid_hom.prod_apply MonoidHom.prod_applyₓ'. -/
@[simp, to_additive prod_apply]
theorem prod_apply (f : M →* N) (g : M →* P) (x) : f.Prod g x = (f x, g x) :=
@@ -926,7 +926,7 @@ theorem prodMap_def : prodMap f g = (f.comp (fst M N)).Prod (g.comp (snd M N)) :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] {M' : Type.{u3}} {N' : Type.{u4}} [_inst_3 : MulOneClass.{u3} M'] [_inst_4 : MulOneClass.{u4} N'] (f : MonoidHom.{u1, u3} M M' _inst_1 _inst_3) (g : MonoidHom.{u2, u4} N N' _inst_2 _inst_4), Eq.{max (succ (max u1 u2)) (succ (max u3 u4))} ((Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (coeFn.{max (succ (max u3 u4)) (succ (max u1 u2)), max (succ (max u1 u2)) (succ (max u3 u4))} (MonoidHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) (fun (_x : MonoidHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) => (Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (MonoidHom.hasCoeToFun.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) (MonoidHom.prodMap.{u1, u2, u3, u4} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u1, u3, u2, u4} M M' N N' (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M M' _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M M' _inst_1 _inst_3) => M -> M') (MonoidHom.hasCoeToFun.{u1, u3} M M' _inst_1 _inst_3) f) (coeFn.{max (succ u4) (succ u2), max (succ u2) (succ u4)} (MonoidHom.{u2, u4} N N' _inst_2 _inst_4) (fun (_x : MonoidHom.{u2, u4} N N' _inst_2 _inst_4) => N -> N') (MonoidHom.hasCoeToFun.{u2, u4} N N' _inst_2 _inst_4) g))
but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} [_inst_1 : MulOneClass.{u4} M] [_inst_2 : MulOneClass.{u3} N] {M' : Type.{u2}} {N' : Type.{u1}} [_inst_3 : MulOneClass.{u2} M'] [_inst_4 : MulOneClass.{u1} N'] (f : MonoidHom.{u4, u2} M M' _inst_1 _inst_3) (g : MonoidHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (MulOneClass.toMul.{max u4 u3} (Prod.{u4, u3} M N) (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2)) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (MonoidHomClass.toMulHomClass.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4) (MonoidHom.monoidHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)))) (MonoidHom.prodMap.{u4, u3, u2, u1} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' (MulOneClass.toMul.{u4} M _inst_1) (MulOneClass.toMul.{u2} M' _inst_3) (MonoidHomClass.toMulHomClass.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u4, u2} M M' _inst_1 _inst_3))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' (MulOneClass.toMul.{u3} N _inst_2) (MulOneClass.toMul.{u1} N' _inst_4) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MonoidHom.monoidHomClass.{u3, u1} N N' _inst_2 _inst_4))) g))
+ forall {M : Type.{u4}} {N : Type.{u3}} [_inst_1 : MulOneClass.{u4} M] [_inst_2 : MulOneClass.{u3} N] {M' : Type.{u2}} {N' : Type.{u1}} [_inst_3 : MulOneClass.{u2} M'] [_inst_4 : MulOneClass.{u1} N'] (f : MonoidHom.{u4, u2} M M' _inst_1 _inst_3) (g : MonoidHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (MulOneClass.toMul.{max u4 u3} (Prod.{u4, u3} M N) (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2)) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (MonoidHomClass.toMulHomClass.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4) (MonoidHom.monoidHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)))) (MonoidHom.prodMap.{u4, u3, u2, u1} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' (MulOneClass.toMul.{u4} M _inst_1) (MulOneClass.toMul.{u2} M' _inst_3) (MonoidHomClass.toMulHomClass.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u4, u2} M M' _inst_1 _inst_3))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' (MulOneClass.toMul.{u3} N _inst_2) (MulOneClass.toMul.{u1} N' _inst_4) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MonoidHom.monoidHomClass.{u3, u1} N N' _inst_2 _inst_4))) g))
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_prod_map MonoidHom.coe_prodMapₓ'. -/
@[simp, to_additive coe_prod_map]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
@@ -972,7 +972,7 @@ def coprod : M × N →* P :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u3} P] (f : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (g : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (p : Prod.{u1, u2} M N), Eq.{succ u3} P (coeFn.{max (succ u3) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u3)} (MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => (Prod.{u1, u2} M N) -> P) (MonoidHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (MonoidHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u3, u3, u3} P P P (instHMul.{u3} P (MulOneClass.toHasMul.{u3} P (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)))) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) f (Prod.fst.{u1, u2} M N p)) (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => N -> P) (MonoidHom.hasCoeToFun.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) g (Prod.snd.{u1, u2} M N p)))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u1} P] (f : MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (g : MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (MulOneClass.toMul.{max u3 u2} (Prod.{u3, u2} M N) (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) (MonoidHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (MulOneClass.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (Monoid.toMulOneClass.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommMonoid.toMonoid.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3)))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P (MulOneClass.toMul.{u2} N _inst_2) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) g (Prod.snd.{u3, u2} M N p)))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u1} P] (f : MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (g : MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (MulOneClass.toMul.{max u3 u2} (Prod.{u3, u2} M N) (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) (MonoidHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (MulOneClass.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (Monoid.toMulOneClass.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommMonoid.toMonoid.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3)))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P (MulOneClass.toMul.{u2} N _inst_2) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) g (Prod.snd.{u3, u2} M N p)))
Case conversion may be inaccurate. Consider using '#align monoid_hom.coprod_apply MonoidHom.coprod_applyₓ'. -/
@[simp, to_additive]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
@@ -1191,7 +1191,7 @@ def embedProduct (α : Type _) [Monoid α] : αˣ →* α × αᵐᵒᵖ
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (fun (_x : MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) => (Units.{u1} α _inst_1) -> (Prod.{u1, u1} α (MulOpposite.{u1} α))) (MonoidHom.hasCoeToFun.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.embedProduct.{u1} α _inst_1))
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (fun (_x : Units.{u1} α _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Units.{u1} α _inst_1) => Prod.{u1, u1} α (MulOpposite.{u1} α)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (MulOneClass.toMul.{u1} (Units.{u1} α _inst_1) (Units.instMulOneClassUnits.{u1} α _inst_1)) (MulOneClass.toMul.{u1} (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1))) (MonoidHom.monoidHomClass.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))))) (Units.embedProduct.{u1} α _inst_1))
+ forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (fun (_x : Units.{u1} α _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : Units.{u1} α _inst_1) => Prod.{u1, u1} α (MulOpposite.{u1} α)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (MulOneClass.toMul.{u1} (Units.{u1} α _inst_1) (Units.instMulOneClassUnits.{u1} α _inst_1)) (MulOneClass.toMul.{u1} (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1))) (MonoidHom.monoidHomClass.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))))) (Units.embedProduct.{u1} α _inst_1))
Case conversion may be inaccurate. Consider using '#align units.embed_product_injective Units.embedProduct_injectiveₓ'. -/
@[to_additive]
theorem embedProduct_injective (α : Type _) [Monoid α] : Function.Injective (embedProduct α) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -320,8 +320,10 @@ theorem swap_div [Div G] [Div H] (a b : G × H) : (a / b).symm = a.symm / b.symm
instance [MulZeroClass M] [MulZeroClass N] : MulZeroClass (M × N) :=
{ Prod.hasZero,
Prod.hasMul with
- zero_mul := fun a => Prod.recOn a fun a b => mk.inj_iff.mpr ⟨zero_mul _, zero_mul _⟩
- mul_zero := fun a => Prod.recOn a fun a b => mk.inj_iff.mpr ⟨mul_zero _, mul_zero _⟩ }
+ zero_mul := fun a =>
+ Prod.recOn a fun a b => mk.inj_iff.mpr ⟨MulZeroClass.zero_mul _, MulZeroClass.zero_mul _⟩
+ mul_zero := fun a =>
+ Prod.recOn a fun a b => mk.inj_iff.mpr ⟨MulZeroClass.mul_zero _, MulZeroClass.mul_zero _⟩ }
@[to_additive]
instance [Semigroup M] [Semigroup N] : Semigroup (M × N) :=
@@ -1243,7 +1245,7 @@ Case conversion may be inaccurate. Consider using '#align mul_monoid_with_zero_h
/-- Multiplication as a multiplicative homomorphism with zero. -/
@[simps]
def mulMonoidWithZeroHom [CommMonoidWithZero α] : α × α →*₀ α :=
- { mulMonoidHom with map_zero' := mul_zero _ }
+ { mulMonoidHom with map_zero' := MulZeroClass.mul_zero _ }
#align mul_monoid_with_zero_hom mulMonoidWithZeroHom
/- warning: div_monoid_hom -> divMonoidHom is a dubious translation:
mathlib commit https://github.com/leanprover-community/mathlib/commit/38f16f960f5006c6c0c2bac7b0aba5273188f4e5
@@ -456,7 +456,7 @@ variable {M N}
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N], Eq.{max (succ (max u1 u2)) (succ u1)} ((Prod.{u1, u2} M N) -> M) (coeFn.{max (succ u1) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u1)} (MulHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) (fun (_x : MulHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) => (Prod.{u1, u2} M N) -> M) (MulHom.hasCoeToFun.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_1) (MulHom.fst.{u1, u2} M N _inst_1 _inst_2)) (Prod.fst.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MulHom.mulHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1)) (MulHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MulHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MulHom.mulHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_1)) (MulHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_fst MulHom.coe_fstₓ'. -/
@[simp, to_additive]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
@@ -468,7 +468,7 @@ theorem coe_fst : ⇑(fst M N) = Prod.fst :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N], Eq.{max (succ (max u1 u2)) (succ u2)} ((Prod.{u1, u2} M N) -> N) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u2)} (MulHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) (fun (_x : MulHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) => (Prod.{u1, u2} M N) -> N) (MulHom.hasCoeToFun.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) _inst_2) (MulHom.snd.{u1, u2} M N _inst_1 _inst_2)) (Prod.snd.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MulHom.mulHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2)) (MulHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : Mul.{u2} M] [_inst_2 : Mul.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MulHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MulHom.mulHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulProd.{u2, u1} M N _inst_1 _inst_2) _inst_2)) (MulHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_snd MulHom.coe_sndₓ'. -/
@[simp, to_additive]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
@@ -493,7 +493,7 @@ protected def prod (f : M →ₙ* N) (g : M →ₙ* P) : M →ₙ* N × P
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, u2} M N _inst_1 _inst_2) (g : MulHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u1) (succ (max u2 u3))} (M -> (Prod.{u2, u3} N P)) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MulHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u1, u2, u3} M (fun (ᾰ : M) => N) (fun (ᾰ : M) => P) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MulHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MulHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MulHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g))
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_prod MulHom.coe_prodₓ'. -/
@[to_additive coe_prod]
theorem coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.Prod g) = Pi.prod f g :=
@@ -505,7 +505,7 @@ theorem coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.Prod g) = Pi.prod f
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} P] (f : MulHom.{u1, u2} M N _inst_1 _inst_2) (g : MulHom.{u1, u3} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u3)} (Prod.{u2, u3} N P) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MulHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MulHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.hasMul.{u2, u3} N P _inst_2 _inst_3)) (MulHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u3} N P (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MulHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MulHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MulHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f x) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g x))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g x))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u1} P] (f : MulHom.{u3, u2} M N _inst_1 _inst_2) (g : MulHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MulHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3) (MulHom.mulHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulProd.{u2, u1} N P _inst_2 _inst_3))) (MulHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MulHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MulHom.mulHomClass.{u3, u2} M N _inst_1 _inst_2)) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MulHom.mulHomClass.{u3, u1} M P _inst_1 _inst_3)) g x))
Case conversion may be inaccurate. Consider using '#align mul_hom.prod_apply MulHom.prod_applyₓ'. -/
@[simp, to_additive prod_apply]
theorem prod_apply (f : M →ₙ* N) (g : M →ₙ* P) (x) : f.Prod g x = (f x, g x) :=
@@ -581,7 +581,7 @@ theorem prodMap_def : prodMap f g = (f.comp (fst M N)).Prod (g.comp (snd M N)) :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {M' : Type.{u3}} {N' : Type.{u4}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : Mul.{u3} M'] [_inst_4 : Mul.{u4} N'] (f : MulHom.{u1, u3} M M' _inst_1 _inst_3) (g : MulHom.{u2, u4} N N' _inst_2 _inst_4), Eq.{max (succ (max u1 u2)) (succ (max u3 u4))} ((Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (coeFn.{max (succ (max u3 u4)) (succ (max u1 u2)), max (succ (max u1 u2)) (succ (max u3 u4))} (MulHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) (fun (_x : MulHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) => (Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (MulHom.hasCoeToFun.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Prod.hasMul.{u3, u4} M' N' _inst_3 _inst_4)) (MulHom.prodMap.{u1, u2, u3, u4} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u1, u3, u2, u4} M M' N N' (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M M' _inst_1 _inst_3) (fun (_x : MulHom.{u1, u3} M M' _inst_1 _inst_3) => M -> M') (MulHom.hasCoeToFun.{u1, u3} M M' _inst_1 _inst_3) f) (coeFn.{max (succ u4) (succ u2), max (succ u2) (succ u4)} (MulHom.{u2, u4} N N' _inst_2 _inst_4) (fun (_x : MulHom.{u2, u4} N N' _inst_2 _inst_4) => N -> N') (MulHom.hasCoeToFun.{u2, u4} N N' _inst_2 _inst_4) g))
but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} {M' : Type.{u2}} {N' : Type.{u1}} [_inst_1 : Mul.{u4} M] [_inst_2 : Mul.{u3} N] [_inst_3 : Mul.{u2} M'] [_inst_4 : Mul.{u1} N'] (f : MulHom.{u4, u2} M M' _inst_1 _inst_3) (g : MulHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4) (MulHom.mulHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4))) (MulHom.prodMap.{u4, u3, u2, u1} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MulHom.mulHomClass.{u4, u2} M M' _inst_1 _inst_3)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MulHom.mulHomClass.{u3, u1} N N' _inst_2 _inst_4)) g))
+ forall {M : Type.{u4}} {N : Type.{u3}} {M' : Type.{u2}} {N' : Type.{u1}} [_inst_1 : Mul.{u4} M] [_inst_2 : Mul.{u3} N] [_inst_3 : Mul.{u2} M'] [_inst_4 : Mul.{u1} N'] (f : MulHom.{u4, u2} M M' _inst_1 _inst_3) (g : MulHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MulHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4) (MulHom.mulHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulProd.{u2, u1} M' N' _inst_3 _inst_4))) (MulHom.prodMap.{u4, u3, u2, u1} M N M' N' _inst_1 _inst_2 _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MulHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MulHom.mulHomClass.{u4, u2} M M' _inst_1 _inst_3)) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MulHom.mulHomClass.{u3, u1} N N' _inst_2 _inst_4)) g))
Case conversion may be inaccurate. Consider using '#align mul_hom.coe_prod_map MulHom.coe_prodMapₓ'. -/
@[simp, to_additive coe_prod_map]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
@@ -627,7 +627,7 @@ def coprod : M × N →ₙ* P :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : Mul.{u1} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u3} P] (f : MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (g : MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (p : Prod.{u1, u2} M N), Eq.{succ u3} P (coeFn.{max (succ u3) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u3)} (MulHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => (Prod.{u1, u2} M N) -> P) (MulHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.hasMul.{u1, u2} M N _inst_1 _inst_2) (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (MulHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u3, u3, u3} P P P (instHMul.{u3} P (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => M -> P) (MulHom.hasCoeToFun.{u1, u3} M P _inst_1 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) f (Prod.fst.{u1, u2} M N p)) (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) (fun (_x : MulHom.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) => N -> P) (MulHom.hasCoeToFun.{u2, u3} N P _inst_2 (Semigroup.toHasMul.{u3} P (CommSemigroup.toSemigroup.{u3} P _inst_3))) g (Prod.snd.{u1, u2} M N p)))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u1} P] (f : MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (g : MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) (MulHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) (Semigroup.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommSemigroup.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) g (Prod.snd.{u3, u2} M N p)))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : Mul.{u3} M] [_inst_2 : Mul.{u2} N] [_inst_3 : CommSemigroup.{u1} P] (f : MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (g : MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MulHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulProd.{u3, u2} M N _inst_1 _inst_2) (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) (MulHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (Semigroup.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommSemigroup.toSemigroup.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MulHom.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u3, u1} M P _inst_1 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MulHom.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3))) N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)) (MulHom.mulHomClass.{u2, u1} N P _inst_2 (Semigroup.toMul.{u1} P (CommSemigroup.toSemigroup.{u1} P _inst_3)))) g (Prod.snd.{u3, u2} M N p)))
Case conversion may be inaccurate. Consider using '#align mul_hom.coprod_apply MulHom.coprod_applyₓ'. -/
@[simp, to_additive]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
@@ -718,7 +718,7 @@ variable {M N}
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u1 u2)) (succ u1)} ((Prod.{u1, u2} M N) -> M) (coeFn.{max (succ u1) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u1)} (MonoidHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) (fun (_x : MonoidHom.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) => (Prod.{u1, u2} M N) -> M) (MonoidHom.hasCoeToFun.{max u1 u2, u1} (Prod.{u1, u2} M N) M (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_1) (MonoidHom.fst.{u1, u2} M N _inst_1 _inst_2)) (Prod.fst.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u2} M _inst_1) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MonoidHom.monoidHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1))) (MonoidHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => M) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => M) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u2} M _inst_1) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u2} (MonoidHom.{max u1 u2, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1) (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1 (MonoidHom.monoidHomClass.{max u2 u1, u2} (Prod.{u2, u1} M N) M (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_1))) (MonoidHom.fst.{u2, u1} M N _inst_1 _inst_2)) (Prod.fst.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_fst MonoidHom.coe_fstₓ'. -/
@[simp, to_additive]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
@@ -730,7 +730,7 @@ theorem coe_fst : ⇑(fst M N) = Prod.fst :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N], Eq.{max (succ (max u1 u2)) (succ u2)} ((Prod.{u1, u2} M N) -> N) (coeFn.{max (succ u2) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u2)} (MonoidHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) (fun (_x : MonoidHom.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) => (Prod.{u1, u2} M N) -> N) (MonoidHom.hasCoeToFun.{max u1 u2, u2} (Prod.{u1, u2} M N) N (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) _inst_2) (MonoidHom.snd.{u1, u2} M N _inst_1 _inst_2)) (Prod.snd.{u1, u2} M N)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} N _inst_2) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MonoidHom.monoidHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2))) (MonoidHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N], Eq.{max (succ u2) (succ u1)} (forall (ᾰ : Prod.{u2, u1} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => N) ᾰ) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), succ u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) (fun (_x : Prod.{u2, u1} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u2, u1} M N) => N) _x) (MulHomClass.toFunLike.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} N _inst_2) (MonoidHomClass.toMulHomClass.{max u2 u1, max u2 u1, u1} (MonoidHom.{max u1 u2, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2) (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2 (MonoidHom.monoidHomClass.{max u2 u1, u1} (Prod.{u2, u1} M N) N (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) _inst_2))) (MonoidHom.snd.{u2, u1} M N _inst_1 _inst_2)) (Prod.snd.{u2, u1} M N)
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_snd MonoidHom.coe_sndₓ'. -/
@[simp, to_additive]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
@@ -742,7 +742,7 @@ theorem coe_snd : ⇑(snd M N) = Prod.snd :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] (x : M), Eq.{max (succ u1) (succ u2)} (Prod.{u1, u2} M N) (coeFn.{max (succ (max u1 u2)) (succ u1), max (succ u1) (succ (max u1 u2))} (MonoidHom.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (fun (_x : MonoidHom.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) => M -> (Prod.{u1, u2} M N)) (MonoidHom.hasCoeToFun.{u1, max u1 u2} M (Prod.{u1, u2} M N) _inst_1 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.inl.{u1, u2} M N _inst_1 _inst_2) x) (Prod.mk.{u1, u2} M N x (OfNat.ofNat.{u2} N 1 (OfNat.mk.{u2} N 1 (One.one.{u2} N (MulOneClass.toHasOne.{u2} N _inst_2)))))
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => Prod.{u2, u1} M N) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, max (succ u2) (succ u1)} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u2, max u2 u1} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inl.{u2, u1} M N _inst_1 _inst_2) x) (Prod.mk.{u2, u1} M N x (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (MulOneClass.toOne.{u1} N _inst_2))))
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} M N) x) (FunLike.coe.{max (succ u2) (succ u1), succ u2, max (succ u2) (succ u1)} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) (MulOneClass.toMul.{u2} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, max u2 u1} (MonoidHom.{u2, max u1 u2} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u2, max u2 u1} M (Prod.{u2, u1} M N) _inst_1 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inl.{u2, u1} M N _inst_1 _inst_2) x) (Prod.mk.{u2, u1} M N x (OfNat.ofNat.{u1} N 1 (One.toOfNat1.{u1} N (MulOneClass.toOne.{u1} N _inst_2))))
Case conversion may be inaccurate. Consider using '#align monoid_hom.inl_apply MonoidHom.inl_applyₓ'. -/
@[simp, to_additive]
theorem inl_apply (x) : inl M N x = (x, 1) :=
@@ -754,7 +754,7 @@ theorem inl_apply (x) : inl M N x = (x, 1) :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] (y : N), Eq.{max (succ u1) (succ u2)} (Prod.{u1, u2} M N) (coeFn.{max (succ (max u1 u2)) (succ u2), max (succ u2) (succ (max u1 u2))} (MonoidHom.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (fun (_x : MonoidHom.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) => N -> (Prod.{u1, u2} M N)) (MonoidHom.hasCoeToFun.{u2, max u1 u2} N (Prod.{u1, u2} M N) _inst_2 (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2)) (MonoidHom.inr.{u1, u2} M N _inst_1 _inst_2) y) (Prod.mk.{u1, u2} M N (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M _inst_1)))) y)
but is expected to have type
- forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (y : N), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : N) => Prod.{u2, u1} M N) y) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : N) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u1, max u2 u1} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inr.{u2, u1} M N _inst_1 _inst_2) y) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (MulOneClass.toOne.{u2} M _inst_1))) y)
+ forall {M : Type.{u2}} {N : Type.{u1}} [_inst_1 : MulOneClass.{u2} M] [_inst_2 : MulOneClass.{u1} N] (y : N), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => Prod.{u2, u1} M N) y) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => Prod.{u2, u1} M N) _x) (MulHomClass.toFunLike.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) (MulOneClass.toMul.{u1} N _inst_2) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M N) (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) (MonoidHomClass.toMulHomClass.{max u2 u1, u1, max u2 u1} (MonoidHom.{u1, max u1 u2} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)) N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2) (MonoidHom.monoidHomClass.{u1, max u2 u1} N (Prod.{u2, u1} M N) _inst_2 (Prod.instMulOneClassProd.{u2, u1} M N _inst_1 _inst_2)))) (MonoidHom.inr.{u2, u1} M N _inst_1 _inst_2) y) (Prod.mk.{u2, u1} M N (OfNat.ofNat.{u2} M 1 (One.toOfNat1.{u2} M (MulOneClass.toOne.{u2} M _inst_1))) y)
Case conversion may be inaccurate. Consider using '#align monoid_hom.inr_apply MonoidHom.inr_applyₓ'. -/
@[simp, to_additive]
theorem inr_apply (y) : inr M N y = (1, y) :=
@@ -832,7 +832,7 @@ protected def prod (f : M →* N) (g : M →* P) : M →* N × P
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u1, u3} M P _inst_1 _inst_3), Eq.{max (succ u1) (succ (max u2 u3))} (M -> (Prod.{u2, u3} N P)) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MonoidHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u1, u2, u3} M (fun (ᾰ : M) => N) (fun (ᾰ : M) => P) (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MonoidHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (forall (ᾰ : M), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) ᾰ) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g)) (Pi.prod.{u3, u2, u1} M (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) ᾰ) (fun (ᾰ : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) ᾰ) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g))
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_prod MonoidHom.coe_prodₓ'. -/
@[to_additive coe_prod]
theorem coe_prod (f : M →* N) (g : M →* P) : ⇑(f.Prod g) = Pi.prod f g :=
@@ -844,7 +844,7 @@ theorem coe_prod (f : M →* N) (g : M →* P) : ⇑(f.Prod g) = Pi.prod f g :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u3} P] (f : MonoidHom.{u1, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u1, u3} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u3)} (Prod.{u2, u3} N P) (coeFn.{max (succ (max u2 u3)) (succ u1), max (succ u1) (succ (max u2 u3))} (MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (fun (_x : MonoidHom.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) => M -> (Prod.{u2, u3} N P)) (MonoidHom.hasCoeToFun.{u1, max u2 u3} M (Prod.{u2, u3} N P) _inst_1 (Prod.mulOneClass.{u2, u3} N P _inst_2 _inst_3)) (MonoidHom.prod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u3} N P (coeFn.{max (succ u2) (succ u1), max (succ u1) (succ u2)} (MonoidHom.{u1, u2} M N _inst_1 _inst_2) (fun (_x : MonoidHom.{u1, u2} M N _inst_1 _inst_2) => M -> N) (MonoidHom.hasCoeToFun.{u1, u2} M N _inst_1 _inst_2) f x) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 _inst_3) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 _inst_3) g x))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g x))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : MulOneClass.{u1} P] (f : MonoidHom.{u3, u2} M N _inst_1 _inst_2) (g : MonoidHom.{u3, u1} M P _inst_1 _inst_3) (x : M), Eq.{max (succ u2) (succ u1)} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) x) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), succ u3, max (succ u2) (succ u1)} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => Prod.{u2, u1} N P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} N P) (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, u3, max u2 u1} (MonoidHom.{u3, max u1 u2} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)) M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3) (MonoidHom.monoidHomClass.{u3, max u2 u1} M (Prod.{u2, u1} N P) _inst_1 (Prod.instMulOneClassProd.{u2, u1} N P _inst_2 _inst_3)))) (MonoidHom.prod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) x) (Prod.mk.{u2, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) x) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => N) _x) (MulHomClass.toFunLike.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u2} N _inst_2) (MonoidHomClass.toMulHomClass.{max u3 u2, u3, u2} (MonoidHom.{u3, u2} M N _inst_1 _inst_2) M N _inst_1 _inst_2 (MonoidHom.monoidHomClass.{u3, u2} M N _inst_1 _inst_2))) f x) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P _inst_3) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 _inst_3) M P _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 _inst_3))) g x))
Case conversion may be inaccurate. Consider using '#align monoid_hom.prod_apply MonoidHom.prod_applyₓ'. -/
@[simp, to_additive prod_apply]
theorem prod_apply (f : M →* N) (g : M →* P) (x) : f.Prod g x = (f x, g x) :=
@@ -924,7 +924,7 @@ theorem prodMap_def : prodMap f g = (f.comp (fst M N)).Prod (g.comp (snd M N)) :
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] {M' : Type.{u3}} {N' : Type.{u4}} [_inst_3 : MulOneClass.{u3} M'] [_inst_4 : MulOneClass.{u4} N'] (f : MonoidHom.{u1, u3} M M' _inst_1 _inst_3) (g : MonoidHom.{u2, u4} N N' _inst_2 _inst_4), Eq.{max (succ (max u1 u2)) (succ (max u3 u4))} ((Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (coeFn.{max (succ (max u3 u4)) (succ (max u1 u2)), max (succ (max u1 u2)) (succ (max u3 u4))} (MonoidHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) (fun (_x : MonoidHom.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) => (Prod.{u1, u2} M N) -> (Prod.{u3, u4} M' N')) (MonoidHom.hasCoeToFun.{max u1 u2, max u3 u4} (Prod.{u1, u2} M N) (Prod.{u3, u4} M' N') (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Prod.mulOneClass.{u3, u4} M' N' _inst_3 _inst_4)) (MonoidHom.prodMap.{u1, u2, u3, u4} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u1, u3, u2, u4} M M' N N' (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M M' _inst_1 _inst_3) (fun (_x : MonoidHom.{u1, u3} M M' _inst_1 _inst_3) => M -> M') (MonoidHom.hasCoeToFun.{u1, u3} M M' _inst_1 _inst_3) f) (coeFn.{max (succ u4) (succ u2), max (succ u2) (succ u4)} (MonoidHom.{u2, u4} N N' _inst_2 _inst_4) (fun (_x : MonoidHom.{u2, u4} N N' _inst_2 _inst_4) => N -> N') (MonoidHom.hasCoeToFun.{u2, u4} N N' _inst_2 _inst_4) g))
but is expected to have type
- forall {M : Type.{u4}} {N : Type.{u3}} [_inst_1 : MulOneClass.{u4} M] [_inst_2 : MulOneClass.{u3} N] {M' : Type.{u2}} {N' : Type.{u1}} [_inst_3 : MulOneClass.{u2} M'] [_inst_4 : MulOneClass.{u1} N'] (f : MonoidHom.{u4, u2} M M' _inst_1 _inst_3) (g : MonoidHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (MulOneClass.toMul.{max u4 u3} (Prod.{u4, u3} M N) (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2)) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (MonoidHomClass.toMulHomClass.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4) (MonoidHom.monoidHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)))) (MonoidHom.prodMap.{u4, u3, u2, u1} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' (MulOneClass.toMul.{u4} M _inst_1) (MulOneClass.toMul.{u2} M' _inst_3) (MonoidHomClass.toMulHomClass.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u4, u2} M M' _inst_1 _inst_3))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' (MulOneClass.toMul.{u3} N _inst_2) (MulOneClass.toMul.{u1} N' _inst_4) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MonoidHom.monoidHomClass.{u3, u1} N N' _inst_2 _inst_4))) g))
+ forall {M : Type.{u4}} {N : Type.{u3}} [_inst_1 : MulOneClass.{u4} M] [_inst_2 : MulOneClass.{u3} N] {M' : Type.{u2}} {N' : Type.{u1}} [_inst_3 : MulOneClass.{u2} M'] [_inst_4 : MulOneClass.{u1} N'] (f : MonoidHom.{u4, u2} M M' _inst_1 _inst_3) (g : MonoidHom.{u3, u1} N N' _inst_2 _inst_4), Eq.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1)} (forall (ᾰ : Prod.{u4, u3} M N), (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') ᾰ) (FunLike.coe.{max (max (max (succ u4) (succ u3)) (succ u2)) (succ u1), max (succ u4) (succ u3), max (succ u2) (succ u1)} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (fun (_x : Prod.{u4, u3} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u4, u3} M N) => Prod.{u2, u1} M' N') _x) (MulHomClass.toFunLike.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (MulOneClass.toMul.{max u4 u3} (Prod.{u4, u3} M N) (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2)) (MulOneClass.toMul.{max u2 u1} (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (MonoidHomClass.toMulHomClass.{max (max (max u4 u3) u2) u1, max u4 u3, max u2 u1} (MonoidHom.{max u3 u4, max u1 u2} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)) (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4) (MonoidHom.monoidHomClass.{max u4 u3, max u2 u1} (Prod.{u4, u3} M N) (Prod.{u2, u1} M' N') (Prod.instMulOneClassProd.{u4, u3} M N _inst_1 _inst_2) (Prod.instMulOneClassProd.{u2, u1} M' N' _inst_3 _inst_4)))) (MonoidHom.prodMap.{u4, u3, u2, u1} M N _inst_1 _inst_2 M' N' _inst_3 _inst_4 f g)) (Prod.map.{u4, u2, u3, u1} M M' N N' (FunLike.coe.{max (succ u4) (succ u2), succ u4, succ u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => M') _x) (MulHomClass.toFunLike.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' (MulOneClass.toMul.{u4} M _inst_1) (MulOneClass.toMul.{u2} M' _inst_3) (MonoidHomClass.toMulHomClass.{max u4 u2, u4, u2} (MonoidHom.{u4, u2} M M' _inst_1 _inst_3) M M' _inst_1 _inst_3 (MonoidHom.monoidHomClass.{u4, u2} M M' _inst_1 _inst_3))) f) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => N') _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' (MulOneClass.toMul.{u3} N _inst_2) (MulOneClass.toMul.{u1} N' _inst_4) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} N N' _inst_2 _inst_4) N N' _inst_2 _inst_4 (MonoidHom.monoidHomClass.{u3, u1} N N' _inst_2 _inst_4))) g))
Case conversion may be inaccurate. Consider using '#align monoid_hom.coe_prod_map MonoidHom.coe_prodMapₓ'. -/
@[simp, to_additive coe_prod_map]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
@@ -970,7 +970,7 @@ def coprod : M × N →* P :=
lean 3 declaration is
forall {M : Type.{u1}} {N : Type.{u2}} {P : Type.{u3}} [_inst_1 : MulOneClass.{u1} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u3} P] (f : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (g : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (p : Prod.{u1, u2} M N), Eq.{succ u3} P (coeFn.{max (succ u3) (succ (max u1 u2)), max (succ (max u1 u2)) (succ u3)} (MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => (Prod.{u1, u2} M N) -> P) (MonoidHom.hasCoeToFun.{max u1 u2, u3} (Prod.{u1, u2} M N) P (Prod.mulOneClass.{u1, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (MonoidHom.coprod.{u1, u2, u3} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u3, u3, u3} P P P (instHMul.{u3} P (MulOneClass.toHasMul.{u3} P (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3)))) (coeFn.{max (succ u3) (succ u1), max (succ u1) (succ u3)} (MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => M -> P) (MonoidHom.hasCoeToFun.{u1, u3} M P _inst_1 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) f (Prod.fst.{u1, u2} M N p)) (coeFn.{max (succ u3) (succ u2), max (succ u2) (succ u3)} (MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) (fun (_x : MonoidHom.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) => N -> P) (MonoidHom.hasCoeToFun.{u2, u3} N P _inst_2 (Monoid.toMulOneClass.{u3} P (CommMonoid.toMonoid.{u3} P _inst_3))) g (Prod.snd.{u1, u2} M N p)))
but is expected to have type
- forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u1} P] (f : MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (g : MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (MulOneClass.toMul.{max u3 u2} (Prod.{u3, u2} M N) (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) (MonoidHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) (MulOneClass.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) (Monoid.toMulOneClass.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommMonoid.toMonoid.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3)))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P (MulOneClass.toMul.{u2} N _inst_2) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) g (Prod.snd.{u3, u2} M N p)))
+ forall {M : Type.{u3}} {N : Type.{u2}} {P : Type.{u1}} [_inst_1 : MulOneClass.{u3} M] [_inst_2 : MulOneClass.{u2} N] [_inst_3 : CommMonoid.{u1} P] (f : MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (g : MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (p : Prod.{u3, u2} M N), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u3, u2} M N) => P) p) (FunLike.coe.{max (max (succ u3) (succ u2)) (succ u1), max (succ u3) (succ u2), succ u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) (fun (_x : Prod.{u3, u2} M N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Prod.{u3, u2} M N) => P) _x) (MulHomClass.toFunLike.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (MulOneClass.toMul.{max u3 u2} (Prod.{u3, u2} M N) (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2)) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max (max u3 u2) u1, max u3 u2, u1} (MonoidHom.{max u2 u3, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{max u3 u2, u1} (Prod.{u3, u2} M N) P (Prod.instMulOneClassProd.{u3, u2} M N _inst_1 _inst_2) (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) (MonoidHom.coprod.{u3, u2, u1} M N P _inst_1 _inst_2 _inst_3 f g) p) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => P) (Prod.snd.{u3, u2} M N p)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (MulOneClass.toMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (Monoid.toMulOneClass.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) (CommMonoid.toMonoid.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) (Prod.fst.{u3, u2} M N p)) _inst_3)))) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M (fun (_x : M) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : M) => P) _x) (MulHomClass.toFunLike.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P (MulOneClass.toMul.{u3} M _inst_1) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u3 u1, u3, u1} (MonoidHom.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u3, u1} M P _inst_1 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) f (Prod.fst.{u3, u2} M N p)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N (fun (_x : N) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : N) => P) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P (MulOneClass.toMul.{u2} N _inst_2) (MulOneClass.toMul.{u1} P (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) (MonoidHomClass.toMulHomClass.{max u2 u1, u2, u1} (MonoidHom.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))) N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3)) (MonoidHom.monoidHomClass.{u2, u1} N P _inst_2 (Monoid.toMulOneClass.{u1} P (CommMonoid.toMonoid.{u1} P _inst_3))))) g (Prod.snd.{u3, u2} M N p)))
Case conversion may be inaccurate. Consider using '#align monoid_hom.coprod_apply MonoidHom.coprod_applyₓ'. -/
@[simp, to_additive]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
@@ -1189,7 +1189,7 @@ def embedProduct (α : Type _) [Monoid α] : αˣ →* α × αᵐᵒᵖ
lean 3 declaration is
forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (coeFn.{succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (fun (_x : MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) => (Units.{u1} α _inst_1) -> (Prod.{u1, u1} α (MulOpposite.{u1} α))) (MonoidHom.hasCoeToFun.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.mulOneClass.{u1} α _inst_1) (Prod.mulOneClass.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.mulOneClass.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.embedProduct.{u1} α _inst_1))
but is expected to have type
- forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (fun (_x : Units.{u1} α _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : Units.{u1} α _inst_1) => Prod.{u1, u1} α (MulOpposite.{u1} α)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (MulOneClass.toMul.{u1} (Units.{u1} α _inst_1) (Units.instMulOneClassUnits.{u1} α _inst_1)) (MulOneClass.toMul.{u1} (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1))) (MonoidHom.monoidHomClass.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))))) (Units.embedProduct.{u1} α _inst_1))
+ forall (α : Type.{u1}) [_inst_1 : Monoid.{u1} α], Function.Injective.{succ u1, succ u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (FunLike.coe.{succ u1, succ u1, succ u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (fun (_x : Units.{u1} α _inst_1) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : Units.{u1} α _inst_1) => Prod.{u1, u1} α (MulOpposite.{u1} α)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (MulOneClass.toMul.{u1} (Units.{u1} α _inst_1) (Units.instMulOneClassUnits.{u1} α _inst_1)) (MulOneClass.toMul.{u1} (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (MonoidHomClass.toMulHomClass.{u1, u1, u1} (MonoidHom.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))) (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1))) (MonoidHom.monoidHomClass.{u1, u1} (Units.{u1} α _inst_1) (Prod.{u1, u1} α (MulOpposite.{u1} α)) (Units.instMulOneClassUnits.{u1} α _inst_1) (Prod.instMulOneClassProd.{u1, u1} α (MulOpposite.{u1} α) (Monoid.toMulOneClass.{u1} α _inst_1) (MulOpposite.instMulOneClassMulOpposite.{u1} α (Monoid.toMulOneClass.{u1} α _inst_1)))))) (Units.embedProduct.{u1} α _inst_1))
Case conversion may be inaccurate. Consider using '#align units.embed_product_injective Units.embedProduct_injectiveₓ'. -/
@[to_additive]
theorem embedProduct_injective (α : Type _) [Monoid α] : Function.Injective (embedProduct α) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.
@@ -329,7 +329,7 @@ section Prod
variable (M N) [Mul M] [Mul N] [Mul P]
-/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/
+/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `M`. -/
@[to_additive
"Given additive magmas `A`, `B`, the natural projection homomorphism
from `A × B` to `A`"]
@@ -338,7 +338,7 @@ def fst : M × N →ₙ* M :=
#align mul_hom.fst MulHom.fst
#align add_hom.fst AddHom.fst
-/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/
+/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `N`. -/
@[to_additive
"Given additive magmas `A`, `B`, the natural projection homomorphism
from `A × B` to `B`"]
@@ -475,7 +475,7 @@ namespace MonoidHom
variable (M N) [MulOneClass M] [MulOneClass N]
-/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/
+/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `M`. -/
@[to_additive
"Given additive monoids `A`, `B`, the natural projection homomorphism
from `A × B` to `A`"]
@@ -486,7 +486,7 @@ def fst : M × N →* M :=
#align monoid_hom.fst MonoidHom.fst
#align add_monoid_hom.fst AddMonoidHom.fst
-/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/
+/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `N`. -/
@[to_additive
"Given additive monoids `A`, `B`, the natural projection homomorphism
from `A × B` to `B`"]
@@ -772,7 +772,7 @@ theorem prodProdProdComm_symm : (prodProdProdComm M N M' N').symm = prodProdProd
end
-/-- Product of multiplicative isomorphisms; the maps come from `Equiv.prodCongr`.-/
+/-- Product of multiplicative isomorphisms; the maps come from `Equiv.prodCongr`. -/
@[to_additive prodCongr "Product of additive isomorphisms; the maps come from `Equiv.prodCongr`."]
def prodCongr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
{ f.toEquiv.prodCongr g.toEquiv with
@@ -780,14 +780,14 @@ def prodCongr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
#align mul_equiv.prod_congr MulEquiv.prodCongr
#align add_equiv.prod_congr AddEquiv.prodCongr
-/-- Multiplying by the trivial monoid doesn't change the structure.-/
+/-- Multiplying by the trivial monoid doesn't change the structure. -/
@[to_additive uniqueProd "Multiplying by the trivial monoid doesn't change the structure."]
def uniqueProd [Unique N] : N × M ≃* M :=
{ Equiv.uniqueProd M N with map_mul' := fun _ _ => rfl }
#align mul_equiv.unique_prod MulEquiv.uniqueProd
#align add_equiv.unique_prod AddEquiv.uniqueProd
-/-- Multiplying by the trivial monoid doesn't change the structure.-/
+/-- Multiplying by the trivial monoid doesn't change the structure. -/
@[to_additive prodUnique "Multiplying by the trivial monoid doesn't change the structure."]
def prodUnique [Unique N] : M × N ≃* M :=
{ Equiv.prodUnique M N with map_mul' := fun _ _ => rfl }
Mostly automatic, with a few manual corrections.
@@ -747,9 +747,9 @@ section
variable (M N M' N')
-/-- Four-way commutativity of `prod`. The name matches `mul_mul_mul_comm`. -/
+/-- Four-way commutativity of `Prod`. The name matches `mul_mul_mul_comm`. -/
@[to_additive (attr := simps apply) prodProdProdComm
- "Four-way commutativity of `prod`.\nThe name matches `mul_mul_mul_comm`"]
+ "Four-way commutativity of `Prod`.\nThe name matches `mul_mul_mul_comm`"]
def prodProdProdComm : (M × N) × M' × N' ≃* (M × M') × N × N' :=
{ Equiv.prodProdProdComm M N M' N' with
toFun := fun mnmn => ((mnmn.1.1, mnmn.2.1), (mnmn.1.2, mnmn.2.2))
GroupWithZero
(#11202)
I am claiming that anything within the Algebra.Group
folder should be additivisable, to the exception of MonoidHom.End
maybe. This is not the case of NeZero
, MonoidWithZero
and MonoidWithZeroHom
which were all imported to prove a few lemmas. Those lemmas are easily moved to another file.
@@ -5,6 +5,7 @@ Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.Group.Units.Hom
+import Mathlib.Algebra.GroupWithZero.Hom
import Mathlib.Algebra.GroupWithZero.Units.Basic
#align_import algebra.group.prod from "leanprover-community/mathlib"@"cd391184c85986113f8c00844cfe6dda1d34be3d"
Add MonoidHom.noncommCoprod
which allows to define a morphism from a product M x N
to a monoid P
given two monoid morphisms M -> P
and N -> P
,
provided a commutativity assumption on the ranges.
Co-authored-by: Antoine Chambert-Loir <antoine.chambert-loir@math.univ-paris-diderot.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -12,15 +12,16 @@ import Mathlib.Algebra.GroupWithZero.Units.Basic
/-!
# Monoid, group etc structures on `M × N`
-In this file we define one-binop (`Monoid`, `Group` etc) structures on `M × N`. We also prove
-trivial `simp` lemmas, and define the following operations on `MonoidHom`s:
+In this file we define one-binop (`Monoid`, `Group` etc) structures on `M × N`.
+We also prove trivial `simp` lemmas, and define the following operations on `MonoidHom`s:
* `fst M N : M × N →* M`, `snd M N : M × N →* N`: projections `Prod.fst` and `Prod.snd`
as `MonoidHom`s;
* `inl M N : M →* M × N`, `inr M N : N →* M × N`: inclusions of first/second monoid
into the product;
* `f.prod g` : `M →* N × P`: sends `x` to `(f x, g x)`;
-* `f.coprod g : M × N →* P`: sends `(x, y)` to `f x * g y`;
+* When `P` is commutative, `f.coprod g : M × N →* P` sends `(x, y)` to `f x * g y`
+ (without the commutativity assumption on `P`, see `MonoidHom.noncommPiCoprod`);
* `f.prodMap g : M × N → M' × N'`: `prod.map f g` as a `MonoidHom`,
sends `(x, y)` to `(f x, g y)`.
@@ -441,10 +442,12 @@ section Coprod
variable [Mul M] [Mul N] [CommSemigroup P] (f : M →ₙ* P) (g : N →ₙ* P)
/-- Coproduct of two `MulHom`s with the same codomain:
-`f.coprod g (p : M × N) = f p.1 * g p.2`. -/
+ `f.coprod g (p : M × N) = f p.1 * g p.2`.
+ (Commutative codomain; for the general case, see `MulHom.noncommCoprod`) -/
@[to_additive
- "Coproduct of two `AddHom`s with the same codomain:
- `f.coprod g (p : M × N) = f p.1 + g p.2`."]
+ "Coproduct of two `AddHom`s with the same codomain:
+ `f.coprod g (p : M × N) = f p.1 + g p.2`.
+ (Commutative codomain; for the general case, see `AddHom.noncommCoprod`)"]
def coprod : M × N →ₙ* P :=
f.comp (fst M N) * g.comp (snd M N)
#align mul_hom.coprod MulHom.coprod
@@ -565,6 +568,10 @@ theorem snd_comp_inr : (snd M N).comp (inr M N) = id N :=
#align monoid_hom.snd_comp_inr MonoidHom.snd_comp_inr
#align add_monoid_hom.snd_comp_inr AddMonoidHom.snd_comp_inr
+@[to_additive]
+theorem commute_inl_inr (m : M) (n : N) : Commute (inl M N m) (inr M N n) :=
+ Commute.prod (.one_right m) (.one_left n)
+
section Prod
variable [MulOneClass P]
@@ -652,10 +659,12 @@ section Coprod
variable [CommMonoid P] (f : M →* P) (g : N →* P)
/-- Coproduct of two `MonoidHom`s with the same codomain:
-`f.coprod g (p : M × N) = f p.1 * g p.2`. -/
+ `f.coprod g (p : M × N) = f p.1 * g p.2`.
+ (Commutative case; for the general case, see `MonoidHom.noncommCoprod`.)-/
@[to_additive
- "Coproduct of two `AddMonoidHom`s with the same codomain:
- `f.coprod g (p : M × N) = f p.1 + g p.2`."]
+ "Coproduct of two `AddMonoidHom`s with the same codomain:
+ `f.coprod g (p : M × N) = f p.1 + g p.2`.
+ (Commutative case; for the general case, see `AddHom.noncommCoprod`.)"]
def coprod : M × N →* P :=
f.comp (fst M N) * g.comp (snd M N)
#align monoid_hom.coprod MonoidHom.coprod
@@ -301,6 +301,26 @@ instance instCommGroup [CommGroup G] [CommGroup H] : CommGroup (G × H) :=
end Prod
+section
+variable [Mul M] [Mul N]
+
+@[to_additive AddSemiconjBy.prod]
+theorem SemiconjBy.prod {x y z : M × N}
+ (hm : SemiconjBy x.1 y.1 z.1) (hn : SemiconjBy x.2 y.2 z.2) : SemiconjBy x y z :=
+ Prod.ext hm hn
+
+theorem Prod.semiconjBy_iff {x y z : M × N} :
+ SemiconjBy x y z ↔ SemiconjBy x.1 y.1 z.1 ∧ SemiconjBy x.2 y.2 z.2 := ext_iff
+
+@[to_additive AddCommute.prod]
+theorem Commute.prod {x y : M × N} (hm : Commute x.1 y.1) (hn : Commute x.2 y.2) : Commute x y :=
+ .prod hm hn
+
+theorem Prod.commute_iff {x y : M × N} :
+ Commute x y ↔ Commute x.1 y.1 ∧ Commute x.2 y.2 := semiconjBy_iff
+
+end
+
namespace MulHom
section Prod
@@ -240,15 +240,26 @@ instance [DivisionCommMonoid G] [DivisionCommMonoid H] : DivisionCommMonoid (G
instance instGroup [Group G] [Group H] : Group (G × H) :=
{ mul_left_inv := fun _ => mk.inj_iff.mpr ⟨mul_left_inv _, mul_left_inv _⟩ }
+@[to_additive]
+instance [Mul G] [Mul H] [IsLeftCancelMul G] [IsLeftCancelMul H] : IsLeftCancelMul (G × H) where
+ mul_left_cancel _ _ _ h :=
+ Prod.ext (mul_left_cancel (Prod.ext_iff.1 h).1) (mul_left_cancel (Prod.ext_iff.1 h).2)
+
+@[to_additive]
+instance [Mul G] [Mul H] [IsRightCancelMul G] [IsRightCancelMul H] : IsRightCancelMul (G × H) where
+ mul_right_cancel _ _ _ h :=
+ Prod.ext (mul_right_cancel (Prod.ext_iff.1 h).1) (mul_right_cancel (Prod.ext_iff.1 h).2)
+
+@[to_additive]
+instance [Mul G] [Mul H] [IsCancelMul G] [IsCancelMul H] : IsCancelMul (G × H) where
+
@[to_additive]
instance [LeftCancelSemigroup G] [LeftCancelSemigroup H] : LeftCancelSemigroup (G × H) :=
- { mul_left_cancel := fun _ _ _ h =>
- Prod.ext (mul_left_cancel (Prod.ext_iff.1 h).1) (mul_left_cancel (Prod.ext_iff.1 h).2) }
+ { mul_left_cancel := fun _ _ _ => mul_left_cancel }
@[to_additive]
instance [RightCancelSemigroup G] [RightCancelSemigroup H] : RightCancelSemigroup (G × H) :=
- { mul_right_cancel := fun _ _ _ h =>
- Prod.ext (mul_right_cancel (Prod.ext_iff.1 h).1) (mul_right_cancel (Prod.ext_iff.1 h).2) }
+ { mul_right_cancel := fun _ _ _ => mul_right_cancel }
@[to_additive]
instance [LeftCancelMonoid M] [LeftCancelMonoid N] : LeftCancelMonoid (M × N) :=
Hom
and file name (#8095)
I believe the file defining a type of morphisms belongs alongside the file defining the structure this morphism works on. So I would like to reorganize the files in the Mathlib.Algebra.Hom
folder so that e.g. Mathlib.Algebra.Hom.Ring
becomes Mathlib.Algebra.Ring.Hom
and Mathlib.Algebra.Hom.NonUnitalAlg
becomes Mathlib.Algebra.Algebra.NonUnitalHom
.
While fixing the imports I went ahead and sorted them for good luck.
The full list of changes is: renamed: Mathlib/Algebra/Hom/NonUnitalAlg.lean -> Mathlib/Algebra/Algebra/NonUnitalHom.lean renamed: Mathlib/Algebra/Hom/Aut.lean -> Mathlib/Algebra/Group/Aut.lean renamed: Mathlib/Algebra/Hom/Commute.lean -> Mathlib/Algebra/Group/Commute/Hom.lean renamed: Mathlib/Algebra/Hom/Embedding.lean -> Mathlib/Algebra/Group/Embedding.lean renamed: Mathlib/Algebra/Hom/Equiv/Basic.lean -> Mathlib/Algebra/Group/Equiv/Basic.lean renamed: Mathlib/Algebra/Hom/Equiv/TypeTags.lean -> Mathlib/Algebra/Group/Equiv/TypeTags.lean renamed: Mathlib/Algebra/Hom/Equiv/Units/Basic.lean -> Mathlib/Algebra/Group/Units/Equiv.lean renamed: Mathlib/Algebra/Hom/Equiv/Units/GroupWithZero.lean -> Mathlib/Algebra/GroupWithZero/Units/Equiv.lean renamed: Mathlib/Algebra/Hom/Freiman.lean -> Mathlib/Algebra/Group/Freiman.lean renamed: Mathlib/Algebra/Hom/Group/Basic.lean -> Mathlib/Algebra/Group/Hom/Basic.lean renamed: Mathlib/Algebra/Hom/Group/Defs.lean -> Mathlib/Algebra/Group/Hom/Defs.lean renamed: Mathlib/Algebra/Hom/GroupAction.lean -> Mathlib/GroupTheory/GroupAction/Hom.lean renamed: Mathlib/Algebra/Hom/GroupInstances.lean -> Mathlib/Algebra/Group/Hom/Instances.lean renamed: Mathlib/Algebra/Hom/Iterate.lean -> Mathlib/Algebra/GroupPower/IterateHom.lean renamed: Mathlib/Algebra/Hom/Centroid.lean -> Mathlib/Algebra/Ring/CentroidHom.lean renamed: Mathlib/Algebra/Hom/Ring/Basic.lean -> Mathlib/Algebra/Ring/Hom/Basic.lean renamed: Mathlib/Algebra/Hom/Ring/Defs.lean -> Mathlib/Algebra/Ring/Hom/Defs.lean renamed: Mathlib/Algebra/Hom/Units.lean -> Mathlib/Algebra/Group/Units/Hom.lean
Zulip thread: https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Reorganizing.20.60Mathlib.2EAlgebra.2EHom.60
@@ -4,8 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
-/
import Mathlib.Algebra.Group.Opposite
+import Mathlib.Algebra.Group.Units.Hom
import Mathlib.Algebra.GroupWithZero.Units.Basic
-import Mathlib.Algebra.Hom.Units
#align_import algebra.group.prod from "leanprover-community/mathlib"@"cd391184c85986113f8c00844cfe6dda1d34be3d"
@@ -378,7 +378,7 @@ variable {M' : Type*} {N' : Type*} [Mul M] [Mul N] [Mul M'] [Mul N'] [Mul P] (f
(g : N →ₙ* N')
/-- `Prod.map` as a `MonoidHom`. -/
-@[to_additive prodMap "`prod.map` as an `AddMonoidHom`"]
+@[to_additive prodMap "`Prod.map` as an `AddMonoidHom`"]
def prodMap : M × N →ₙ* M' × N' :=
(f.comp (fst M N)).prod (g.comp (snd M N))
#align mul_hom.prod_map MulHom.prodMap
@@ -366,7 +366,7 @@ theorem snd_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (snd N P).comp (f.pr
@[to_additive (attr := simp) prod_unique]
theorem prod_unique (f : M →ₙ* N × P) : ((fst N P).comp f).prod ((snd N P).comp f) = f :=
- ext fun x => by simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]
+ ext fun x => by simp only [prod_apply, coe_fst, coe_snd, comp_apply]
#align mul_hom.prod_unique MulHom.prod_unique
#align add_hom.prod_unique AddHom.prod_unique
@@ -577,7 +577,7 @@ theorem snd_comp_prod (f : M →* N) (g : M →* P) : (snd N P).comp (f.prod g)
@[to_additive (attr := simp) prod_unique]
theorem prod_unique (f : M →* N × P) : ((fst N P).comp f).prod ((snd N P).comp f) = f :=
- ext fun x => by simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]
+ ext fun x => by simp only [prod_apply, coe_fst, coe_snd, comp_apply]
#align monoid_hom.prod_unique MonoidHom.prod_unique
#align add_monoid_hom.prod_unique AddMonoidHom.prod_unique
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -33,7 +33,7 @@ trivial `simp` lemmas, and define the following operations on `MonoidHom`s:
-/
-variable {A : Type _} {B : Type _} {G : Type _} {H : Type _} {M : Type _} {N : Type _} {P : Type _}
+variable {A : Type*} {B : Type*} {G : Type*} {H : Type*} {M : Type*} {N : Type*} {P : Type*}
namespace Prod
@@ -374,7 +374,7 @@ end Prod
section Prod_map
-variable {M' : Type _} {N' : Type _} [Mul M] [Mul N] [Mul M'] [Mul N'] [Mul P] (f : M →ₙ* M')
+variable {M' : Type*} {N' : Type*} [Mul M] [Mul N] [Mul M'] [Mul N'] [Mul P] (f : M →ₙ* M')
(g : N →ₙ* N')
/-- `Prod.map` as a `MonoidHom`. -/
@@ -426,7 +426,7 @@ theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
#align add_hom.coprod_apply AddHom.coprod_apply
@[to_additive]
-theorem comp_coprod {Q : Type _} [CommSemigroup Q] (h : P →ₙ* Q) (f : M →ₙ* P) (g : N →ₙ* P) :
+theorem comp_coprod {Q : Type*} [CommSemigroup Q] (h : P →ₙ* Q) (f : M →ₙ* P) (g : N →ₙ* P) :
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
ext fun x => by simp
#align mul_hom.comp_coprod MulHom.comp_coprod
@@ -585,7 +585,7 @@ end Prod
section Prod_map
-variable {M' : Type _} {N' : Type _} [MulOneClass M'] [MulOneClass N'] [MulOneClass P]
+variable {M' : Type*} {N' : Type*} [MulOneClass M'] [MulOneClass N'] [MulOneClass P]
(f : M →* M') (g : N →* N')
/-- `prod.map` as a `MonoidHom`. -/
@@ -655,14 +655,14 @@ theorem coprod_unique (f : M × N →* P) : (f.comp (inl M N)).coprod (f.comp (i
#align add_monoid_hom.coprod_unique AddMonoidHom.coprod_unique
@[to_additive (attr := simp)]
-theorem coprod_inl_inr {M N : Type _} [CommMonoid M] [CommMonoid N] :
+theorem coprod_inl_inr {M N : Type*} [CommMonoid M] [CommMonoid N] :
(inl M N).coprod (inr M N) = id (M × N) :=
coprod_unique (id <| M × N)
#align monoid_hom.coprod_inl_inr MonoidHom.coprod_inl_inr
#align add_monoid_hom.coprod_inl_inr AddMonoidHom.coprod_inl_inr
@[to_additive]
-theorem comp_coprod {Q : Type _} [CommMonoid Q] (h : P →* Q) (f : M →* P) (g : N →* P) :
+theorem comp_coprod {Q : Type*} [CommMonoid Q] (h : P →* Q) (f : M →* P) (g : N →* P) :
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
ext fun x => by simp
#align monoid_hom.comp_coprod MonoidHom.comp_coprod
@@ -700,7 +700,7 @@ theorem coe_prodComm_symm : ⇑(prodComm : M × N ≃* N × M).symm = Prod.swap
#align mul_equiv.coe_prod_comm_symm MulEquiv.coe_prodComm_symm
#align add_equiv.coe_prod_comm_symm AddEquiv.coe_prodComm_symm
-variable {M' N' : Type _} [MulOneClass M'] [MulOneClass N']
+variable {M' N' : Type*} [MulOneClass M'] [MulOneClass N']
section
@@ -791,7 +791,7 @@ Used mainly to define the natural topology of `αˣ`. -/
@[to_additive (attr := simps)
"Canonical homomorphism of additive monoids from `AddUnits α` into `α × αᵃᵒᵖ`.
Used mainly to define the natural topology of `AddUnits α`."]
-def embedProduct (α : Type _) [Monoid α] : αˣ →* α × αᵐᵒᵖ where
+def embedProduct (α : Type*) [Monoid α] : αˣ →* α × αᵐᵒᵖ where
toFun x := ⟨x, op ↑x⁻¹⟩
map_one' := by
simp only [inv_one, eq_self_iff_true, Units.val_one, op_one, Prod.mk_eq_one, and_self_iff]
@@ -802,7 +802,7 @@ def embedProduct (α : Type _) [Monoid α] : αˣ →* α × αᵐᵒᵖ where
#align add_units.embed_product_apply AddUnits.embedProduct_apply
@[to_additive]
-theorem embedProduct_injective (α : Type _) [Monoid α] : Function.Injective (embedProduct α) :=
+theorem embedProduct_injective (α : Type*) [Monoid α] : Function.Injective (embedProduct α) :=
fun _ _ h => Units.ext <| (congr_arg Prod.fst h : _)
#align units.embed_product_injective Units.embedProduct_injective
#align add_units.embed_product_injective AddUnits.embedProduct_injective
@@ -814,7 +814,7 @@ end Units
section BundledMulDiv
-variable {α : Type _}
+variable {α : Type*}
/-- Multiplication as a multiplicative homomorphism. -/
@[to_additive (attr := simps) "Addition as an additive homomorphism."]
Per https://github.com/leanprover/lean4/issues/2343, we are going to need to change the automatic generation of instance names, as they become too long.
This PR ensures that everywhere in Mathlib that refers to an instance by name, that name is given explicitly, rather than being automatically generated.
There are four exceptions, which are now commented, with links to https://github.com/leanprover/lean4/issues/2343.
This was implemented by running Mathlib against a modified Lean that appended _ᾰ
to all automatically generated names, and fixing everything.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -38,7 +38,7 @@ variable {A : Type _} {B : Type _} {G : Type _} {H : Type _} {M : Type _} {N : T
namespace Prod
@[to_additive]
-instance [Mul M] [Mul N] : Mul (M × N) :=
+instance instMul [Mul M] [Mul N] : Mul (M × N) :=
⟨fun p q => ⟨p.1 * q.1, p.2 * q.2⟩⟩
@[to_additive (attr := simp)]
@@ -87,7 +87,7 @@ theorem mk_one_mul_mk_one [Mul M] [Monoid N] (a₁ a₂ : M) :
#align prod.mk_zero_add_mk_zero Prod.mk_zero_add_mk_zero
@[to_additive]
-instance [One M] [One N] : One (M × N) :=
+instance instOne [One M] [One N] : One (M × N) :=
⟨(1, 1)⟩
@[to_additive (attr := simp)]
@@ -127,7 +127,7 @@ theorem fst_mul_snd [MulOneClass M] [MulOneClass N] (p : M × N) : (p.fst, 1) *
#align prod.fst_add_snd Prod.fst_add_snd
@[to_additive]
-instance [Inv M] [Inv N] : Inv (M × N) :=
+instance instInv [Inv M] [Inv N] : Inv (M × N) :=
⟨fun p => (p.1⁻¹, p.2⁻¹)⟩
@[to_additive (attr := simp)]
@@ -159,7 +159,7 @@ instance [InvolutiveInv M] [InvolutiveInv N] : InvolutiveInv (M × N) :=
{ inv_inv := fun _ => ext (inv_inv _) (inv_inv _) }
@[to_additive]
-instance [Div M] [Div N] : Div (M × N) :=
+instance instDiv [Div M] [Div N] : Div (M × N) :=
⟨fun p q => ⟨p.1 / q.1, p.2 / q.2⟩⟩
@[to_additive (attr := simp)]
@@ -192,11 +192,11 @@ instance [MulZeroClass M] [MulZeroClass N] : MulZeroClass (M × N) :=
mul_zero := fun a => Prod.recOn a fun _ _ => mk.inj_iff.mpr ⟨mul_zero _, mul_zero _⟩ }
@[to_additive]
-instance [Semigroup M] [Semigroup N] : Semigroup (M × N) :=
+instance instSemigroup [Semigroup M] [Semigroup N] : Semigroup (M × N) :=
{ mul_assoc := fun _ _ _ => mk.inj_iff.mpr ⟨mul_assoc _ _ _, mul_assoc _ _ _⟩ }
@[to_additive]
-instance [CommSemigroup G] [CommSemigroup H] : CommSemigroup (G × H) :=
+instance instCommSemigroup [CommSemigroup G] [CommSemigroup H] : CommSemigroup (G × H) :=
{ mul_comm := fun _ _ => mk.inj_iff.mpr ⟨mul_comm _ _, mul_comm _ _⟩ }
instance [SemigroupWithZero M] [SemigroupWithZero N] : SemigroupWithZero (M × N) :=
@@ -204,12 +204,12 @@ instance [SemigroupWithZero M] [SemigroupWithZero N] : SemigroupWithZero (M × N
mul_zero := by simp }
@[to_additive]
-instance [MulOneClass M] [MulOneClass N] : MulOneClass (M × N) :=
+instance instMulOneClass [MulOneClass M] [MulOneClass N] : MulOneClass (M × N) :=
{ one_mul := fun a => Prod.recOn a fun _ _ => mk.inj_iff.mpr ⟨one_mul _, one_mul _⟩,
mul_one := fun a => Prod.recOn a fun _ _ => mk.inj_iff.mpr ⟨mul_one _, mul_one _⟩ }
@[to_additive]
-instance [Monoid M] [Monoid N] : Monoid (M × N) :=
+instance instMonoid [Monoid M] [Monoid N] : Monoid (M × N) :=
{ npow := fun z a => ⟨Monoid.npow z a.1, Monoid.npow z a.2⟩,
npow_zero := fun z => ext (Monoid.npow_zero _) (Monoid.npow_zero _),
npow_succ := fun z a => ext (Monoid.npow_succ _ _) (Monoid.npow_succ _ _),
@@ -237,7 +237,7 @@ instance [DivisionCommMonoid G] [DivisionCommMonoid H] : DivisionCommMonoid (G
{ mul_comm := fun ⟨g₁ , h₁⟩ ⟨_, _⟩ => by rw [mk_mul_mk, mul_comm g₁, mul_comm h₁]; rfl }
@[to_additive]
-instance [Group G] [Group H] : Group (G × H) :=
+instance instGroup [Group G] [Group H] : Group (G × H) :=
{ mul_left_inv := fun _ => mk.inj_iff.mpr ⟨mul_left_inv _, mul_left_inv _⟩ }
@[to_additive]
@@ -265,7 +265,7 @@ instance [CancelMonoid M] [CancelMonoid N] : CancelMonoid (M × N) :=
{ mul_right_cancel := by simp only [mul_left_inj, imp_self, forall_const] }
@[to_additive]
-instance [CommMonoid M] [CommMonoid N] : CommMonoid (M × N) :=
+instance instCommMonoid [CommMonoid M] [CommMonoid N] : CommMonoid (M × N) :=
{ mul_comm := fun ⟨m₁, n₁⟩ ⟨_, _⟩ => by rw [mk_mul_mk, mk_mul_mk, mul_comm m₁, mul_comm n₁] }
@[to_additive]
@@ -285,7 +285,7 @@ instance [CommMonoidWithZero M] [CommMonoidWithZero N] : CommMonoidWithZero (M
mul_zero := by simp }
@[to_additive]
-instance [CommGroup G] [CommGroup H] : CommGroup (G × H) :=
+instance instCommGroup [CommGroup G] [CommGroup H] : CommGroup (G × H) :=
{ mul_comm := fun ⟨g₁, h₁⟩ ⟨_, _⟩ => by rw [mk_mul_mk, mk_mul_mk, mul_comm g₁, mul_comm h₁] }
end Prod
@@ -2,16 +2,13 @@
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
-
-! This file was ported from Lean 3 source module algebra.group.prod
-! leanprover-community/mathlib commit cd391184c85986113f8c00844cfe6dda1d34be3d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.GroupWithZero.Units.Basic
import Mathlib.Algebra.Hom.Units
+#align_import algebra.group.prod from "leanprover-community/mathlib"@"cd391184c85986113f8c00844cfe6dda1d34be3d"
+
/-!
# Monoid, group etc structures on `M × N`
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
! This file was ported from Lean 3 source module algebra.group.prod
-! leanprover-community/mathlib commit cf9386b56953fb40904843af98b7a80757bbe7f9
+! leanprover-community/mathlib commit cd391184c85986113f8c00844cfe6dda1d34be3d
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -705,6 +705,35 @@ theorem coe_prodComm_symm : ⇑(prodComm : M × N ≃* N × M).symm = Prod.swap
variable {M' N' : Type _} [MulOneClass M'] [MulOneClass N']
+section
+
+variable (M N M' N')
+
+/-- Four-way commutativity of `prod`. The name matches `mul_mul_mul_comm`. -/
+@[to_additive (attr := simps apply) prodProdProdComm
+ "Four-way commutativity of `prod`.\nThe name matches `mul_mul_mul_comm`"]
+def prodProdProdComm : (M × N) × M' × N' ≃* (M × M') × N × N' :=
+ { Equiv.prodProdProdComm M N M' N' with
+ toFun := fun mnmn => ((mnmn.1.1, mnmn.2.1), (mnmn.1.2, mnmn.2.2))
+ invFun := fun mmnn => ((mmnn.1.1, mmnn.2.1), (mmnn.1.2, mmnn.2.2))
+ map_mul' := fun _mnmn _mnmn' => rfl }
+#align mul_equiv.prod_prod_prod_comm MulEquiv.prodProdProdComm
+#align add_equiv.prod_prod_prod_comm AddEquiv.prodProdProdComm
+
+@[to_additive (attr := simp) prodProdProdComm_toEquiv]
+theorem prodProdProdComm_toEquiv :
+ (prodProdProdComm M N M' N' : _ ≃ _) = Equiv.prodProdProdComm M N M' N' :=
+ rfl
+#align mul_equiv.prod_prod_prod_comm_to_equiv MulEquiv.prodProdProdComm_toEquiv
+#align add_equiv.sum_sum_sum_comm_to_equiv AddEquiv.prodProdProdComm_toEquiv
+
+@[simp]
+theorem prodProdProdComm_symm : (prodProdProdComm M N M' N').symm = prodProdProdComm M M' N N' :=
+ rfl
+#align mul_equiv.prod_prod_prod_comm_symm MulEquiv.prodProdProdComm_symm
+
+end
+
/-- Product of multiplicative isomorphisms; the maps come from `Equiv.prodCongr`.-/
@[to_additive prodCongr "Product of additive isomorphisms; the maps come from `Equiv.prodCongr`."]
def prodCongr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
I wrote a script to find lines that contain an odd number of backticks
@@ -22,7 +22,7 @@ trivial `simp` lemmas, and define the following operations on `MonoidHom`s:
as `MonoidHom`s;
* `inl M N : M →* M × N`, `inr M N : N →* M × N`: inclusions of first/second monoid
into the product;
-* `f.prod g : `M →* N × P`: sends `x` to `(f x, g x)`;
+* `f.prod g` : `M →* N × P`: sends `x` to `(f x, g x)`;
* `f.coprod g : M × N →* P`: sends `(x, y)` to `f x * g y`;
* `f.prodMap g : M × N → M' × N'`: `prod.map f g` as a `MonoidHom`,
sends `(x, y)` to `(f x, g y)`.
@@ -592,7 +592,7 @@ variable {M' : Type _} {N' : Type _} [MulOneClass M'] [MulOneClass N'] [MulOneCl
(f : M →* M') (g : N →* N')
/-- `prod.map` as a `MonoidHom`. -/
-@[to_additive prodMap "`prod.map` as an `AddHonoidHom`"]
+@[to_additive prodMap "`prod.map` as an `AddMonoidHom`."]
def prodMap : M × N →* M' × N' :=
(f.comp (fst M N)).prod (g.comp (snd M N))
#align monoid_hom.prod_map MonoidHom.prodMap
fix-comments.py
on all files.@@ -18,7 +18,7 @@ import Mathlib.Algebra.Hom.Units
In this file we define one-binop (`Monoid`, `Group` etc) structures on `M × N`. We also prove
trivial `simp` lemmas, and define the following operations on `MonoidHom`s:
-* `fst M N : M × N →* M`, `snd M N : M × N →* N`: projections `prod.fst` and `prod.snd`
+* `fst M N : M × N →* M`, `snd M N : M × N →* N`: projections `Prod.fst` and `Prod.snd`
as `MonoidHom`s;
* `inl M N : M →* M × N`, `inr M N : N →* M × N`: inclusions of first/second monoid
into the product;
@@ -762,12 +762,10 @@ open MulOpposite
/-- Canonical homomorphism of monoids from `αˣ` into `α × αᵐᵒᵖ`.
Used mainly to define the natural topology of `αˣ`. -/
-@[to_additive
+@[to_additive (attr := simps)
"Canonical homomorphism of additive monoids from `AddUnits α` into `α × αᵃᵒᵖ`.
- Used mainly to define the natural topology of `AddUnits α`.",
- simps]
-def embedProduct (α : Type _) [Monoid α] :
- αˣ →* α × αᵐᵒᵖ where
+ Used mainly to define the natural topology of `AddUnits α`."]
+def embedProduct (α : Type _) [Monoid α] : αˣ →* α × αᵐᵒᵖ where
toFun x := ⟨x, op ↑x⁻¹⟩
map_one' := by
simp only [inv_one, eq_self_iff_true, Units.val_one, op_one, Prod.mk_eq_one, and_self_iff]
@@ -775,6 +773,7 @@ def embedProduct (α : Type _) [Monoid α] :
#align units.embed_product Units.embedProduct
#align add_units.embed_product AddUnits.embedProduct
#align units.embed_product_apply Units.embedProduct_apply
+#align add_units.embed_product_apply AddUnits.embedProduct_apply
@[to_additive]
theorem embedProduct_injective (α : Type _) [Monoid α] : Function.Injective (embedProduct α) :=
@@ -792,7 +791,7 @@ section BundledMulDiv
variable {α : Type _}
/-- Multiplication as a multiplicative homomorphism. -/
-@[to_additive "Addition as an additive homomorphism.", simps]
+@[to_additive (attr := simps) "Addition as an additive homomorphism."]
def mulMulHom [CommSemigroup α] :
α × α →ₙ* α where
toFun a := a.1 * a.2
@@ -800,14 +799,16 @@ def mulMulHom [CommSemigroup α] :
#align mul_mul_hom mulMulHom
#align add_add_hom addAddHom
#align mul_mul_hom_apply mulMulHom_apply
+#align add_add_hom_apply addAddHom_apply
/-- Multiplication as a monoid homomorphism. -/
-@[to_additive "Addition as an additive monoid homomorphism.", simps]
+@[to_additive (attr := simps) "Addition as an additive monoid homomorphism."]
def mulMonoidHom [CommMonoid α] : α × α →* α :=
{ mulMulHom with map_one' := mul_one _ }
#align mul_monoid_hom mulMonoidHom
#align add_add_monoid_hom addAddMonoidHom
#align mul_monoid_hom_apply mulMonoidHom_apply
+#align add_add_monoid_hom_apply addAddMonoidHom_apply
/-- Multiplication as a multiplicative homomorphism with zero. -/
@[simps]
@@ -817,20 +818,19 @@ def mulMonoidWithZeroHom [CommMonoidWithZero α] : α × α →*₀ α :=
#align mul_monoid_with_zero_hom_apply mulMonoidWithZeroHom_apply
/-- Division as a monoid homomorphism. -/
-@[to_additive "Subtraction as an additive monoid homomorphism.", simps]
-def divMonoidHom [DivisionCommMonoid α] :
- α × α →* α where
+@[to_additive (attr := simps) "Subtraction as an additive monoid homomorphism."]
+def divMonoidHom [DivisionCommMonoid α] : α × α →* α where
toFun a := a.1 / a.2
map_one' := div_one _
map_mul' _ _ := mul_div_mul_comm _ _ _ _
#align div_monoid_hom divMonoidHom
#align sub_add_monoid_hom subAddMonoidHom
#align div_monoid_hom_apply divMonoidHom_apply
+#align sub_add_monoid_hom_apply subAddMonoidHom_apply
/-- Division as a multiplicative homomorphism with zero. -/
@[simps]
-def divMonoidWithZeroHom [CommGroupWithZero α] :
- α × α →*₀ α where
+def divMonoidWithZeroHom [CommGroupWithZero α] : α × α →*₀ α where
toFun a := a.1 / a.2
map_zero' := zero_div _
map_one' := div_one _
This PR is the result of a slight variant on the following "algorithm"
_
and make all uppercase letters into lowercase_
and make all uppercase letters into lowercase(original_lean3_name, OriginalLean4Name)
#align
statement just before the next empty line#align
statement to have been inserted too early)@@ -774,6 +774,7 @@ def embedProduct (α : Type _) [Monoid α] :
map_mul' x y := by simp only [mul_inv_rev, op_mul, Units.val_mul, Prod.mk_mul_mk]
#align units.embed_product Units.embedProduct
#align add_units.embed_product AddUnits.embedProduct
+#align units.embed_product_apply Units.embedProduct_apply
@[to_additive]
theorem embedProduct_injective (α : Type _) [Monoid α] : Function.Injective (embedProduct α) :=
@@ -798,6 +799,7 @@ def mulMulHom [CommSemigroup α] :
map_mul' _ _ := mul_mul_mul_comm _ _ _ _
#align mul_mul_hom mulMulHom
#align add_add_hom addAddHom
+#align mul_mul_hom_apply mulMulHom_apply
/-- Multiplication as a monoid homomorphism. -/
@[to_additive "Addition as an additive monoid homomorphism.", simps]
@@ -805,12 +807,14 @@ def mulMonoidHom [CommMonoid α] : α × α →* α :=
{ mulMulHom with map_one' := mul_one _ }
#align mul_monoid_hom mulMonoidHom
#align add_add_monoid_hom addAddMonoidHom
+#align mul_monoid_hom_apply mulMonoidHom_apply
/-- Multiplication as a multiplicative homomorphism with zero. -/
@[simps]
def mulMonoidWithZeroHom [CommMonoidWithZero α] : α × α →*₀ α :=
{ mulMonoidHom with map_zero' := mul_zero _ }
#align mul_monoid_with_zero_hom mulMonoidWithZeroHom
+#align mul_monoid_with_zero_hom_apply mulMonoidWithZeroHom_apply
/-- Division as a monoid homomorphism. -/
@[to_additive "Subtraction as an additive monoid homomorphism.", simps]
@@ -821,6 +825,7 @@ def divMonoidHom [DivisionCommMonoid α] :
map_mul' _ _ := mul_div_mul_comm _ _ _ _
#align div_monoid_hom divMonoidHom
#align sub_add_monoid_hom subAddMonoidHom
+#align div_monoid_hom_apply divMonoidHom_apply
/-- Division as a multiplicative homomorphism with zero. -/
@[simps]
@@ -831,5 +836,6 @@ def divMonoidWithZeroHom [CommGroupWithZero α] :
map_one' := div_one _
map_mul' _ _ := mul_div_mul_comm _ _ _ _
#align div_monoid_with_zero_hom divMonoidWithZeroHom
+#align div_monoid_with_zero_hom_apply divMonoidWithZeroHom_apply
end BundledMulDiv
@@ -705,8 +705,8 @@ theorem coe_prodComm_symm : ⇑(prodComm : M × N ≃* N × M).symm = Prod.swap
variable {M' N' : Type _} [MulOneClass M'] [MulOneClass N']
-/-- Product of multiplicative isomorphisms; the maps come from `equiv.prodCongr`.-/
-@[to_additive prodCongr "Product of additive isomorphisms; the maps come from `equiv.prodCongr`."]
+/-- Product of multiplicative isomorphisms; the maps come from `Equiv.prodCongr`.-/
+@[to_additive prodCongr "Product of additive isomorphisms; the maps come from `Equiv.prodCongr`."]
def prodCongr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
{ f.toEquiv.prodCongr g.toEquiv with
map_mul' := fun _ _ => Prod.ext (f.map_mul _ _) (g.map_mul _ _) }
@@ -433,7 +433,7 @@ theorem comp_coprod {Q : Type _} [CommSemigroup Q] (h : P →ₙ* Q) (f : M →
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
ext fun x => by simp
#align mul_hom.comp_coprod MulHom.comp_coprod
-#align add_hom_comp_coprod AddHom.comp_coprod
+#align add_hom.comp_coprod AddHom.comp_coprod
end Coprod
to_additive
is @[to_additive (attrs := simp, ext, simps)]
simp
and simps
attributes to the to_additive
-dictionary.simp
-attributes). In particular it's possible that norm_cast
might generate some auxiliary declarations.to_additive
and simps
from the Simps
file to the toAdditive
file for uniformity.@[reassoc]
Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -44,26 +44,26 @@ namespace Prod
instance [Mul M] [Mul N] : Mul (M × N) :=
⟨fun p q => ⟨p.1 * q.1, p.2 * q.2⟩⟩
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem fst_mul [Mul M] [Mul N] (p q : M × N) : (p * q).1 = p.1 * q.1 :=
rfl
#align prod.fst_mul Prod.fst_mul
#align prod.fst_add Prod.fst_add
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem snd_mul [Mul M] [Mul N] (p q : M × N) : (p * q).2 = p.2 * q.2 :=
rfl
#align prod.snd_mul Prod.snd_mul
#align prod.snd_add Prod.snd_add
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem mk_mul_mk [Mul M] [Mul N] (a₁ a₂ : M) (b₁ b₂ : N) :
(a₁, b₁) * (a₂, b₂) = (a₁ * a₂, b₁ * b₂) :=
rfl
#align prod.mk_mul_mk Prod.mk_mul_mk
#align prod.mk_add_mk Prod.mk_add_mk
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem swap_mul [Mul M] [Mul N] (p q : M × N) : (p * q).swap = p.swap * q.swap :=
rfl
#align prod.swap_mul Prod.swap_mul
@@ -93,13 +93,13 @@ theorem mk_one_mul_mk_one [Mul M] [Monoid N] (a₁ a₂ : M) :
instance [One M] [One N] : One (M × N) :=
⟨(1, 1)⟩
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem fst_one [One M] [One N] : (1 : M × N).1 = 1 :=
rfl
#align prod.fst_one Prod.fst_one
#align prod.fst_zero Prod.fst_zero
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem snd_one [One M] [One N] : (1 : M × N).2 = 1 :=
rfl
#align prod.snd_one Prod.snd_one
@@ -111,13 +111,13 @@ theorem one_eq_mk [One M] [One N] : (1 : M × N) = (1, 1) :=
#align prod.one_eq_mk Prod.one_eq_mk
#align prod.zero_eq_mk Prod.zero_eq_mk
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem mk_eq_one [One M] [One N] {x : M} {y : N} : (x, y) = 1 ↔ x = 1 ∧ y = 1 :=
mk.inj_iff
#align prod.mk_eq_one Prod.mk_eq_one
#align prod.mk_eq_zero Prod.mk_eq_zero
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem swap_one [One M] [One N] : (1 : M × N).swap = 1 :=
rfl
#align prod.swap_one Prod.swap_one
@@ -133,25 +133,25 @@ theorem fst_mul_snd [MulOneClass M] [MulOneClass N] (p : M × N) : (p.fst, 1) *
instance [Inv M] [Inv N] : Inv (M × N) :=
⟨fun p => (p.1⁻¹, p.2⁻¹)⟩
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem fst_inv [Inv G] [Inv H] (p : G × H) : p⁻¹.1 = p.1⁻¹ :=
rfl
#align prod.fst_inv Prod.fst_inv
#align prod.fst_neg Prod.fst_neg
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem snd_inv [Inv G] [Inv H] (p : G × H) : p⁻¹.2 = p.2⁻¹ :=
rfl
#align prod.snd_inv Prod.snd_inv
#align prod.snd_neg Prod.snd_neg
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem inv_mk [Inv G] [Inv H] (a : G) (b : H) : (a, b)⁻¹ = (a⁻¹, b⁻¹) :=
rfl
#align prod.inv_mk Prod.inv_mk
#align prod.neg_mk Prod.neg_mk
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem swap_inv [Inv G] [Inv H] (p : G × H) : p⁻¹.swap = p.swap⁻¹ :=
rfl
#align prod.swap_inv Prod.swap_inv
@@ -165,26 +165,26 @@ instance [InvolutiveInv M] [InvolutiveInv N] : InvolutiveInv (M × N) :=
instance [Div M] [Div N] : Div (M × N) :=
⟨fun p q => ⟨p.1 / q.1, p.2 / q.2⟩⟩
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem fst_div [Div G] [Div H] (a b : G × H) : (a / b).1 = a.1 / b.1 :=
rfl
#align prod.fst_div Prod.fst_div
#align prod.fst_sub Prod.fst_sub
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem snd_div [Div G] [Div H] (a b : G × H) : (a / b).2 = a.2 / b.2 :=
rfl
#align prod.snd_div Prod.snd_div
#align prod.snd_sub Prod.snd_sub
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem mk_div_mk [Div G] [Div H] (x₁ x₂ : G) (y₁ y₂ : H) :
(x₁, y₁) / (x₂, y₂) = (x₁ / x₂, y₁ / y₂) :=
rfl
#align prod.mk_div_mk Prod.mk_div_mk
#align prod.mk_sub_mk Prod.mk_sub_mk
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem swap_div [Div G] [Div H] (a b : G × H) : (a / b).swap = a.swap / b.swap :=
rfl
#align prod.swap_div Prod.swap_div
@@ -319,13 +319,13 @@ def snd : M × N →ₙ* N :=
variable {M N}
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
rfl
#align mul_hom.coe_fst MulHom.coe_fst
#align add_hom.coe_fst AddHom.coe_fst
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
rfl
#align mul_hom.coe_snd MulHom.coe_snd
@@ -349,25 +349,25 @@ theorem coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.prod g) = Pi.prod f
#align mul_hom.coe_prod MulHom.coe_prod
#align add_hom.coe_prod AddHom.coe_prod
-@[simp, to_additive prod_apply]
+@[to_additive (attr := simp) prod_apply]
theorem prod_apply (f : M →ₙ* N) (g : M →ₙ* P) (x) : f.prod g x = (f x, g x) :=
rfl
#align mul_hom.prod_apply MulHom.prod_apply
#align add_hom.prod_apply AddHom.prod_apply
-@[simp, to_additive fst_comp_prod]
+@[to_additive (attr := simp) fst_comp_prod]
theorem fst_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (fst N P).comp (f.prod g) = f :=
ext fun _ => rfl
#align mul_hom.fst_comp_prod MulHom.fst_comp_prod
#align add_hom.fst_comp_prod AddHom.fst_comp_prod
-@[simp, to_additive snd_comp_prod]
+@[to_additive (attr := simp) snd_comp_prod]
theorem snd_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (snd N P).comp (f.prod g) = g :=
ext fun _ => rfl
#align mul_hom.snd_comp_prod MulHom.snd_comp_prod
#align add_hom.snd_comp_prod AddHom.snd_comp_prod
-@[simp, to_additive prod_unique]
+@[to_additive (attr := simp) prod_unique]
theorem prod_unique (f : M →ₙ* N × P) : ((fst N P).comp f).prod ((snd N P).comp f) = f :=
ext fun x => by simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]
#align mul_hom.prod_unique MulHom.prod_unique
@@ -393,7 +393,7 @@ theorem prodMap_def : prodMap f g = (f.comp (fst M N)).prod (g.comp (snd M N)) :
#align mul_hom.prod_map_def MulHom.prodMap_def
#align add_hom.prod_map_def AddHom.prodMap_def
-@[simp, to_additive coe_prodMap]
+@[to_additive (attr := simp) coe_prodMap]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
rfl
#align mul_hom.coe_prod_map MulHom.coe_prodMap
@@ -422,7 +422,7 @@ def coprod : M × N →ₙ* P :=
#align mul_hom.coprod MulHom.coprod
#align add_hom.coprod AddHom.coprod
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
rfl
#align mul_hom.coprod_apply MulHom.coprod_apply
@@ -489,49 +489,49 @@ def inr : N →* M × N :=
variable {M N}
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem coe_fst : ⇑(fst M N) = Prod.fst :=
rfl
#align monoid_hom.coe_fst MonoidHom.coe_fst
#align add_monoid_hom.coe_fst AddMonoidHom.coe_fst
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem coe_snd : ⇑(snd M N) = Prod.snd :=
rfl
#align monoid_hom.coe_snd MonoidHom.coe_snd
#align add_monoid_hom.coe_snd AddMonoidHom.coe_snd
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem inl_apply (x) : inl M N x = (x, 1) :=
rfl
#align monoid_hom.inl_apply MonoidHom.inl_apply
#align add_monoid_hom.inl_apply AddMonoidHom.inl_apply
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem inr_apply (y) : inr M N y = (1, y) :=
rfl
#align monoid_hom.inr_apply MonoidHom.inr_apply
#align add_monoid_hom.inr_apply AddMonoidHom.inr_apply
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem fst_comp_inl : (fst M N).comp (inl M N) = id M :=
rfl
#align monoid_hom.fst_comp_inl MonoidHom.fst_comp_inl
#align add_monoid_hom.fst_comp_inl AddMonoidHom.fst_comp_inl
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem snd_comp_inl : (snd M N).comp (inl M N) = 1 :=
rfl
#align monoid_hom.snd_comp_inl MonoidHom.snd_comp_inl
#align add_monoid_hom.snd_comp_inl AddMonoidHom.snd_comp_inl
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem fst_comp_inr : (fst M N).comp (inr M N) = 1 :=
rfl
#align monoid_hom.fst_comp_inr MonoidHom.fst_comp_inr
#align add_monoid_hom.fst_comp_inr AddMonoidHom.fst_comp_inr
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem snd_comp_inr : (snd M N).comp (inr M N) = id N :=
rfl
#align monoid_hom.snd_comp_inr MonoidHom.snd_comp_inr
@@ -560,25 +560,25 @@ theorem coe_prod (f : M →* N) (g : M →* P) : ⇑(f.prod g) = Pi.prod f g :=
#align monoid_hom.coe_prod MonoidHom.coe_prod
#align add_monoid_hom.coe_prod AddMonoidHom.coe_prod
-@[simp, to_additive prod_apply]
+@[to_additive (attr := simp) prod_apply]
theorem prod_apply (f : M →* N) (g : M →* P) (x) : f.prod g x = (f x, g x) :=
rfl
#align monoid_hom.prod_apply MonoidHom.prod_apply
#align add_monoid_hom.prod_apply AddMonoidHom.prod_apply
-@[simp, to_additive fst_comp_prod]
+@[to_additive (attr := simp) fst_comp_prod]
theorem fst_comp_prod (f : M →* N) (g : M →* P) : (fst N P).comp (f.prod g) = f :=
ext fun _ => rfl
#align monoid_hom.fst_comp_prod MonoidHom.fst_comp_prod
#align add_monoid_hom.fst_comp_prod AddMonoidHom.fst_comp_prod
-@[simp, to_additive snd_comp_prod]
+@[to_additive (attr := simp) snd_comp_prod]
theorem snd_comp_prod (f : M →* N) (g : M →* P) : (snd N P).comp (f.prod g) = g :=
ext fun _ => rfl
#align monoid_hom.snd_comp_prod MonoidHom.snd_comp_prod
#align add_monoid_hom.snd_comp_prod AddMonoidHom.snd_comp_prod
-@[simp, to_additive prod_unique]
+@[to_additive (attr := simp) prod_unique]
theorem prod_unique (f : M →* N × P) : ((fst N P).comp f).prod ((snd N P).comp f) = f :=
ext fun x => by simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]
#align monoid_hom.prod_unique MonoidHom.prod_unique
@@ -604,7 +604,7 @@ theorem prodMap_def : prodMap f g = (f.comp (fst M N)).prod (g.comp (snd M N)) :
#align monoid_hom.prod_map_def MonoidHom.prodMap_def
#align add_monoid_hom.prod_map_def AddMonoidHom.prodMap_def
-@[simp, to_additive coe_prodMap]
+@[to_additive (attr := simp) coe_prodMap]
theorem coe_prodMap : ⇑(prodMap f g) = Prod.map f g :=
rfl
#align monoid_hom.coe_prod_map MonoidHom.coe_prodMap
@@ -633,31 +633,31 @@ def coprod : M × N →* P :=
#align monoid_hom.coprod MonoidHom.coprod
#align add_monoid_hom.coprod AddMonoidHom.coprod
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 :=
rfl
#align monoid_hom.coprod_apply MonoidHom.coprod_apply
#align add_monoid_hom.coprod_apply AddMonoidHom.coprod_apply
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem coprod_comp_inl : (f.coprod g).comp (inl M N) = f :=
ext fun x => by simp [coprod_apply]
#align monoid_hom.coprod_comp_inl MonoidHom.coprod_comp_inl
#align add_monoid_hom.coprod_comp_inl AddMonoidHom.coprod_comp_inl
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem coprod_comp_inr : (f.coprod g).comp (inr M N) = g :=
ext fun x => by simp [coprod_apply]
#align monoid_hom.coprod_comp_inr MonoidHom.coprod_comp_inr
#align add_monoid_hom.coprod_comp_inr AddMonoidHom.coprod_comp_inr
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem coprod_unique (f : M × N →* P) : (f.comp (inl M N)).coprod (f.comp (inr M N)) = f :=
ext fun x => by simp [coprod_apply, inl_apply, inr_apply, ← map_mul]
#align monoid_hom.coprod_unique MonoidHom.coprod_unique
#align add_monoid_hom.coprod_unique AddMonoidHom.coprod_unique
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem coprod_inl_inr {M N : Type _} [CommMonoid M] [CommMonoid N] :
(inl M N).coprod (inr M N) = id (M × N) :=
coprod_unique (id <| M × N)
@@ -691,13 +691,13 @@ def prodComm : M × N ≃* N × M :=
#align mul_equiv.prod_comm MulEquiv.prodComm
#align add_equiv.prod_comm AddEquiv.prodComm
-@[simp, to_additive coe_prodComm]
+@[to_additive (attr := simp) coe_prodComm]
theorem coe_prodComm : ⇑(prodComm : M × N ≃* N × M) = Prod.swap :=
rfl
#align mul_equiv.coe_prod_comm MulEquiv.coe_prodComm
#align add_equiv.coe_prod_comm AddEquiv.coe_prodComm
-@[simp, to_additive coe_prodComm_symm]
+@[to_additive (attr := simp) coe_prodComm_symm]
theorem coe_prodComm_symm : ⇑(prodComm : M × N ≃* N × M).symm = Prod.swap :=
rfl
#align mul_equiv.coe_prod_comm_symm MulEquiv.coe_prodComm_symm
Fix a lot of wrong casing mostly in the docstrings but also sometimes in def/theorem names. E.g. fin 2 --> Fin 2
, add_monoid_hom --> AddMonoidHom
Remove \n
from to_additive
docstrings that were inserted by mathport.
Move files and directories with Gcd
and Smul
to GCD
and SMul
@@ -19,7 +19,7 @@ In this file we define one-binop (`Monoid`, `Group` etc) structures on `M × N`.
trivial `simp` lemmas, and define the following operations on `MonoidHom`s:
* `fst M N : M × N →* M`, `snd M N : M × N →* N`: projections `prod.fst` and `prod.snd`
- as `monoid_hom`s;
+ as `MonoidHom`s;
* `inl M N : M →* M × N`, `inr M N : N →* M × N`: inclusions of first/second monoid
into the product;
* `f.prod g : `M →* N × P`: sends `x` to `(f x, g x)`;
@@ -301,7 +301,8 @@ variable (M N) [Mul M] [Mul N] [Mul P]
/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/
@[to_additive
- "Given additive magmas `A`, `B`, the natural projection homomorphism\nfrom `A × B` to `A`"]
+ "Given additive magmas `A`, `B`, the natural projection homomorphism
+ from `A × B` to `A`"]
def fst : M × N →ₙ* M :=
⟨Prod.fst, fun _ _ => rfl⟩
#align mul_hom.fst MulHom.fst
@@ -309,7 +310,8 @@ def fst : M × N →ₙ* M :=
/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/
@[to_additive
- "Given additive magmas `A`, `B`, the natural projection homomorphism\nfrom `A × B` to `B`"]
+ "Given additive magmas `A`, `B`, the natural projection homomorphism
+ from `A × B` to `B`"]
def snd : M × N →ₙ* N :=
⟨Prod.snd, fun _ _ => rfl⟩
#align mul_hom.snd MulHom.snd
The script used to do this is included. The yaml file was obtained from https://raw.githubusercontent.com/wiki/leanprover-community/mathlib/mathlib4-port-status.md
@@ -2,6 +2,11 @@
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
+
+! This file was ported from Lean 3 source module algebra.group.prod
+! leanprover-community/mathlib commit cf9386b56953fb40904843af98b7a80757bbe7f9
+! Please do not edit these lines, except to modify the commit id
+! if you have ported upstream changes.
-/
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.GroupWithZero.Units.Basic
All dependencies are ported!