algebra.monoid_algebra.ideal
⟷
Mathlib.Algebra.MonoidAlgebra.Ideal
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -30,7 +30,8 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
by
let RHS : Ideal (MonoidAlgebra k G) :=
{ carrier := {p | ∀ m : G, m ∈ p.support → ∃ m' ∈ s, ∃ d, m = d * m'}
- add_mem' := fun x y hx hy m hm => by classical
+ add_mem' := fun x y hx hy m hm => by
+ classical exact (Finset.mem_union.1 <| Finsupp.support_add hm).elim (hx m) (hy m)
zero_mem' := fun m hm => by cases hm
smul_mem' := fun x y hy m hm =>
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -30,8 +30,7 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
by
let RHS : Ideal (MonoidAlgebra k G) :=
{ carrier := {p | ∀ m : G, m ∈ p.support → ∃ m' ∈ s, ∃ d, m = d * m'}
- add_mem' := fun x y hx hy m hm => by
- classical exact (Finset.mem_union.1 <| Finsupp.support_add hm).elim (hx m) (hy m)
+ add_mem' := fun x y hx hy m hm => by classical
zero_mem' := fun m hm => by cases hm
smul_mem' := fun x y hy m hm =>
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
-import Mathbin.Algebra.MonoidAlgebra.Division
-import Mathbin.RingTheory.Ideal.Basic
+import Algebra.MonoidAlgebra.Division
+import RingTheory.Ideal.Basic
#align_import algebra.monoid_algebra.ideal from "leanprover-community/mathlib"@"4f81bc21e32048db7344b7867946e992cf5f68cc"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-
-! This file was ported from Lean 3 source module algebra.monoid_algebra.ideal
-! leanprover-community/mathlib commit 4f81bc21e32048db7344b7867946e992cf5f68cc
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Algebra.MonoidAlgebra.Division
import Mathbin.RingTheory.Ideal.Basic
+#align_import algebra.monoid_algebra.ideal from "leanprover-community/mathlib"@"4f81bc21e32048db7344b7867946e992cf5f68cc"
+
/-!
# Lemmas about ideals of `monoid_algebra` and `add_monoid_algebra`
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -21,6 +21,7 @@ import Mathbin.RingTheory.Ideal.Basic
variable {k A G : Type _}
+#print MonoidAlgebra.mem_ideal_span_of_image /-
/-- If `x` belongs to the ideal generated by generators in `s`, then every element of the support of
`x` factors through an element of `s`.
@@ -63,7 +64,9 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
refine' Ideal.subset_span ⟨_, hd, rfl⟩
rw [id.def, MonoidAlgebra.of_apply, MonoidAlgebra.single_mul_single, mul_one]
#align monoid_algebra.mem_ideal_span_of_image MonoidAlgebra.mem_ideal_span_of_image
+-/
+#print AddMonoidAlgebra.mem_ideal_span_of'_image /-
/-- If `x` belongs to the ideal generated by generators in `s`, then every element of the support of
`x` factors additively through an element of `s`.
-/
@@ -72,4 +75,5 @@ theorem AddMonoidAlgebra.mem_ideal_span_of'_image [AddMonoid A] [Semiring k] {s
x ∈ Ideal.span (AddMonoidAlgebra.of' k A '' s) ↔ ∀ m ∈ x.support, ∃ m' ∈ s, ∃ d, m = d + m' :=
@MonoidAlgebra.mem_ideal_span_of_image k (Multiplicative A) _ _ _ _
#align add_monoid_algebra.mem_ideal_span_of'_image AddMonoidAlgebra.mem_ideal_span_of'_image
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -31,7 +31,7 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
x ∈ Ideal.span (MonoidAlgebra.of k G '' s) ↔ ∀ m ∈ x.support, ∃ m' ∈ s, ∃ d, m = d * m' :=
by
let RHS : Ideal (MonoidAlgebra k G) :=
- { carrier := { p | ∀ m : G, m ∈ p.support → ∃ m' ∈ s, ∃ d, m = d * m' }
+ { carrier := {p | ∀ m : G, m ∈ p.support → ∃ m' ∈ s, ∃ d, m = d * m'}
add_mem' := fun x y hx hy m hm => by
classical exact (Finset.mem_union.1 <| Finsupp.support_add hm).elim (hx m) (hy m)
zero_mem' := fun m hm => by cases hm
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -21,12 +21,6 @@ import Mathbin.RingTheory.Ideal.Basic
variable {k A G : Type _}
-/- warning: monoid_algebra.mem_ideal_span_of_image -> MonoidAlgebra.mem_ideal_span_of_image is a dubious translation:
-lean 3 declaration is
- forall {k : Type.{u1}} {G : Type.{u2}} [_inst_1 : Monoid.{u2} G] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} G} {x : MonoidAlgebra.{u1, u2} k G _inst_2}, Iff (Membership.Mem.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (SetLike.hasMem.{max u1 u2, max u1 u2} (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (MonoidAlgebra.{u1, u2} k G _inst_2) (Submodule.setLike.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) (Semiring.toModule.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) x (Ideal.span.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (Set.image.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (coeFn.{max (succ (max u1 u2)) (succ u2), max (succ u2) (succ (max u1 u2))} (MonoidHom.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) (fun (_x : MonoidHom.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) => G -> (MonoidAlgebra.{u1, u2} k G _inst_2)) (MonoidHom.hasCoeToFun.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) (MonoidAlgebra.of.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))) s))) (forall (m : G), (Membership.Mem.{u2, u2} G (Finset.{u2} G) (Finset.hasMem.{u2} G) m (Finsupp.support.{u2, u1} G k (MulZeroClass.toHasZero.{u1} k (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} k (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} k (Semiring.toNonAssocSemiring.{u1} k _inst_2)))) x)) -> (Exists.{succ u2} G (fun (m' : G) => Exists.{0} (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) m' s) (fun (H : Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) m' s) => Exists.{succ u2} G (fun (d : G) => Eq.{succ u2} G m (HMul.hMul.{u2, u2, u2} G G G (instHMul.{u2} G (MulOneClass.toHasMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1))) d m'))))))
-but is expected to have type
- forall {k : Type.{u1}} {G : Type.{u2}} [_inst_1 : Monoid.{u2} G] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} G} {x : MonoidAlgebra.{u1, u2} k G _inst_2}, Iff (Membership.mem.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (SetLike.instMembership.{max u1 u2, max u1 u2} (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (MonoidAlgebra.{u1, u2} k G _inst_2) (Submodule.setLike.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) (Semiring.toModule.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) x (Ideal.span.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (Set.image.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u2, max (succ u1) (succ u2)} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (fun (_x : G) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : G) => MonoidAlgebra.{u1, u2} k G _inst_2) _x) (MulHomClass.toFunLike.{max u1 u2, u2, max u1 u2} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (MonoidAlgebra.{u1, u2} k G _inst_2) (MulOneClass.toMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1)) (MulOneClass.toMul.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u2, max u1 u2} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1)))) (MonoidHom.monoidHomClass.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))))) (MonoidAlgebra.of.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))) s))) (forall (m : G), (Membership.mem.{u2, u2} G (Finset.{u2} G) (Finset.instMembershipFinset.{u2} G) m (Finsupp.support.{u2, u1} G k (MonoidWithZero.toZero.{u1} k (Semiring.toMonoidWithZero.{u1} k _inst_2)) x)) -> (Exists.{succ u2} G (fun (m' : G) => And (Membership.mem.{u2, u2} G (Set.{u2} G) (Set.instMembershipSet.{u2} G) m' s) (Exists.{succ u2} G (fun (d : G) => Eq.{succ u2} G m (HMul.hMul.{u2, u2, u2} G G G (instHMul.{u2} G (MulOneClass.toMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1))) d m'))))))
-Case conversion may be inaccurate. Consider using '#align monoid_algebra.mem_ideal_span_of_image MonoidAlgebra.mem_ideal_span_of_imageₓ'. -/
/-- If `x` belongs to the ideal generated by generators in `s`, then every element of the support of
`x` factors through an element of `s`.
@@ -70,12 +64,6 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
rw [id.def, MonoidAlgebra.of_apply, MonoidAlgebra.single_mul_single, mul_one]
#align monoid_algebra.mem_ideal_span_of_image MonoidAlgebra.mem_ideal_span_of_image
-/- warning: add_monoid_algebra.mem_ideal_span_of'_image -> AddMonoidAlgebra.mem_ideal_span_of'_image is a dubious translation:
-lean 3 declaration is
- forall {k : Type.{u1}} {A : Type.{u2}} [_inst_1 : AddMonoid.{u2} A] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} A} {x : AddMonoidAlgebra.{u1, u2} k A _inst_2}, Iff (Membership.Mem.{max u2 u1, max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Ideal.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)) (SetLike.hasMem.{max u2 u1, max u2 u1} (Ideal.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)) (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Submodule.setLike.{max u2 u1, max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Semiring.toNonAssocSemiring.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)))) (Semiring.toModule.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)))) x (Ideal.span.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1) (Set.image.{u2, max u2 u1} A (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.of'.{u1, u2} k A _inst_2) s))) (forall (m : A), (Membership.Mem.{u2, u2} A (Finset.{u2} A) (Finset.hasMem.{u2} A) m (Finsupp.support.{u2, u1} A k (MulZeroClass.toHasZero.{u1} k (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} k (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} k (Semiring.toNonAssocSemiring.{u1} k _inst_2)))) x)) -> (Exists.{succ u2} A (fun (m' : A) => Exists.{0} (Membership.Mem.{u2, u2} A (Set.{u2} A) (Set.hasMem.{u2} A) m' s) (fun (H : Membership.Mem.{u2, u2} A (Set.{u2} A) (Set.hasMem.{u2} A) m' s) => Exists.{succ u2} A (fun (d : A) => Eq.{succ u2} A m (HAdd.hAdd.{u2, u2, u2} A A A (instHAdd.{u2} A (AddZeroClass.toHasAdd.{u2} A (AddMonoid.toAddZeroClass.{u2} A _inst_1))) d m'))))))
-but is expected to have type
- forall {k : Type.{u1}} {A : Type.{u2}} [_inst_1 : AddMonoid.{u2} A] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} A} {x : AddMonoidAlgebra.{u1, u2} k A _inst_2}, Iff (Membership.mem.{max u1 u2, max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Ideal.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)) (SetLike.instMembership.{max u1 u2, max u1 u2} (Ideal.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)) (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Submodule.setLike.{max u1 u2, max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)))) (Semiring.toModule.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)))) x (Ideal.span.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1) (Set.image.{u2, max u1 u2} A (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.of'.{u1, u2} k A _inst_2) s))) (forall (m : A), (Membership.mem.{u2, u2} A (Finset.{u2} A) (Finset.instMembershipFinset.{u2} A) m (Finsupp.support.{u2, u1} A k (MonoidWithZero.toZero.{u1} k (Semiring.toMonoidWithZero.{u1} k _inst_2)) x)) -> (Exists.{succ u2} A (fun (m' : A) => And (Membership.mem.{u2, u2} A (Set.{u2} A) (Set.instMembershipSet.{u2} A) m' s) (Exists.{succ u2} A (fun (d : A) => Eq.{succ u2} A m (HAdd.hAdd.{u2, u2, u2} A A A (instHAdd.{u2} A (AddZeroClass.toAdd.{u2} A (AddMonoid.toAddZeroClass.{u2} A _inst_1))) d m'))))))
-Case conversion may be inaccurate. Consider using '#align add_monoid_algebra.mem_ideal_span_of'_image AddMonoidAlgebra.mem_ideal_span_of'_imageₓ'. -/
/-- If `x` belongs to the ideal generated by generators in `s`, then every element of the support of
`x` factors additively through an element of `s`.
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -25,7 +25,7 @@ variable {k A G : Type _}
lean 3 declaration is
forall {k : Type.{u1}} {G : Type.{u2}} [_inst_1 : Monoid.{u2} G] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} G} {x : MonoidAlgebra.{u1, u2} k G _inst_2}, Iff (Membership.Mem.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (SetLike.hasMem.{max u1 u2, max u1 u2} (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (MonoidAlgebra.{u1, u2} k G _inst_2) (Submodule.setLike.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) (Semiring.toModule.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) x (Ideal.span.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (Set.image.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (coeFn.{max (succ (max u1 u2)) (succ u2), max (succ u2) (succ (max u1 u2))} (MonoidHom.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) (fun (_x : MonoidHom.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) => G -> (MonoidAlgebra.{u1, u2} k G _inst_2)) (MonoidHom.hasCoeToFun.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) (MonoidAlgebra.of.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))) s))) (forall (m : G), (Membership.Mem.{u2, u2} G (Finset.{u2} G) (Finset.hasMem.{u2} G) m (Finsupp.support.{u2, u1} G k (MulZeroClass.toHasZero.{u1} k (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} k (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} k (Semiring.toNonAssocSemiring.{u1} k _inst_2)))) x)) -> (Exists.{succ u2} G (fun (m' : G) => Exists.{0} (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) m' s) (fun (H : Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) m' s) => Exists.{succ u2} G (fun (d : G) => Eq.{succ u2} G m (HMul.hMul.{u2, u2, u2} G G G (instHMul.{u2} G (MulOneClass.toHasMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1))) d m'))))))
but is expected to have type
- forall {k : Type.{u1}} {G : Type.{u2}} [_inst_1 : Monoid.{u2} G] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} G} {x : MonoidAlgebra.{u1, u2} k G _inst_2}, Iff (Membership.mem.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (SetLike.instMembership.{max u1 u2, max u1 u2} (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (MonoidAlgebra.{u1, u2} k G _inst_2) (Submodule.setLike.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) (Semiring.toModule.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) x (Ideal.span.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (Set.image.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u2, max (succ u1) (succ u2)} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (fun (_x : G) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : G) => MonoidAlgebra.{u1, u2} k G _inst_2) _x) (MulHomClass.toFunLike.{max u1 u2, u2, max u1 u2} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (MonoidAlgebra.{u1, u2} k G _inst_2) (MulOneClass.toMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1)) (MulOneClass.toMul.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u2, max u1 u2} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1)))) (MonoidHom.monoidHomClass.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))))) (MonoidAlgebra.of.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))) s))) (forall (m : G), (Membership.mem.{u2, u2} G (Finset.{u2} G) (Finset.instMembershipFinset.{u2} G) m (Finsupp.support.{u2, u1} G k (MonoidWithZero.toZero.{u1} k (Semiring.toMonoidWithZero.{u1} k _inst_2)) x)) -> (Exists.{succ u2} G (fun (m' : G) => And (Membership.mem.{u2, u2} G (Set.{u2} G) (Set.instMembershipSet.{u2} G) m' s) (Exists.{succ u2} G (fun (d : G) => Eq.{succ u2} G m (HMul.hMul.{u2, u2, u2} G G G (instHMul.{u2} G (MulOneClass.toMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1))) d m'))))))
+ forall {k : Type.{u1}} {G : Type.{u2}} [_inst_1 : Monoid.{u2} G] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} G} {x : MonoidAlgebra.{u1, u2} k G _inst_2}, Iff (Membership.mem.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (SetLike.instMembership.{max u1 u2, max u1 u2} (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (MonoidAlgebra.{u1, u2} k G _inst_2) (Submodule.setLike.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) (Semiring.toModule.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) x (Ideal.span.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (Set.image.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u2, max (succ u1) (succ u2)} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (fun (_x : G) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : G) => MonoidAlgebra.{u1, u2} k G _inst_2) _x) (MulHomClass.toFunLike.{max u1 u2, u2, max u1 u2} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (MonoidAlgebra.{u1, u2} k G _inst_2) (MulOneClass.toMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1)) (MulOneClass.toMul.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u2, max u1 u2} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1)))) (MonoidHom.monoidHomClass.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))))) (MonoidAlgebra.of.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))) s))) (forall (m : G), (Membership.mem.{u2, u2} G (Finset.{u2} G) (Finset.instMembershipFinset.{u2} G) m (Finsupp.support.{u2, u1} G k (MonoidWithZero.toZero.{u1} k (Semiring.toMonoidWithZero.{u1} k _inst_2)) x)) -> (Exists.{succ u2} G (fun (m' : G) => And (Membership.mem.{u2, u2} G (Set.{u2} G) (Set.instMembershipSet.{u2} G) m' s) (Exists.{succ u2} G (fun (d : G) => Eq.{succ u2} G m (HMul.hMul.{u2, u2, u2} G G G (instHMul.{u2} G (MulOneClass.toMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1))) d m'))))))
Case conversion may be inaccurate. Consider using '#align monoid_algebra.mem_ideal_span_of_image MonoidAlgebra.mem_ideal_span_of_imageₓ'. -/
/-- If `x` belongs to the ideal generated by generators in `s`, then every element of the support of
`x` factors through an element of `s`.
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e281deff072232a3c5b3e90034bd65dde396312
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
! This file was ported from Lean 3 source module algebra.monoid_algebra.ideal
-! leanprover-community/mathlib commit 72c366d0475675f1309d3027d3d7d47ee4423951
+! leanprover-community/mathlib commit 4f81bc21e32048db7344b7867946e992cf5f68cc
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -13,6 +13,9 @@ import Mathbin.RingTheory.Ideal.Basic
/-!
# Lemmas about ideals of `monoid_algebra` and `add_monoid_algebra`
+
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/246f6f7989ff86bd07e1b014846f11304f33cf9e
@@ -18,6 +18,12 @@ import Mathbin.RingTheory.Ideal.Basic
variable {k A G : Type _}
+/- warning: monoid_algebra.mem_ideal_span_of_image -> MonoidAlgebra.mem_ideal_span_of_image is a dubious translation:
+lean 3 declaration is
+ forall {k : Type.{u1}} {G : Type.{u2}} [_inst_1 : Monoid.{u2} G] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} G} {x : MonoidAlgebra.{u1, u2} k G _inst_2}, Iff (Membership.Mem.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (SetLike.hasMem.{max u1 u2, max u1 u2} (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (MonoidAlgebra.{u1, u2} k G _inst_2) (Submodule.setLike.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) (Semiring.toModule.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) x (Ideal.span.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (Set.image.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (coeFn.{max (succ (max u1 u2)) (succ u2), max (succ u2) (succ (max u1 u2))} (MonoidHom.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) (fun (_x : MonoidHom.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) => G -> (MonoidAlgebra.{u1, u2} k G _inst_2)) (MonoidHom.hasCoeToFun.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) (MonoidAlgebra.of.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))) s))) (forall (m : G), (Membership.Mem.{u2, u2} G (Finset.{u2} G) (Finset.hasMem.{u2} G) m (Finsupp.support.{u2, u1} G k (MulZeroClass.toHasZero.{u1} k (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} k (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} k (Semiring.toNonAssocSemiring.{u1} k _inst_2)))) x)) -> (Exists.{succ u2} G (fun (m' : G) => Exists.{0} (Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) m' s) (fun (H : Membership.Mem.{u2, u2} G (Set.{u2} G) (Set.hasMem.{u2} G) m' s) => Exists.{succ u2} G (fun (d : G) => Eq.{succ u2} G m (HMul.hMul.{u2, u2, u2} G G G (instHMul.{u2} G (MulOneClass.toHasMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1))) d m'))))))
+but is expected to have type
+ forall {k : Type.{u1}} {G : Type.{u2}} [_inst_1 : Monoid.{u2} G] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} G} {x : MonoidAlgebra.{u1, u2} k G _inst_2}, Iff (Membership.mem.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (SetLike.instMembership.{max u1 u2, max u1 u2} (Ideal.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)) (MonoidAlgebra.{u1, u2} k G _inst_2) (Submodule.setLike.{max u1 u2, max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) (Semiring.toModule.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1)))) x (Ideal.span.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.semiring.{u1, u2} k G _inst_2 _inst_1) (Set.image.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (FunLike.coe.{max (succ u1) (succ u2), succ u2, max (succ u1) (succ u2)} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (fun (_x : G) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : G) => MonoidAlgebra.{u1, u2} k G _inst_2) _x) (MulHomClass.toFunLike.{max u1 u2, u2, max u1 u2} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (MonoidAlgebra.{u1, u2} k G _inst_2) (MulOneClass.toMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1)) (MulOneClass.toMul.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) (MonoidHomClass.toMulHomClass.{max u1 u2, u2, max u1 u2} (MonoidHom.{u2, max u2 u1} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))) G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1)))) (MonoidHom.monoidHomClass.{u2, max u1 u2} G (MonoidAlgebra.{u1, u2} k G _inst_2) (Monoid.toMulOneClass.{u2} G _inst_1) (MulZeroOneClass.toMulOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (NonAssocSemiring.toMulZeroOneClass.{max u1 u2} (MonoidAlgebra.{u1, u2} k G _inst_2) (MonoidAlgebra.nonAssocSemiring.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))))))) (MonoidAlgebra.of.{u1, u2} k G _inst_2 (Monoid.toMulOneClass.{u2} G _inst_1))) s))) (forall (m : G), (Membership.mem.{u2, u2} G (Finset.{u2} G) (Finset.instMembershipFinset.{u2} G) m (Finsupp.support.{u2, u1} G k (MonoidWithZero.toZero.{u1} k (Semiring.toMonoidWithZero.{u1} k _inst_2)) x)) -> (Exists.{succ u2} G (fun (m' : G) => And (Membership.mem.{u2, u2} G (Set.{u2} G) (Set.instMembershipSet.{u2} G) m' s) (Exists.{succ u2} G (fun (d : G) => Eq.{succ u2} G m (HMul.hMul.{u2, u2, u2} G G G (instHMul.{u2} G (MulOneClass.toMul.{u2} G (Monoid.toMulOneClass.{u2} G _inst_1))) d m'))))))
+Case conversion may be inaccurate. Consider using '#align monoid_algebra.mem_ideal_span_of_image MonoidAlgebra.mem_ideal_span_of_imageₓ'. -/
/-- If `x` belongs to the ideal generated by generators in `s`, then every element of the support of
`x` factors through an element of `s`.
@@ -61,6 +67,12 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
rw [id.def, MonoidAlgebra.of_apply, MonoidAlgebra.single_mul_single, mul_one]
#align monoid_algebra.mem_ideal_span_of_image MonoidAlgebra.mem_ideal_span_of_image
+/- warning: add_monoid_algebra.mem_ideal_span_of'_image -> AddMonoidAlgebra.mem_ideal_span_of'_image is a dubious translation:
+lean 3 declaration is
+ forall {k : Type.{u1}} {A : Type.{u2}} [_inst_1 : AddMonoid.{u2} A] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} A} {x : AddMonoidAlgebra.{u1, u2} k A _inst_2}, Iff (Membership.Mem.{max u2 u1, max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Ideal.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)) (SetLike.hasMem.{max u2 u1, max u2 u1} (Ideal.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)) (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Submodule.setLike.{max u2 u1, max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Semiring.toNonAssocSemiring.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)))) (Semiring.toModule.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)))) x (Ideal.span.{max u2 u1} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1) (Set.image.{u2, max u2 u1} A (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.of'.{u1, u2} k A _inst_2) s))) (forall (m : A), (Membership.Mem.{u2, u2} A (Finset.{u2} A) (Finset.hasMem.{u2} A) m (Finsupp.support.{u2, u1} A k (MulZeroClass.toHasZero.{u1} k (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} k (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} k (Semiring.toNonAssocSemiring.{u1} k _inst_2)))) x)) -> (Exists.{succ u2} A (fun (m' : A) => Exists.{0} (Membership.Mem.{u2, u2} A (Set.{u2} A) (Set.hasMem.{u2} A) m' s) (fun (H : Membership.Mem.{u2, u2} A (Set.{u2} A) (Set.hasMem.{u2} A) m' s) => Exists.{succ u2} A (fun (d : A) => Eq.{succ u2} A m (HAdd.hAdd.{u2, u2, u2} A A A (instHAdd.{u2} A (AddZeroClass.toHasAdd.{u2} A (AddMonoid.toAddZeroClass.{u2} A _inst_1))) d m'))))))
+but is expected to have type
+ forall {k : Type.{u1}} {A : Type.{u2}} [_inst_1 : AddMonoid.{u2} A] [_inst_2 : Semiring.{u1} k] {s : Set.{u2} A} {x : AddMonoidAlgebra.{u1, u2} k A _inst_2}, Iff (Membership.mem.{max u1 u2, max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Ideal.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)) (SetLike.instMembership.{max u1 u2, max u1 u2} (Ideal.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)) (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Submodule.setLike.{max u1 u2, max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (Semiring.toNonAssocSemiring.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)))) (Semiring.toModule.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1)))) x (Ideal.span.{max u1 u2} (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.semiring.{u1, u2} k A _inst_2 _inst_1) (Set.image.{u2, max u1 u2} A (AddMonoidAlgebra.{u1, u2} k A _inst_2) (AddMonoidAlgebra.of'.{u1, u2} k A _inst_2) s))) (forall (m : A), (Membership.mem.{u2, u2} A (Finset.{u2} A) (Finset.instMembershipFinset.{u2} A) m (Finsupp.support.{u2, u1} A k (MonoidWithZero.toZero.{u1} k (Semiring.toMonoidWithZero.{u1} k _inst_2)) x)) -> (Exists.{succ u2} A (fun (m' : A) => And (Membership.mem.{u2, u2} A (Set.{u2} A) (Set.instMembershipSet.{u2} A) m' s) (Exists.{succ u2} A (fun (d : A) => Eq.{succ u2} A m (HAdd.hAdd.{u2, u2, u2} A A A (instHAdd.{u2} A (AddZeroClass.toAdd.{u2} A (AddMonoid.toAddZeroClass.{u2} A _inst_1))) d m'))))))
+Case conversion may be inaccurate. Consider using '#align add_monoid_algebra.mem_ideal_span_of'_image AddMonoidAlgebra.mem_ideal_span_of'_imageₓ'. -/
/-- If `x` belongs to the ideal generated by generators in `s`, then every element of the support of
`x` factors additively through an element of `s`.
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/d11893b411025250c8e61ff2f12ccbd7ee35ab15
@@ -56,7 +56,7 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
obtain ⟨d, hd, d2, rfl⟩ := hx _ hi
convert Ideal.mul_mem_left _ (id <| Finsupp.single d2 <| x (d2 * d) : MonoidAlgebra k G) _
pick_goal 3
- refine' Ideal.subset_span ⟨_, hd, rfl⟩
+ · refine' Ideal.subset_span ⟨_, hd, rfl⟩
rw [id, MonoidAlgebra.of_apply, MonoidAlgebra.single_mul_single, mul_one]
#align monoid_algebra.mem_ideal_span_of_image MonoidAlgebra.mem_ideal_span_of_image
@@ -57,7 +57,7 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
convert Ideal.mul_mem_left _ (id <| Finsupp.single d2 <| x (d2 * d) : MonoidAlgebra k G) _
pick_goal 3
refine' Ideal.subset_span ⟨_, hd, rfl⟩
- rw [id.def, MonoidAlgebra.of_apply, MonoidAlgebra.single_mul_single, mul_one]
+ rw [id, MonoidAlgebra.of_apply, MonoidAlgebra.single_mul_single, mul_one]
#align monoid_algebra.mem_ideal_span_of_image MonoidAlgebra.mem_ideal_span_of_image
/-- If `x` belongs to the ideal generated by generators in `s`, then every element of the support of
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -36,7 +36,7 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
obtain ⟨ym, hym, hm⟩ := hm
replace hm := Finset.mem_singleton.mp (Finsupp.support_single_subset hm)
obtain rfl := hm
- -- porting note: changed `Exists.imp` to `And.imp_right` due to change in `∃ x ∈ s`
+ -- Porting note: changed `Exists.imp` to `And.imp_right` due to change in `∃ x ∈ s`
-- elaboration
refine' (hy _ hym).imp fun sm p => And.imp_right _ p
rintro ⟨d, rfl⟩
@@ -44,7 +44,7 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
change _ ↔ x ∈ RHS
constructor
· revert x
- rw [← SetLike.le_def] -- porting note: refine needs this even though it's defeq?
+ rw [← SetLike.le_def] -- Porting note: refine needs this even though it's defeq?
refine Ideal.span_le.2 ?_
rintro _ ⟨i, hi, rfl⟩ m hm
refine' ⟨_, hi, 1, _⟩
@@ -52,7 +52,7 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
exact (one_mul _).symm
· intro hx
rw [← Finsupp.sum_single x]
- refine Ideal.sum_mem _ fun i hi => ?_ -- porting note: changed `apply` to `refine`
+ refine Ideal.sum_mem _ fun i hi => ?_ -- Porting note: changed `apply` to `refine`
obtain ⟨d, hd, d2, rfl⟩ := hx _ hi
convert Ideal.mul_mem_left _ (id <| Finsupp.single d2 <| x (d2 * d) : MonoidAlgebra k G) _
pick_goal 3
@@ -3,7 +3,7 @@ Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
-import Mathlib.Algebra.MonoidAlgebra.Division
+import Mathlib.Algebra.MonoidAlgebra.Basic
import Mathlib.RingTheory.Ideal.Basic
#align_import algebra.monoid_algebra.ideal from "leanprover-community/mathlib"@"72c366d0475675f1309d3027d3d7d47ee4423951"
@@ -44,7 +44,7 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
change _ ↔ x ∈ RHS
constructor
· revert x
- rw [←SetLike.le_def] -- porting note: refine needs this even though it's defeq?
+ rw [← SetLike.le_def] -- porting note: refine needs this even though it's defeq?
refine Ideal.span_le.2 ?_
rintro _ ⟨i, hi, rfl⟩ m hm
refine' ⟨_, hi, 1, _⟩
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -13,7 +13,7 @@ import Mathlib.RingTheory.Ideal.Basic
-/
-variable {k A G : Type _}
+variable {k A G : Type*}
/-- If `x` belongs to the ideal generated by generators in `s`, then every element of the support of
`x` factors through an element of `s`.
@@ -2,15 +2,12 @@
Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-
-! This file was ported from Lean 3 source module algebra.monoid_algebra.ideal
-! leanprover-community/mathlib commit 72c366d0475675f1309d3027d3d7d47ee4423951
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Algebra.MonoidAlgebra.Division
import Mathlib.RingTheory.Ideal.Basic
+#align_import algebra.monoid_algebra.ideal from "leanprover-community/mathlib"@"72c366d0475675f1309d3027d3d7d47ee4423951"
+
/-!
# Lemmas about ideals of `MonoidAlgebra` and `AddMonoidAlgebra`
-/
sSup
/iSup
(#3938)
As discussed on Zulip
supₛ
→ sSup
infₛ
→ sInf
supᵢ
→ iSup
infᵢ
→ iInf
bsupₛ
→ bsSup
binfₛ
→ bsInf
bsupᵢ
→ biSup
binfᵢ
→ biInf
csupₛ
→ csSup
cinfₛ
→ csInf
csupᵢ
→ ciSup
cinfᵢ
→ ciInf
unionₛ
→ sUnion
interₛ
→ sInter
unionᵢ
→ iUnion
interᵢ
→ iInter
bunionₛ
→ bsUnion
binterₛ
→ bsInter
bunionᵢ
→ biUnion
binterᵢ
→ biInter
Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>
@@ -33,9 +33,9 @@ theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G
zero_mem' := fun m hm => by cases hm
smul_mem' := fun x y hy m hm => by
classical
- replace hm := Finset.mem_bunionᵢ.mp (Finsupp.support_sum hm)
+ replace hm := Finset.mem_biUnion.mp (Finsupp.support_sum hm)
obtain ⟨xm, -, hm⟩ := hm
- replace hm := Finset.mem_bunionᵢ.mp (Finsupp.support_sum hm)
+ replace hm := Finset.mem_biUnion.mp (Finsupp.support_sum hm)
obtain ⟨ym, hym, hm⟩ := hm
replace hm := Finset.mem_singleton.mp (Finsupp.support_single_subset hm)
obtain rfl := hm
@@ -12,7 +12,7 @@ import Mathlib.Algebra.MonoidAlgebra.Division
import Mathlib.RingTheory.Ideal.Basic
/-!
-# Lemmas about ideals of `monoid_algebra` and `add_monoid_algebra`
+# Lemmas about ideals of `MonoidAlgebra` and `AddMonoidAlgebra`
-/
@@ -21,14 +21,14 @@ variable {k A G : Type _}
/-- If `x` belongs to the ideal generated by generators in `s`, then every element of the support of
`x` factors through an element of `s`.
-We could spell `∃ d, m = d * m` as `mul_opposite.op m' ∣ mul_opposite.op m` but this would be worse.
+We could spell `∃ d, m = d * m` as `MulOpposite.op m' ∣ MulOpposite.op m` but this would be worse.
-/
theorem MonoidAlgebra.mem_ideal_span_of_image [Monoid G] [Semiring k] {s : Set G}
{x : MonoidAlgebra k G} :
x ∈ Ideal.span (MonoidAlgebra.of k G '' s) ↔ ∀ m ∈ x.support, ∃ m' ∈ s, ∃ d, m = d * m' := by
let RHS : Ideal (MonoidAlgebra k G) :=
{ carrier := { p | ∀ m : G, m ∈ p.support → ∃ m' ∈ s, ∃ d, m = d * m' }
- add_mem' := @fun x y hx hy m hm => by
+ add_mem' := fun {x y} hx hy m hm => by
classical exact (Finset.mem_union.1 <| Finsupp.support_add hm).elim (hx m) (hy m)
zero_mem' := fun m hm => by cases hm
smul_mem' := fun x y hy m hm => by
The unported dependencies are