algebra.order.archimedeanMathlib.Algebra.Order.Archimedean

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

chore(algebra/order/archimedean): add sub variations of add lemmas (#18103)

These spellings give the intuition of "reduce"ing to a range rather than "lifting" to a range.

Diff
@@ -68,19 +68,30 @@ lemma exists_unique_zsmul_near_of_pos' {a : α} (ha : 0 < a) (g : α) :
 by simpa only [sub_nonneg, add_zsmul, one_zsmul, sub_lt_iff_lt_add']
   using exists_unique_zsmul_near_of_pos ha g
 
+lemma exists_unique_sub_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
+  ∃! m : ℤ, b - m • a ∈ set.Ico c (c + a) :=
+by simpa only [mem_Ico, le_sub_iff_add_le, zero_add, add_comm c, sub_lt_iff_lt_add', add_assoc]
+  using exists_unique_zsmul_near_of_pos' ha (b - c)
+
 lemma exists_unique_add_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
   ∃! m : ℤ, b + m • a ∈ set.Ico c (c + a) :=
 (equiv.neg ℤ).bijective.exists_unique_iff.2 $
-  by simpa only [equiv.neg_apply, mem_Ico, neg_zsmul, ← sub_eq_add_neg, le_sub_iff_add_le, zero_add,
-    add_comm c, sub_lt_iff_lt_add', add_assoc] using exists_unique_zsmul_near_of_pos' ha (b - c)
+  by simpa only [equiv.neg_apply, neg_zsmul, ← sub_eq_add_neg]
+    using exists_unique_sub_zsmul_mem_Ico ha b c
 
 lemma exists_unique_add_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
   ∃! m : ℤ, b + m • a ∈ set.Ioc c (c + a) :=
 (equiv.add_right (1 : ℤ)).bijective.exists_unique_iff.2 $
-  by simpa only [add_zsmul, sub_lt_iff_lt_add', le_sub_iff_add_le', ← add_assoc, and.comm, mem_Ioc,
-    equiv.coe_add_right, one_zsmul, add_le_add_iff_right]
+  by simpa only [add_one_zsmul, sub_lt_iff_lt_add', le_sub_iff_add_le', ← add_assoc, and.comm,
+    mem_Ioc, equiv.coe_add_right, add_le_add_iff_right]
     using exists_unique_zsmul_near_of_pos ha (c - b)
 
+lemma exists_unique_sub_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
+  ∃! m : ℤ, b - m • a ∈ set.Ioc c (c + a) :=
+(equiv.neg ℤ).bijective.exists_unique_iff.2 $
+  by simpa only [equiv.neg_apply, neg_zsmul, sub_neg_eq_add]
+    using exists_unique_add_zsmul_mem_Ioc ha b c
+
 end linear_ordered_add_comm_group
 
 theorem exists_nat_gt [strict_ordered_semiring α] [archimedean α] (x : α) : ∃ n : ℕ, x < n :=

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -169,7 +169,7 @@ theorem pow_unbounded_of_one_lt (x : α) {y : α} (hy1 : 1 < y) : ∃ n : ℕ, x
 #print exists_int_gt /-
 theorem exists_int_gt (x : α) : ∃ n : ℤ, x < n :=
   let ⟨n, h⟩ := exists_nat_gt x
-  ⟨n, by rwa [Int.cast_ofNat]⟩
+  ⟨n, by rwa [Int.cast_natCast]⟩
 #align exists_int_gt exists_int_gt
 -/
 
@@ -316,7 +316,7 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   refine' lt_of_le_of_lt (add_le_add_right ((zh _).1 le_rfl) _) _
   rwa [← lt_sub_iff_add_lt', ← sub_mul, ← div_lt_iff' (sub_pos.2 h), one_div]
   · rw [Rat.coe_int_den, Nat.cast_one]; exact one_ne_zero
-  · intro H; rw [Rat.num_natCast, Int.cast_ofNat, Nat.cast_eq_zero] at H; subst H; cases n0
+  · intro H; rw [Rat.num_natCast, Int.cast_natCast, Nat.cast_eq_zero] at H; subst H; cases n0
   · rw [Rat.den_natCast, Nat.cast_one]; exact one_ne_zero
 #align exists_rat_btwn exists_rat_btwn
 -/
Diff
@@ -68,7 +68,7 @@ theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
   have h_bdd : ∀ n ∈ s, n ≤ (k : ℤ) := by
     intro n hn
     apply (zsmul_le_zsmul_iff ha).mp
-    rw [← coe_nat_zsmul] at hk
+    rw [← natCast_zsmul] at hk
     exact le_trans hn hk
   obtain ⟨m, hm, hm'⟩ := Int.exists_greatest_of_bdd ⟨k, h_bdd⟩ h_ne
   have hm'' : g < (m + 1) • a := by contrapose! hm'; exact ⟨m + 1, hm', lt_add_one _⟩
@@ -237,14 +237,14 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
       ⟨-N,
         le_of_lt
           (by
-            rw [zpow_neg y ↑N, zpow_coe_nat]
+            rw [zpow_neg y ↑N, zpow_natCast]
             exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN)⟩
     let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy
     have hb : ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b :=
       ⟨M, fun m hm =>
         le_of_not_lt fun hlt =>
           not_lt_of_ge (zpow_le_of_le hy.le hlt.le)
-            (lt_of_le_of_lt hm (by rwa [← zpow_coe_nat] at hM))⟩
+            (lt_of_le_of_lt hm (by rwa [← zpow_natCast] at hM))⟩
     let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
     ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
@@ -291,14 +291,14 @@ theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 <
 #print exists_rat_gt /-
 theorem exists_rat_gt (x : α) : ∃ q : ℚ, x < q :=
   let ⟨n, h⟩ := exists_nat_gt x
-  ⟨n, by rwa [Rat.cast_coe_nat]⟩
+  ⟨n, by rwa [Rat.cast_natCast]⟩
 #align exists_rat_gt exists_rat_gt
 -/
 
 #print exists_rat_lt /-
 theorem exists_rat_lt (x : α) : ∃ q : ℚ, (q : α) < x :=
   let ⟨n, h⟩ := exists_int_lt x
-  ⟨n, by rwa [Rat.cast_coe_int]⟩
+  ⟨n, by rwa [Rat.cast_intCast]⟩
 #align exists_rat_lt exists_rat_lt
 -/
 
@@ -310,7 +310,7 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   refine' ⟨(z + 1 : ℤ) / n, _⟩
   have n0' := (inv_pos.2 (sub_pos.2 h)).trans nh
   have n0 := Nat.cast_pos.1 n0'
-  rw [Rat.cast_div_of_ne_zero, Rat.cast_coe_nat, Rat.cast_coe_int, div_lt_iff n0']
+  rw [Rat.cast_div_of_ne_zero, Rat.cast_natCast, Rat.cast_intCast, div_lt_iff n0']
   refine' ⟨(lt_div_iff n0').2 <| (lt_iff_lt_of_le_iff_le (zh _)).1 (lt_add_one _), _⟩
   rw [Int.cast_add, Int.cast_one]
   refine' lt_of_le_of_lt (add_le_add_right ((zh _).1 le_rfl) _) _
@@ -427,7 +427,7 @@ theorem archimedean_iff_rat_lt : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x <
       let ⟨q, h⟩ := H x
       ⟨⌈q⌉₊,
         lt_of_lt_of_le h <| by
-          simpa only [Rat.cast_coe_nat] using (@Rat.cast_le α _ _ _).2 (Nat.le_ceil _)⟩⟩
+          simpa only [Rat.cast_natCast] using (@Rat.cast_le α _ _ _).2 (Nat.le_ceil _)⟩⟩
 #align archimedean_iff_rat_lt archimedean_iff_rat_lt
 -/
 
Diff
@@ -47,7 +47,7 @@ class Archimedean (α) [OrderedAddCommMonoid α] : Prop where
 instance OrderDual.archimedean [OrderedAddCommGroup α] [Archimedean α] : Archimedean αᵒᵈ :=
   ⟨fun x y hy =>
     let ⟨n, hn⟩ := Archimedean.arch (-x : α) (neg_pos.2 hy)
-    ⟨n, by rwa [neg_nsmul, neg_le_neg_iff] at hn ⟩⟩
+    ⟨n, by rwa [neg_nsmul, neg_le_neg_iff] at hn⟩⟩
 #align order_dual.archimedean OrderDual.archimedean
 -/
 
@@ -68,7 +68,7 @@ theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
   have h_bdd : ∀ n ∈ s, n ≤ (k : ℤ) := by
     intro n hn
     apply (zsmul_le_zsmul_iff ha).mp
-    rw [← coe_nat_zsmul] at hk 
+    rw [← coe_nat_zsmul] at hk
     exact le_trans hn hk
   obtain ⟨m, hm, hm'⟩ := Int.exists_greatest_of_bdd ⟨k, h_bdd⟩ h_ne
   have hm'' : g < (m + 1) • a := by contrapose! hm'; exact ⟨m + 1, hm', lt_add_one _⟩
@@ -213,7 +213,7 @@ theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
     let n := Nat.find h
     have hn : x < y ^ n := Nat.find_spec h
     have hnp : 0 < n :=
-      pos_iff_ne_zero.2 fun hn0 => by rw [hn0, pow_zero] at hn  <;> exact not_le_of_gt hn hx
+      pos_iff_ne_zero.2 fun hn0 => by rw [hn0, pow_zero] at hn <;> exact not_le_of_gt hn hx
     have hnsp : Nat.pred n + 1 = n := Nat.succ_pred_eq_of_pos hnp
     have hltn : Nat.pred n < n := Nat.pred_lt (ne_of_gt hnp)
     ⟨Nat.pred n, le_of_not_lt (Nat.find_min h hltn), by rwa [hnsp]⟩
@@ -244,7 +244,7 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
       ⟨M, fun m hm =>
         le_of_not_lt fun hlt =>
           not_lt_of_ge (zpow_le_of_le hy.le hlt.le)
-            (lt_of_le_of_lt hm (by rwa [← zpow_coe_nat] at hM ))⟩
+            (lt_of_le_of_lt hm (by rwa [← zpow_coe_nat] at hM))⟩
     let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
     ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
@@ -268,9 +268,9 @@ theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n <
   by
   by_cases y_pos : y ≤ 0
   · use 1; simp only [pow_one]; linarith
-  rw [not_le] at y_pos 
+  rw [not_le] at y_pos
   rcases pow_unbounded_of_one_lt x⁻¹ (one_lt_inv y_pos hy) with ⟨q, hq⟩
-  exact ⟨q, by rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq ⟩
+  exact ⟨q, by rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq⟩
 #align exists_pow_lt_of_lt_one exists_pow_lt_of_lt_one
 -/
 
@@ -283,8 +283,8 @@ theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 <
   rcases exists_nat_pow_near (one_le_inv_iff.2 ⟨xpos, hx⟩) (one_lt_inv_iff.2 ⟨ypos, hy⟩) with
     ⟨n, hn, h'n⟩
   refine' ⟨n, _, _⟩
-  · rwa [inv_pow, inv_lt_inv xpos (pow_pos ypos _)] at h'n 
-  · rwa [inv_pow, inv_le_inv (pow_pos ypos _) xpos] at hn 
+  · rwa [inv_pow, inv_lt_inv xpos (pow_pos ypos _)] at h'n
+  · rwa [inv_pow, inv_le_inv (pow_pos ypos _) xpos] at hn
 #align exists_nat_pow_near_of_lt_one exists_nat_pow_near_of_lt_one
 -/
 
@@ -316,7 +316,7 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   refine' lt_of_le_of_lt (add_le_add_right ((zh _).1 le_rfl) _) _
   rwa [← lt_sub_iff_add_lt', ← sub_mul, ← div_lt_iff' (sub_pos.2 h), one_div]
   · rw [Rat.coe_int_den, Nat.cast_one]; exact one_ne_zero
-  · intro H; rw [Rat.num_natCast, Int.cast_ofNat, Nat.cast_eq_zero] at H ; subst H; cases n0
+  · intro H; rw [Rat.num_natCast, Int.cast_ofNat, Nat.cast_eq_zero] at H; subst H; cases n0
   · rw [Rat.den_natCast, Nat.cast_one]; exact one_ne_zero
 #align exists_rat_btwn exists_rat_btwn
 -/
@@ -387,7 +387,7 @@ variable [LinearOrderedField α]
 theorem archimedean_iff_nat_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x < n :=
   ⟨@exists_nat_gt α _, fun H =>
     ⟨fun x y y0 =>
-      (H (x / y)).imp fun n h => le_of_lt <| by rwa [div_lt_iff y0, ← nsmul_eq_mul] at h ⟩⟩
+      (H (x / y)).imp fun n h => le_of_lt <| by rwa [div_lt_iff y0, ← nsmul_eq_mul] at h⟩⟩
 #align archimedean_iff_nat_lt archimedean_iff_nat_lt
 -/
 
Diff
@@ -237,14 +237,14 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
       ⟨-N,
         le_of_lt
           (by
-            rw [zpow_neg y ↑N, zpow_ofNat]
+            rw [zpow_neg y ↑N, zpow_coe_nat]
             exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN)⟩
     let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy
     have hb : ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b :=
       ⟨M, fun m hm =>
         le_of_not_lt fun hlt =>
           not_lt_of_ge (zpow_le_of_le hy.le hlt.le)
-            (lt_of_le_of_lt hm (by rwa [← zpow_ofNat] at hM ))⟩
+            (lt_of_le_of_lt hm (by rwa [← zpow_coe_nat] at hM ))⟩
     let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
     ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
Diff
@@ -316,8 +316,8 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   refine' lt_of_le_of_lt (add_le_add_right ((zh _).1 le_rfl) _) _
   rwa [← lt_sub_iff_add_lt', ← sub_mul, ← div_lt_iff' (sub_pos.2 h), one_div]
   · rw [Rat.coe_int_den, Nat.cast_one]; exact one_ne_zero
-  · intro H; rw [Rat.coe_nat_num, Int.cast_ofNat, Nat.cast_eq_zero] at H ; subst H; cases n0
-  · rw [Rat.coe_nat_den, Nat.cast_one]; exact one_ne_zero
+  · intro H; rw [Rat.num_natCast, Int.cast_ofNat, Nat.cast_eq_zero] at H ; subst H; cases n0
+  · rw [Rat.den_natCast, Nat.cast_one]; exact one_ne_zero
 #align exists_rat_btwn exists_rat_btwn
 -/
 
Diff
@@ -209,7 +209,14 @@ theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
     ∃ n : ℕ, y ^ n ≤ x ∧ x < y ^ (n + 1) :=
   by
   have h : ∃ n : ℕ, x < y ^ n := pow_unbounded_of_one_lt _ hy
-  classical
+  classical exact
+    let n := Nat.find h
+    have hn : x < y ^ n := Nat.find_spec h
+    have hnp : 0 < n :=
+      pos_iff_ne_zero.2 fun hn0 => by rw [hn0, pow_zero] at hn  <;> exact not_le_of_gt hn hx
+    have hnsp : Nat.pred n + 1 = n := Nat.succ_pred_eq_of_pos hnp
+    have hltn : Nat.pred n < n := Nat.pred_lt (ne_of_gt hnp)
+    ⟨Nat.pred n, le_of_not_lt (Nat.find_min h hltn), by rwa [hnsp]⟩
 #align exists_nat_pow_near exists_nat_pow_near
 -/
 
@@ -224,7 +231,22 @@ variable [LinearOrderedField α] [Archimedean α] {x y ε : α}
 another `y` greater than one. This is the same as `exists_mem_Ioc_zpow`,
 but with ≤ and < the other way around. -/
 theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (y ^ n) (y ^ (n + 1)) := by
-  classical
+  classical exact
+    let ⟨N, hN⟩ := pow_unbounded_of_one_lt x⁻¹ hy
+    have he : ∃ m : ℤ, y ^ m ≤ x :=
+      ⟨-N,
+        le_of_lt
+          (by
+            rw [zpow_neg y ↑N, zpow_ofNat]
+            exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN)⟩
+    let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy
+    have hb : ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b :=
+      ⟨M, fun m hm =>
+        le_of_not_lt fun hlt =>
+          not_lt_of_ge (zpow_le_of_le hy.le hlt.le)
+            (lt_of_le_of_lt hm (by rwa [← zpow_ofNat] at hM ))⟩
+    let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
+    ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
 -/
 
Diff
@@ -209,14 +209,7 @@ theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
     ∃ n : ℕ, y ^ n ≤ x ∧ x < y ^ (n + 1) :=
   by
   have h : ∃ n : ℕ, x < y ^ n := pow_unbounded_of_one_lt _ hy
-  classical exact
-    let n := Nat.find h
-    have hn : x < y ^ n := Nat.find_spec h
-    have hnp : 0 < n :=
-      pos_iff_ne_zero.2 fun hn0 => by rw [hn0, pow_zero] at hn  <;> exact not_le_of_gt hn hx
-    have hnsp : Nat.pred n + 1 = n := Nat.succ_pred_eq_of_pos hnp
-    have hltn : Nat.pred n < n := Nat.pred_lt (ne_of_gt hnp)
-    ⟨Nat.pred n, le_of_not_lt (Nat.find_min h hltn), by rwa [hnsp]⟩
+  classical
 #align exists_nat_pow_near exists_nat_pow_near
 -/
 
@@ -231,22 +224,7 @@ variable [LinearOrderedField α] [Archimedean α] {x y ε : α}
 another `y` greater than one. This is the same as `exists_mem_Ioc_zpow`,
 but with ≤ and < the other way around. -/
 theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (y ^ n) (y ^ (n + 1)) := by
-  classical exact
-    let ⟨N, hN⟩ := pow_unbounded_of_one_lt x⁻¹ hy
-    have he : ∃ m : ℤ, y ^ m ≤ x :=
-      ⟨-N,
-        le_of_lt
-          (by
-            rw [zpow_neg y ↑N, zpow_ofNat]
-            exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN)⟩
-    let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy
-    have hb : ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b :=
-      ⟨M, fun m hm =>
-        le_of_not_lt fun hlt =>
-          not_lt_of_ge (zpow_le_of_le hy.le hlt.le)
-            (lt_of_le_of_lt hm (by rwa [← zpow_ofNat] at hM ))⟩
-    let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
-    ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
+  classical
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
 -/
 
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro
 -/
-import Mathbin.Data.Int.LeastGreatest
-import Mathbin.Data.Rat.Floor
+import Data.Int.LeastGreatest
+import Data.Rat.Floor
 
 #align_import algebra.order.archimedean from "leanprover-community/mathlib"@"be24ec5de6701447e5df5ca75400ffee19d65659"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro
-
-! This file was ported from Lean 3 source module algebra.order.archimedean
-! leanprover-community/mathlib commit be24ec5de6701447e5df5ca75400ffee19d65659
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Int.LeastGreatest
 import Mathbin.Data.Rat.Floor
 
+#align_import algebra.order.archimedean from "leanprover-community/mathlib"@"be24ec5de6701447e5df5ca75400ffee19d65659"
+
 /-!
 # Archimedean groups and fields.
 
Diff
@@ -58,6 +58,7 @@ section LinearOrderedAddCommGroup
 
 variable [LinearOrderedAddCommGroup α] [Archimedean α]
 
+#print existsUnique_zsmul_near_of_pos /-
 /-- An archimedean decidable linearly ordered `add_comm_group` has a version of the floor: for
 `a > 0`, any `g` in the group lies between some two consecutive multiples of `a`. -/
 theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
@@ -78,26 +79,34 @@ theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
   rw [← zsmul_lt_zsmul_iff ha]
   exact lt_of_le_of_lt hm hn.2
 #align exists_unique_zsmul_near_of_pos existsUnique_zsmul_near_of_pos
+-/
 
+#print existsUnique_zsmul_near_of_pos' /-
 theorem existsUnique_zsmul_near_of_pos' {a : α} (ha : 0 < a) (g : α) :
     ∃! k : ℤ, 0 ≤ g - k • a ∧ g - k • a < a := by
   simpa only [sub_nonneg, add_zsmul, one_zsmul, sub_lt_iff_lt_add'] using
     existsUnique_zsmul_near_of_pos ha g
 #align exists_unique_zsmul_near_of_pos' existsUnique_zsmul_near_of_pos'
+-/
 
+#print existsUnique_sub_zsmul_mem_Ico /-
 theorem existsUnique_sub_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
     ∃! m : ℤ, b - m • a ∈ Set.Ico c (c + a) := by
   simpa only [mem_Ico, le_sub_iff_add_le, zero_add, add_comm c, sub_lt_iff_lt_add', add_assoc] using
     existsUnique_zsmul_near_of_pos' ha (b - c)
 #align exists_unique_sub_zsmul_mem_Ico existsUnique_sub_zsmul_mem_Ico
+-/
 
+#print existsUnique_add_zsmul_mem_Ico /-
 theorem existsUnique_add_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
     ∃! m : ℤ, b + m • a ∈ Set.Ico c (c + a) :=
   (Equiv.neg ℤ).Bijective.existsUnique_iff.2 <| by
     simpa only [Equiv.neg_apply, neg_zsmul, ← sub_eq_add_neg] using
       existsUnique_sub_zsmul_mem_Ico ha b c
 #align exists_unique_add_zsmul_mem_Ico existsUnique_add_zsmul_mem_Ico
+-/
 
+#print existsUnique_add_zsmul_mem_Ioc /-
 theorem existsUnique_add_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
     ∃! m : ℤ, b + m • a ∈ Set.Ioc c (c + a) :=
   (Equiv.addRight (1 : ℤ)).Bijective.existsUnique_iff.2 <| by
@@ -105,13 +114,16 @@ theorem existsUnique_add_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
       mem_Ioc, Equiv.coe_addRight, add_le_add_iff_right] using
       existsUnique_zsmul_near_of_pos ha (c - b)
 #align exists_unique_add_zsmul_mem_Ioc existsUnique_add_zsmul_mem_Ioc
+-/
 
+#print existsUnique_sub_zsmul_mem_Ioc /-
 theorem existsUnique_sub_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
     ∃! m : ℤ, b - m • a ∈ Set.Ioc c (c + a) :=
   (Equiv.neg ℤ).Bijective.existsUnique_iff.2 <| by
     simpa only [Equiv.neg_apply, neg_zsmul, sub_neg_eq_add] using
       existsUnique_add_zsmul_mem_Ioc ha b c
 #align exists_unique_sub_zsmul_mem_Ioc existsUnique_sub_zsmul_mem_Ioc
+-/
 
 end LinearOrderedAddCommGroup
 
@@ -130,6 +142,7 @@ theorem exists_nat_ge [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃
 #align exists_nat_ge exists_nat_ge
 -/
 
+#print add_one_pow_unbounded_of_pos /-
 theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α] (x : α) {y : α}
     (hy : 0 < y) : ∃ n : ℕ, x < (y + 1) ^ n :=
   have : 0 ≤ 1 + y := add_nonneg zero_le_one hy.le
@@ -144,25 +157,33 @@ theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α]
           (add_nonneg zero_le_two hy.le) _)
       _ = (y + 1) ^ n := by rw [add_comm]⟩
 #align add_one_pow_unbounded_of_pos add_one_pow_unbounded_of_pos
+-/
 
 section StrictOrderedRing
 
 variable [StrictOrderedRing α] [Archimedean α]
 
+#print pow_unbounded_of_one_lt /-
 theorem pow_unbounded_of_one_lt (x : α) {y : α} (hy1 : 1 < y) : ∃ n : ℕ, x < y ^ n :=
   sub_add_cancel y 1 ▸ add_one_pow_unbounded_of_pos _ (sub_pos.2 hy1)
 #align pow_unbounded_of_one_lt pow_unbounded_of_one_lt
+-/
 
+#print exists_int_gt /-
 theorem exists_int_gt (x : α) : ∃ n : ℤ, x < n :=
   let ⟨n, h⟩ := exists_nat_gt x
   ⟨n, by rwa [Int.cast_ofNat]⟩
 #align exists_int_gt exists_int_gt
+-/
 
+#print exists_int_lt /-
 theorem exists_int_lt (x : α) : ∃ n : ℤ, (n : α) < x :=
   let ⟨n, h⟩ := exists_int_gt (-x)
   ⟨-n, by rw [Int.cast_neg] <;> exact neg_lt.1 h⟩
 #align exists_int_lt exists_int_lt
+-/
 
+#print exists_floor /-
 theorem exists_floor (x : α) : ∃ fl : ℤ, ∀ z : ℤ, z ≤ fl ↔ (z : α) ≤ x :=
   by
   haveI := Classical.propDecidable
@@ -176,6 +197,7 @@ theorem exists_floor (x : α) : ∃ fl : ℤ, ∀ z : ℤ, z ≤ fl ↔ (z : α)
   cases' h with h₁ h₂
   exact ⟨fun h => le_trans (Int.cast_le.2 h) h₁, h₂ z⟩
 #align exists_floor exists_floor
+-/
 
 end StrictOrderedRing
 
@@ -183,6 +205,7 @@ section LinearOrderedRing
 
 variable [LinearOrderedRing α] [Archimedean α]
 
+#print exists_nat_pow_near /-
 /-- Every x greater than or equal to 1 is between two successive
 natural-number powers of every y greater than one. -/
 theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
@@ -198,6 +221,7 @@ theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
     have hltn : Nat.pred n < n := Nat.pred_lt (ne_of_gt hnp)
     ⟨Nat.pred n, le_of_not_lt (Nat.find_min h hltn), by rwa [hnsp]⟩
 #align exists_nat_pow_near exists_nat_pow_near
+-/
 
 end LinearOrderedRing
 
@@ -205,6 +229,7 @@ section LinearOrderedField
 
 variable [LinearOrderedField α] [Archimedean α] {x y ε : α}
 
+#print exists_mem_Ico_zpow /-
 /-- Every positive `x` is between two successive integer powers of
 another `y` greater than one. This is the same as `exists_mem_Ioc_zpow`,
 but with ≤ and < the other way around. -/
@@ -226,7 +251,9 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
     let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
     ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
+-/
 
+#print exists_mem_Ioc_zpow /-
 /-- Every positive `x` is between two successive integer powers of
 another `y` greater than one. This is the same as `exists_mem_Ico_zpow`,
 but with ≤ and < the other way around. -/
@@ -236,7 +263,9 @@ theorem exists_mem_Ioc_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ioc (
   ⟨-(m + 1), by rwa [zpow_neg, inv_lt (zpow_pos_of_pos hyp _) hx], by
     rwa [neg_add, neg_add_cancel_right, zpow_neg, le_inv hx (zpow_pos_of_pos hyp _)]⟩
 #align exists_mem_Ioc_zpow exists_mem_Ioc_zpow
+-/
 
+#print exists_pow_lt_of_lt_one /-
 /-- For any `y < 1` and any positive `x`, there exists `n : ℕ` with `y ^ n < x`. -/
 theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n < x :=
   by
@@ -246,7 +275,9 @@ theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n <
   rcases pow_unbounded_of_one_lt x⁻¹ (one_lt_inv y_pos hy) with ⟨q, hq⟩
   exact ⟨q, by rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq ⟩
 #align exists_pow_lt_of_lt_one exists_pow_lt_of_lt_one
+-/
 
+#print exists_nat_pow_near_of_lt_one /-
 /-- Given `x` and `y` between `0` and `1`, `x` is between two successive powers of `y`.
 This is the same as `exists_nat_pow_near`, but for elements between `0` and `1` -/
 theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 < y) (hy : y < 1) :
@@ -258,17 +289,23 @@ theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 <
   · rwa [inv_pow, inv_lt_inv xpos (pow_pos ypos _)] at h'n 
   · rwa [inv_pow, inv_le_inv (pow_pos ypos _) xpos] at hn 
 #align exists_nat_pow_near_of_lt_one exists_nat_pow_near_of_lt_one
+-/
 
+#print exists_rat_gt /-
 theorem exists_rat_gt (x : α) : ∃ q : ℚ, x < q :=
   let ⟨n, h⟩ := exists_nat_gt x
   ⟨n, by rwa [Rat.cast_coe_nat]⟩
 #align exists_rat_gt exists_rat_gt
+-/
 
+#print exists_rat_lt /-
 theorem exists_rat_lt (x : α) : ∃ q : ℚ, (q : α) < x :=
   let ⟨n, h⟩ := exists_int_lt x
   ⟨n, by rwa [Rat.cast_coe_int]⟩
 #align exists_rat_lt exists_rat_lt
+-/
 
+#print exists_rat_btwn /-
 theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α) < y :=
   by
   cases' exists_nat_gt (y - x)⁻¹ with n nh
@@ -285,29 +322,39 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   · intro H; rw [Rat.coe_nat_num, Int.cast_ofNat, Nat.cast_eq_zero] at H ; subst H; cases n0
   · rw [Rat.coe_nat_den, Nat.cast_one]; exact one_ne_zero
 #align exists_rat_btwn exists_rat_btwn
+-/
 
+#print le_of_forall_rat_lt_imp_le /-
 theorem le_of_forall_rat_lt_imp_le (h : ∀ q : ℚ, (q : α) < x → (q : α) ≤ y) : x ≤ y :=
   le_of_not_lt fun hyx =>
     let ⟨q, hy, hx⟩ := exists_rat_btwn hyx
     hy.not_le <| h _ hx
 #align le_of_forall_rat_lt_imp_le le_of_forall_rat_lt_imp_le
+-/
 
+#print le_of_forall_lt_rat_imp_le /-
 theorem le_of_forall_lt_rat_imp_le (h : ∀ q : ℚ, y < q → x ≤ q) : x ≤ y :=
   le_of_not_lt fun hyx =>
     let ⟨q, hy, hx⟩ := exists_rat_btwn hyx
     hx.not_le <| h _ hy
 #align le_of_forall_lt_rat_imp_le le_of_forall_lt_rat_imp_le
+-/
 
+#print eq_of_forall_rat_lt_iff_lt /-
 theorem eq_of_forall_rat_lt_iff_lt (h : ∀ q : ℚ, (q : α) < x ↔ (q : α) < y) : x = y :=
   (le_of_forall_rat_lt_imp_le fun q hq => ((h q).1 hq).le).antisymm <|
     le_of_forall_rat_lt_imp_le fun q hq => ((h q).2 hq).le
 #align eq_of_forall_rat_lt_iff_lt eq_of_forall_rat_lt_iff_lt
+-/
 
+#print eq_of_forall_lt_rat_iff_lt /-
 theorem eq_of_forall_lt_rat_iff_lt (h : ∀ q : ℚ, x < q ↔ y < q) : x = y :=
   (le_of_forall_lt_rat_imp_le fun q hq => ((h q).2 hq).le).antisymm <|
     le_of_forall_lt_rat_imp_le fun q hq => ((h q).1 hq).le
 #align eq_of_forall_lt_rat_iff_lt eq_of_forall_lt_rat_iff_lt
+-/
 
+#print exists_nat_one_div_lt /-
 theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1 : α) < ε :=
   by
   cases' exists_nat_gt (1 / ε) with n hn
@@ -317,16 +364,21 @@ theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1
     simp [zero_lt_one]
   · exact n.cast_add_one_pos
 #align exists_nat_one_div_lt exists_nat_one_div_lt
+-/
 
+#print exists_pos_rat_lt /-
 theorem exists_pos_rat_lt {x : α} (x0 : 0 < x) : ∃ q : ℚ, 0 < q ∧ (q : α) < x := by
   simpa only [Rat.cast_pos] using exists_rat_btwn x0
 #align exists_pos_rat_lt exists_pos_rat_lt
+-/
 
+#print exists_rat_near /-
 theorem exists_rat_near (x : α) (ε0 : 0 < ε) : ∃ q : ℚ, |x - q| < ε :=
   let ⟨q, h₁, h₂⟩ :=
     exists_rat_btwn <| ((sub_lt_self_iff x).2 ε0).trans ((lt_add_iff_pos_left x).2 ε0)
   ⟨q, abs_sub_lt_iff.2 ⟨sub_lt_comm.1 h₁, sub_lt_iff_lt_add.2 h₂⟩⟩
 #align exists_rat_near exists_rat_near
+-/
 
 end LinearOrderedField
 
@@ -334,19 +386,24 @@ section LinearOrderedField
 
 variable [LinearOrderedField α]
 
+#print archimedean_iff_nat_lt /-
 theorem archimedean_iff_nat_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x < n :=
   ⟨@exists_nat_gt α _, fun H =>
     ⟨fun x y y0 =>
       (H (x / y)).imp fun n h => le_of_lt <| by rwa [div_lt_iff y0, ← nsmul_eq_mul] at h ⟩⟩
 #align archimedean_iff_nat_lt archimedean_iff_nat_lt
+-/
 
+#print archimedean_iff_nat_le /-
 theorem archimedean_iff_nat_le : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x ≤ n :=
   archimedean_iff_nat_lt.trans
     ⟨fun H x => (H x).imp fun _ => le_of_lt, fun H x =>
       let ⟨n, h⟩ := H x
       ⟨n + 1, lt_of_le_of_lt h (Nat.cast_lt.2 (lt_add_one _))⟩⟩
 #align archimedean_iff_nat_le archimedean_iff_nat_le
+-/
 
+#print archimedean_iff_int_lt /-
 theorem archimedean_iff_int_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x < n :=
   ⟨@exists_int_gt α _, by
     rw [archimedean_iff_nat_lt]
@@ -355,14 +412,18 @@ theorem archimedean_iff_int_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x <
     refine' ⟨n.to_nat, h.trans_le _⟩
     exact_mod_cast Int.self_le_toNat _⟩
 #align archimedean_iff_int_lt archimedean_iff_int_lt
+-/
 
+#print archimedean_iff_int_le /-
 theorem archimedean_iff_int_le : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x ≤ n :=
   archimedean_iff_int_lt.trans
     ⟨fun H x => (H x).imp fun _ => le_of_lt, fun H x =>
       let ⟨n, h⟩ := H x
       ⟨n + 1, lt_of_le_of_lt h (Int.cast_lt.2 (lt_add_one _))⟩⟩
 #align archimedean_iff_int_le archimedean_iff_int_le
+-/
 
+#print archimedean_iff_rat_lt /-
 theorem archimedean_iff_rat_lt : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x < q :=
   ⟨@exists_rat_gt α _, fun H =>
     archimedean_iff_nat_lt.2 fun x =>
@@ -371,13 +432,16 @@ theorem archimedean_iff_rat_lt : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x <
         lt_of_lt_of_le h <| by
           simpa only [Rat.cast_coe_nat] using (@Rat.cast_le α _ _ _).2 (Nat.le_ceil _)⟩⟩
 #align archimedean_iff_rat_lt archimedean_iff_rat_lt
+-/
 
+#print archimedean_iff_rat_le /-
 theorem archimedean_iff_rat_le : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x ≤ q :=
   archimedean_iff_rat_lt.trans
     ⟨fun H x => (H x).imp fun _ => le_of_lt, fun H x =>
       let ⟨n, h⟩ := H x
       ⟨n + 1, lt_of_le_of_lt h (Rat.cast_lt.2 (lt_add_one _))⟩⟩
 #align archimedean_iff_rat_le archimedean_iff_rat_le
+-/
 
 end LinearOrderedField
 
Diff
@@ -142,8 +142,7 @@ theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α]
       _ ≤ (1 + y) ^ n :=
         (one_add_mul_le_pow' (mul_nonneg hy.le hy.le) (mul_nonneg this this)
           (add_nonneg zero_le_two hy.le) _)
-      _ = (y + 1) ^ n := by rw [add_comm]
-      ⟩
+      _ = (y + 1) ^ n := by rw [add_comm]⟩
 #align add_one_pow_unbounded_of_pos add_one_pow_unbounded_of_pos
 
 section StrictOrderedRing
Diff
@@ -63,7 +63,7 @@ variable [LinearOrderedAddCommGroup α] [Archimedean α]
 theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
     ∃! k : ℤ, k • a ≤ g ∧ g < (k + 1) • a :=
   by
-  let s : Set ℤ := { n : ℤ | n • a ≤ g }
+  let s : Set ℤ := {n : ℤ | n • a ≤ g}
   obtain ⟨k, hk : -g ≤ k • a⟩ := Archimedean.arch (-g) ha
   have h_ne : s.nonempty := ⟨-k, by simpa using neg_le_neg hk⟩
   obtain ⟨k, hk⟩ := Archimedean.arch g ha
@@ -191,13 +191,13 @@ theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
   by
   have h : ∃ n : ℕ, x < y ^ n := pow_unbounded_of_one_lt _ hy
   classical exact
-      let n := Nat.find h
-      have hn : x < y ^ n := Nat.find_spec h
-      have hnp : 0 < n :=
-        pos_iff_ne_zero.2 fun hn0 => by rw [hn0, pow_zero] at hn  <;> exact not_le_of_gt hn hx
-      have hnsp : Nat.pred n + 1 = n := Nat.succ_pred_eq_of_pos hnp
-      have hltn : Nat.pred n < n := Nat.pred_lt (ne_of_gt hnp)
-      ⟨Nat.pred n, le_of_not_lt (Nat.find_min h hltn), by rwa [hnsp]⟩
+    let n := Nat.find h
+    have hn : x < y ^ n := Nat.find_spec h
+    have hnp : 0 < n :=
+      pos_iff_ne_zero.2 fun hn0 => by rw [hn0, pow_zero] at hn  <;> exact not_le_of_gt hn hx
+    have hnsp : Nat.pred n + 1 = n := Nat.succ_pred_eq_of_pos hnp
+    have hltn : Nat.pred n < n := Nat.pred_lt (ne_of_gt hnp)
+    ⟨Nat.pred n, le_of_not_lt (Nat.find_min h hltn), by rwa [hnsp]⟩
 #align exists_nat_pow_near exists_nat_pow_near
 
 end LinearOrderedRing
@@ -211,21 +211,21 @@ another `y` greater than one. This is the same as `exists_mem_Ioc_zpow`,
 but with ≤ and < the other way around. -/
 theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (y ^ n) (y ^ (n + 1)) := by
   classical exact
-      let ⟨N, hN⟩ := pow_unbounded_of_one_lt x⁻¹ hy
-      have he : ∃ m : ℤ, y ^ m ≤ x :=
-        ⟨-N,
-          le_of_lt
-            (by
-              rw [zpow_neg y ↑N, zpow_ofNat]
-              exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN)⟩
-      let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy
-      have hb : ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b :=
-        ⟨M, fun m hm =>
-          le_of_not_lt fun hlt =>
-            not_lt_of_ge (zpow_le_of_le hy.le hlt.le)
-              (lt_of_le_of_lt hm (by rwa [← zpow_ofNat] at hM ))⟩
-      let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
-      ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
+    let ⟨N, hN⟩ := pow_unbounded_of_one_lt x⁻¹ hy
+    have he : ∃ m : ℤ, y ^ m ≤ x :=
+      ⟨-N,
+        le_of_lt
+          (by
+            rw [zpow_neg y ↑N, zpow_ofNat]
+            exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN)⟩
+    let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy
+    have hb : ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b :=
+      ⟨M, fun m hm =>
+        le_of_not_lt fun hlt =>
+          not_lt_of_ge (zpow_le_of_le hy.le hlt.le)
+            (lt_of_le_of_lt hm (by rwa [← zpow_ofNat] at hM ))⟩
+    let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
+    ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
 
 /-- Every positive `x` is between two successive integer powers of
Diff
@@ -50,7 +50,7 @@ class Archimedean (α) [OrderedAddCommMonoid α] : Prop where
 instance OrderDual.archimedean [OrderedAddCommGroup α] [Archimedean α] : Archimedean αᵒᵈ :=
   ⟨fun x y hy =>
     let ⟨n, hn⟩ := Archimedean.arch (-x : α) (neg_pos.2 hy)
-    ⟨n, by rwa [neg_nsmul, neg_le_neg_iff] at hn⟩⟩
+    ⟨n, by rwa [neg_nsmul, neg_le_neg_iff] at hn ⟩⟩
 #align order_dual.archimedean OrderDual.archimedean
 -/
 
@@ -70,7 +70,7 @@ theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
   have h_bdd : ∀ n ∈ s, n ≤ (k : ℤ) := by
     intro n hn
     apply (zsmul_le_zsmul_iff ha).mp
-    rw [← coe_nat_zsmul] at hk
+    rw [← coe_nat_zsmul] at hk 
     exact le_trans hn hk
   obtain ⟨m, hm, hm'⟩ := Int.exists_greatest_of_bdd ⟨k, h_bdd⟩ h_ne
   have hm'' : g < (m + 1) • a := by contrapose! hm'; exact ⟨m + 1, hm', lt_add_one _⟩
@@ -194,7 +194,7 @@ theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
       let n := Nat.find h
       have hn : x < y ^ n := Nat.find_spec h
       have hnp : 0 < n :=
-        pos_iff_ne_zero.2 fun hn0 => by rw [hn0, pow_zero] at hn <;> exact not_le_of_gt hn hx
+        pos_iff_ne_zero.2 fun hn0 => by rw [hn0, pow_zero] at hn  <;> exact not_le_of_gt hn hx
       have hnsp : Nat.pred n + 1 = n := Nat.succ_pred_eq_of_pos hnp
       have hltn : Nat.pred n < n := Nat.pred_lt (ne_of_gt hnp)
       ⟨Nat.pred n, le_of_not_lt (Nat.find_min h hltn), by rwa [hnsp]⟩
@@ -223,7 +223,7 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
         ⟨M, fun m hm =>
           le_of_not_lt fun hlt =>
             not_lt_of_ge (zpow_le_of_le hy.le hlt.le)
-              (lt_of_le_of_lt hm (by rwa [← zpow_ofNat] at hM))⟩
+              (lt_of_le_of_lt hm (by rwa [← zpow_ofNat] at hM ))⟩
       let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
       ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
@@ -243,9 +243,9 @@ theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n <
   by
   by_cases y_pos : y ≤ 0
   · use 1; simp only [pow_one]; linarith
-  rw [not_le] at y_pos
+  rw [not_le] at y_pos 
   rcases pow_unbounded_of_one_lt x⁻¹ (one_lt_inv y_pos hy) with ⟨q, hq⟩
-  exact ⟨q, by rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq⟩
+  exact ⟨q, by rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq ⟩
 #align exists_pow_lt_of_lt_one exists_pow_lt_of_lt_one
 
 /-- Given `x` and `y` between `0` and `1`, `x` is between two successive powers of `y`.
@@ -256,8 +256,8 @@ theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 <
   rcases exists_nat_pow_near (one_le_inv_iff.2 ⟨xpos, hx⟩) (one_lt_inv_iff.2 ⟨ypos, hy⟩) with
     ⟨n, hn, h'n⟩
   refine' ⟨n, _, _⟩
-  · rwa [inv_pow, inv_lt_inv xpos (pow_pos ypos _)] at h'n
-  · rwa [inv_pow, inv_le_inv (pow_pos ypos _) xpos] at hn
+  · rwa [inv_pow, inv_lt_inv xpos (pow_pos ypos _)] at h'n 
+  · rwa [inv_pow, inv_le_inv (pow_pos ypos _) xpos] at hn 
 #align exists_nat_pow_near_of_lt_one exists_nat_pow_near_of_lt_one
 
 theorem exists_rat_gt (x : α) : ∃ q : ℚ, x < q :=
@@ -283,7 +283,7 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   refine' lt_of_le_of_lt (add_le_add_right ((zh _).1 le_rfl) _) _
   rwa [← lt_sub_iff_add_lt', ← sub_mul, ← div_lt_iff' (sub_pos.2 h), one_div]
   · rw [Rat.coe_int_den, Nat.cast_one]; exact one_ne_zero
-  · intro H; rw [Rat.coe_nat_num, Int.cast_ofNat, Nat.cast_eq_zero] at H; subst H; cases n0
+  · intro H; rw [Rat.coe_nat_num, Int.cast_ofNat, Nat.cast_eq_zero] at H ; subst H; cases n0
   · rw [Rat.coe_nat_den, Nat.cast_one]; exact one_ne_zero
 #align exists_rat_btwn exists_rat_btwn
 
@@ -338,7 +338,7 @@ variable [LinearOrderedField α]
 theorem archimedean_iff_nat_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x < n :=
   ⟨@exists_nat_gt α _, fun H =>
     ⟨fun x y y0 =>
-      (H (x / y)).imp fun n h => le_of_lt <| by rwa [div_lt_iff y0, ← nsmul_eq_mul] at h⟩⟩
+      (H (x / y)).imp fun n h => le_of_lt <| by rwa [div_lt_iff y0, ← nsmul_eq_mul] at h ⟩⟩
 #align archimedean_iff_nat_lt archimedean_iff_nat_lt
 
 theorem archimedean_iff_nat_le : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x ≤ n :=
Diff
@@ -115,16 +115,20 @@ theorem existsUnique_sub_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
 
 end LinearOrderedAddCommGroup
 
+#print exists_nat_gt /-
 theorem exists_nat_gt [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x < n :=
   let ⟨n, h⟩ := Archimedean.arch x zero_lt_one
   ⟨n + 1, lt_of_le_of_lt (by rwa [← nsmul_one]) (Nat.cast_lt.2 (Nat.lt_succ_self _))⟩
 #align exists_nat_gt exists_nat_gt
+-/
 
+#print exists_nat_ge /-
 theorem exists_nat_ge [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x ≤ n :=
   by
   nontriviality α
   exact (exists_nat_gt x).imp fun n => le_of_lt
 #align exists_nat_ge exists_nat_ge
+-/
 
 theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α] (x : α) {y : α}
     (hy : 0 < y) : ∃ n : ℕ, x < (y + 1) ^ n :=
Diff
@@ -58,12 +58,6 @@ section LinearOrderedAddCommGroup
 
 variable [LinearOrderedAddCommGroup α] [Archimedean α]
 
-/- warning: exists_unique_zsmul_near_of_pos -> existsUnique_zsmul_near_of_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (g : α), ExistsUnique.{1} Int (fun (k : Int) => And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) k a) g) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) g (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) k (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) a))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (g : α), ExistsUnique.{1} Int (fun (k : Int) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) k a) g) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) g (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) k (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) a))))
-Case conversion may be inaccurate. Consider using '#align exists_unique_zsmul_near_of_pos existsUnique_zsmul_near_of_posₓ'. -/
 /-- An archimedean decidable linearly ordered `add_comm_group` has a version of the floor: for
 `a > 0`, any `g` in the group lies between some two consecutive multiples of `a`. -/
 theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
@@ -85,36 +79,18 @@ theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
   exact lt_of_le_of_lt hm hn.2
 #align exists_unique_zsmul_near_of_pos existsUnique_zsmul_near_of_pos
 
-/- warning: exists_unique_zsmul_near_of_pos' -> existsUnique_zsmul_near_of_pos' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (g : α), ExistsUnique.{1} Int (fun (k : Int) => And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) g (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) k a))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) g (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) k a)) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (g : α), ExistsUnique.{1} Int (fun (k : Int) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) g (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) k a))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) g (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) k a)) a)))
-Case conversion may be inaccurate. Consider using '#align exists_unique_zsmul_near_of_pos' existsUnique_zsmul_near_of_pos'ₓ'. -/
 theorem existsUnique_zsmul_near_of_pos' {a : α} (ha : 0 < a) (g : α) :
     ∃! k : ℤ, 0 ≤ g - k • a ∧ g - k • a < a := by
   simpa only [sub_nonneg, add_zsmul, one_zsmul, sub_lt_iff_lt_add'] using
     existsUnique_zsmul_near_of_pos ha g
 #align exists_unique_zsmul_near_of_pos' existsUnique_zsmul_near_of_pos'
 
-/- warning: exists_unique_sub_zsmul_mem_Ico -> existsUnique_sub_zsmul_mem_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) m a)) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
-Case conversion may be inaccurate. Consider using '#align exists_unique_sub_zsmul_mem_Ico existsUnique_sub_zsmul_mem_Icoₓ'. -/
 theorem existsUnique_sub_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
     ∃! m : ℤ, b - m • a ∈ Set.Ico c (c + a) := by
   simpa only [mem_Ico, le_sub_iff_add_le, zero_add, add_comm c, sub_lt_iff_lt_add', add_assoc] using
     existsUnique_zsmul_near_of_pos' ha (b - c)
 #align exists_unique_sub_zsmul_mem_Ico existsUnique_sub_zsmul_mem_Ico
 
-/- warning: exists_unique_add_zsmul_mem_Ico -> existsUnique_add_zsmul_mem_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) b (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) m a)) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
-Case conversion may be inaccurate. Consider using '#align exists_unique_add_zsmul_mem_Ico existsUnique_add_zsmul_mem_Icoₓ'. -/
 theorem existsUnique_add_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
     ∃! m : ℤ, b + m • a ∈ Set.Ico c (c + a) :=
   (Equiv.neg ℤ).Bijective.existsUnique_iff.2 <| by
@@ -122,12 +98,6 @@ theorem existsUnique_add_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
       existsUnique_sub_zsmul_mem_Ico ha b c
 #align exists_unique_add_zsmul_mem_Ico existsUnique_add_zsmul_mem_Ico
 
-/- warning: exists_unique_add_zsmul_mem_Ioc -> existsUnique_add_zsmul_mem_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) b (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) m a)) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
-Case conversion may be inaccurate. Consider using '#align exists_unique_add_zsmul_mem_Ioc existsUnique_add_zsmul_mem_Iocₓ'. -/
 theorem existsUnique_add_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
     ∃! m : ℤ, b + m • a ∈ Set.Ioc c (c + a) :=
   (Equiv.addRight (1 : ℤ)).Bijective.existsUnique_iff.2 <| by
@@ -136,12 +106,6 @@ theorem existsUnique_add_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
       existsUnique_zsmul_near_of_pos ha (c - b)
 #align exists_unique_add_zsmul_mem_Ioc existsUnique_add_zsmul_mem_Ioc
 
-/- warning: exists_unique_sub_zsmul_mem_Ioc -> existsUnique_sub_zsmul_mem_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) m a)) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
-Case conversion may be inaccurate. Consider using '#align exists_unique_sub_zsmul_mem_Ioc existsUnique_sub_zsmul_mem_Iocₓ'. -/
 theorem existsUnique_sub_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
     ∃! m : ℤ, b - m • a ∈ Set.Ioc c (c + a) :=
   (Equiv.neg ℤ).Bijective.existsUnique_iff.2 <| by
@@ -151,35 +115,17 @@ theorem existsUnique_sub_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
 
 end LinearOrderedAddCommGroup
 
-/- warning: exists_nat_gt -> exists_nat_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α _inst_1)))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))))) n))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α _inst_1))) x (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)) n))
-Case conversion may be inaccurate. Consider using '#align exists_nat_gt exists_nat_gtₓ'. -/
 theorem exists_nat_gt [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x < n :=
   let ⟨n, h⟩ := Archimedean.arch x zero_lt_one
   ⟨n + 1, lt_of_le_of_lt (by rwa [← nsmul_one]) (Nat.cast_lt.2 (Nat.lt_succ_self _))⟩
 #align exists_nat_gt exists_nat_gt
 
-/- warning: exists_nat_ge -> exists_nat_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α _inst_1)))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))))) n))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α _inst_1))) x (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)) n))
-Case conversion may be inaccurate. Consider using '#align exists_nat_ge exists_nat_geₓ'. -/
 theorem exists_nat_ge [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x ≤ n :=
   by
   nontriviality α
   exact (exists_nat_gt x).imp fun n => le_of_lt
 #align exists_nat_ge exists_nat_ge
 
-/- warning: add_one_pow_unbounded_of_pos -> add_one_pow_unbounded_of_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toHasAdd.{u1} α (NonUnitalNonAssocSemiring.toDistrib.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))))))) n)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α _inst_1))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toAdd.{u1} α (NonUnitalNonAssocSemiring.toDistrib.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))) n)))
-Case conversion may be inaccurate. Consider using '#align add_one_pow_unbounded_of_pos add_one_pow_unbounded_of_posₓ'. -/
 theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α] (x : α) {y : α}
     (hy : 0 < y) : ∃ n : ℕ, x < (y + 1) ^ n :=
   have : 0 ≤ 1 + y := add_nonneg zero_le_one hy.le
@@ -200,44 +146,20 @@ section StrictOrderedRing
 
 variable [StrictOrderedRing α] [Archimedean α]
 
-/- warning: pow_unbounded_of_one_lt -> pow_unbounded_of_one_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))) y n)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))))) y n)))
-Case conversion may be inaccurate. Consider using '#align pow_unbounded_of_one_lt pow_unbounded_of_one_ltₓ'. -/
 theorem pow_unbounded_of_one_lt (x : α) {y : α} (hy1 : 1 < y) : ∃ n : ℕ, x < y ^ n :=
   sub_add_cancel y 1 ▸ add_one_pow_unbounded_of_pos _ (sub_pos.2 hy1)
 #align pow_unbounded_of_one_lt pow_unbounded_of_one_lt
 
-/- warning: exists_int_gt -> exists_int_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) n))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) x (Int.cast.{u1} α (Ring.toIntCast.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)) n))
-Case conversion may be inaccurate. Consider using '#align exists_int_gt exists_int_gtₓ'. -/
 theorem exists_int_gt (x : α) : ∃ n : ℤ, x < n :=
   let ⟨n, h⟩ := exists_nat_gt x
   ⟨n, by rwa [Int.cast_ofNat]⟩
 #align exists_int_gt exists_int_gt
 
-/- warning: exists_int_lt -> exists_int_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) n) x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (Int.cast.{u1} α (Ring.toIntCast.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)) n) x)
-Case conversion may be inaccurate. Consider using '#align exists_int_lt exists_int_ltₓ'. -/
 theorem exists_int_lt (x : α) : ∃ n : ℤ, (n : α) < x :=
   let ⟨n, h⟩ := exists_int_gt (-x)
   ⟨-n, by rw [Int.cast_neg] <;> exact neg_lt.1 h⟩
 #align exists_int_lt exists_int_lt
 
-/- warning: exists_floor -> exists_floor is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (fl : Int) => forall (z : Int), Iff (LE.le.{0} Int Int.hasLe z fl) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) z) x))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (fl : Int) => forall (z : Int), Iff (LE.le.{0} Int Int.instLEInt z fl) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (Int.cast.{u1} α (Ring.toIntCast.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)) z) x))
-Case conversion may be inaccurate. Consider using '#align exists_floor exists_floorₓ'. -/
 theorem exists_floor (x : α) : ∃ fl : ℤ, ∀ z : ℤ, z ≤ fl ↔ (z : α) ≤ x :=
   by
   haveI := Classical.propDecidable
@@ -258,12 +180,6 @@ section LinearOrderedRing
 
 variable [LinearOrderedRing α] [Archimedean α]
 
-/- warning: exists_nat_pow_near -> exists_nat_pow_near is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) x) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y n) x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1)))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1)))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))))) y n) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
-Case conversion may be inaccurate. Consider using '#align exists_nat_pow_near exists_nat_pow_nearₓ'. -/
 /-- Every x greater than or equal to 1 is between two successive
 natural-number powers of every y greater than one. -/
 theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
@@ -286,12 +202,6 @@ section LinearOrderedField
 
 variable [LinearOrderedField α] [Archimedean α] {x y ε : α}
 
-/- warning: exists_mem_Ico_zpow -> exists_mem_Ico_zpow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) n (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
-Case conversion may be inaccurate. Consider using '#align exists_mem_Ico_zpow exists_mem_Ico_zpowₓ'. -/
 /-- Every positive `x` is between two successive integer powers of
 another `y` greater than one. This is the same as `exists_mem_Ioc_zpow`,
 but with ≤ and < the other way around. -/
@@ -314,12 +224,6 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
       ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
 
-/- warning: exists_mem_Ioc_zpow -> exists_mem_Ioc_zpow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) n (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
-Case conversion may be inaccurate. Consider using '#align exists_mem_Ioc_zpow exists_mem_Ioc_zpowₓ'. -/
 /-- Every positive `x` is between two successive integer powers of
 another `y` greater than one. This is the same as `exists_mem_Ico_zpow`,
 but with ≤ and < the other way around. -/
@@ -330,12 +234,6 @@ theorem exists_mem_Ioc_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ioc (
     rwa [neg_add, neg_add_cancel_right, zpow_neg, le_inv hx (zpow_pos_of_pos hyp _)]⟩
 #align exists_mem_Ioc_zpow exists_mem_Ioc_zpow
 
-/- warning: exists_pow_lt_of_lt_one -> exists_pow_lt_of_lt_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n) x))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y n) x))
-Case conversion may be inaccurate. Consider using '#align exists_pow_lt_of_lt_one exists_pow_lt_of_lt_oneₓ'. -/
 /-- For any `y < 1` and any positive `x`, there exists `n : ℕ` with `y ^ n < x`. -/
 theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n < x :=
   by
@@ -346,12 +244,6 @@ theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n <
   exact ⟨q, by rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq⟩
 #align exists_pow_lt_of_lt_one exists_pow_lt_of_lt_one
 
-/- warning: exists_nat_pow_near_of_lt_one -> exists_nat_pow_near_of_lt_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) y) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y n))))
-Case conversion may be inaccurate. Consider using '#align exists_nat_pow_near_of_lt_one exists_nat_pow_near_of_lt_oneₓ'. -/
 /-- Given `x` and `y` between `0` and `1`, `x` is between two successive powers of `y`.
 This is the same as `exists_nat_pow_near`, but for elements between `0` and `1` -/
 theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 < y) (hy : y < 1) :
@@ -364,34 +256,16 @@ theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 <
   · rwa [inv_pow, inv_le_inv (pow_pos ypos _) xpos] at hn
 #align exists_nat_pow_near_of_lt_one exists_nat_pow_near_of_lt_one
 
-/- warning: exists_rat_gt -> exists_rat_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))
-Case conversion may be inaccurate. Consider using '#align exists_rat_gt exists_rat_gtₓ'. -/
 theorem exists_rat_gt (x : α) : ∃ q : ℚ, x < q :=
   let ⟨n, h⟩ := exists_nat_gt x
   ⟨n, by rwa [Rat.cast_coe_nat]⟩
 #align exists_rat_gt exists_rat_gt
 
-/- warning: exists_rat_lt -> exists_rat_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x)
-Case conversion may be inaccurate. Consider using '#align exists_rat_lt exists_rat_ltₓ'. -/
 theorem exists_rat_lt (x : α) : ∃ q : ℚ, (q : α) < x :=
   let ⟨n, h⟩ := exists_int_lt x
   ⟨n, by rwa [Rat.cast_coe_int]⟩
 #align exists_rat_lt exists_rat_lt
 
-/- warning: exists_rat_btwn -> exists_rat_btwn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)))
-Case conversion may be inaccurate. Consider using '#align exists_rat_btwn exists_rat_btwnₓ'. -/
 theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α) < y :=
   by
   cases' exists_nat_gt (y - x)⁻¹ with n nh
@@ -409,58 +283,28 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   · rw [Rat.coe_nat_den, Nat.cast_one]; exact one_ne_zero
 #align exists_rat_btwn exists_rat_btwn
 
-/- warning: le_of_forall_rat_lt_imp_le -> le_of_forall_rat_lt_imp_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
-Case conversion may be inaccurate. Consider using '#align le_of_forall_rat_lt_imp_le le_of_forall_rat_lt_imp_leₓ'. -/
 theorem le_of_forall_rat_lt_imp_le (h : ∀ q : ℚ, (q : α) < x → (q : α) ≤ y) : x ≤ y :=
   le_of_not_lt fun hyx =>
     let ⟨q, hy, hx⟩ := exists_rat_btwn hyx
     hy.not_le <| h _ hx
 #align le_of_forall_rat_lt_imp_le le_of_forall_rat_lt_imp_le
 
-/- warning: le_of_forall_lt_rat_imp_le -> le_of_forall_lt_rat_imp_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
-Case conversion may be inaccurate. Consider using '#align le_of_forall_lt_rat_imp_le le_of_forall_lt_rat_imp_leₓ'. -/
 theorem le_of_forall_lt_rat_imp_le (h : ∀ q : ℚ, y < q → x ≤ q) : x ≤ y :=
   le_of_not_lt fun hyx =>
     let ⟨q, hy, hx⟩ := exists_rat_btwn hyx
     hx.not_le <| h _ hy
 #align le_of_forall_lt_rat_imp_le le_of_forall_lt_rat_imp_le
 
-/- warning: eq_of_forall_rat_lt_iff_lt -> eq_of_forall_rat_lt_iff_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)) -> (Eq.{succ u1} α x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)) -> (Eq.{succ u1} α x y)
-Case conversion may be inaccurate. Consider using '#align eq_of_forall_rat_lt_iff_lt eq_of_forall_rat_lt_iff_ltₓ'. -/
 theorem eq_of_forall_rat_lt_iff_lt (h : ∀ q : ℚ, (q : α) < x ↔ (q : α) < y) : x = y :=
   (le_of_forall_rat_lt_imp_le fun q hq => ((h q).1 hq).le).antisymm <|
     le_of_forall_rat_lt_imp_le fun q hq => ((h q).2 hq).le
 #align eq_of_forall_rat_lt_iff_lt eq_of_forall_rat_lt_iff_lt
 
-/- warning: eq_of_forall_lt_rat_iff_lt -> eq_of_forall_lt_rat_iff_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) -> (Eq.{succ u1} α x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) -> (Eq.{succ u1} α x y)
-Case conversion may be inaccurate. Consider using '#align eq_of_forall_lt_rat_iff_lt eq_of_forall_lt_rat_iff_ltₓ'. -/
 theorem eq_of_forall_lt_rat_iff_lt (h : ∀ q : ℚ, x < q ↔ y < q) : x = y :=
   (le_of_forall_lt_rat_imp_le fun q hq => ((h q).2 hq).le).antisymm <|
     le_of_forall_lt_rat_imp_le fun q hq => ((h q).1 hq).le
 #align eq_of_forall_lt_rat_iff_lt eq_of_forall_lt_rat_iff_lt
 
-/- warning: exists_nat_one_div_lt -> exists_nat_one_div_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toHasAdd.{u1} α (Ring.toDistrib.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) ε))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toAdd.{u1} α (NonUnitalNonAssocSemiring.toDistrib.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))) ε))
-Case conversion may be inaccurate. Consider using '#align exists_nat_one_div_lt exists_nat_one_div_ltₓ'. -/
 theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1 : α) < ε :=
   by
   cases' exists_nat_gt (1 / ε) with n hn
@@ -471,22 +315,10 @@ theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1
   · exact n.cast_add_one_pos
 #align exists_nat_one_div_lt exists_nat_one_div_lt
 
-/- warning: exists_pos_rat_lt -> exists_pos_rat_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{0} Rat Rat.hasLt (OfNat.ofNat.{0} Rat 0 (OfNat.mk.{0} Rat 0 (Zero.zero.{0} Rat Rat.hasZero))) q) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 (OfNat.ofNat.{0} Rat 0 (Rat.instOfNatRat 0)) q) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x)))
-Case conversion may be inaccurate. Consider using '#align exists_pos_rat_lt exists_pos_rat_ltₓ'. -/
 theorem exists_pos_rat_lt {x : α} (x0 : 0 < x) : ∃ q : ℚ, 0 < q ∧ (q : α) < x := by
   simpa only [Rat.cast_pos] using exists_rat_btwn x0
 #align exists_pos_rat_lt exists_pos_rat_lt
 
-/- warning: exists_rat_near -> exists_rat_near is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) ε))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) ε))
-Case conversion may be inaccurate. Consider using '#align exists_rat_near exists_rat_nearₓ'. -/
 theorem exists_rat_near (x : α) (ε0 : 0 < ε) : ∃ q : ℚ, |x - q| < ε :=
   let ⟨q, h₁, h₂⟩ :=
     exists_rat_btwn <| ((sub_lt_self_iff x).2 ε0).trans ((lt_add_iff_pos_left x).2 ε0)
@@ -499,24 +331,12 @@ section LinearOrderedField
 
 variable [LinearOrderedField α]
 
-/- warning: archimedean_iff_nat_lt -> archimedean_iff_nat_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n)))
-Case conversion may be inaccurate. Consider using '#align archimedean_iff_nat_lt archimedean_iff_nat_ltₓ'. -/
 theorem archimedean_iff_nat_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x < n :=
   ⟨@exists_nat_gt α _, fun H =>
     ⟨fun x y y0 =>
       (H (x / y)).imp fun n h => le_of_lt <| by rwa [div_lt_iff y0, ← nsmul_eq_mul] at h⟩⟩
 #align archimedean_iff_nat_lt archimedean_iff_nat_lt
 
-/- warning: archimedean_iff_nat_le -> archimedean_iff_nat_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n)))
-Case conversion may be inaccurate. Consider using '#align archimedean_iff_nat_le archimedean_iff_nat_leₓ'. -/
 theorem archimedean_iff_nat_le : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x ≤ n :=
   archimedean_iff_nat_lt.trans
     ⟨fun H x => (H x).imp fun _ => le_of_lt, fun H x =>
@@ -524,12 +344,6 @@ theorem archimedean_iff_nat_le : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x 
       ⟨n + 1, lt_of_le_of_lt h (Nat.cast_lt.2 (lt_add_one _))⟩⟩
 #align archimedean_iff_nat_le archimedean_iff_nat_le
 
-/- warning: archimedean_iff_int_lt -> archimedean_iff_int_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) n)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Int.cast.{u1} α (Ring.toIntCast.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) n)))
-Case conversion may be inaccurate. Consider using '#align archimedean_iff_int_lt archimedean_iff_int_ltₓ'. -/
 theorem archimedean_iff_int_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x < n :=
   ⟨@exists_int_gt α _, by
     rw [archimedean_iff_nat_lt]
@@ -539,12 +353,6 @@ theorem archimedean_iff_int_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x <
     exact_mod_cast Int.self_le_toNat _⟩
 #align archimedean_iff_int_lt archimedean_iff_int_lt
 
-/- warning: archimedean_iff_int_le -> archimedean_iff_int_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) n)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Int.cast.{u1} α (Ring.toIntCast.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) n)))
-Case conversion may be inaccurate. Consider using '#align archimedean_iff_int_le archimedean_iff_int_leₓ'. -/
 theorem archimedean_iff_int_le : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x ≤ n :=
   archimedean_iff_int_lt.trans
     ⟨fun H x => (H x).imp fun _ => le_of_lt, fun H x =>
@@ -552,12 +360,6 @@ theorem archimedean_iff_int_le : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x 
       ⟨n + 1, lt_of_le_of_lt h (Int.cast_lt.2 (lt_add_one _))⟩⟩
 #align archimedean_iff_int_le archimedean_iff_int_le
 
-/- warning: archimedean_iff_rat_lt -> archimedean_iff_rat_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)))
-Case conversion may be inaccurate. Consider using '#align archimedean_iff_rat_lt archimedean_iff_rat_ltₓ'. -/
 theorem archimedean_iff_rat_lt : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x < q :=
   ⟨@exists_rat_gt α _, fun H =>
     archimedean_iff_nat_lt.2 fun x =>
@@ -567,12 +369,6 @@ theorem archimedean_iff_rat_lt : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x <
           simpa only [Rat.cast_coe_nat] using (@Rat.cast_le α _ _ _).2 (Nat.le_ceil _)⟩⟩
 #align archimedean_iff_rat_lt archimedean_iff_rat_lt
 
-/- warning: archimedean_iff_rat_le -> archimedean_iff_rat_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)))
-Case conversion may be inaccurate. Consider using '#align archimedean_iff_rat_le archimedean_iff_rat_leₓ'. -/
 theorem archimedean_iff_rat_le : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x ≤ q :=
   archimedean_iff_rat_lt.trans
     ⟨fun H x => (H x).imp fun _ => le_of_lt, fun H x =>
Diff
@@ -79,9 +79,7 @@ theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
     rw [← coe_nat_zsmul] at hk
     exact le_trans hn hk
   obtain ⟨m, hm, hm'⟩ := Int.exists_greatest_of_bdd ⟨k, h_bdd⟩ h_ne
-  have hm'' : g < (m + 1) • a := by
-    contrapose! hm'
-    exact ⟨m + 1, hm', lt_add_one _⟩
+  have hm'' : g < (m + 1) • a := by contrapose! hm'; exact ⟨m + 1, hm', lt_add_one _⟩
   refine' ⟨m, ⟨hm, hm''⟩, fun n hn => (hm' n hn.1).antisymm <| Int.le_of_lt_add_one _⟩
   rw [← zsmul_lt_zsmul_iff ha]
   exact lt_of_le_of_lt hm hn.2
@@ -342,9 +340,7 @@ Case conversion may be inaccurate. Consider using '#align exists_pow_lt_of_lt_on
 theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n < x :=
   by
   by_cases y_pos : y ≤ 0
-  · use 1
-    simp only [pow_one]
-    linarith
+  · use 1; simp only [pow_one]; linarith
   rw [not_le] at y_pos
   rcases pow_unbounded_of_one_lt x⁻¹ (one_lt_inv y_pos hy) with ⟨q, hq⟩
   exact ⟨q, by rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq⟩
@@ -408,14 +404,9 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   rw [Int.cast_add, Int.cast_one]
   refine' lt_of_le_of_lt (add_le_add_right ((zh _).1 le_rfl) _) _
   rwa [← lt_sub_iff_add_lt', ← sub_mul, ← div_lt_iff' (sub_pos.2 h), one_div]
-  · rw [Rat.coe_int_den, Nat.cast_one]
-    exact one_ne_zero
-  · intro H
-    rw [Rat.coe_nat_num, Int.cast_ofNat, Nat.cast_eq_zero] at H
-    subst H
-    cases n0
-  · rw [Rat.coe_nat_den, Nat.cast_one]
-    exact one_ne_zero
+  · rw [Rat.coe_int_den, Nat.cast_one]; exact one_ne_zero
+  · intro H; rw [Rat.coe_nat_num, Int.cast_ofNat, Nat.cast_eq_zero] at H; subst H; cases n0
+  · rw [Rat.coe_nat_den, Nat.cast_one]; exact one_ne_zero
 #align exists_rat_btwn exists_rat_btwn
 
 /- warning: le_of_forall_rat_lt_imp_le -> le_of_forall_rat_lt_imp_le is a dubious translation:
Diff
@@ -60,7 +60,7 @@ variable [LinearOrderedAddCommGroup α] [Archimedean α]
 
 /- warning: exists_unique_zsmul_near_of_pos -> existsUnique_zsmul_near_of_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (g : α), ExistsUnique.{1} Int (fun (k : Int) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) k a) g) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) g (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) k (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) a))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (g : α), ExistsUnique.{1} Int (fun (k : Int) => And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) k a) g) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) g (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) k (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) a))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (g : α), ExistsUnique.{1} Int (fun (k : Int) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) k a) g) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) g (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) k (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) a))))
 Case conversion may be inaccurate. Consider using '#align exists_unique_zsmul_near_of_pos existsUnique_zsmul_near_of_posₓ'. -/
@@ -89,7 +89,7 @@ theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
 
 /- warning: exists_unique_zsmul_near_of_pos' -> existsUnique_zsmul_near_of_pos' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (g : α), ExistsUnique.{1} Int (fun (k : Int) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) g (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) k a))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) g (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) k a)) a)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (g : α), ExistsUnique.{1} Int (fun (k : Int) => And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) g (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) k a))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) g (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) k a)) a)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (g : α), ExistsUnique.{1} Int (fun (k : Int) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) g (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) k a))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) g (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) k a)) a)))
 Case conversion may be inaccurate. Consider using '#align exists_unique_zsmul_near_of_pos' existsUnique_zsmul_near_of_pos'ₓ'. -/
@@ -101,7 +101,7 @@ theorem existsUnique_zsmul_near_of_pos' {a : α} (ha : 0 < a) (g : α) :
 
 /- warning: exists_unique_sub_zsmul_mem_Ico -> existsUnique_sub_zsmul_mem_Ico is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) m a)) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
 Case conversion may be inaccurate. Consider using '#align exists_unique_sub_zsmul_mem_Ico existsUnique_sub_zsmul_mem_Icoₓ'. -/
@@ -113,7 +113,7 @@ theorem existsUnique_sub_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
 
 /- warning: exists_unique_add_zsmul_mem_Ico -> existsUnique_add_zsmul_mem_Ico is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) b (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) m a)) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
 Case conversion may be inaccurate. Consider using '#align exists_unique_add_zsmul_mem_Ico existsUnique_add_zsmul_mem_Icoₓ'. -/
@@ -126,7 +126,7 @@ theorem existsUnique_add_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
 
 /- warning: exists_unique_add_zsmul_mem_Ioc -> existsUnique_add_zsmul_mem_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) b (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) m a)) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
 Case conversion may be inaccurate. Consider using '#align exists_unique_add_zsmul_mem_Ioc existsUnique_add_zsmul_mem_Iocₓ'. -/
@@ -140,7 +140,7 @@ theorem existsUnique_add_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
 
 /- warning: exists_unique_sub_zsmul_mem_Ioc -> existsUnique_sub_zsmul_mem_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedCancelAddCommMonoid.toOrderedAddCommMonoid.{u1} α (OrderedAddCommGroup.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b (SMul.smul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) m a)) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] [_inst_2 : Archimedean.{u1} α (LinearOrderedAddCommMonoid.toOrderedAddCommMonoid.{u1} α (LinearOrderedCancelAddCommMonoid.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedAddCommGroup.toLinearOrderedAddCancelCommMonoid.{u1} α _inst_1)))] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))))) a) -> (forall (b : α) (c : α), ExistsUnique.{1} Int (fun (m : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b (HSMul.hSMul.{0, u1, u1} Int α α (instHSMul.{0, u1} Int α (SubNegMonoid.SMulInt.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) m a)) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))) c (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))))) c a))))
 Case conversion may be inaccurate. Consider using '#align exists_unique_sub_zsmul_mem_Ioc existsUnique_sub_zsmul_mem_Iocₓ'. -/
@@ -153,24 +153,32 @@ theorem existsUnique_sub_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
 
 end LinearOrderedAddCommGroup
 
-#print exists_nat_gt /-
+/- warning: exists_nat_gt -> exists_nat_gt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α _inst_1)))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))))) n))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α _inst_1))) x (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)) n))
+Case conversion may be inaccurate. Consider using '#align exists_nat_gt exists_nat_gtₓ'. -/
 theorem exists_nat_gt [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x < n :=
   let ⟨n, h⟩ := Archimedean.arch x zero_lt_one
   ⟨n + 1, lt_of_le_of_lt (by rwa [← nsmul_one]) (Nat.cast_lt.2 (Nat.lt_succ_self _))⟩
 #align exists_nat_gt exists_nat_gt
--/
 
-#print exists_nat_ge /-
+/- warning: exists_nat_ge -> exists_nat_ge is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α _inst_1)))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))))) n))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α _inst_1))) x (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)) n))
+Case conversion may be inaccurate. Consider using '#align exists_nat_ge exists_nat_geₓ'. -/
 theorem exists_nat_ge [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x ≤ n :=
   by
   nontriviality α
   exact (exists_nat_gt x).imp fun n => le_of_lt
 #align exists_nat_ge exists_nat_ge
--/
 
 /- warning: add_one_pow_unbounded_of_pos -> add_one_pow_unbounded_of_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toHasAdd.{u1} α (NonUnitalNonAssocSemiring.toDistrib.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toHasAdd.{u1} α (NonUnitalNonAssocSemiring.toDistrib.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))))))) n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : StrictOrderedSemiring.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α _inst_1))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α _inst_1))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toAdd.{u1} α (NonUnitalNonAssocSemiring.toDistrib.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α _inst_1))))) n)))
 Case conversion may be inaccurate. Consider using '#align add_one_pow_unbounded_of_pos add_one_pow_unbounded_of_posₓ'. -/
@@ -196,7 +204,7 @@ variable [StrictOrderedRing α] [Archimedean α]
 
 /- warning: pow_unbounded_of_one_lt -> pow_unbounded_of_one_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))) y n)))
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))) y n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))))) y n)))
 Case conversion may be inaccurate. Consider using '#align pow_unbounded_of_one_lt pow_unbounded_of_one_ltₓ'. -/
@@ -206,7 +214,7 @@ theorem pow_unbounded_of_one_lt (x : α) {y : α} (hy1 : 1 < y) : ∃ n : ℕ, x
 
 /- warning: exists_int_gt -> exists_int_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) n))
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) n))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) x (Int.cast.{u1} α (Ring.toIntCast.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)) n))
 Case conversion may be inaccurate. Consider using '#align exists_int_gt exists_int_gtₓ'. -/
@@ -217,7 +225,7 @@ theorem exists_int_gt (x : α) : ∃ n : ℤ, x < n :=
 
 /- warning: exists_int_lt -> exists_int_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) n) x)
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) n) x)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (Int.cast.{u1} α (Ring.toIntCast.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)) n) x)
 Case conversion may be inaccurate. Consider using '#align exists_int_lt exists_int_ltₓ'. -/
@@ -228,7 +236,7 @@ theorem exists_int_lt (x : α) : ∃ n : ℤ, (n : α) < x :=
 
 /- warning: exists_floor -> exists_floor is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (fl : Int) => forall (z : Int), Iff (LE.le.{0} Int Int.hasLe z fl) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) z) x))
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (fl : Int) => forall (z : Int), Iff (LE.le.{0} Int Int.hasLe z fl) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) z) x))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (fl : Int) => forall (z : Int), Iff (LE.le.{0} Int Int.instLEInt z fl) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (Int.cast.{u1} α (Ring.toIntCast.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)) z) x))
 Case conversion may be inaccurate. Consider using '#align exists_floor exists_floorₓ'. -/
@@ -254,7 +262,7 @@ variable [LinearOrderedRing α] [Archimedean α]
 
 /- warning: exists_nat_pow_near -> exists_nat_pow_near is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y n) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) x) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y n) x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1)))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1)))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))))) y n) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
 Case conversion may be inaccurate. Consider using '#align exists_nat_pow_near exists_nat_pow_nearₓ'. -/
@@ -282,7 +290,7 @@ variable [LinearOrderedField α] [Archimedean α] {x y ε : α}
 
 /- warning: exists_mem_Ico_zpow -> exists_mem_Ico_zpow is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) n (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
 Case conversion may be inaccurate. Consider using '#align exists_mem_Ico_zpow exists_mem_Ico_zpowₓ'. -/
@@ -310,7 +318,7 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
 
 /- warning: exists_mem_Ioc_zpow -> exists_mem_Ioc_zpow is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) n (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
 Case conversion may be inaccurate. Consider using '#align exists_mem_Ioc_zpow exists_mem_Ioc_zpowₓ'. -/
@@ -326,7 +334,7 @@ theorem exists_mem_Ioc_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ioc (
 
 /- warning: exists_pow_lt_of_lt_one -> exists_pow_lt_of_lt_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n) x))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n) x))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y n) x))
 Case conversion may be inaccurate. Consider using '#align exists_pow_lt_of_lt_one exists_pow_lt_of_lt_oneₓ'. -/
@@ -344,7 +352,7 @@ theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n <
 
 /- warning: exists_nat_pow_near_of_lt_one -> exists_nat_pow_near_of_lt_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) y) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) y) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y n))))
 Case conversion may be inaccurate. Consider using '#align exists_nat_pow_near_of_lt_one exists_nat_pow_near_of_lt_oneₓ'. -/
@@ -362,7 +370,7 @@ theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 <
 
 /- warning: exists_rat_gt -> exists_rat_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))
 Case conversion may be inaccurate. Consider using '#align exists_rat_gt exists_rat_gtₓ'. -/
@@ -373,7 +381,7 @@ theorem exists_rat_gt (x : α) : ∃ q : ℚ, x < q :=
 
 /- warning: exists_rat_lt -> exists_rat_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x)
 Case conversion may be inaccurate. Consider using '#align exists_rat_lt exists_rat_ltₓ'. -/
@@ -384,7 +392,7 @@ theorem exists_rat_lt (x : α) : ∃ q : ℚ, (q : α) < x :=
 
 /- warning: exists_rat_btwn -> exists_rat_btwn is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)))
 Case conversion may be inaccurate. Consider using '#align exists_rat_btwn exists_rat_btwnₓ'. -/
@@ -412,7 +420,7 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
 
 /- warning: le_of_forall_rat_lt_imp_le -> le_of_forall_rat_lt_imp_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
 Case conversion may be inaccurate. Consider using '#align le_of_forall_rat_lt_imp_le le_of_forall_rat_lt_imp_leₓ'. -/
@@ -424,7 +432,7 @@ theorem le_of_forall_rat_lt_imp_le (h : ∀ q : ℚ, (q : α) < x → (q : α) 
 
 /- warning: le_of_forall_lt_rat_imp_le -> le_of_forall_lt_rat_imp_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
 Case conversion may be inaccurate. Consider using '#align le_of_forall_lt_rat_imp_le le_of_forall_lt_rat_imp_leₓ'. -/
@@ -436,7 +444,7 @@ theorem le_of_forall_lt_rat_imp_le (h : ∀ q : ℚ, y < q → x ≤ q) : x ≤
 
 /- warning: eq_of_forall_rat_lt_iff_lt -> eq_of_forall_rat_lt_iff_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)) -> (Eq.{succ u1} α x y)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)) -> (Eq.{succ u1} α x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)) -> (Eq.{succ u1} α x y)
 Case conversion may be inaccurate. Consider using '#align eq_of_forall_rat_lt_iff_lt eq_of_forall_rat_lt_iff_ltₓ'. -/
@@ -447,7 +455,7 @@ theorem eq_of_forall_rat_lt_iff_lt (h : ∀ q : ℚ, (q : α) < x ↔ (q : α) <
 
 /- warning: eq_of_forall_lt_rat_iff_lt -> eq_of_forall_lt_rat_iff_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) -> (Eq.{succ u1} α x y)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) -> (Eq.{succ u1} α x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) -> (Eq.{succ u1} α x y)
 Case conversion may be inaccurate. Consider using '#align eq_of_forall_lt_rat_iff_lt eq_of_forall_lt_rat_iff_ltₓ'. -/
@@ -458,7 +466,7 @@ theorem eq_of_forall_lt_rat_iff_lt (h : ∀ q : ℚ, x < q ↔ y < q) : x = y :=
 
 /- warning: exists_nat_one_div_lt -> exists_nat_one_div_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toHasAdd.{u1} α (Ring.toDistrib.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) ε))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toHasAdd.{u1} α (Ring.toDistrib.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) ε))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toAdd.{u1} α (NonUnitalNonAssocSemiring.toDistrib.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))) ε))
 Case conversion may be inaccurate. Consider using '#align exists_nat_one_div_lt exists_nat_one_div_ltₓ'. -/
@@ -474,7 +482,7 @@ theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1
 
 /- warning: exists_pos_rat_lt -> exists_pos_rat_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{0} Rat Rat.hasLt (OfNat.ofNat.{0} Rat 0 (OfNat.mk.{0} Rat 0 (Zero.zero.{0} Rat Rat.hasZero))) q) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{0} Rat Rat.hasLt (OfNat.ofNat.{0} Rat 0 (OfNat.mk.{0} Rat 0 (Zero.zero.{0} Rat Rat.hasZero))) q) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 (OfNat.ofNat.{0} Rat 0 (Rat.instOfNatRat 0)) q) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x)))
 Case conversion may be inaccurate. Consider using '#align exists_pos_rat_lt exists_pos_rat_ltₓ'. -/
@@ -484,7 +492,7 @@ theorem exists_pos_rat_lt {x : α} (x0 : 0 < x) : ∃ q : ℚ, 0 < q ∧ (q : α
 
 /- warning: exists_rat_near -> exists_rat_near is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) ε))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) ε))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) ε))
 Case conversion may be inaccurate. Consider using '#align exists_rat_near exists_rat_nearₓ'. -/
@@ -502,7 +510,7 @@ variable [LinearOrderedField α]
 
 /- warning: archimedean_iff_nat_lt -> archimedean_iff_nat_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_nat_lt archimedean_iff_nat_ltₓ'. -/
@@ -514,7 +522,7 @@ theorem archimedean_iff_nat_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x <
 
 /- warning: archimedean_iff_nat_le -> archimedean_iff_nat_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_nat_le archimedean_iff_nat_leₓ'. -/
@@ -527,7 +535,7 @@ theorem archimedean_iff_nat_le : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x 
 
 /- warning: archimedean_iff_int_lt -> archimedean_iff_int_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Int.cast.{u1} α (Ring.toIntCast.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) n)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_int_lt archimedean_iff_int_ltₓ'. -/
@@ -542,7 +550,7 @@ theorem archimedean_iff_int_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x <
 
 /- warning: archimedean_iff_int_le -> archimedean_iff_int_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Int.cast.{u1} α (Ring.toIntCast.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) n)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_int_le archimedean_iff_int_leₓ'. -/
@@ -555,7 +563,7 @@ theorem archimedean_iff_int_le : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x 
 
 /- warning: archimedean_iff_rat_lt -> archimedean_iff_rat_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_rat_lt archimedean_iff_rat_ltₓ'. -/
@@ -570,7 +578,7 @@ theorem archimedean_iff_rat_lt : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x <
 
 /- warning: archimedean_iff_rat_le -> archimedean_iff_rat_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_rat_le archimedean_iff_rat_leₓ'. -/
Diff
@@ -198,7 +198,7 @@ variable [StrictOrderedRing α] [Archimedean α]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))) y n)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))))) y n)))
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))))) y n)))
 Case conversion may be inaccurate. Consider using '#align pow_unbounded_of_one_lt pow_unbounded_of_one_ltₓ'. -/
 theorem pow_unbounded_of_one_lt (x : α) {y : α} (hy1 : 1 < y) : ∃ n : ℕ, x < y ^ n :=
   sub_add_cancel y 1 ▸ add_one_pow_unbounded_of_pos _ (sub_pos.2 hy1)
@@ -256,7 +256,7 @@ variable [LinearOrderedRing α] [Archimedean α]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y n) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))))) y n) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1)))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1)))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))))) y n) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
 Case conversion may be inaccurate. Consider using '#align exists_nat_pow_near exists_nat_pow_nearₓ'. -/
 /-- Every x greater than or equal to 1 is between two successive
 natural-number powers of every y greater than one. -/
@@ -284,7 +284,7 @@ variable [LinearOrderedField α] [Archimedean α] {x y ε : α}
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) n (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) n (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
 Case conversion may be inaccurate. Consider using '#align exists_mem_Ico_zpow exists_mem_Ico_zpowₓ'. -/
 /-- Every positive `x` is between two successive integer powers of
 another `y` greater than one. This is the same as `exists_mem_Ioc_zpow`,
@@ -312,7 +312,7 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) n (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) n (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
 Case conversion may be inaccurate. Consider using '#align exists_mem_Ioc_zpow exists_mem_Ioc_zpowₓ'. -/
 /-- Every positive `x` is between two successive integer powers of
 another `y` greater than one. This is the same as `exists_mem_Ico_zpow`,
@@ -328,7 +328,7 @@ theorem exists_mem_Ioc_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ioc (
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n) x))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y n) x))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y n) x))
 Case conversion may be inaccurate. Consider using '#align exists_pow_lt_of_lt_one exists_pow_lt_of_lt_oneₓ'. -/
 /-- For any `y < 1` and any positive `x`, there exists `n : ℕ` with `y ^ n < x`. -/
 theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n < x :=
@@ -346,7 +346,7 @@ theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n <
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) y) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y n))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y n))))
 Case conversion may be inaccurate. Consider using '#align exists_nat_pow_near_of_lt_one exists_nat_pow_near_of_lt_oneₓ'. -/
 /-- Given `x` and `y` between `0` and `1`, `x` is between two successive powers of `y`.
 This is the same as `exists_nat_pow_near`, but for elements between `0` and `1` -/
@@ -460,7 +460,7 @@ theorem eq_of_forall_lt_rat_iff_lt (h : ∀ q : ℚ, x < q ↔ y < q) : x = y :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toHasAdd.{u1} α (Ring.toDistrib.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) ε))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toAdd.{u1} α (NonUnitalNonAssocSemiring.toDistrib.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) ε))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toAdd.{u1} α (NonUnitalNonAssocSemiring.toDistrib.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))) ε))
 Case conversion may be inaccurate. Consider using '#align exists_nat_one_div_lt exists_nat_one_div_ltₓ'. -/
 theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1 : α) < ε :=
   by
@@ -504,7 +504,7 @@ variable [LinearOrderedField α]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_nat_lt archimedean_iff_nat_ltₓ'. -/
 theorem archimedean_iff_nat_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x < n :=
   ⟨@exists_nat_gt α _, fun H =>
@@ -516,7 +516,7 @@ theorem archimedean_iff_nat_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x <
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_nat_le archimedean_iff_nat_leₓ'. -/
 theorem archimedean_iff_nat_le : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x ≤ n :=
   archimedean_iff_nat_lt.trans
Diff
@@ -196,7 +196,7 @@ variable [StrictOrderedRing α] [Archimedean α]
 
 /- warning: pow_unbounded_of_one_lt -> pow_unbounded_of_one_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))) y n)))
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)))) y n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α) {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))) y) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))))) y n)))
 Case conversion may be inaccurate. Consider using '#align pow_unbounded_of_one_lt pow_unbounded_of_one_ltₓ'. -/
@@ -206,7 +206,7 @@ theorem pow_unbounded_of_one_lt (x : α) {y : α} (hy1 : 1 < y) : ∃ n : ℕ, x
 
 /- warning: exists_int_gt -> exists_int_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) n))
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) n))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) x (Int.cast.{u1} α (Ring.toIntCast.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)) n))
 Case conversion may be inaccurate. Consider using '#align exists_int_gt exists_int_gtₓ'. -/
@@ -217,7 +217,7 @@ theorem exists_int_gt (x : α) : ∃ n : ℤ, x < n :=
 
 /- warning: exists_int_lt -> exists_int_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) n) x)
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) n) x)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (Int.cast.{u1} α (Ring.toIntCast.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)) n) x)
 Case conversion may be inaccurate. Consider using '#align exists_int_lt exists_int_ltₓ'. -/
@@ -228,7 +228,7 @@ theorem exists_int_lt (x : α) : ∃ n : ℤ, (n : α) < x :=
 
 /- warning: exists_floor -> exists_floor is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (fl : Int) => forall (z : Int), Iff (LE.le.{0} Int Int.hasLe z fl) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) z) x))
+  forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (fl : Int) => forall (z : Int), Iff (LE.le.{0} Int Int.hasLe z fl) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α _inst_1)))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1))))))) z) x))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : StrictOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α _inst_1)))] (x : α), Exists.{1} Int (fun (fl : Int) => forall (z : Int), Iff (LE.le.{0} Int Int.instLEInt z fl) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α _inst_1))) (Int.cast.{u1} α (Ring.toIntCast.{u1} α (StrictOrderedRing.toRing.{u1} α _inst_1)) z) x))
 Case conversion may be inaccurate. Consider using '#align exists_floor exists_floorₓ'. -/
@@ -254,7 +254,7 @@ variable [LinearOrderedRing α] [Archimedean α]
 
 /- warning: exists_nat_pow_near -> exists_nat_pow_near is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y n) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y n) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedRing.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (StrictOrderedRing.toRing.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))))) y) -> (Exists.{1} Nat (fun (n : Nat) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))))) y n) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α _inst_1)))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (StrictOrderedSemiring.toSemiring.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toLinearOrderedSemiring.{u1} α _inst_1))))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
 Case conversion may be inaccurate. Consider using '#align exists_nat_pow_near exists_nat_pow_nearₓ'. -/
@@ -282,7 +282,7 @@ variable [LinearOrderedField α] [Archimedean α] {x y ε : α}
 
 /- warning: exists_mem_Ico_zpow -> exists_mem_Ico_zpow is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) n (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
 Case conversion may be inaccurate. Consider using '#align exists_mem_Ico_zpow exists_mem_Ico_zpowₓ'. -/
@@ -310,7 +310,7 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
 
 /- warning: exists_mem_Ioc_zpow -> exists_mem_Ioc_zpow is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) n (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) y) -> (Exists.{1} Int (fun (n : Int) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y n) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) y (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) n (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))))))
 Case conversion may be inaccurate. Consider using '#align exists_mem_Ioc_zpow exists_mem_Ioc_zpowₓ'. -/
@@ -326,7 +326,7 @@ theorem exists_mem_Ioc_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ioc (
 
 /- warning: exists_pow_lt_of_lt_one -> exists_pow_lt_of_lt_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n) x))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n) x))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y n) x))
 Case conversion may be inaccurate. Consider using '#align exists_pow_lt_of_lt_one exists_pow_lt_of_lt_oneₓ'. -/
@@ -344,7 +344,7 @@ theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n <
 
 /- warning: exists_nat_pow_near_of_lt_one -> exists_nat_pow_near_of_lt_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) y) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) y) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) y n))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) y) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) -> (Exists.{1} Nat (fun (n : Nat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) y n))))
 Case conversion may be inaccurate. Consider using '#align exists_nat_pow_near_of_lt_one exists_nat_pow_near_of_lt_oneₓ'. -/
@@ -458,7 +458,7 @@ theorem eq_of_forall_lt_rat_iff_lt (h : ∀ q : ℚ, x < q ↔ y < q) : x = y :=
 
 /- warning: exists_nat_one_div_lt -> exists_nat_one_div_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toHasAdd.{u1} α (Ring.toDistrib.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) ε))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toHasAdd.{u1} α (Ring.toDistrib.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) ε))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (Distrib.toAdd.{u1} α (NonUnitalNonAssocSemiring.toDistrib.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) ε))
 Case conversion may be inaccurate. Consider using '#align exists_nat_one_div_lt exists_nat_one_div_ltₓ'. -/
@@ -484,7 +484,7 @@ theorem exists_pos_rat_lt {x : α} (x0 : 0 < x) : ∃ q : ℚ, 0 < q ∧ (q : α
 
 /- warning: exists_rat_near -> exists_rat_near is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) ε))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) ε))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) ε))
 Case conversion may be inaccurate. Consider using '#align exists_rat_near exists_rat_nearₓ'. -/
@@ -502,7 +502,7 @@ variable [LinearOrderedField α]
 
 /- warning: archimedean_iff_nat_lt -> archimedean_iff_nat_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_nat_lt archimedean_iff_nat_ltₓ'. -/
@@ -514,7 +514,7 @@ theorem archimedean_iff_nat_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x <
 
 /- warning: archimedean_iff_nat_le -> archimedean_iff_nat_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_nat_le archimedean_iff_nat_leₓ'. -/
@@ -527,7 +527,7 @@ theorem archimedean_iff_nat_le : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x 
 
 /- warning: archimedean_iff_int_lt -> archimedean_iff_int_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Int.cast.{u1} α (Ring.toIntCast.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) n)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_int_lt archimedean_iff_int_ltₓ'. -/
@@ -542,7 +542,7 @@ theorem archimedean_iff_int_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x <
 
 /- warning: archimedean_iff_int_le -> archimedean_iff_int_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) n)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Int α (HasLiftT.mk.{1, succ u1} Int α (CoeTCₓ.coe.{1, succ u1} Int α (Int.castCoe.{u1} α (AddGroupWithOne.toHasIntCast.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) n)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Int (fun (n : Int) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Int.cast.{u1} α (Ring.toIntCast.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) n)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_int_le archimedean_iff_int_leₓ'. -/
Diff
@@ -500,22 +500,30 @@ section LinearOrderedField
 
 variable [LinearOrderedField α]
 
-#print archimedean_iff_nat_lt /-
+/- warning: archimedean_iff_nat_lt -> archimedean_iff_nat_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n)))
+Case conversion may be inaccurate. Consider using '#align archimedean_iff_nat_lt archimedean_iff_nat_ltₓ'. -/
 theorem archimedean_iff_nat_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x < n :=
   ⟨@exists_nat_gt α _, fun H =>
     ⟨fun x y y0 =>
       (H (x / y)).imp fun n h => le_of_lt <| by rwa [div_lt_iff y0, ← nsmul_eq_mul] at h⟩⟩
 #align archimedean_iff_nat_lt archimedean_iff_nat_lt
--/
 
-#print archimedean_iff_nat_le /-
+/- warning: archimedean_iff_nat_le -> archimedean_iff_nat_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Nat (fun (n : Nat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n)))
+Case conversion may be inaccurate. Consider using '#align archimedean_iff_nat_le archimedean_iff_nat_leₓ'. -/
 theorem archimedean_iff_nat_le : Archimedean α ↔ ∀ x : α, ∃ n : ℕ, x ≤ n :=
   archimedean_iff_nat_lt.trans
     ⟨fun H x => (H x).imp fun _ => le_of_lt, fun H x =>
       let ⟨n, h⟩ := H x
       ⟨n + 1, lt_of_le_of_lt h (Nat.cast_lt.2 (lt_add_one _))⟩⟩
 #align archimedean_iff_nat_le archimedean_iff_nat_le
--/
 
 /- warning: archimedean_iff_int_lt -> archimedean_iff_int_lt is a dubious translation:
 lean 3 declaration is
Diff
@@ -364,7 +364,7 @@ theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 <
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))
 Case conversion may be inaccurate. Consider using '#align exists_rat_gt exists_rat_gtₓ'. -/
 theorem exists_rat_gt (x : α) : ∃ q : ℚ, x < q :=
   let ⟨n, h⟩ := exists_nat_gt x
@@ -375,7 +375,7 @@ theorem exists_rat_gt (x : α) : ∃ q : ℚ, x < q :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x)
 Case conversion may be inaccurate. Consider using '#align exists_rat_lt exists_rat_ltₓ'. -/
 theorem exists_rat_lt (x : α) : ∃ q : ℚ, (q : α) < x :=
   let ⟨n, h⟩ := exists_int_lt x
@@ -386,7 +386,7 @@ theorem exists_rat_lt (x : α) : ∃ q : ℚ, (q : α) < x :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)))
 Case conversion may be inaccurate. Consider using '#align exists_rat_btwn exists_rat_btwnₓ'. -/
 theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α) < y :=
   by
@@ -414,7 +414,7 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
 Case conversion may be inaccurate. Consider using '#align le_of_forall_rat_lt_imp_le le_of_forall_rat_lt_imp_leₓ'. -/
 theorem le_of_forall_rat_lt_imp_le (h : ∀ q : ℚ, (q : α) < x → (q : α) ≤ y) : x ≤ y :=
   le_of_not_lt fun hyx =>
@@ -426,7 +426,7 @@ theorem le_of_forall_rat_lt_imp_le (h : ∀ q : ℚ, (q : α) < x → (q : α) 
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
 Case conversion may be inaccurate. Consider using '#align le_of_forall_lt_rat_imp_le le_of_forall_lt_rat_imp_leₓ'. -/
 theorem le_of_forall_lt_rat_imp_le (h : ∀ q : ℚ, y < q → x ≤ q) : x ≤ y :=
   le_of_not_lt fun hyx =>
@@ -438,7 +438,7 @@ theorem le_of_forall_lt_rat_imp_le (h : ∀ q : ℚ, y < q → x ≤ q) : x ≤
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) y)) -> (Eq.{succ u1} α x y)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)) -> (Eq.{succ u1} α x y)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) y)) -> (Eq.{succ u1} α x y)
 Case conversion may be inaccurate. Consider using '#align eq_of_forall_rat_lt_iff_lt eq_of_forall_rat_lt_iff_ltₓ'. -/
 theorem eq_of_forall_rat_lt_iff_lt (h : ∀ q : ℚ, (q : α) < x ↔ (q : α) < y) : x = y :=
   (le_of_forall_rat_lt_imp_le fun q hq => ((h q).1 hq).le).antisymm <|
@@ -449,7 +449,7 @@ theorem eq_of_forall_rat_lt_iff_lt (h : ∀ q : ℚ, (q : α) < x ↔ (q : α) <
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) y ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) -> (Eq.{succ u1} α x y)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) -> (Eq.{succ u1} α x y)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α} {y : α}, (forall (q : Rat), Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) y (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) -> (Eq.{succ u1} α x y)
 Case conversion may be inaccurate. Consider using '#align eq_of_forall_lt_rat_iff_lt eq_of_forall_lt_rat_iff_ltₓ'. -/
 theorem eq_of_forall_lt_rat_iff_lt (h : ∀ q : ℚ, x < q ↔ y < q) : x = y :=
   (le_of_forall_lt_rat_imp_le fun q hq => ((h q).2 hq).le).antisymm <|
@@ -476,7 +476,7 @@ theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{0} Rat Rat.hasLt (OfNat.ofNat.{0} Rat 0 (OfNat.mk.{0} Rat 0 (Zero.zero.{0} Rat Rat.hasZero))) q) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q) x)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 (OfNat.ofNat.{0} Rat 0 (Rat.instOfNatRat 0)) q) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x) -> (Exists.{1} Rat (fun (q : Rat) => And (LT.lt.{0} Rat Rat.instLTRat_1 (OfNat.ofNat.{0} Rat 0 (Rat.instOfNatRat 0)) q) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q) x)))
 Case conversion may be inaccurate. Consider using '#align exists_pos_rat_lt exists_pos_rat_ltₓ'. -/
 theorem exists_pos_rat_lt {x : α} (x0 : 0 < x) : ∃ q : ℚ, 0 < q ∧ (q : α) < x := by
   simpa only [Rat.cast_pos] using exists_rat_btwn x0
@@ -486,7 +486,7 @@ theorem exists_pos_rat_lt {x : α} (x0 : 0 < x) : ∃ q : ℚ, 0 < q ∧ (q : α
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) ε))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) ε))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) ε))
 Case conversion may be inaccurate. Consider using '#align exists_rat_near exists_rat_nearₓ'. -/
 theorem exists_rat_near (x : α) (ε0 : 0 < ε) : ∃ q : ℚ, |x - q| < ε :=
   let ⟨q, h₁, h₂⟩ :=
@@ -549,7 +549,7 @@ theorem archimedean_iff_int_le : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x 
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_rat_lt archimedean_iff_rat_ltₓ'. -/
 theorem archimedean_iff_rat_lt : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x < q :=
   ⟨@exists_rat_gt α _, fun H =>
@@ -564,7 +564,7 @@ theorem archimedean_iff_rat_lt : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x <
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], Iff (Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (forall (x : α), Exists.{1} Rat (fun (q : Rat) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x (Rat.cast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q)))
 Case conversion may be inaccurate. Consider using '#align archimedean_iff_rat_le archimedean_iff_rat_leₓ'. -/
 theorem archimedean_iff_rat_le : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x ≤ q :=
   archimedean_iff_rat_lt.trans
Diff
@@ -181,11 +181,11 @@ theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α]
   ⟨n,
     calc
       x ≤ n • y := h
-      _ = n * y := nsmul_eq_mul _ _
-      _ < 1 + n * y := lt_one_add _
+      _ = n * y := (nsmul_eq_mul _ _)
+      _ < 1 + n * y := (lt_one_add _)
       _ ≤ (1 + y) ^ n :=
-        one_add_mul_le_pow' (mul_nonneg hy.le hy.le) (mul_nonneg this this)
-          (add_nonneg zero_le_two hy.le) _
+        (one_add_mul_le_pow' (mul_nonneg hy.le hy.le) (mul_nonneg this this)
+          (add_nonneg zero_le_two hy.le) _)
       _ = (y + 1) ^ n := by rw [add_comm]
       ⟩
 #align add_one_pow_unbounded_of_pos add_one_pow_unbounded_of_pos
Diff
@@ -486,7 +486,7 @@ theorem exists_pos_rat_lt {x : α} (x0 : 0 < x) : ∃ q : ℚ, 0 < q ∧ (q : α
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) x ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Rat α (HasLiftT.mk.{1, succ u1} Rat α (CoeTCₓ.coe.{1, succ u1} Rat α (Rat.castCoe.{u1} α (DivisionRing.toHasRatCast.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) q))) ε))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) ε))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Archimedean.{u1} α (OrderedSemiring.toOrderedAddCommMonoid.{u1} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))] {ε : α} (x : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (Exists.{1} Rat (fun (q : Rat) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) x (RatCast.ratCast.{u1} α (LinearOrderedField.toRatCast.{u1} α _inst_1) q))) ε))
 Case conversion may be inaccurate. Consider using '#align exists_rat_near exists_rat_nearₓ'. -/
 theorem exists_rat_near (x : α) (ε0 : 0 < ε) : ∃ q : ℚ, |x - q| < ε :=
   let ⟨q, h₁, h₂⟩ :=

Changes in mathlib4

mathlib3
mathlib4
chore(Data/Rat/Defs): Fix names of a few lemmas (#12505)

There are more wrong lemmas in Std, but it's out of my scope

Diff
@@ -295,7 +295,7 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   rw [Int.cast_add, Int.cast_one]
   refine' lt_of_le_of_lt (add_le_add_right ((zh _).1 le_rfl) _) _
   rwa [← lt_sub_iff_add_lt', ← sub_mul, ← div_lt_iff' (sub_pos.2 h), one_div]
-  · rw [Rat.coe_int_den, Nat.cast_one]
+  · rw [Rat.den_intCast, Nat.cast_one]
     exact one_ne_zero
   · intro H
     rw [Rat.num_natCast, Int.cast_natCast, Nat.cast_eq_zero] at H
feat: NNRat.cast (#11203)

Define the canonical coercion from the nonnegative rationals to any division semiring.

From LeanAPAP

Diff
@@ -3,7 +3,6 @@ Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro
 -/
-import Mathlib.Algebra.GroupPower.Order
 import Mathlib.Algebra.Order.Field.Power
 import Mathlib.Data.Int.LeastGreatest
 import Mathlib.Data.Rat.Floor
refactor(Rat): Streamline basic theory (#11504)

Rat has a long history in (and before) mathlib and as such its development is full of cruft. Now that NNRat is a thing, there is a need for the theory of Rat to be mimickable to yield the theory of NNRat, which is not currently the case.

Broadly, this PR aims at mirroring the Rat and NNRat declarations. It achieves this by:

  • Relying more on Rat.num and Rat.den, and less on the structure representation of Rat
  • Abandoning the vestigial Rat.Nonneg (which was replaced in Std by a new development of the order on Rat)
  • Renaming many Rat lemmas with dubious names. This creates quite a lot of conflicts with Std lemmas, whose names are themselves dubious. I am priming the relevant new mathlib names and leaving TODOs to fix the Std names.
  • Handling most of the Rat porting notes

Reduce the diff of #11203

Diff
@@ -302,8 +302,6 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
     rw [Rat.num_natCast, Int.cast_natCast, Nat.cast_eq_zero] at H
     subst H
     cases n0
-  · rw [Rat.den_natCast, Nat.cast_one]
-    exact one_ne_zero
 #align exists_rat_btwn exists_rat_btwn
 
 theorem le_of_forall_rat_lt_imp_le (h : ∀ q : ℚ, (q : α) < x → (q : α) ≤ y) : x ≤ y :=
chore(Data/Int/Cast): fix confusion between OfNat and Nat.cast lemmas (#11861)

This renames

  • Int.cast_ofNat to Int.cast_natCast
  • Int.int_cast_ofNat to Int.cast_ofNat

I think the history here is that this lemma was previously about Int.ofNat, before we globally fixed the simp-normal form to be Nat.cast.

Since the Int.cast_ofNat name is repurposed, it can't be deprecated. Int.int_cast_ofNat is such a wonky name that it was probably never used.

Diff
@@ -162,7 +162,7 @@ variable [StrictOrderedRing α] [Archimedean α]
 
 theorem exists_int_gt (x : α) : ∃ n : ℤ, x < n :=
   let ⟨n, h⟩ := exists_nat_gt x
-  ⟨n, by rwa [Int.cast_ofNat]⟩
+  ⟨n, by rwa [Int.cast_natCast]⟩
 #align exists_int_gt exists_int_gt
 
 theorem exists_int_lt (x : α) : ∃ n : ℤ, (n : α) < x :=
@@ -299,7 +299,7 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   · rw [Rat.coe_int_den, Nat.cast_one]
     exact one_ne_zero
   · intro H
-    rw [Rat.num_natCast, Int.cast_ofNat, Nat.cast_eq_zero] at H
+    rw [Rat.num_natCast, Int.cast_natCast, Nat.cast_eq_zero] at H
     subst H
     cases n0
   · rw [Rat.den_natCast, Nat.cast_one]
chore: Rename cat_coe_nat/cast_coe_int to cast_natCast/cast_intCast (#11552)

Reduce the diff of #11499

Diff
@@ -277,12 +277,12 @@ variable [LinearOrderedField α] [Archimedean α] {x y ε : α}
 
 theorem exists_rat_gt (x : α) : ∃ q : ℚ, x < q :=
   let ⟨n, h⟩ := exists_nat_gt x
-  ⟨n, by rwa [Rat.cast_coe_nat]⟩
+  ⟨n, by rwa [Rat.cast_natCast]⟩
 #align exists_rat_gt exists_rat_gt
 
 theorem exists_rat_lt (x : α) : ∃ q : ℚ, (q : α) < x :=
   let ⟨n, h⟩ := exists_int_lt x
-  ⟨n, by rwa [Rat.cast_coe_int]⟩
+  ⟨n, by rwa [Rat.cast_intCast]⟩
 #align exists_rat_lt exists_rat_lt
 
 theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α) < y := by
@@ -291,7 +291,7 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   refine' ⟨(z + 1 : ℤ) / n, _⟩
   have n0' := (inv_pos.2 (sub_pos.2 h)).trans nh
   have n0 := Nat.cast_pos.1 n0'
-  rw [Rat.cast_div_of_ne_zero, Rat.cast_coe_nat, Rat.cast_coe_int, div_lt_iff n0']
+  rw [Rat.cast_div_of_ne_zero, Rat.cast_natCast, Rat.cast_intCast, div_lt_iff n0']
   refine' ⟨(lt_div_iff n0').2 <| (lt_iff_lt_of_le_iff_le (zh _)).1 (lt_add_one _), _⟩
   rw [Int.cast_add, Int.cast_one]
   refine' lt_of_le_of_lt (add_le_add_right ((zh _).1 le_rfl) _) _
@@ -385,7 +385,7 @@ theorem archimedean_iff_rat_lt : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x <
       let ⟨q, h⟩ := H x
       ⟨⌈q⌉₊,
         lt_of_lt_of_le h <| by
-          simpa only [Rat.cast_coe_nat] using (@Rat.cast_le α _ _ _).2 (Nat.le_ceil _)⟩⟩
+          simpa only [Rat.cast_natCast] using (@Rat.cast_le α _ _ _).2 (Nat.le_ceil _)⟩⟩
 #align archimedean_iff_rat_lt archimedean_iff_rat_lt
 
 theorem archimedean_iff_rat_le : Archimedean α ↔ ∀ x : α, ∃ q : ℚ, x ≤ q :=
chore: Rename zpow_coe_nat to zpow_natCast (#11528)

... and add a deprecated alias for the old name. This is mostly just me discovering the power of F2

Diff
@@ -71,7 +71,7 @@ theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
   have h_bdd : ∀ n ∈ s, n ≤ (k : ℤ) := by
     intro n hn
     apply (zsmul_le_zsmul_iff ha).mp
-    rw [← coe_nat_zsmul] at hk
+    rw [← natCast_zsmul] at hk
     exact le_trans hn hk
   obtain ⟨m, hm, hm'⟩ := Int.exists_greatest_of_bdd ⟨k, h_bdd⟩ h_ne
   have hm'' : g < (m + 1) • a := by
@@ -217,14 +217,14 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
         ⟨-N,
           le_of_lt
             (by
-              rw [zpow_neg y ↑N, zpow_coe_nat]
+              rw [zpow_neg y ↑N, zpow_natCast]
               exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN)⟩
       let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy
       have hb : ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b :=
         ⟨M, fun m hm =>
           le_of_not_lt fun hlt =>
             not_lt_of_ge (zpow_le_of_le hy.le hlt.le)
-              (lt_of_le_of_lt hm (by rwa [← zpow_coe_nat] at hM))⟩
+              (lt_of_le_of_lt hm (by rwa [← zpow_natCast] at hM))⟩
       let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
       ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
chore: remove more autoImplicit (#11336)

... or reduce its scope (the full removal is not as obvious).

Diff
@@ -30,8 +30,6 @@ number `n` such that `x ≤ n • y`.
 * `ℕ`, `ℤ`, and `ℚ` are archimedean.
 -/
 
-set_option autoImplicit true
-
 open Int Set
 
 variable {α : Type*}
@@ -50,6 +48,8 @@ instance OrderDual.archimedean [OrderedAddCommGroup α] [Archimedean α] : Archi
     ⟨n, by rwa [neg_nsmul, neg_le_neg_iff] at hn⟩⟩
 #align order_dual.archimedean OrderDual.archimedean
 
+variable {M : Type*}
+
 theorem exists_lt_nsmul [OrderedAddCommMonoid M] [Archimedean M]
     [CovariantClass M M (· + ·) (· < ·)] {a : M} (ha : 0 < a) (b : M) :
     ∃ n : ℕ, b < n • a :=
refactor: optimize proofs with omega (#11093)

I ran tryAtEachStep on all files under Mathlib to find all locations where omega succeeds. For each that was a linarith without an only, I tried replacing it with omega, and I verified that elaboration time got smaller. (In almost all cases, there was a noticeable speedup.) I also replaced some slow aesops along the way.

Diff
@@ -400,7 +400,7 @@ end LinearOrderedField
 instance : Archimedean ℕ :=
   ⟨fun n m m0 => ⟨n, by
     rw [← mul_one n, smul_eq_mul, mul_assoc, one_mul m]
-    exact Nat.mul_le_mul_left n (by linarith)⟩⟩
+    exact Nat.mul_le_mul_left n (by omega)⟩⟩
 
 instance : Archimedean ℤ :=
   ⟨fun n m m0 =>
fix: correct statement of zpow_ofNat and ofNat_zsmul (#10969)

Previously these were syntactically identical to the corresponding zpow_coe_nat and coe_nat_zsmul lemmas, now they are about OfNat.ofNat.

Unfortunately, almost every call site uses the ofNat name to refer to Nat.cast, so the downstream proofs had to be adjusted too.

Diff
@@ -217,14 +217,14 @@ theorem exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (
         ⟨-N,
           le_of_lt
             (by
-              rw [zpow_neg y ↑N, zpow_ofNat]
+              rw [zpow_neg y ↑N, zpow_coe_nat]
               exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN)⟩
       let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy
       have hb : ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b :=
         ⟨M, fun m hm =>
           le_of_not_lt fun hlt =>
             not_lt_of_ge (zpow_le_of_le hy.le hlt.le)
-              (lt_of_le_of_lt hm (by rwa [← zpow_ofNat] at hM))⟩
+              (lt_of_le_of_lt hm (by rwa [← zpow_coe_nat] at hM))⟩
       let ⟨n, hn₁, hn₂⟩ := Int.exists_greatest_of_bdd hb he
       ⟨n, hn₁, lt_of_not_ge fun hge => not_le_of_gt (Int.lt_succ _) (hn₂ _ hge)⟩
 #align exists_mem_Ico_zpow exists_mem_Ico_zpow
chore: prepare Lean version bump with explicit simp (#10999)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -66,7 +66,7 @@ theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
     ∃! k : ℤ, k • a ≤ g ∧ g < (k + 1) • a := by
   let s : Set ℤ := { n : ℤ | n • a ≤ g }
   obtain ⟨k, hk : -g ≤ k • a⟩ := Archimedean.arch (-g) ha
-  have h_ne : s.Nonempty := ⟨-k, by simpa using neg_le_neg hk⟩
+  have h_ne : s.Nonempty := ⟨-k, by simpa [s] using neg_le_neg hk⟩
   obtain ⟨k, hk⟩ := Archimedean.arch g ha
   have h_bdd : ∀ n ∈ s, n ≤ (k : ℤ) := by
     intro n hn
chore(NNRat): Rearrange imports (#10392)

The goal is to separate the field material on Rat/NNRat from everything before to make way for NNRat.cast. We achieve this by

  • splitting Data.Rat.NNRat into
    • Data.NNRat.Defs for the foundationl stuff that will be needed in the definition of Field
    • Data.NNRat.Lemmas for the field and big operators material
  • moving the field material from Data.Rat.Order to Data.Rat.Basic
  • proving a few lemmas by rfl rather than coeHom.some_now_unavailable_lemma
  • renaming Data.Rat.NNRat.BigOperators to Data.NNRat.BigOperators
Diff
@@ -7,7 +7,7 @@ import Mathlib.Algebra.GroupPower.Order
 import Mathlib.Algebra.Order.Field.Power
 import Mathlib.Data.Int.LeastGreatest
 import Mathlib.Data.Rat.Floor
-import Mathlib.Data.Rat.NNRat
+import Mathlib.Data.NNRat.Defs
 
 #align_import algebra.order.archimedean from "leanprover-community/mathlib"@"6f413f3f7330b94c92a5a27488fdc74e6d483a78"
 
chore: Move positivity extensions (#10140)

The goal here is to have access to positivity earlier in the import hierarchy

Diff
@@ -3,6 +3,8 @@ Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro
 -/
+import Mathlib.Algebra.GroupPower.Order
+import Mathlib.Algebra.Order.Field.Power
 import Mathlib.Data.Int.LeastGreatest
 import Mathlib.Data.Rat.Floor
 import Mathlib.Data.Rat.NNRat
feat: num and den lemmas (#10219)

Add a few basic lemmas about Rat and NNRat and fix some lemma names

From LeanAPAP

Diff
@@ -297,10 +297,10 @@ theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α)
   · rw [Rat.coe_int_den, Nat.cast_one]
     exact one_ne_zero
   · intro H
-    rw [Rat.coe_nat_num, Int.cast_ofNat, Nat.cast_eq_zero] at H
+    rw [Rat.num_natCast, Int.cast_ofNat, Nat.cast_eq_zero] at H
     subst H
     cases n0
-  · rw [Rat.coe_nat_den, Nat.cast_one]
+  · rw [Rat.den_natCast, Nat.cast_one]
     exact one_ne_zero
 #align exists_rat_btwn exists_rat_btwn
 
refactor: move Archimedean instances to Order/Archimedean (#9950)

We already have the instances for , , and in this file, so adding NNRat doesn't feel that out of place, as it completes this {negation,division} lattice.

Follows on from #9917. These changes knock off 132 dependencies from NNRat, though adds more to Archimedean. I think this is acceptable; we need NNRat to be super early if we want to be able to use it in norm_num, and the depth of Archimedean will reduce with NNRat as I work towards this.

Diff
@@ -5,6 +5,7 @@ Authors: Mario Carneiro
 -/
 import Mathlib.Data.Int.LeastGreatest
 import Mathlib.Data.Rat.Floor
+import Mathlib.Data.Rat.NNRat
 
 #align_import algebra.order.archimedean from "leanprover-community/mathlib"@"6f413f3f7330b94c92a5a27488fdc74e6d483a78"
 
@@ -409,6 +410,15 @@ instance : Archimedean ℤ :=
 instance : Archimedean ℚ :=
   archimedean_iff_rat_le.2 fun q => ⟨q, by rw [Rat.cast_id]⟩
 
+instance Nonneg.archimedean [OrderedAddCommMonoid α] [Archimedean α] :
+    Archimedean { x : α // 0 ≤ x } :=
+  ⟨fun x y hy =>
+    let ⟨n, hr⟩ := Archimedean.arch (x : α) (hy : (0 : α) < y)
+    ⟨n, show (x : α) ≤ (n • y : { x : α // 0 ≤ x }) by simp [*, -nsmul_eq_mul, nsmul_coe]⟩⟩
+#align nonneg.archimedean Nonneg.archimedean
+
+instance : Archimedean NNRat := Nonneg.archimedean
+
 /-- A linear ordered archimedean ring is a floor ring. This is not an `instance` because in some
 cases we have a computable `floor` function. -/
 noncomputable def Archimedean.floorRing (α) [LinearOrderedRing α] [Archimedean α] : FloorRing α :=
chore: minimize some imports (#9559)

Started from Algebra/Periodic.lean with some snowball sampling. Seems to be somewhat disjoint from the tree shaking in #9347.

Diff
@@ -5,7 +5,6 @@ Authors: Mario Carneiro
 -/
 import Mathlib.Data.Int.LeastGreatest
 import Mathlib.Data.Rat.Floor
-import Mathlib.Algebra.Order.Field.Power
 
 #align_import algebra.order.archimedean from "leanprover-community/mathlib"@"6f413f3f7330b94c92a5a27488fdc74e6d483a78"
 
chore(*): replace $ with <| (#9319)

See Zulip thread for the discussion.

Diff
@@ -51,7 +51,8 @@ instance OrderDual.archimedean [OrderedAddCommGroup α] [Archimedean α] : Archi
 theorem exists_lt_nsmul [OrderedAddCommMonoid M] [Archimedean M]
     [CovariantClass M M (· + ·) (· < ·)] {a : M} (ha : 0 < a) (b : M) :
     ∃ n : ℕ, b < n • a :=
-  let ⟨k, hk⟩ := Archimedean.arch b ha; ⟨k + 1, hk.trans_lt $ nsmul_lt_nsmul_left ha k.lt_succ_self⟩
+  let ⟨k, hk⟩ := Archimedean.arch b ha
+  ⟨k + 1, hk.trans_lt <| nsmul_lt_nsmul_left ha k.lt_succ_self⟩
 
 section LinearOrderedAddCommGroup
 
chore: Rename pow monotonicity lemmas (#9095)

The names for lemmas about monotonicity of (a ^ ·) and (· ^ n) were a mess. This PR tidies up everything related by following the naming convention for (a * ·) and (· * b). Namely, (a ^ ·) is pow_right and (· ^ n) is pow_left in lemma names. All lemma renames follow the corresponding multiplication lemma names closely.

Renames

Algebra.GroupPower.Order

  • pow_monopow_right_mono
  • pow_le_powpow_le_pow_right
  • pow_le_pow_of_le_leftpow_le_pow_left
  • pow_lt_pow_of_lt_leftpow_lt_pow_left
  • strictMonoOn_powpow_left_strictMonoOn
  • pow_strictMono_rightpow_right_strictMono
  • pow_lt_powpow_lt_pow_right
  • pow_lt_pow_iffpow_lt_pow_iff_right
  • pow_le_pow_iffpow_le_pow_iff_right
  • self_lt_powlt_self_pow
  • strictAnti_powpow_right_strictAnti
  • pow_lt_pow_iff_of_lt_onepow_lt_pow_iff_right_of_lt_one
  • pow_lt_pow_of_lt_onepow_lt_pow_right_of_lt_one
  • lt_of_pow_lt_powlt_of_pow_lt_pow_left
  • le_of_pow_le_powle_of_pow_le_pow_left
  • pow_lt_pow₀pow_lt_pow_right₀

Algebra.GroupPower.CovariantClass

  • pow_le_pow_of_le_left'pow_le_pow_left'
  • nsmul_le_nsmul_of_le_rightnsmul_le_nsmul_right
  • pow_lt_pow'pow_lt_pow_right'
  • nsmul_lt_nsmulnsmul_lt_nsmul_left
  • pow_strictMono_leftpow_right_strictMono'
  • nsmul_strictMono_rightnsmul_left_strictMono
  • StrictMono.pow_right'StrictMono.pow_const
  • StrictMono.nsmul_leftStrictMono.const_nsmul
  • pow_strictMono_right'pow_left_strictMono
  • nsmul_strictMono_leftnsmul_right_strictMono
  • Monotone.pow_rightMonotone.pow_const
  • Monotone.nsmul_leftMonotone.const_nsmul
  • lt_of_pow_lt_pow'lt_of_pow_lt_pow_left'
  • lt_of_nsmul_lt_nsmullt_of_nsmul_lt_nsmul_right
  • pow_le_pow'pow_le_pow_right'
  • nsmul_le_nsmulnsmul_le_nsmul_left
  • pow_le_pow_of_le_one'pow_le_pow_right_of_le_one'
  • nsmul_le_nsmul_of_nonposnsmul_le_nsmul_left_of_nonpos
  • le_of_pow_le_pow'le_of_pow_le_pow_left'
  • le_of_nsmul_le_nsmul'le_of_nsmul_le_nsmul_right'
  • pow_le_pow_iff'pow_le_pow_iff_right'
  • nsmul_le_nsmul_iffnsmul_le_nsmul_iff_left
  • pow_lt_pow_iff'pow_lt_pow_iff_right'
  • nsmul_lt_nsmul_iffnsmul_lt_nsmul_iff_left

Data.Nat.Pow

  • Nat.pow_lt_pow_of_lt_leftNat.pow_lt_pow_left
  • Nat.pow_le_iff_le_leftNat.pow_le_pow_iff_left
  • Nat.pow_lt_iff_lt_leftNat.pow_lt_pow_iff_left

Lemmas added

  • pow_le_pow_iff_left
  • pow_lt_pow_iff_left
  • pow_right_injective
  • pow_right_inj
  • Nat.pow_le_pow_left to have the correct name since Nat.pow_le_pow_of_le_left is in Std.
  • Nat.pow_le_pow_right to have the correct name since Nat.pow_le_pow_of_le_right is in Std.

Lemmas removed

  • self_le_pow was a duplicate of le_self_pow.
  • Nat.pow_lt_pow_of_lt_right is defeq to pow_lt_pow_right.
  • Nat.pow_right_strictMono is defeq to pow_right_strictMono.
  • Nat.pow_le_iff_le_right is defeq to pow_le_pow_iff_right.
  • Nat.pow_lt_iff_lt_right is defeq to pow_lt_pow_iff_right.

Other changes

  • A bunch of proofs have been golfed.
  • Some lemma assumptions have been turned from 0 < n or 1 ≤ n to n ≠ 0.
  • A few Nat lemmas have been protected.
  • One docstring has been fixed.
Diff
@@ -51,7 +51,7 @@ instance OrderDual.archimedean [OrderedAddCommGroup α] [Archimedean α] : Archi
 theorem exists_lt_nsmul [OrderedAddCommMonoid M] [Archimedean M]
     [CovariantClass M M (· + ·) (· < ·)] {a : M} (ha : 0 < a) (b : M) :
     ∃ n : ℕ, b < n • a :=
-  let ⟨k, hk⟩ := Archimedean.arch b ha; ⟨k + 1, hk.trans_lt <| nsmul_lt_nsmul ha k.lt_succ_self⟩
+  let ⟨k, hk⟩ := Archimedean.arch b ha; ⟨k + 1, hk.trans_lt $ nsmul_lt_nsmul_left ha k.lt_succ_self⟩
 
 section LinearOrderedAddCommGroup
 
refactor: Generalise archimedean lemmas to semirings (#8943)

A bunch of lemmas are true in but previously did not apply there.

Co-authored-by: Sébastien Gouëzel <sebastien.gouezel@univ-rennes1.fr>

Diff
@@ -115,10 +115,6 @@ theorem existsUnique_sub_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
 
 end LinearOrderedAddCommGroup
 
-theorem exists_nat_gt [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x < n :=
-  (exists_lt_nsmul zero_lt_one x).imp fun n hn ↦ by rwa [← nsmul_one]
-#align exists_nat_gt exists_nat_gt
-
 theorem exists_nat_ge [OrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x ≤ n := by
   nontriviality α
   exact (Archimedean.arch x one_pos).imp fun n h => by rwa [← nsmul_one]
@@ -130,8 +126,14 @@ instance (priority := 100) [OrderedSemiring α] [Archimedean α] : IsDirected α
     let ⟨k, hmk, hnk⟩ := exists_ge_ge m n
     ⟨k, hm.trans <| Nat.mono_cast hmk, hn.trans <| Nat.mono_cast hnk⟩⟩
 
-theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α] (x : α) {y : α}
-    (hy : 0 < y) : ∃ n : ℕ, x < (y + 1) ^ n :=
+section StrictOrderedSemiring
+variable [StrictOrderedSemiring α] [Archimedean α] {y : α}
+
+lemma exists_nat_gt (x : α) : ∃ n : ℕ, x < n :=
+  (exists_lt_nsmul zero_lt_one x).imp fun n hn ↦ by rwa [← nsmul_one]
+#align exists_nat_gt exists_nat_gt
+
+theorem add_one_pow_unbounded_of_pos (x : α) (hy : 0 < y) : ∃ n : ℕ, x < (y + 1) ^ n :=
   have : 0 ≤ 1 + y := add_nonneg zero_le_one hy.le
   (Archimedean.arch x hy).imp fun n h ↦
     calc
@@ -144,13 +146,16 @@ theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α]
       _ = (y + 1) ^ n := by rw [add_comm]
 #align add_one_pow_unbounded_of_pos add_one_pow_unbounded_of_pos
 
-section StrictOrderedRing
+lemma pow_unbounded_of_one_lt [ExistsAddOfLE α] (x : α) (hy1 : 1 < y) : ∃ n : ℕ, x < y ^ n := by
+  obtain ⟨z, hz, rfl⟩ := exists_pos_add_of_lt' hy1
+  rw [add_comm]
+  exact add_one_pow_unbounded_of_pos _ hz
+#align pow_unbounded_of_one_lt pow_unbounded_of_one_lt
 
-variable [StrictOrderedRing α] [Archimedean α]
+end StrictOrderedSemiring
 
-theorem pow_unbounded_of_one_lt (x : α) {y : α} (hy1 : 1 < y) : ∃ n : ℕ, x < y ^ n :=
-  sub_add_cancel y 1 ▸ add_one_pow_unbounded_of_pos _ (sub_pos.2 hy1)
-#align pow_unbounded_of_one_lt pow_unbounded_of_one_lt
+section StrictOrderedRing
+variable [StrictOrderedRing α] [Archimedean α]
 
 theorem exists_int_gt (x : α) : ∃ n : ℤ, x < n :=
   let ⟨n, h⟩ := exists_nat_gt x
@@ -177,14 +182,12 @@ theorem exists_floor (x : α) : ∃ fl : ℤ, ∀ z : ℤ, z ≤ fl ↔ (z : α)
 
 end StrictOrderedRing
 
-section LinearOrderedRing
-
-variable [LinearOrderedRing α] [Archimedean α]
+section LinearOrderedSemiring
+variable [LinearOrderedSemiring α] [Archimedean α] [ ExistsAddOfLE α] {x y : α}
 
 /-- Every x greater than or equal to 1 is between two successive
 natural-number powers of every y greater than one. -/
-theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
-    ∃ n : ℕ, y ^ n ≤ x ∧ x < y ^ (n + 1) := by
+theorem exists_nat_pow_near (hx : 1 ≤ x) (hy : 1 < y) : ∃ n : ℕ, y ^ n ≤ x ∧ x < y ^ (n + 1) := by
   have h : ∃ n : ℕ, x < y ^ n := pow_unbounded_of_one_lt _ hy
   classical exact
       let n := Nat.find h
@@ -196,11 +199,10 @@ theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
       ⟨Nat.pred n, le_of_not_lt (Nat.find_min h hltn), by rwa [hnsp]⟩
 #align exists_nat_pow_near exists_nat_pow_near
 
-end LinearOrderedRing
+end LinearOrderedSemiring
 
-section LinearOrderedField
-
-variable [LinearOrderedField α] [Archimedean α] {x y ε : α}
+section LinearOrderedSemifield
+variable [LinearOrderedSemifield α] [Archimedean α] [ExistsAddOfLE α] {x y ε : α}
 
 /-- Every positive `x` is between two successive integer powers of
 another `y` greater than one. This is the same as `exists_mem_Ioc_zpow`,
@@ -239,7 +241,7 @@ theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n <
   by_cases y_pos : y ≤ 0
   · use 1
     simp only [pow_one]
-    linarith
+    exact y_pos.trans_lt hx
   rw [not_le] at y_pos
   rcases pow_unbounded_of_one_lt x⁻¹ (one_lt_inv y_pos hy) with ⟨q, hq⟩
   exact ⟨q, by rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq⟩
@@ -256,6 +258,20 @@ theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 <
   · rwa [inv_pow, inv_le_inv (pow_pos ypos _) xpos] at hn
 #align exists_nat_pow_near_of_lt_one exists_nat_pow_near_of_lt_one
 
+lemma exists_nat_one_div_lt (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1 : α) < ε := by
+  cases' exists_nat_gt (1 / ε) with n hn
+  use n
+  rw [div_lt_iff, ← div_lt_iff' hε]
+  · apply hn.trans
+    simp [zero_lt_one]
+  · exact n.cast_add_one_pos
+#align exists_nat_one_div_lt exists_nat_one_div_lt
+
+end LinearOrderedSemifield
+
+section LinearOrderedField
+variable [LinearOrderedField α] [Archimedean α] {x y ε : α}
+
 theorem exists_rat_gt (x : α) : ∃ q : ℚ, x < q :=
   let ⟨n, h⟩ := exists_nat_gt x
   ⟨n, by rwa [Rat.cast_coe_nat]⟩
@@ -315,15 +331,6 @@ theorem eq_of_forall_lt_rat_iff_lt (h : ∀ q : ℚ, x < q ↔ y < q) : x = y :=
     le_of_forall_lt_rat_imp_le fun q hq => ((h q).1 hq).le
 #align eq_of_forall_lt_rat_iff_lt eq_of_forall_lt_rat_iff_lt
 
-theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1 : α) < ε := by
-  cases' exists_nat_gt (1 / ε) with n hn
-  use n
-  rw [div_lt_iff, ← div_lt_iff' hε]
-  · apply hn.trans
-    simp [zero_lt_one]
-  · exact n.cast_add_one_pos
-#align exists_nat_one_div_lt exists_nat_one_div_lt
-
 theorem exists_pos_rat_lt {x : α} (x0 : 0 < x) : ∃ q : ℚ, 0 < q ∧ (q : α) < x := by
   simpa only [Rat.cast_pos] using exists_rat_btwn x0
 #align exists_pos_rat_lt exists_pos_rat_lt
chore: replace exact_mod_cast tactic with mod_cast elaborator where possible (#8404)

We still have the exact_mod_cast tactic, used in a few places, which somehow (?) works a little bit harder to prevent the expected type influencing the elaboration of the term. I would like to get to the bottom of this, and it will be easier once the only usages of exact_mod_cast are the ones that don't work using the term elaborator by itself.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -359,7 +359,7 @@ theorem archimedean_iff_int_lt : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x <
     intro h x
     obtain ⟨n, h⟩ := h x
     refine' ⟨n.toNat, h.trans_le _⟩
-    exact_mod_cast Int.self_le_toNat _⟩
+    exact mod_cast Int.self_le_toNat _⟩
 #align archimedean_iff_int_lt archimedean_iff_int_lt
 
 theorem archimedean_iff_int_le : Archimedean α ↔ ∀ x : α, ∃ n : ℤ, x ≤ n :=
feat: generalize some lemmas to directed types (#7852)

New lemmas / instances

  • An archimedean ordered semiring is directed upwards.
  • Filter.hasAntitoneBasis_atTop;
  • Filter.HasAntitoneBasis.iInf_principal;

Fix typos

  • Docstrings: "if the agree" -> "if they agree".
  • ProbabilityTheory.measure_eq_zero_or_one_of_indepSetCat_self -> ProbabilityTheory.measure_eq_zero_or_one_of_indepSet_self.

Weaken typeclass assumptions

From a semilattice to a directed type

  • MeasureTheory.tendsto_measure_iUnion;
  • MeasureTheory.tendsto_measure_iInter;
  • Monotone.directed_le, Monotone.directed_ge;
  • Antitone.directed_le, Antitone.directed_ge;
  • directed_of_sup, renamed to directed_of_isDirected_le;
  • directed_of_inf, renamed to directed_of_isDirected_ge;

From a strict ordered semiring to an ordered semiring

  • tendsto_nat_cast_atTop_atTop;
  • Filter.Eventually.nat_cast_atTop;
  • atTop_hasAntitoneBasis_of_archimedean;
Diff
@@ -124,6 +124,12 @@ theorem exists_nat_ge [OrderedSemiring α] [Archimedean α] (x : α) : ∃ n : 
   exact (Archimedean.arch x one_pos).imp fun n h => by rwa [← nsmul_one]
 #align exists_nat_ge exists_nat_ge
 
+instance (priority := 100) [OrderedSemiring α] [Archimedean α] : IsDirected α (· ≤ ·) :=
+  ⟨fun x y ↦
+    let ⟨m, hm⟩ := exists_nat_ge x; let ⟨n, hn⟩ := exists_nat_ge y
+    let ⟨k, hmk, hnk⟩ := exists_ge_ge m n
+    ⟨k, hm.trans <| Nat.mono_cast hmk, hn.trans <| Nat.mono_cast hnk⟩⟩
+
 theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α] (x : α) {y : α}
     (hy : 0 < y) : ∃ n : ℕ, x < (y + 1) ^ n :=
   have : 0 ≤ 1 + y := add_nonneg zero_le_one hy.le
feat: intervals with rational bounds generate the real Borel sigma algebra (#6490)

Add borel_eq_generateFrom_Ioi_rat, borel_eq_generateFrom_Ici_rat, borel_eq_generateFrom_Iic_rat (we already have the Iio result). Also prove that these sets of intervals are pi-systems.

Co-authored-by: RemyDegenne <remydegenne@gmail.com>

Diff
@@ -293,6 +293,12 @@ theorem le_of_forall_lt_rat_imp_le (h : ∀ q : ℚ, y < q → x ≤ q) : x ≤
     hx.not_le <| h _ hy
 #align le_of_forall_lt_rat_imp_le le_of_forall_lt_rat_imp_le
 
+theorem le_iff_forall_rat_lt_imp_le : x ≤ y ↔ ∀ q : ℚ, (q : α) < x → (q : α) ≤ y :=
+  ⟨fun hxy _ hqx ↦ hqx.le.trans hxy, le_of_forall_rat_lt_imp_le⟩
+
+theorem le_iff_forall_lt_rat_imp_le : x ≤ y ↔ ∀ q : ℚ, y < q → x ≤ q :=
+  ⟨fun hxy _ hqx ↦ hxy.trans hqx.le, le_of_forall_lt_rat_imp_le⟩
+
 theorem eq_of_forall_rat_lt_iff_lt (h : ∀ q : ℚ, (q : α) < x ↔ (q : α) < y) : x = y :=
   (le_of_forall_rat_lt_imp_le fun q hq => ((h q).1 hq).le).antisymm <|
     le_of_forall_rat_lt_imp_le fun q hq => ((h q).2 hq).le
fix: disable autoImplicit globally (#6528)

Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.

The intent of this PR is to make autoImplicit opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true in the few files that rely on it.

That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.

I claim that many of the uses of autoImplicit in these files are accidental; situations such as:

  • Assuming variables are in scope, but pasting the lemma in the wrong section
  • Pasting in a lemma from a scratch file without checking to see if the variable names are consistent with the rest of the file
  • Making a copy-paste error between lemmas and forgetting to add an explicit arguments.

Having set_option autoImplicit false as the default prevents these types of mistake being made in the 90% of files where autoImplicits are not used at all, and causes them to be caught by CI during review.

I think there were various points during the port where we encouraged porters to delete the universes u v lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.

A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18 as the no:dontcare:yes vote ratio.

While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true has been placed locally within a section, rather than at the top of the file.

Diff
@@ -28,6 +28,7 @@ number `n` such that `x ≤ n • y`.
 * `ℕ`, `ℤ`, and `ℚ` are archimedean.
 -/
 
+set_option autoImplicit true
 
 open Int Set
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -31,7 +31,7 @@ number `n` such that `x ≤ n • y`.
 
 open Int Set
 
-variable {α : Type _}
+variable {α : Type*}
 
 /-- An ordered additive commutative monoid is called `Archimedean` if for any two elements `x`, `y`
 such that `0 < y`, there exists a natural number `n` such that `x ≤ n • y`. -/
feat(Algebra/GroupPower): weaken TC assumptions (#6389)
  • Assume OrderedSemiring instead of StrictOrderedSemiring here and there.
  • Add @[simp] to zsmul_one.
  • Add exists_lt_nsmul.
Diff
@@ -47,6 +47,11 @@ instance OrderDual.archimedean [OrderedAddCommGroup α] [Archimedean α] : Archi
     ⟨n, by rwa [neg_nsmul, neg_le_neg_iff] at hn⟩⟩
 #align order_dual.archimedean OrderDual.archimedean
 
+theorem exists_lt_nsmul [OrderedAddCommMonoid M] [Archimedean M]
+    [CovariantClass M M (· + ·) (· < ·)] {a : M} (ha : 0 < a) (b : M) :
+    ∃ n : ℕ, b < n • a :=
+  let ⟨k, hk⟩ := Archimedean.arch b ha; ⟨k + 1, hk.trans_lt <| nsmul_lt_nsmul ha k.lt_succ_self⟩
+
 section LinearOrderedAddCommGroup
 
 variable [LinearOrderedAddCommGroup α] [Archimedean α]
@@ -110,20 +115,18 @@ theorem existsUnique_sub_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
 end LinearOrderedAddCommGroup
 
 theorem exists_nat_gt [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x < n :=
-  let ⟨n, h⟩ := Archimedean.arch x zero_lt_one
-  ⟨n + 1, lt_of_le_of_lt (by rwa [← nsmul_one]) (Nat.cast_lt.2 (Nat.lt_succ_self _))⟩
+  (exists_lt_nsmul zero_lt_one x).imp fun n hn ↦ by rwa [← nsmul_one]
 #align exists_nat_gt exists_nat_gt
 
-theorem exists_nat_ge [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x ≤ n := by
+theorem exists_nat_ge [OrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x ≤ n := by
   nontriviality α
-  exact (exists_nat_gt x).imp fun n => le_of_lt
+  exact (Archimedean.arch x one_pos).imp fun n h => by rwa [← nsmul_one]
 #align exists_nat_ge exists_nat_ge
 
 theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α] (x : α) {y : α}
     (hy : 0 < y) : ∃ n : ℕ, x < (y + 1) ^ n :=
   have : 0 ≤ 1 + y := add_nonneg zero_le_one hy.le
-  let ⟨n, h⟩ := Archimedean.arch x hy
-  ⟨n,
+  (Archimedean.arch x hy).imp fun n h ↦
     calc
       x ≤ n • y := h
       _ = n * y := nsmul_eq_mul _ _
@@ -132,7 +135,6 @@ theorem add_one_pow_unbounded_of_pos [StrictOrderedSemiring α] [Archimedean α]
         one_add_mul_le_pow' (mul_nonneg hy.le hy.le) (mul_nonneg this this)
           (add_nonneg zero_le_two hy.le) _
       _ = (y + 1) ^ n := by rw [add_comm]
-      ⟩
 #align add_one_pow_unbounded_of_pos add_one_pow_unbounded_of_pos
 
 section StrictOrderedRing
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro
-
-! This file was ported from Lean 3 source module algebra.order.archimedean
-! leanprover-community/mathlib commit 6f413f3f7330b94c92a5a27488fdc74e6d483a78
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Int.LeastGreatest
 import Mathlib.Data.Rat.Floor
 import Mathlib.Algebra.Order.Field.Power
 
+#align_import algebra.order.archimedean from "leanprover-community/mathlib"@"6f413f3f7330b94c92a5a27488fdc74e6d483a78"
+
 /-!
 # Archimedean groups and fields.
 
fix: added missing theorems in Algebra.Order.Archimedean (#2150)

exists_unique_sub_zsmul_mem_Ico and exists_unique_sub_zsmul_mem_Ioc did not seem to get ported for some reason. They're used in Algebra/Order/ToIntervalMod, so let's fix this!

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro
 
 ! This file was ported from Lean 3 source module algebra.order.archimedean
-! leanprover-community/mathlib commit e001509c11c4d0f549d91d89da95b4a0b43c714f
+! leanprover-community/mathlib commit 6f413f3f7330b94c92a5a27488fdc74e6d483a78
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -82,6 +82,12 @@ theorem existsUnique_zsmul_near_of_pos' {a : α} (ha : 0 < a) (g : α) :
     existsUnique_zsmul_near_of_pos ha g
 #align exists_unique_zsmul_near_of_pos' existsUnique_zsmul_near_of_pos'
 
+theorem existsUnique_sub_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
+    ∃! m : ℤ, b - m • a ∈ Set.Ico c (c + a) := by
+  simpa only [mem_Ico, le_sub_iff_add_le, zero_add, add_comm c, sub_lt_iff_lt_add', add_assoc] using
+    existsUnique_zsmul_near_of_pos' ha (b - c)
+#align exists_unique_sub_zsmul_mem_Ico existsUnique_sub_zsmul_mem_Ico
+
 theorem existsUnique_add_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) :
     ∃! m : ℤ, b + m • a ∈ Set.Ico c (c + a) :=
   (Equiv.neg ℤ).bijective.existsUnique_iff.2 <| by
@@ -97,6 +103,13 @@ theorem existsUnique_add_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
       existsUnique_zsmul_near_of_pos ha (c - b)
 #align exists_unique_add_zsmul_mem_Ioc existsUnique_add_zsmul_mem_Ioc
 
+theorem existsUnique_sub_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) :
+    ∃! m : ℤ, b - m • a ∈ Set.Ioc c (c + a) :=
+  (Equiv.neg ℤ).bijective.existsUnique_iff.2 <| by
+    simpa only [Equiv.neg_apply, neg_zsmul, sub_neg_eq_add] using
+      existsUnique_add_zsmul_mem_Ioc ha b c
+#align exists_unique_sub_zsmul_mem_Ioc existsUnique_sub_zsmul_mem_Ioc
+
 end LinearOrderedAddCommGroup
 
 theorem exists_nat_gt [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x < n :=
chore: format by line breaks (#1523)

During porting, I usually fix the desired format we seem to want for the line breaks around by with

awk '{do {{if (match($0, "^  by$") && length(p) < 98) {p=p " by";} else {if (NR!=1) {print p}; p=$0}}} while (getline == 1) if (getline==0) print p}' Mathlib/File/Im/Working/On.lean

I noticed there are some more files that slipped through.

This pull request is the result of running this command:

grep -lr "^  by\$" Mathlib | xargs -n 1 awk -i inplace '{do {{if (match($0, "^  by$") && length(p) < 98 && not (match(p, "^[ \t]*--"))) {p=p " by";} else {if (NR!=1) {print p}; p=$0}}} while (getline == 1) if (getline==0) print p}'

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -57,8 +57,7 @@ variable [LinearOrderedAddCommGroup α] [Archimedean α]
 /-- An archimedean decidable linearly ordered `AddCommGroup` has a version of the floor: for
 `a > 0`, any `g` in the group lies between some two consecutive multiples of `a`. -/
 theorem existsUnique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) :
-    ∃! k : ℤ, k • a ≤ g ∧ g < (k + 1) • a :=
-  by
+    ∃! k : ℤ, k • a ≤ g ∧ g < (k + 1) • a := by
   let s : Set ℤ := { n : ℤ | n • a ≤ g }
   obtain ⟨k, hk : -g ≤ k • a⟩ := Archimedean.arch (-g) ha
   have h_ne : s.Nonempty := ⟨-k, by simpa using neg_le_neg hk⟩
@@ -105,8 +104,7 @@ theorem exists_nat_gt [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃
   ⟨n + 1, lt_of_le_of_lt (by rwa [← nsmul_one]) (Nat.cast_lt.2 (Nat.lt_succ_self _))⟩
 #align exists_nat_gt exists_nat_gt
 
-theorem exists_nat_ge [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x ≤ n :=
-  by
+theorem exists_nat_ge [StrictOrderedSemiring α] [Archimedean α] (x : α) : ∃ n : ℕ, x ≤ n := by
   nontriviality α
   exact (exists_nat_gt x).imp fun n => le_of_lt
 #align exists_nat_ge exists_nat_ge
@@ -145,8 +143,7 @@ theorem exists_int_lt (x : α) : ∃ n : ℤ, (n : α) < x :=
   ⟨-n, by rw [Int.cast_neg]; exact neg_lt.1 h⟩
 #align exists_int_lt exists_int_lt
 
-theorem exists_floor (x : α) : ∃ fl : ℤ, ∀ z : ℤ, z ≤ fl ↔ (z : α) ≤ x :=
-  by
+theorem exists_floor (x : α) : ∃ fl : ℤ, ∀ z : ℤ, z ≤ fl ↔ (z : α) ≤ x := by
   haveI := Classical.propDecidable
   have : ∃ ub : ℤ, (ub : α) ≤ x ∧ ∀ z : ℤ, (z : α) ≤ x → z ≤ ub :=
     Int.exists_greatest_of_bdd
@@ -168,8 +165,7 @@ variable [LinearOrderedRing α] [Archimedean α]
 /-- Every x greater than or equal to 1 is between two successive
 natural-number powers of every y greater than one. -/
 theorem exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) :
-    ∃ n : ℕ, y ^ n ≤ x ∧ x < y ^ (n + 1) :=
-  by
+    ∃ n : ℕ, y ^ n ≤ x ∧ x < y ^ (n + 1) := by
   have h : ∃ n : ℕ, x < y ^ n := pow_unbounded_of_one_lt _ hy
   classical exact
       let n := Nat.find h
@@ -220,8 +216,7 @@ theorem exists_mem_Ioc_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ioc (
 #align exists_mem_Ioc_zpow exists_mem_Ioc_zpow
 
 /-- For any `y < 1` and any positive `x`, there exists `n : ℕ` with `y ^ n < x`. -/
-theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n < x :=
-  by
+theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n < x := by
   by_cases y_pos : y ≤ 0
   · use 1
     simp only [pow_one]
@@ -234,8 +229,7 @@ theorem exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n <
 /-- Given `x` and `y` between `0` and `1`, `x` is between two successive powers of `y`.
 This is the same as `exists_nat_pow_near`, but for elements between `0` and `1` -/
 theorem exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 < y) (hy : y < 1) :
-    ∃ n : ℕ, y ^ (n + 1) < x ∧ x ≤ y ^ n :=
-  by
+    ∃ n : ℕ, y ^ (n + 1) < x ∧ x ≤ y ^ n := by
   rcases exists_nat_pow_near (one_le_inv_iff.2 ⟨xpos, hx⟩) (one_lt_inv_iff.2 ⟨ypos, hy⟩) with
     ⟨n, hn, h'n⟩
   refine' ⟨n, _, _⟩
@@ -253,8 +247,7 @@ theorem exists_rat_lt (x : α) : ∃ q : ℚ, (q : α) < x :=
   ⟨n, by rwa [Rat.cast_coe_int]⟩
 #align exists_rat_lt exists_rat_lt
 
-theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α) < y :=
-  by
+theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q : α) < y := by
   cases' exists_nat_gt (y - x)⁻¹ with n nh
   cases' exists_floor (x * n) with z zh
   refine' ⟨(z + 1 : ℤ) / n, _⟩
@@ -297,8 +290,7 @@ theorem eq_of_forall_lt_rat_iff_lt (h : ∀ q : ℚ, x < q ↔ y < q) : x = y :=
     le_of_forall_lt_rat_imp_le fun q hq => ((h q).1 hq).le
 #align eq_of_forall_lt_rat_iff_lt eq_of_forall_lt_rat_iff_lt
 
-theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1 : α) < ε :=
-  by
+theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1 : α) < ε := by
   cases' exists_nat_gt (1 / ε) with n hn
   use n
   rw [div_lt_iff, ← div_lt_iff' hε]
feat: port Algebra.Order.Archimedean (#1462)

Co-authored-by: ADedecker <anatolededecker@gmail.com> Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Dependencies 3 + 149

150 files ported (98.0%)
62119 lines ported (98.4%)
Show graph

The unported dependencies are