algebra.order.field.power
⟷
Mathlib.Algebra.Order.Field.Power
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
pow_minus_two_nonneg
(#18591)
Rename pow_minus_two_nonneg
to zpow_neg_two_nonneg
and move it to algebra.order.field.power
.
@@ -98,6 +98,7 @@ lemma zpow_bit0_nonneg (a : α) (n : ℤ) : 0 ≤ a ^ bit0 n :=
(mul_self_nonneg _).trans_eq $ (zpow_bit0 _ _).symm
lemma zpow_two_nonneg (a : α) : 0 ≤ a ^ (2 : ℤ) := zpow_bit0_nonneg _ _
+lemma zpow_neg_two_nonneg (a : α) : 0 ≤ a ^ (-2 : ℤ) := zpow_bit0_nonneg _ (-1)
lemma zpow_bit0_pos (h : a ≠ 0) (n : ℤ) : 0 < a ^ bit0 n :=
(zpow_bit0_nonneg a n).lt_of_ne (zpow_ne_zero _ h).symm
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -38,7 +38,7 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
a ^ m = a ^ m * 1 := (mul_one _).symm
_ ≤ a ^ m * a ^ k :=
(mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _))
- _ = a ^ n := by rw [← zpow_coe_nat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
+ _ = a ^ n := by rw [← zpow_natCast, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel]
#align zpow_le_of_le zpow_le_of_le
-/
@@ -68,7 +68,7 @@ theorem Nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α) ^ n
#print one_lt_zpow /-
theorem one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n
- | (n : ℕ), h => (zpow_coe_nat _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
+ | (n : ℕ), h => (zpow_natCast _ _).symm.subst (one_lt_pow ha <| Int.natCast_ne_zero.mp h.ne')
| -[n+1], h => ((Int.negSucc_not_pos _).mp h).elim
#align one_lt_zpow one_lt_zpow
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -38,7 +38,7 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
a ^ m = a ^ m * 1 := (mul_one _).symm
_ ≤ a ^ m * a ^ k :=
(mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _))
- _ = a ^ n := by rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
+ _ = a ^ n := by rw [← zpow_coe_nat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
#align zpow_le_of_le zpow_le_of_le
-/
@@ -68,7 +68,7 @@ theorem Nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α) ^ n
#print one_lt_zpow /-
theorem one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n
- | (n : ℕ), h => (zpow_ofNat _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
+ | (n : ℕ), h => (zpow_coe_nat _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
| -[n+1], h => ((Int.negSucc_not_pos _).mp h).elim
#align one_lt_zpow one_lt_zpow
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -156,7 +156,7 @@ variable [LinearOrderedField α] {a b c d : α} {n : ℤ}
#print zpow_bit0_nonneg /-
theorem zpow_bit0_nonneg (a : α) (n : ℤ) : 0 ≤ a ^ bit0 n :=
- (mul_self_nonneg _).trans_eq <| (zpow_bit0 _ _).symm
+ (hMul_self_nonneg _).trans_eq <| (zpow_bit0 _ _).symm
#align zpow_bit0_nonneg zpow_bit0_nonneg
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,10 +3,10 @@ Copyright (c) 2014 Robert Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Lewis, Leonardo de Moura, Mario Carneiro, Floris van Doorn
-/
-import Mathbin.Algebra.Parity
-import Mathbin.Algebra.CharZero.Lemmas
-import Mathbin.Algebra.GroupWithZero.Power
-import Mathbin.Algebra.Order.Field.Basic
+import Algebra.Parity
+import Algebra.CharZero.Lemmas
+import Algebra.GroupWithZero.Power
+import Algebra.Order.Field.Basic
#align_import algebra.order.field.power from "leanprover-community/mathlib"@"acb3d204d4ee883eb686f45d486a2a6811a01329"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -257,13 +257,13 @@ theorem Odd.zpow_pos_iff (hn : Odd n) : 0 < a ^ n ↔ 0 < a := by
#align odd.zpow_pos_iff Odd.zpow_pos_iff
-/
-alias Even.zpow_pos_iff ↔ _ Even.zpow_pos
+alias ⟨_, Even.zpow_pos⟩ := Even.zpow_pos_iff
#align even.zpow_pos Even.zpow_pos
-alias Odd.zpow_neg_iff ↔ _ Odd.zpow_neg
+alias ⟨_, Odd.zpow_neg⟩ := Odd.zpow_neg_iff
#align odd.zpow_neg Odd.zpow_neg
-alias Odd.zpow_nonpos_iff ↔ _ Odd.zpow_nonpos
+alias ⟨_, Odd.zpow_nonpos⟩ := Odd.zpow_nonpos_iff
#align odd.zpow_nonpos Odd.zpow_nonpos
#print Even.zpow_abs /-
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,17 +2,14 @@
Copyright (c) 2014 Robert Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Lewis, Leonardo de Moura, Mario Carneiro, Floris van Doorn
-
-! This file was ported from Lean 3 source module algebra.order.field.power
-! leanprover-community/mathlib commit acb3d204d4ee883eb686f45d486a2a6811a01329
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Algebra.Parity
import Mathbin.Algebra.CharZero.Lemmas
import Mathbin.Algebra.GroupWithZero.Power
import Mathbin.Algebra.Order.Field.Basic
+#align_import algebra.order.field.power from "leanprover-community/mathlib"@"acb3d204d4ee883eb686f45d486a2a6811a01329"
+
/-!
# Lemmas about powers in ordered fields.
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -57,13 +57,17 @@ theorem one_le_zpow_of_nonneg (ha : 1 ≤ a) (hn : 0 ≤ n) : 1 ≤ a ^ n :=
#align one_le_zpow_of_nonneg one_le_zpow_of_nonneg
-/
+#print Nat.zpow_pos_of_pos /-
protected theorem Nat.zpow_pos_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : 0 < (a : α) ^ n := by
apply zpow_pos_of_pos; exact_mod_cast h
#align nat.zpow_pos_of_pos Nat.zpow_pos_of_pos
+-/
+#print Nat.zpow_ne_zero_of_pos /-
theorem Nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α) ^ n ≠ 0 :=
(Nat.zpow_pos_of_pos h n).ne'
#align nat.zpow_ne_zero_of_pos Nat.zpow_ne_zero_of_pos
+-/
#print one_lt_zpow /-
theorem one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n
@@ -82,6 +86,7 @@ theorem zpow_strictMono (hx : 1 < a) : StrictMono ((· ^ ·) a : ℤ → α) :=
#align zpow_strict_mono zpow_strictMono
-/
+#print zpow_strictAnti /-
theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti ((· ^ ·) a : ℤ → α) :=
strictAnti_int_of_succ_lt fun n =>
calc
@@ -89,6 +94,7 @@ theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti ((· ^ ·) a
_ < a ^ n * 1 := ((mul_lt_mul_left <| zpow_pos_of_pos h₀ _).2 h₁)
_ = a ^ n := mul_one _
#align zpow_strict_anti zpow_strictAnti
+-/
#print zpow_lt_iff_lt /-
@[simp]
@@ -104,33 +110,43 @@ theorem zpow_le_iff_le (hx : 1 < a) : a ^ m ≤ a ^ n ↔ m ≤ n :=
#align zpow_le_iff_le zpow_le_iff_le
-/
+#print div_pow_le /-
@[simp]
theorem div_pow_le (ha : 0 ≤ a) (hb : 1 ≤ b) (k : ℕ) : a / b ^ k ≤ a :=
div_le_self ha <| one_le_pow_of_one_le hb _
#align div_pow_le div_pow_le
+-/
+#print zpow_injective /-
theorem zpow_injective (h₀ : 0 < a) (h₁ : a ≠ 1) : Injective ((· ^ ·) a : ℤ → α) :=
by
rcases h₁.lt_or_lt with (H | H)
· exact (zpow_strictAnti h₀ H).Injective
· exact (zpow_strictMono H).Injective
#align zpow_injective zpow_injective
+-/
+#print zpow_inj /-
@[simp]
theorem zpow_inj (h₀ : 0 < a) (h₁ : a ≠ 1) : a ^ m = a ^ n ↔ m = n :=
(zpow_injective h₀ h₁).eq_iff
#align zpow_inj zpow_inj
+-/
+#print zpow_le_max_of_min_le /-
theorem zpow_le_max_of_min_le {x : α} (hx : 1 ≤ x) {a b c : ℤ} (h : min a b ≤ c) :
x ^ (-c) ≤ max (x ^ (-a)) (x ^ (-b)) :=
haveI : Antitone fun n : ℤ => x ^ (-n) := fun m n h => zpow_le_of_le hx (neg_le_neg h)
(this h).trans_eq this.map_min
#align zpow_le_max_of_min_le zpow_le_max_of_min_le
+-/
+#print zpow_le_max_iff_min_le /-
theorem zpow_le_max_iff_min_le {x : α} (hx : 1 < x) {a b c : ℤ} :
x ^ (-c) ≤ max (x ^ (-a)) (x ^ (-b)) ↔ min a b ≤ c := by
simp_rw [le_max_iff, min_le_iff, zpow_le_iff_le hx, neg_le_neg_iff]
#align zpow_le_max_iff_min_le zpow_le_max_iff_min_le
+-/
end LinearOrderedSemifield
@@ -141,76 +157,108 @@ variable [LinearOrderedField α] {a b c d : α} {n : ℤ}
/-! ### Lemmas about powers to numerals. -/
+#print zpow_bit0_nonneg /-
theorem zpow_bit0_nonneg (a : α) (n : ℤ) : 0 ≤ a ^ bit0 n :=
(mul_self_nonneg _).trans_eq <| (zpow_bit0 _ _).symm
#align zpow_bit0_nonneg zpow_bit0_nonneg
+-/
+#print zpow_two_nonneg /-
theorem zpow_two_nonneg (a : α) : 0 ≤ a ^ (2 : ℤ) :=
zpow_bit0_nonneg _ _
#align zpow_two_nonneg zpow_two_nonneg
+-/
+#print zpow_neg_two_nonneg /-
theorem zpow_neg_two_nonneg (a : α) : 0 ≤ a ^ (-2 : ℤ) :=
zpow_bit0_nonneg _ (-1)
#align zpow_neg_two_nonneg zpow_neg_two_nonneg
+-/
+#print zpow_bit0_pos /-
theorem zpow_bit0_pos (h : a ≠ 0) (n : ℤ) : 0 < a ^ bit0 n :=
(zpow_bit0_nonneg a n).lt_of_ne (zpow_ne_zero _ h).symm
#align zpow_bit0_pos zpow_bit0_pos
+-/
+#print zpow_two_pos_of_ne_zero /-
theorem zpow_two_pos_of_ne_zero (h : a ≠ 0) : 0 < a ^ (2 : ℤ) :=
zpow_bit0_pos h _
#align zpow_two_pos_of_ne_zero zpow_two_pos_of_ne_zero
+-/
+#print zpow_bit0_pos_iff /-
@[simp]
theorem zpow_bit0_pos_iff (hn : n ≠ 0) : 0 < a ^ bit0 n ↔ a ≠ 0 :=
⟨by rintro h rfl; refine' (zero_zpow _ _).not_gt h; rwa [bit0_ne_zero], fun h =>
zpow_bit0_pos h _⟩
#align zpow_bit0_pos_iff zpow_bit0_pos_iff
+-/
+#print zpow_bit1_neg_iff /-
@[simp]
theorem zpow_bit1_neg_iff : a ^ bit1 n < 0 ↔ a < 0 :=
⟨fun h => not_le.1 fun h' => not_le.2 h <| zpow_nonneg h' _, fun h => by
rw [bit1, zpow_add_one₀ h.ne] <;> exact mul_neg_of_pos_of_neg (zpow_bit0_pos h.ne _) h⟩
#align zpow_bit1_neg_iff zpow_bit1_neg_iff
+-/
+#print zpow_bit1_nonneg_iff /-
@[simp]
theorem zpow_bit1_nonneg_iff : 0 ≤ a ^ bit1 n ↔ 0 ≤ a :=
le_iff_le_iff_lt_iff_lt.2 zpow_bit1_neg_iff
#align zpow_bit1_nonneg_iff zpow_bit1_nonneg_iff
+-/
+#print zpow_bit1_nonpos_iff /-
@[simp]
theorem zpow_bit1_nonpos_iff : a ^ bit1 n ≤ 0 ↔ a ≤ 0 := by
rw [le_iff_lt_or_eq, le_iff_lt_or_eq, zpow_bit1_neg_iff, zpow_eq_zero_iff (Int.bit1_ne_zero n)]
#align zpow_bit1_nonpos_iff zpow_bit1_nonpos_iff
+-/
+#print zpow_bit1_pos_iff /-
@[simp]
theorem zpow_bit1_pos_iff : 0 < a ^ bit1 n ↔ 0 < a :=
lt_iff_lt_of_le_iff_le zpow_bit1_nonpos_iff
#align zpow_bit1_pos_iff zpow_bit1_pos_iff
+-/
+#print Even.zpow_nonneg /-
protected theorem Even.zpow_nonneg (hn : Even n) (a : α) : 0 ≤ a ^ n := by
obtain ⟨k, rfl⟩ := hn <;> exact zpow_bit0_nonneg _ _
#align even.zpow_nonneg Even.zpow_nonneg
+-/
+#print Even.zpow_pos_iff /-
theorem Even.zpow_pos_iff (hn : Even n) (h : n ≠ 0) : 0 < a ^ n ↔ a ≠ 0 := by
obtain ⟨k, rfl⟩ := hn <;> exact zpow_bit0_pos_iff (by rintro rfl <;> simpa using h)
#align even.zpow_pos_iff Even.zpow_pos_iff
+-/
+#print Odd.zpow_neg_iff /-
theorem Odd.zpow_neg_iff (hn : Odd n) : a ^ n < 0 ↔ a < 0 := by
cases' hn with k hk <;> simpa only [hk, two_mul] using zpow_bit1_neg_iff
#align odd.zpow_neg_iff Odd.zpow_neg_iff
+-/
+#print Odd.zpow_nonneg_iff /-
protected theorem Odd.zpow_nonneg_iff (hn : Odd n) : 0 ≤ a ^ n ↔ 0 ≤ a := by
cases' hn with k hk <;> simpa only [hk, two_mul] using zpow_bit1_nonneg_iff
#align odd.zpow_nonneg_iff Odd.zpow_nonneg_iff
+-/
+#print Odd.zpow_nonpos_iff /-
theorem Odd.zpow_nonpos_iff (hn : Odd n) : a ^ n ≤ 0 ↔ a ≤ 0 := by
cases' hn with k hk <;> simpa only [hk, two_mul] using zpow_bit1_nonpos_iff
#align odd.zpow_nonpos_iff Odd.zpow_nonpos_iff
+-/
+#print Odd.zpow_pos_iff /-
theorem Odd.zpow_pos_iff (hn : Odd n) : 0 < a ^ n ↔ 0 < a := by
cases' hn with k hk <;> simpa only [hk, two_mul] using zpow_bit1_pos_iff
#align odd.zpow_pos_iff Odd.zpow_pos_iff
+-/
alias Even.zpow_pos_iff ↔ _ Even.zpow_pos
#align even.zpow_pos Even.zpow_pos
@@ -221,30 +269,38 @@ alias Odd.zpow_neg_iff ↔ _ Odd.zpow_neg
alias Odd.zpow_nonpos_iff ↔ _ Odd.zpow_nonpos
#align odd.zpow_nonpos Odd.zpow_nonpos
+#print Even.zpow_abs /-
theorem Even.zpow_abs {p : ℤ} (hp : Even p) (a : α) : |a| ^ p = a ^ p := by
cases' abs_choice a with h h <;> simp only [h, hp.neg_zpow _]
#align even.zpow_abs Even.zpow_abs
+-/
+#print zpow_bit0_abs /-
@[simp]
theorem zpow_bit0_abs (a : α) (p : ℤ) : |a| ^ bit0 p = a ^ bit0 p :=
(even_bit0 _).zpow_abs _
#align zpow_bit0_abs zpow_bit0_abs
+-/
/-! ### Miscellaneous lemmmas -/
+#print Nat.cast_le_pow_sub_div_sub /-
/-- Bernoulli's inequality reformulated to estimate `(n : α)`. -/
theorem Nat.cast_le_pow_sub_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ (a ^ n - 1) / (a - 1) :=
(le_div_iff (sub_pos.2 H)).2 <|
le_sub_left_of_add_le <| one_add_mul_sub_le_pow ((neg_le_self zero_le_one).trans H.le) _
#align nat.cast_le_pow_sub_div_sub Nat.cast_le_pow_sub_div_sub
+-/
+#print Nat.cast_le_pow_div_sub /-
/-- For any `a > 1` and a natural `n` we have `n ≤ a ^ n / (a - 1)`. See also
`nat.cast_le_pow_sub_div_sub` for a stronger inequality with `a ^ n - 1` in the numerator. -/
theorem Nat.cast_le_pow_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ a ^ n / (a - 1) :=
(n.cast_le_pow_sub_div_sub H).trans <|
div_le_div_of_le (sub_nonneg.2 H.le) (sub_le_self _ zero_le_one)
#align nat.cast_le_pow_div_sub Nat.cast_le_pow_div_sub
+-/
end LinearOrderedField
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -42,7 +42,6 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
_ ≤ a ^ m * a ^ k :=
(mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _))
_ = a ^ n := by rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
-
#align zpow_le_of_le zpow_le_of_le
-/
@@ -80,7 +79,6 @@ theorem zpow_strictMono (hx : 1 < a) : StrictMono ((· ^ ·) a : ℤ → α) :=
calc
a ^ n < a ^ n * a := lt_mul_of_one_lt_right (zpow_pos_of_pos xpos _) hx
_ = a ^ (n + 1) := (zpow_add_one₀ xpos.ne' _).symm
-
#align zpow_strict_mono zpow_strictMono
-/
@@ -90,7 +88,6 @@ theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti ((· ^ ·) a
a ^ (n + 1) = a ^ n * a := zpow_add_one₀ h₀.ne' _
_ < a ^ n * 1 := ((mul_lt_mul_left <| zpow_pos_of_pos h₀ _).2 h₁)
_ = a ^ n := mul_one _
-
#align zpow_strict_anti zpow_strictAnti
#print zpow_lt_iff_lt /-
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -32,6 +32,7 @@ variable [LinearOrderedSemifield α] {a b c d e : α} {m n : ℤ}
/-! ### Integer powers -/
+#print zpow_le_of_le /-
theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
by
have ha₀ : 0 < a := one_pos.trans_le ha
@@ -43,14 +44,19 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
_ = a ^ n := by rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
#align zpow_le_of_le zpow_le_of_le
+-/
+#print zpow_le_one_of_nonpos /-
theorem zpow_le_one_of_nonpos (ha : 1 ≤ a) (hn : n ≤ 0) : a ^ n ≤ 1 :=
(zpow_le_of_le ha hn).trans_eq <| zpow_zero _
#align zpow_le_one_of_nonpos zpow_le_one_of_nonpos
+-/
+#print one_le_zpow_of_nonneg /-
theorem one_le_zpow_of_nonneg (ha : 1 ≤ a) (hn : 0 ≤ n) : 1 ≤ a ^ n :=
(zpow_zero _).symm.trans_le <| zpow_le_of_le ha hn
#align one_le_zpow_of_nonneg one_le_zpow_of_nonneg
+-/
protected theorem Nat.zpow_pos_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : 0 < (a : α) ^ n := by
apply zpow_pos_of_pos; exact_mod_cast h
@@ -60,11 +66,14 @@ theorem Nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α) ^ n
(Nat.zpow_pos_of_pos h n).ne'
#align nat.zpow_ne_zero_of_pos Nat.zpow_ne_zero_of_pos
+#print one_lt_zpow /-
theorem one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n
| (n : ℕ), h => (zpow_ofNat _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
| -[n+1], h => ((Int.negSucc_not_pos _).mp h).elim
#align one_lt_zpow one_lt_zpow
+-/
+#print zpow_strictMono /-
theorem zpow_strictMono (hx : 1 < a) : StrictMono ((· ^ ·) a : ℤ → α) :=
strictMono_int_of_lt_succ fun n =>
have xpos : 0 < a := zero_lt_one.trans hx
@@ -73,6 +82,7 @@ theorem zpow_strictMono (hx : 1 < a) : StrictMono ((· ^ ·) a : ℤ → α) :=
_ = a ^ (n + 1) := (zpow_add_one₀ xpos.ne' _).symm
#align zpow_strict_mono zpow_strictMono
+-/
theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti ((· ^ ·) a : ℤ → α) :=
strictAnti_int_of_succ_lt fun n =>
@@ -83,15 +93,19 @@ theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti ((· ^ ·) a
#align zpow_strict_anti zpow_strictAnti
+#print zpow_lt_iff_lt /-
@[simp]
theorem zpow_lt_iff_lt (hx : 1 < a) : a ^ m < a ^ n ↔ m < n :=
(zpow_strictMono hx).lt_iff_lt
#align zpow_lt_iff_lt zpow_lt_iff_lt
+-/
+#print zpow_le_iff_le /-
@[simp]
theorem zpow_le_iff_le (hx : 1 < a) : a ^ m ≤ a ^ n ↔ m ≤ n :=
(zpow_strictMono hx).le_iff_le
#align zpow_le_iff_le zpow_le_iff_le
+-/
@[simp]
theorem div_pow_le (ha : 0 ≤ a) (hb : 1 ≤ b) (k : ℕ) : a / b ^ k ≤ a :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -32,12 +32,6 @@ variable [LinearOrderedSemifield α] {a b c d e : α} {m n : ℤ}
/-! ### Integer powers -/
-/- warning: zpow_le_of_le -> zpow_le_of_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LE.le.{0} Int Int.hasLe m n) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (LE.le.{0} Int Int.instLEInt m n) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n))
-Case conversion may be inaccurate. Consider using '#align zpow_le_of_le zpow_le_of_leₓ'. -/
theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
by
have ha₀ : 0 < a := one_pos.trans_le ha
@@ -50,63 +44,27 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
#align zpow_le_of_le zpow_le_of_le
-/- warning: zpow_le_one_of_nonpos -> zpow_le_one_of_nonpos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {n : Int}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LE.le.{0} Int Int.hasLe n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {n : Int}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (LE.le.{0} Int Int.instLEInt n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align zpow_le_one_of_nonpos zpow_le_one_of_nonposₓ'. -/
theorem zpow_le_one_of_nonpos (ha : 1 ≤ a) (hn : n ≤ 0) : a ^ n ≤ 1 :=
(zpow_le_of_le ha hn).trans_eq <| zpow_zero _
#align zpow_le_one_of_nonpos zpow_le_one_of_nonpos
-/- warning: one_le_zpow_of_nonneg -> one_le_zpow_of_nonneg is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {n : Int}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LE.le.{0} Int Int.hasLe (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) n) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {n : Int}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (LE.le.{0} Int Int.instLEInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) n) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n))
-Case conversion may be inaccurate. Consider using '#align one_le_zpow_of_nonneg one_le_zpow_of_nonnegₓ'. -/
theorem one_le_zpow_of_nonneg (ha : 1 ≤ a) (hn : 0 ≤ n) : 1 ≤ a ^ n :=
(zpow_zero _).symm.trans_le <| zpow_le_of_le ha hn
#align one_le_zpow_of_nonneg one_le_zpow_of_nonneg
-/- warning: nat.zpow_pos_of_pos -> Nat.zpow_pos_of_pos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : Nat}, (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) a) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) n))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : Nat}, (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) a) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))) a) n))
-Case conversion may be inaccurate. Consider using '#align nat.zpow_pos_of_pos Nat.zpow_pos_of_posₓ'. -/
protected theorem Nat.zpow_pos_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : 0 < (a : α) ^ n := by
apply zpow_pos_of_pos; exact_mod_cast h
#align nat.zpow_pos_of_pos Nat.zpow_pos_of_pos
-/- warning: nat.zpow_ne_zero_of_pos -> Nat.zpow_ne_zero_of_pos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : Nat}, (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) a) -> (forall (n : Int), Ne.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : Nat}, (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) a) -> (forall (n : Int), Ne.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))) a) n) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))
-Case conversion may be inaccurate. Consider using '#align nat.zpow_ne_zero_of_pos Nat.zpow_ne_zero_of_posₓ'. -/
theorem Nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α) ^ n ≠ 0 :=
(Nat.zpow_pos_of_pos h n).ne'
#align nat.zpow_ne_zero_of_pos Nat.zpow_ne_zero_of_pos
-/- warning: one_lt_zpow -> one_lt_zpow is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (forall (n : Int), (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) n) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (forall (n : Int), (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) n) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)))
-Case conversion may be inaccurate. Consider using '#align one_lt_zpow one_lt_zpowₓ'. -/
theorem one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n
| (n : ℕ), h => (zpow_ofNat _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
| -[n+1], h => ((Int.negSucc_not_pos _).mp h).elim
#align one_lt_zpow one_lt_zpow
-/- warning: zpow_strict_mono -> zpow_strictMono is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (StrictMono.{0, u1} Int α (PartialOrder.toPreorder.{0} Int (OrderedAddCommGroup.toPartialOrder.{0} Int (StrictOrderedRing.toOrderedAddCommGroup.{0} Int (LinearOrderedRing.toStrictOrderedRing.{0} Int (LinearOrderedCommRing.toLinearOrderedRing.{0} Int Int.linearOrderedCommRing))))) (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (StrictMono.{0, u1} Int α (PartialOrder.toPreorder.{0} Int (StrictOrderedRing.toPartialOrder.{0} Int (LinearOrderedRing.toStrictOrderedRing.{0} Int (LinearOrderedCommRing.toLinearOrderedRing.{0} Int Int.linearOrderedCommRing)))) (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))) ((fun (x._@.Mathlib.Algebra.Order.Field.Power._hyg.561 : α) (x._@.Mathlib.Algebra.Order.Field.Power._hyg.563 : Int) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x._@.Mathlib.Algebra.Order.Field.Power._hyg.561 x._@.Mathlib.Algebra.Order.Field.Power._hyg.563) a))
-Case conversion may be inaccurate. Consider using '#align zpow_strict_mono zpow_strictMonoₓ'. -/
theorem zpow_strictMono (hx : 1 < a) : StrictMono ((· ^ ·) a : ℤ → α) :=
strictMono_int_of_lt_succ fun n =>
have xpos : 0 < a := zero_lt_one.trans hx
@@ -116,12 +74,6 @@ theorem zpow_strictMono (hx : 1 < a) : StrictMono ((· ^ ·) a : ℤ → α) :=
#align zpow_strict_mono zpow_strictMono
-/- warning: zpow_strict_anti -> zpow_strictAnti is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))))))) -> (StrictAnti.{0, u1} Int α (PartialOrder.toPreorder.{0} Int (OrderedAddCommGroup.toPartialOrder.{0} Int (StrictOrderedRing.toOrderedAddCommGroup.{0} Int (LinearOrderedRing.toStrictOrderedRing.{0} Int (LinearOrderedCommRing.toLinearOrderedRing.{0} Int Int.linearOrderedCommRing))))) (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) -> (StrictAnti.{0, u1} Int α (PartialOrder.toPreorder.{0} Int (StrictOrderedRing.toPartialOrder.{0} Int (LinearOrderedRing.toStrictOrderedRing.{0} Int (LinearOrderedCommRing.toLinearOrderedRing.{0} Int Int.linearOrderedCommRing)))) (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))) ((fun (x._@.Mathlib.Algebra.Order.Field.Power._hyg.671 : α) (x._@.Mathlib.Algebra.Order.Field.Power._hyg.673 : Int) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x._@.Mathlib.Algebra.Order.Field.Power._hyg.671 x._@.Mathlib.Algebra.Order.Field.Power._hyg.673) a))
-Case conversion may be inaccurate. Consider using '#align zpow_strict_anti zpow_strictAntiₓ'. -/
theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti ((· ^ ·) a : ℤ → α) :=
strictAnti_int_of_succ_lt fun n =>
calc
@@ -131,45 +83,21 @@ theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti ((· ^ ·) a
#align zpow_strict_anti zpow_strictAnti
-/- warning: zpow_lt_iff_lt -> zpow_lt_iff_lt is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (LT.lt.{0} Int Int.hasLt m n))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (LT.lt.{0} Int Int.instLTInt m n))
-Case conversion may be inaccurate. Consider using '#align zpow_lt_iff_lt zpow_lt_iff_ltₓ'. -/
@[simp]
theorem zpow_lt_iff_lt (hx : 1 < a) : a ^ m < a ^ n ↔ m < n :=
(zpow_strictMono hx).lt_iff_lt
#align zpow_lt_iff_lt zpow_lt_iff_lt
-/- warning: zpow_le_iff_le -> zpow_le_iff_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (LE.le.{0} Int Int.hasLe m n))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (LE.le.{0} Int Int.instLEInt m n))
-Case conversion may be inaccurate. Consider using '#align zpow_le_iff_le zpow_le_iff_leₓ'. -/
@[simp]
theorem zpow_le_iff_le (hx : 1 < a) : a ^ m ≤ a ^ n ↔ m ≤ n :=
(zpow_strictMono hx).le_iff_le
#align zpow_le_iff_le zpow_le_iff_le
-/- warning: div_pow_le -> div_pow_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) b) -> (forall (k : Nat), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) b k)) a)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) b) -> (forall (k : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedSemifield.toDiv.{u1} α _inst_1)) a (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) b k)) a)
-Case conversion may be inaccurate. Consider using '#align div_pow_le div_pow_leₓ'. -/
@[simp]
theorem div_pow_le (ha : 0 ≤ a) (hb : 1 ≤ b) (k : ℕ) : a / b ^ k ≤ a :=
div_le_self ha <| one_le_pow_of_one_le hb _
#align div_pow_le div_pow_le
-/- warning: zpow_injective -> zpow_injective is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))))))) -> (Function.Injective.{1, succ u1} Int α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) -> (Function.Injective.{1, succ u1} Int α ((fun (x._@.Mathlib.Algebra.Order.Field.Power._hyg.925 : α) (x._@.Mathlib.Algebra.Order.Field.Power._hyg.927 : Int) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x._@.Mathlib.Algebra.Order.Field.Power._hyg.925 x._@.Mathlib.Algebra.Order.Field.Power._hyg.927) a))
-Case conversion may be inaccurate. Consider using '#align zpow_injective zpow_injectiveₓ'. -/
theorem zpow_injective (h₀ : 0 < a) (h₁ : a ≠ 1) : Injective ((· ^ ·) a : ℤ → α) :=
by
rcases h₁.lt_or_lt with (H | H)
@@ -177,35 +105,17 @@ theorem zpow_injective (h₀ : 0 < a) (h₁ : a ≠ 1) : Injective ((· ^ ·) a
· exact (zpow_strictMono H).Injective
#align zpow_injective zpow_injective
-/- warning: zpow_inj -> zpow_inj is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))))))) -> (Iff (Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (Eq.{1} Int m n))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) -> (Iff (Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (Eq.{1} Int m n))
-Case conversion may be inaccurate. Consider using '#align zpow_inj zpow_injₓ'. -/
@[simp]
theorem zpow_inj (h₀ : 0 < a) (h₁ : a ≠ 1) : a ^ m = a ^ n ↔ m = n :=
(zpow_injective h₀ h₁).eq_iff
#align zpow_inj zpow_inj
-/- warning: zpow_le_max_of_min_le -> zpow_le_max_of_min_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {x : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) x) -> (forall {a : Int} {b : Int} {c : Int}, (LE.le.{0} Int Int.hasLe (LinearOrder.min.{0} Int Int.linearOrder a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg c)) (LinearOrder.max.{u1} α (LinearOrderedAddCommMonoid.toLinearOrder.{u1} α (LinearOrderedSemiring.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg a)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg b)))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {x : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x) -> (forall {a : Int} {b : Int} {c : Int}, (LE.le.{0} Int Int.instLEInt (Min.min.{0} Int Int.instMinInt a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt c)) (Max.max.{u1} α (LinearOrderedCommSemiring.toMax.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt a)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt b)))))
-Case conversion may be inaccurate. Consider using '#align zpow_le_max_of_min_le zpow_le_max_of_min_leₓ'. -/
theorem zpow_le_max_of_min_le {x : α} (hx : 1 ≤ x) {a b c : ℤ} (h : min a b ≤ c) :
x ^ (-c) ≤ max (x ^ (-a)) (x ^ (-b)) :=
haveI : Antitone fun n : ℤ => x ^ (-n) := fun m n h => zpow_le_of_le hx (neg_le_neg h)
(this h).trans_eq this.map_min
#align zpow_le_max_of_min_le zpow_le_max_of_min_le
-/- warning: zpow_le_max_iff_min_le -> zpow_le_max_iff_min_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {x : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) x) -> (forall {a : Int} {b : Int} {c : Int}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg c)) (LinearOrder.max.{u1} α (LinearOrderedAddCommMonoid.toLinearOrder.{u1} α (LinearOrderedSemiring.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg a)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg b)))) (LE.le.{0} Int Int.hasLe (LinearOrder.min.{0} Int Int.linearOrder a b) c))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x) -> (forall {a : Int} {b : Int} {c : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt c)) (Max.max.{u1} α (LinearOrderedCommSemiring.toMax.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt a)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt b)))) (LE.le.{0} Int Int.instLEInt (Min.min.{0} Int Int.instMinInt a b) c))
-Case conversion may be inaccurate. Consider using '#align zpow_le_max_iff_min_le zpow_le_max_iff_min_leₓ'. -/
theorem zpow_le_max_iff_min_le {x : α} (hx : 1 < x) {a b c : ℤ} :
x ^ (-c) ≤ max (x ^ (-a)) (x ^ (-b)) ↔ min a b ≤ c := by
simp_rw [le_max_iff, min_le_iff, zpow_le_iff_le hx, neg_le_neg_iff]
@@ -220,216 +130,90 @@ variable [LinearOrderedField α] {a b c d : α} {n : ℤ}
/-! ### Lemmas about powers to numerals. -/
-/- warning: zpow_bit0_nonneg -> zpow_bit0_nonneg is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (n : Int), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd n))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (n : Int), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.instAddInt n))
-Case conversion may be inaccurate. Consider using '#align zpow_bit0_nonneg zpow_bit0_nonnegₓ'. -/
theorem zpow_bit0_nonneg (a : α) (n : ℤ) : 0 ≤ a ^ bit0 n :=
(mul_self_nonneg _).trans_eq <| (zpow_bit0 _ _).symm
#align zpow_bit0_nonneg zpow_bit0_nonneg
-/- warning: zpow_two_nonneg -> zpow_two_nonneg is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)))
-Case conversion may be inaccurate. Consider using '#align zpow_two_nonneg zpow_two_nonnegₓ'. -/
theorem zpow_two_nonneg (a : α) : 0 ≤ a ^ (2 : ℤ) :=
zpow_bit0_nonneg _ _
#align zpow_two_nonneg zpow_two_nonneg
-/- warning: zpow_neg_two_nonneg -> zpow_neg_two_nonneg is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))))
-Case conversion may be inaccurate. Consider using '#align zpow_neg_two_nonneg zpow_neg_two_nonnegₓ'. -/
theorem zpow_neg_two_nonneg (a : α) : 0 ≤ a ^ (-2 : ℤ) :=
zpow_bit0_nonneg _ (-1)
#align zpow_neg_two_nonneg zpow_neg_two_nonneg
-/- warning: zpow_bit0_pos -> zpow_bit0_pos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd n)))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.instAddInt n)))
-Case conversion may be inaccurate. Consider using '#align zpow_bit0_pos zpow_bit0_posₓ'. -/
theorem zpow_bit0_pos (h : a ≠ 0) (n : ℤ) : 0 < a ^ bit0 n :=
(zpow_bit0_nonneg a n).lt_of_ne (zpow_ne_zero _ h).symm
#align zpow_bit0_pos zpow_bit0_pos
-/- warning: zpow_two_pos_of_ne_zero -> zpow_two_pos_of_ne_zero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))))
-Case conversion may be inaccurate. Consider using '#align zpow_two_pos_of_ne_zero zpow_two_pos_of_ne_zeroₓ'. -/
theorem zpow_two_pos_of_ne_zero (h : a ≠ 0) : 0 < a ^ (2 : ℤ) :=
zpow_bit0_pos h _
#align zpow_two_pos_of_ne_zero zpow_two_pos_of_ne_zero
-/- warning: zpow_bit0_pos_iff -> zpow_bit0_pos_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd n))) (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.instAddInt n))) (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align zpow_bit0_pos_iff zpow_bit0_pos_iffₓ'. -/
@[simp]
theorem zpow_bit0_pos_iff (hn : n ≠ 0) : 0 < a ^ bit0 n ↔ a ≠ 0 :=
⟨by rintro h rfl; refine' (zero_zpow _ _).not_gt h; rwa [bit0_ne_zero], fun h =>
zpow_bit0_pos h _⟩
#align zpow_bit0_pos_iff zpow_bit0_pos_iff
-/- warning: zpow_bit1_neg_iff -> zpow_bit1_neg_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n)) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n)) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align zpow_bit1_neg_iff zpow_bit1_neg_iffₓ'. -/
@[simp]
theorem zpow_bit1_neg_iff : a ^ bit1 n < 0 ↔ a < 0 :=
⟨fun h => not_le.1 fun h' => not_le.2 h <| zpow_nonneg h' _, fun h => by
rw [bit1, zpow_add_one₀ h.ne] <;> exact mul_neg_of_pos_of_neg (zpow_bit0_pos h.ne _) h⟩
#align zpow_bit1_neg_iff zpow_bit1_neg_iff
-/- warning: zpow_bit1_nonneg_iff -> zpow_bit1_nonneg_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a)
-Case conversion may be inaccurate. Consider using '#align zpow_bit1_nonneg_iff zpow_bit1_nonneg_iffₓ'. -/
@[simp]
theorem zpow_bit1_nonneg_iff : 0 ≤ a ^ bit1 n ↔ 0 ≤ a :=
le_iff_le_iff_lt_iff_lt.2 zpow_bit1_neg_iff
#align zpow_bit1_nonneg_iff zpow_bit1_nonneg_iff
-/- warning: zpow_bit1_nonpos_iff -> zpow_bit1_nonpos_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n)) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n)) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align zpow_bit1_nonpos_iff zpow_bit1_nonpos_iffₓ'. -/
@[simp]
theorem zpow_bit1_nonpos_iff : a ^ bit1 n ≤ 0 ↔ a ≤ 0 := by
rw [le_iff_lt_or_eq, le_iff_lt_or_eq, zpow_bit1_neg_iff, zpow_eq_zero_iff (Int.bit1_ne_zero n)]
#align zpow_bit1_nonpos_iff zpow_bit1_nonpos_iff
-/- warning: zpow_bit1_pos_iff -> zpow_bit1_pos_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a)
-Case conversion may be inaccurate. Consider using '#align zpow_bit1_pos_iff zpow_bit1_pos_iffₓ'. -/
@[simp]
theorem zpow_bit1_pos_iff : 0 < a ^ bit1 n ↔ 0 < a :=
lt_iff_lt_of_le_iff_le zpow_bit1_nonpos_iff
#align zpow_bit1_pos_iff zpow_bit1_pos_iff
-/- warning: even.zpow_nonneg -> Even.zpow_nonneg is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {n : Int}, (Even.{0} Int Int.hasAdd n) -> (forall (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {n : Int}, (Even.{0} Int Int.instAddInt n) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n))
-Case conversion may be inaccurate. Consider using '#align even.zpow_nonneg Even.zpow_nonnegₓ'. -/
protected theorem Even.zpow_nonneg (hn : Even n) (a : α) : 0 ≤ a ^ n := by
obtain ⟨k, rfl⟩ := hn <;> exact zpow_bit0_nonneg _ _
#align even.zpow_nonneg Even.zpow_nonneg
-/- warning: even.zpow_pos_iff -> Even.zpow_pos_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Even.{0} Int Int.hasAdd n) -> (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Even.{0} Int Int.instAddInt n) -> (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align even.zpow_pos_iff Even.zpow_pos_iffₓ'. -/
theorem Even.zpow_pos_iff (hn : Even n) (h : n ≠ 0) : 0 < a ^ n ↔ a ≠ 0 := by
obtain ⟨k, rfl⟩ := hn <;> exact zpow_bit0_pos_iff (by rintro rfl <;> simpa using h)
#align even.zpow_pos_iff Even.zpow_pos_iff
-/- warning: odd.zpow_neg_iff -> Odd.zpow_neg_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align odd.zpow_neg_iff Odd.zpow_neg_iffₓ'. -/
theorem Odd.zpow_neg_iff (hn : Odd n) : a ^ n < 0 ↔ a < 0 := by
cases' hn with k hk <;> simpa only [hk, two_mul] using zpow_bit1_neg_iff
#align odd.zpow_neg_iff Odd.zpow_neg_iff
-/- warning: odd.zpow_nonneg_iff -> Odd.zpow_nonneg_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a))
-Case conversion may be inaccurate. Consider using '#align odd.zpow_nonneg_iff Odd.zpow_nonneg_iffₓ'. -/
protected theorem Odd.zpow_nonneg_iff (hn : Odd n) : 0 ≤ a ^ n ↔ 0 ≤ a := by
cases' hn with k hk <;> simpa only [hk, two_mul] using zpow_bit1_nonneg_iff
#align odd.zpow_nonneg_iff Odd.zpow_nonneg_iff
-/- warning: odd.zpow_nonpos_iff -> Odd.zpow_nonpos_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align odd.zpow_nonpos_iff Odd.zpow_nonpos_iffₓ'. -/
theorem Odd.zpow_nonpos_iff (hn : Odd n) : a ^ n ≤ 0 ↔ a ≤ 0 := by
cases' hn with k hk <;> simpa only [hk, two_mul] using zpow_bit1_nonpos_iff
#align odd.zpow_nonpos_iff Odd.zpow_nonpos_iff
-/- warning: odd.zpow_pos_iff -> Odd.zpow_pos_iff is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a))
-Case conversion may be inaccurate. Consider using '#align odd.zpow_pos_iff Odd.zpow_pos_iffₓ'. -/
theorem Odd.zpow_pos_iff (hn : Odd n) : 0 < a ^ n ↔ 0 < a := by
cases' hn with k hk <;> simpa only [hk, two_mul] using zpow_bit1_pos_iff
#align odd.zpow_pos_iff Odd.zpow_pos_iff
-/- warning: even.zpow_pos -> Even.zpow_pos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Even.{0} Int Int.hasAdd n) -> (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Even.{0} Int Int.instAddInt n) -> (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n))
-Case conversion may be inaccurate. Consider using '#align even.zpow_pos Even.zpow_posₓ'. -/
alias Even.zpow_pos_iff ↔ _ Even.zpow_pos
#align even.zpow_pos Even.zpow_pos
-/- warning: odd.zpow_neg -> Odd.zpow_neg is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align odd.zpow_neg Odd.zpow_negₓ'. -/
alias Odd.zpow_neg_iff ↔ _ Odd.zpow_neg
#align odd.zpow_neg Odd.zpow_neg
-/- warning: odd.zpow_nonpos -> Odd.zpow_nonpos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align odd.zpow_nonpos Odd.zpow_nonposₓ'. -/
alias Odd.zpow_nonpos_iff ↔ _ Odd.zpow_nonpos
#align odd.zpow_nonpos Odd.zpow_nonpos
-/- warning: even.zpow_abs -> Even.zpow_abs is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {p : Int}, (Even.{0} Int Int.hasAdd p) -> (forall (a : α), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a) p) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a p))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {p : Int}, (Even.{0} Int Int.instAddInt p) -> (forall (a : α), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) a) p) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a p))
-Case conversion may be inaccurate. Consider using '#align even.zpow_abs Even.zpow_absₓ'. -/
theorem Even.zpow_abs {p : ℤ} (hp : Even p) (a : α) : |a| ^ p = a ^ p := by
cases' abs_choice a with h h <;> simp only [h, hp.neg_zpow _]
#align even.zpow_abs Even.zpow_abs
-/- warning: zpow_bit0_abs -> zpow_bit0_abs is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (p : Int), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a) (bit0.{0} Int Int.hasAdd p)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd p))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (p : Int), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) a) (bit0.{0} Int Int.instAddInt p)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.instAddInt p))
-Case conversion may be inaccurate. Consider using '#align zpow_bit0_abs zpow_bit0_absₓ'. -/
@[simp]
theorem zpow_bit0_abs (a : α) (p : ℤ) : |a| ^ bit0 p = a ^ bit0 p :=
(even_bit0 _).zpow_abs _
@@ -438,24 +222,12 @@ theorem zpow_bit0_abs (a : α) (p : ℤ) : |a| ^ bit0 p = a ^ bit0 p :=
/-! ### Miscellaneous lemmmas -/
-/- warning: nat.cast_le_pow_sub_div_sub -> Nat.cast_le_pow_sub_div_sub is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) a n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))))
-Case conversion may be inaccurate. Consider using '#align nat.cast_le_pow_sub_div_sub Nat.cast_le_pow_sub_div_subₓ'. -/
/-- Bernoulli's inequality reformulated to estimate `(n : α)`. -/
theorem Nat.cast_le_pow_sub_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ (a ^ n - 1) / (a - 1) :=
(le_div_iff (sub_pos.2 H)).2 <|
le_sub_left_of_add_le <| one_add_mul_sub_le_pow ((neg_le_self zero_le_one).trans H.le) _
#align nat.cast_le_pow_sub_div_sub Nat.cast_le_pow_sub_div_sub
-/- warning: nat.cast_le_pow_div_sub -> Nat.cast_le_pow_div_sub is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))))
-Case conversion may be inaccurate. Consider using '#align nat.cast_le_pow_div_sub Nat.cast_le_pow_div_subₓ'. -/
/-- For any `a > 1` and a natural `n` we have `n ≤ a ^ n / (a - 1)`. See also
`nat.cast_le_pow_sub_div_sub` for a stronger inequality with `a ^ n - 1` in the numerator. -/
theorem Nat.cast_le_pow_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ a ^ n / (a - 1) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -76,10 +76,8 @@ lean 3 declaration is
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : Nat}, (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) a) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))) a) n))
Case conversion may be inaccurate. Consider using '#align nat.zpow_pos_of_pos Nat.zpow_pos_of_posₓ'. -/
-protected theorem Nat.zpow_pos_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : 0 < (a : α) ^ n :=
- by
- apply zpow_pos_of_pos
- exact_mod_cast h
+protected theorem Nat.zpow_pos_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : 0 < (a : α) ^ n := by
+ apply zpow_pos_of_pos; exact_mod_cast h
#align nat.zpow_pos_of_pos Nat.zpow_pos_of_pos
/- warning: nat.zpow_ne_zero_of_pos -> Nat.zpow_ne_zero_of_pos is a dubious translation:
@@ -280,10 +278,8 @@ but is expected to have type
Case conversion may be inaccurate. Consider using '#align zpow_bit0_pos_iff zpow_bit0_pos_iffₓ'. -/
@[simp]
theorem zpow_bit0_pos_iff (hn : n ≠ 0) : 0 < a ^ bit0 n ↔ a ≠ 0 :=
- ⟨by
- rintro h rfl
- refine' (zero_zpow _ _).not_gt h
- rwa [bit0_ne_zero], fun h => zpow_bit0_pos h _⟩
+ ⟨by rintro h rfl; refine' (zero_zpow _ _).not_gt h; rwa [bit0_ne_zero], fun h =>
+ zpow_bit0_pos h _⟩
#align zpow_bit0_pos_iff zpow_bit0_pos_iff
/- warning: zpow_bit1_neg_iff -> zpow_bit1_neg_iff is a dubious translation:
mathlib commit https://github.com/leanprover-community/mathlib/commit/8d33f09cd7089ecf074b4791907588245aec5d1b
@@ -41,7 +41,7 @@ Case conversion may be inaccurate. Consider using '#align zpow_le_of_le zpow_le_
theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
by
have ha₀ : 0 < a := one_pos.trans_le ha
- lift n - m to ℕ using sub_nonneg.2 h
+ lift n - m to ℕ using sub_nonneg.2 h with k hk
calc
a ^ m = a ^ m * 1 := (mul_one _).symm
_ ≤ a ^ m * a ^ k :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/75e7fca56381d056096ce5d05e938f63a6567828
@@ -41,7 +41,7 @@ Case conversion may be inaccurate. Consider using '#align zpow_le_of_le zpow_le_
theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
by
have ha₀ : 0 < a := one_pos.trans_le ha
- lift n - m to ℕ using sub_nonneg.2 h with k hk
+ lift n - m to ℕ using sub_nonneg.2 h
calc
a ^ m = a ^ m * 1 := (mul_one _).symm
_ ≤ a ^ m * a ^ k :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -32,7 +32,12 @@ variable [LinearOrderedSemifield α] {a b c d e : α} {m n : ℤ}
/-! ### Integer powers -/
-#print zpow_le_of_le /-
+/- warning: zpow_le_of_le -> zpow_le_of_le is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LE.le.{0} Int Int.hasLe m n) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n))
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (LE.le.{0} Int Int.instLEInt m n) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n))
+Case conversion may be inaccurate. Consider using '#align zpow_le_of_le zpow_le_of_leₓ'. -/
theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
by
have ha₀ : 0 < a := one_pos.trans_le ha
@@ -44,23 +49,30 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
_ = a ^ n := by rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
#align zpow_le_of_le zpow_le_of_le
--/
-#print zpow_le_one_of_nonpos /-
+/- warning: zpow_le_one_of_nonpos -> zpow_le_one_of_nonpos is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {n : Int}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LE.le.{0} Int Int.hasLe n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))))
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {n : Int}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (LE.le.{0} Int Int.instLEInt n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))
+Case conversion may be inaccurate. Consider using '#align zpow_le_one_of_nonpos zpow_le_one_of_nonposₓ'. -/
theorem zpow_le_one_of_nonpos (ha : 1 ≤ a) (hn : n ≤ 0) : a ^ n ≤ 1 :=
(zpow_le_of_le ha hn).trans_eq <| zpow_zero _
#align zpow_le_one_of_nonpos zpow_le_one_of_nonpos
--/
-#print one_le_zpow_of_nonneg /-
+/- warning: one_le_zpow_of_nonneg -> one_le_zpow_of_nonneg is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {n : Int}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LE.le.{0} Int Int.hasLe (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) n) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n))
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {n : Int}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (LE.le.{0} Int Int.instLEInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) n) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n))
+Case conversion may be inaccurate. Consider using '#align one_le_zpow_of_nonneg one_le_zpow_of_nonnegₓ'. -/
theorem one_le_zpow_of_nonneg (ha : 1 ≤ a) (hn : 0 ≤ n) : 1 ≤ a ^ n :=
(zpow_zero _).symm.trans_le <| zpow_le_of_le ha hn
#align one_le_zpow_of_nonneg one_le_zpow_of_nonneg
--/
/- warning: nat.zpow_pos_of_pos -> Nat.zpow_pos_of_pos is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : Nat}, (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) a) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) n))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : Nat}, (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) a) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) n))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : Nat}, (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) a) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))) a) n))
Case conversion may be inaccurate. Consider using '#align nat.zpow_pos_of_pos Nat.zpow_pos_of_posₓ'. -/
@@ -80,14 +92,23 @@ theorem Nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α) ^ n
(Nat.zpow_pos_of_pos h n).ne'
#align nat.zpow_ne_zero_of_pos Nat.zpow_ne_zero_of_pos
-#print one_lt_zpow /-
+/- warning: one_lt_zpow -> one_lt_zpow is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (forall (n : Int), (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) n) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)))
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (forall (n : Int), (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) n) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)))
+Case conversion may be inaccurate. Consider using '#align one_lt_zpow one_lt_zpowₓ'. -/
theorem one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n
| (n : ℕ), h => (zpow_ofNat _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
| -[n+1], h => ((Int.negSucc_not_pos _).mp h).elim
#align one_lt_zpow one_lt_zpow
--/
-#print zpow_strictMono /-
+/- warning: zpow_strict_mono -> zpow_strictMono is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (StrictMono.{0, u1} Int α (PartialOrder.toPreorder.{0} Int (OrderedAddCommGroup.toPartialOrder.{0} Int (StrictOrderedRing.toOrderedAddCommGroup.{0} Int (LinearOrderedRing.toStrictOrderedRing.{0} Int (LinearOrderedCommRing.toLinearOrderedRing.{0} Int Int.linearOrderedCommRing))))) (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a))
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (StrictMono.{0, u1} Int α (PartialOrder.toPreorder.{0} Int (StrictOrderedRing.toPartialOrder.{0} Int (LinearOrderedRing.toStrictOrderedRing.{0} Int (LinearOrderedCommRing.toLinearOrderedRing.{0} Int Int.linearOrderedCommRing)))) (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))) ((fun (x._@.Mathlib.Algebra.Order.Field.Power._hyg.561 : α) (x._@.Mathlib.Algebra.Order.Field.Power._hyg.563 : Int) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x._@.Mathlib.Algebra.Order.Field.Power._hyg.561 x._@.Mathlib.Algebra.Order.Field.Power._hyg.563) a))
+Case conversion may be inaccurate. Consider using '#align zpow_strict_mono zpow_strictMonoₓ'. -/
theorem zpow_strictMono (hx : 1 < a) : StrictMono ((· ^ ·) a : ℤ → α) :=
strictMono_int_of_lt_succ fun n =>
have xpos : 0 < a := zero_lt_one.trans hx
@@ -96,11 +117,10 @@ theorem zpow_strictMono (hx : 1 < a) : StrictMono ((· ^ ·) a : ℤ → α) :=
_ = a ^ (n + 1) := (zpow_add_one₀ xpos.ne' _).symm
#align zpow_strict_mono zpow_strictMono
--/
/- warning: zpow_strict_anti -> zpow_strictAnti is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))))))) -> (StrictAnti.{0, u1} Int α (PartialOrder.toPreorder.{0} Int (OrderedAddCommGroup.toPartialOrder.{0} Int (StrictOrderedRing.toOrderedAddCommGroup.{0} Int (LinearOrderedRing.toStrictOrderedRing.{0} Int (LinearOrderedCommRing.toLinearOrderedRing.{0} Int Int.linearOrderedCommRing))))) (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))))))) -> (StrictAnti.{0, u1} Int α (PartialOrder.toPreorder.{0} Int (OrderedAddCommGroup.toPartialOrder.{0} Int (StrictOrderedRing.toOrderedAddCommGroup.{0} Int (LinearOrderedRing.toStrictOrderedRing.{0} Int (LinearOrderedCommRing.toLinearOrderedRing.{0} Int Int.linearOrderedCommRing))))) (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) -> (StrictAnti.{0, u1} Int α (PartialOrder.toPreorder.{0} Int (StrictOrderedRing.toPartialOrder.{0} Int (LinearOrderedRing.toStrictOrderedRing.{0} Int (LinearOrderedCommRing.toLinearOrderedRing.{0} Int Int.linearOrderedCommRing)))) (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))) ((fun (x._@.Mathlib.Algebra.Order.Field.Power._hyg.671 : α) (x._@.Mathlib.Algebra.Order.Field.Power._hyg.673 : Int) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x._@.Mathlib.Algebra.Order.Field.Power._hyg.671 x._@.Mathlib.Algebra.Order.Field.Power._hyg.673) a))
Case conversion may be inaccurate. Consider using '#align zpow_strict_anti zpow_strictAntiₓ'. -/
@@ -113,23 +133,31 @@ theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti ((· ^ ·) a
#align zpow_strict_anti zpow_strictAnti
-#print zpow_lt_iff_lt /-
+/- warning: zpow_lt_iff_lt -> zpow_lt_iff_lt is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (LT.lt.{0} Int Int.hasLt m n))
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (LT.lt.{0} Int Int.instLTInt m n))
+Case conversion may be inaccurate. Consider using '#align zpow_lt_iff_lt zpow_lt_iff_ltₓ'. -/
@[simp]
theorem zpow_lt_iff_lt (hx : 1 < a) : a ^ m < a ^ n ↔ m < n :=
(zpow_strictMono hx).lt_iff_lt
#align zpow_lt_iff_lt zpow_lt_iff_lt
--/
-#print zpow_le_iff_le /-
+/- warning: zpow_le_iff_le -> zpow_le_iff_le is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (LE.le.{0} Int Int.hasLe m n))
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (LE.le.{0} Int Int.instLEInt m n))
+Case conversion may be inaccurate. Consider using '#align zpow_le_iff_le zpow_le_iff_leₓ'. -/
@[simp]
theorem zpow_le_iff_le (hx : 1 < a) : a ^ m ≤ a ^ n ↔ m ≤ n :=
(zpow_strictMono hx).le_iff_le
#align zpow_le_iff_le zpow_le_iff_le
--/
/- warning: div_pow_le -> div_pow_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) b) -> (forall (k : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) b k)) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) b) -> (forall (k : Nat), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) b k)) a)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) b) -> (forall (k : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedSemifield.toDiv.{u1} α _inst_1)) a (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) b k)) a)
Case conversion may be inaccurate. Consider using '#align div_pow_le div_pow_leₓ'. -/
@@ -140,7 +168,7 @@ theorem div_pow_le (ha : 0 ≤ a) (hb : 1 ≤ b) (k : ℕ) : a / b ^ k ≤ a :=
/- warning: zpow_injective -> zpow_injective is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))))))) -> (Function.Injective.{1, succ u1} Int α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))))))) -> (Function.Injective.{1, succ u1} Int α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) -> (Function.Injective.{1, succ u1} Int α ((fun (x._@.Mathlib.Algebra.Order.Field.Power._hyg.925 : α) (x._@.Mathlib.Algebra.Order.Field.Power._hyg.927 : Int) => HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x._@.Mathlib.Algebra.Order.Field.Power._hyg.925 x._@.Mathlib.Algebra.Order.Field.Power._hyg.927) a))
Case conversion may be inaccurate. Consider using '#align zpow_injective zpow_injectiveₓ'. -/
@@ -153,7 +181,7 @@ theorem zpow_injective (h₀ : 0 < a) (h₁ : a ≠ 1) : Injective ((· ^ ·) a
/- warning: zpow_inj -> zpow_inj is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))))))) -> (Iff (Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (Eq.{1} Int m n))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) a) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))))))) -> (Iff (Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (Eq.{1} Int m n))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {a : α} {m : Int} {n : Int}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1))))))) -> (Iff (Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a m) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) a n)) (Eq.{1} Int m n))
Case conversion may be inaccurate. Consider using '#align zpow_inj zpow_injₓ'. -/
@@ -164,7 +192,7 @@ theorem zpow_inj (h₀ : 0 < a) (h₁ : a ≠ 1) : a ^ m = a ^ n ↔ m = n :=
/- warning: zpow_le_max_of_min_le -> zpow_le_max_of_min_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {x : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) x) -> (forall {a : Int} {b : Int} {c : Int}, (LE.le.{0} Int Int.hasLe (LinearOrder.min.{0} Int Int.linearOrder a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg c)) (LinearOrder.max.{u1} α (LinearOrderedAddCommMonoid.toLinearOrder.{u1} α (LinearOrderedSemiring.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg a)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg b)))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {x : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) x) -> (forall {a : Int} {b : Int} {c : Int}, (LE.le.{0} Int Int.hasLe (LinearOrder.min.{0} Int Int.linearOrder a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg c)) (LinearOrder.max.{u1} α (LinearOrderedAddCommMonoid.toLinearOrder.{u1} α (LinearOrderedSemiring.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg a)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg b)))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {x : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x) -> (forall {a : Int} {b : Int} {c : Int}, (LE.le.{0} Int Int.instLEInt (Min.min.{0} Int Int.instMinInt a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt c)) (Max.max.{u1} α (LinearOrderedCommSemiring.toMax.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt a)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt b)))))
Case conversion may be inaccurate. Consider using '#align zpow_le_max_of_min_le zpow_le_max_of_min_leₓ'. -/
@@ -176,7 +204,7 @@ theorem zpow_le_max_of_min_le {x : α} (hx : 1 ≤ x) {a b c : ℤ} (h : min a b
/- warning: zpow_le_max_iff_min_le -> zpow_le_max_iff_min_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) x) -> (forall {a : Int} {b : Int} {c : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg c)) (LinearOrder.max.{u1} α (LinearOrderedAddCommMonoid.toLinearOrder.{u1} α (LinearOrderedSemiring.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg a)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg b)))) (LE.le.{0} Int Int.hasLe (LinearOrder.min.{0} Int Int.linearOrder a b) c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {x : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} α (NonAssocSemiring.toAddCommMonoidWithOne.{u1} α (Semiring.toNonAssocSemiring.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))))))) x) -> (forall {a : Int} {b : Int} {c : Int}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCancelAddCommMonoid.toPartialOrder.{u1} α (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg c)) (LinearOrder.max.{u1} α (LinearOrderedAddCommMonoid.toLinearOrder.{u1} α (LinearOrderedSemiring.toLinearOrderedAddCommMonoid.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg a)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.hasNeg b)))) (LE.le.{0} Int Int.hasLe (LinearOrder.min.{0} Int Int.linearOrder a b) c))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedSemifield.{u1} α] {x : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x) -> (forall {a : Int} {b : Int} {c : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedSemiring.toPartialOrder.{u1} α (LinearOrderedSemiring.toStrictOrderedSemiring.{u1} α (LinearOrderedCommSemiring.toLinearOrderedSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt c)) (Max.max.{u1} α (LinearOrderedCommSemiring.toMax.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α _inst_1)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt a)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α (DivisionSemiring.toGroupWithZero.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α _inst_1)))))) x (Neg.neg.{0} Int Int.instNegInt b)))) (LE.le.{0} Int Int.instLEInt (Min.min.{0} Int Int.instMinInt a b) c))
Case conversion may be inaccurate. Consider using '#align zpow_le_max_iff_min_le zpow_le_max_iff_min_leₓ'. -/
@@ -196,7 +224,7 @@ variable [LinearOrderedField α] {a b c d : α} {n : ℤ}
/- warning: zpow_bit0_nonneg -> zpow_bit0_nonneg is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (n : Int), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd n))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (n : Int), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd n))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (n : Int), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.instAddInt n))
Case conversion may be inaccurate. Consider using '#align zpow_bit0_nonneg zpow_bit0_nonnegₓ'. -/
@@ -206,7 +234,7 @@ theorem zpow_bit0_nonneg (a : α) (n : ℤ) : 0 ≤ a ^ bit0 n :=
/- warning: zpow_two_nonneg -> zpow_two_nonneg is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)))
Case conversion may be inaccurate. Consider using '#align zpow_two_nonneg zpow_two_nonnegₓ'. -/
@@ -216,7 +244,7 @@ theorem zpow_two_nonneg (a : α) : 0 ≤ a ^ (2 : ℤ) :=
/- warning: zpow_neg_two_nonneg -> zpow_neg_two_nonneg is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))))
Case conversion may be inaccurate. Consider using '#align zpow_neg_two_nonneg zpow_neg_two_nonnegₓ'. -/
@@ -226,7 +254,7 @@ theorem zpow_neg_two_nonneg (a : α) : 0 ≤ a ^ (-2 : ℤ) :=
/- warning: zpow_bit0_pos -> zpow_bit0_pos is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd n)))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd n)))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.instAddInt n)))
Case conversion may be inaccurate. Consider using '#align zpow_bit0_pos zpow_bit0_posₓ'. -/
@@ -236,7 +264,7 @@ theorem zpow_bit0_pos (h : a ≠ 0) (n : ℤ) : 0 < a ^ bit0 n :=
/- warning: zpow_two_pos_of_ne_zero -> zpow_two_pos_of_ne_zero is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))))
Case conversion may be inaccurate. Consider using '#align zpow_two_pos_of_ne_zero zpow_two_pos_of_ne_zeroₓ'. -/
@@ -246,7 +274,7 @@ theorem zpow_two_pos_of_ne_zero (h : a ≠ 0) : 0 < a ^ (2 : ℤ) :=
/- warning: zpow_bit0_pos_iff -> zpow_bit0_pos_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd n))) (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd n))) (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.instAddInt n))) (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
Case conversion may be inaccurate. Consider using '#align zpow_bit0_pos_iff zpow_bit0_pos_iffₓ'. -/
@@ -260,7 +288,7 @@ theorem zpow_bit0_pos_iff (hn : n ≠ 0) : 0 < a ^ bit0 n ↔ a ≠ 0 :=
/- warning: zpow_bit1_neg_iff -> zpow_bit1_neg_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n)) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n)) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n)) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
Case conversion may be inaccurate. Consider using '#align zpow_bit1_neg_iff zpow_bit1_neg_iffₓ'. -/
@@ -272,7 +300,7 @@ theorem zpow_bit1_neg_iff : a ^ bit1 n < 0 ↔ a < 0 :=
/- warning: zpow_bit1_nonneg_iff -> zpow_bit1_nonneg_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a)
Case conversion may be inaccurate. Consider using '#align zpow_bit1_nonneg_iff zpow_bit1_nonneg_iffₓ'. -/
@@ -283,7 +311,7 @@ theorem zpow_bit1_nonneg_iff : 0 ≤ a ^ bit1 n ↔ 0 ≤ a :=
/- warning: zpow_bit1_nonpos_iff -> zpow_bit1_nonpos_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n)) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n)) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n)) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
Case conversion may be inaccurate. Consider using '#align zpow_bit1_nonpos_iff zpow_bit1_nonpos_iffₓ'. -/
@@ -294,7 +322,7 @@ theorem zpow_bit1_nonpos_iff : a ^ bit1 n ≤ 0 ↔ a ≤ 0 := by
/- warning: zpow_bit1_pos_iff -> zpow_bit1_pos_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a)
Case conversion may be inaccurate. Consider using '#align zpow_bit1_pos_iff zpow_bit1_pos_iffₓ'. -/
@@ -305,7 +333,7 @@ theorem zpow_bit1_pos_iff : 0 < a ^ bit1 n ↔ 0 < a :=
/- warning: even.zpow_nonneg -> Even.zpow_nonneg is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {n : Int}, (Even.{0} Int Int.hasAdd n) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {n : Int}, (Even.{0} Int Int.hasAdd n) -> (forall (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {n : Int}, (Even.{0} Int Int.instAddInt n) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n))
Case conversion may be inaccurate. Consider using '#align even.zpow_nonneg Even.zpow_nonnegₓ'. -/
@@ -315,7 +343,7 @@ protected theorem Even.zpow_nonneg (hn : Even n) (a : α) : 0 ≤ a ^ n := by
/- warning: even.zpow_pos_iff -> Even.zpow_pos_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Even.{0} Int Int.hasAdd n) -> (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Even.{0} Int Int.hasAdd n) -> (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Even.{0} Int Int.instAddInt n) -> (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
Case conversion may be inaccurate. Consider using '#align even.zpow_pos_iff Even.zpow_pos_iffₓ'. -/
@@ -325,7 +353,7 @@ theorem Even.zpow_pos_iff (hn : Even n) (h : n ≠ 0) : 0 < a ^ n ↔ a ≠ 0 :=
/- warning: odd.zpow_neg_iff -> Odd.zpow_neg_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
Case conversion may be inaccurate. Consider using '#align odd.zpow_neg_iff Odd.zpow_neg_iffₓ'. -/
@@ -335,7 +363,7 @@ theorem Odd.zpow_neg_iff (hn : Odd n) : a ^ n < 0 ↔ a < 0 := by
/- warning: odd.zpow_nonneg_iff -> Odd.zpow_nonneg_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a))
Case conversion may be inaccurate. Consider using '#align odd.zpow_nonneg_iff Odd.zpow_nonneg_iffₓ'. -/
@@ -345,7 +373,7 @@ protected theorem Odd.zpow_nonneg_iff (hn : Odd n) : 0 ≤ a ^ n ↔ 0 ≤ a :=
/- warning: odd.zpow_nonpos_iff -> Odd.zpow_nonpos_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))))
Case conversion may be inaccurate. Consider using '#align odd.zpow_nonpos_iff Odd.zpow_nonpos_iffₓ'. -/
@@ -355,7 +383,7 @@ theorem Odd.zpow_nonpos_iff (hn : Odd n) : a ^ n ≤ 0 ↔ a ≤ 0 := by
/- warning: odd.zpow_pos_iff -> Odd.zpow_pos_iff is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a))
Case conversion may be inaccurate. Consider using '#align odd.zpow_pos_iff Odd.zpow_pos_iffₓ'. -/
@@ -365,7 +393,7 @@ theorem Odd.zpow_pos_iff (hn : Odd n) : 0 < a ^ n ↔ 0 < a := by
/- warning: even.zpow_pos -> Even.zpow_pos is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Even.{0} Int Int.hasAdd n) -> (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Even.{0} Int Int.hasAdd n) -> (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Even.{0} Int Int.instAddInt n) -> (Ne.{1} Int n (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) -> (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n))
Case conversion may be inaccurate. Consider using '#align even.zpow_pos Even.zpow_posₓ'. -/
@@ -374,7 +402,7 @@ alias Even.zpow_pos_iff ↔ _ Even.zpow_pos
/- warning: odd.zpow_neg -> Odd.zpow_neg is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
Case conversion may be inaccurate. Consider using '#align odd.zpow_neg Odd.zpow_negₓ'. -/
@@ -383,7 +411,7 @@ alias Odd.zpow_neg_iff ↔ _ Odd.zpow_neg
/- warning: odd.zpow_nonpos -> Odd.zpow_nonpos is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.semiring n) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, (Odd.{0} Int Int.instSemiringInt n) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a n) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
Case conversion may be inaccurate. Consider using '#align odd.zpow_nonpos Odd.zpow_nonposₓ'. -/
@@ -416,7 +444,7 @@ theorem zpow_bit0_abs (a : α) (p : ℤ) : |a| ^ bit0 p = a ^ bit0 p :=
/- warning: nat.cast_le_pow_sub_div_sub -> Nat.cast_le_pow_sub_div_sub is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) a n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))))
Case conversion may be inaccurate. Consider using '#align nat.cast_le_pow_sub_div_sub Nat.cast_le_pow_sub_div_subₓ'. -/
@@ -428,7 +456,7 @@ theorem Nat.cast_le_pow_sub_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ (a ^ n
/- warning: nat.cast_le_pow_div_sub -> Nat.cast_le_pow_div_sub is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))))
Case conversion may be inaccurate. Consider using '#align nat.cast_le_pow_div_sub Nat.cast_le_pow_div_subₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -262,7 +262,7 @@ theorem zpow_bit0_pos_iff (hn : n ≠ 0) : 0 < a ^ bit0 n ↔ a ≠ 0 :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n)) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (NonAssocRing.toOne.{0} Int (Ring.toNonAssocRing.{0} Int Int.instRingInt)) Int.instAddInt n)) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n)) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
Case conversion may be inaccurate. Consider using '#align zpow_bit1_neg_iff zpow_bit1_neg_iffₓ'. -/
@[simp]
theorem zpow_bit1_neg_iff : a ^ bit1 n < 0 ↔ a < 0 :=
@@ -274,7 +274,7 @@ theorem zpow_bit1_neg_iff : a ^ bit1 n < 0 ↔ a < 0 :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (NonAssocRing.toOne.{0} Int (Ring.toNonAssocRing.{0} Int Int.instRingInt)) Int.instAddInt n))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a)
Case conversion may be inaccurate. Consider using '#align zpow_bit1_nonneg_iff zpow_bit1_nonneg_iffₓ'. -/
@[simp]
theorem zpow_bit1_nonneg_iff : 0 ≤ a ^ bit1 n ↔ 0 ≤ a :=
@@ -285,7 +285,7 @@ theorem zpow_bit1_nonneg_iff : 0 ≤ a ^ bit1 n ↔ 0 ≤ a :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n)) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (NonAssocRing.toOne.{0} Int (Ring.toNonAssocRing.{0} Int Int.instRingInt)) Int.instAddInt n)) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n)) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))
Case conversion may be inaccurate. Consider using '#align zpow_bit1_nonpos_iff zpow_bit1_nonpos_iffₓ'. -/
@[simp]
theorem zpow_bit1_nonpos_iff : a ^ bit1 n ≤ 0 ↔ a ≤ 0 := by
@@ -296,7 +296,7 @@ theorem zpow_bit1_nonpos_iff : a ^ bit1 n ≤ 0 ↔ a ≤ 0 := by
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int Int.hasOne Int.hasAdd n))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) a)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (NonAssocRing.toOne.{0} Int (Ring.toNonAssocRing.{0} Int Int.instRingInt)) Int.instAddInt n))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α} {n : Int}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit1.{0} Int (Semiring.toOne.{0} Int Int.instSemiringInt) Int.instAddInt n))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a)
Case conversion may be inaccurate. Consider using '#align zpow_bit1_pos_iff zpow_bit1_pos_iffₓ'. -/
@[simp]
theorem zpow_bit1_pos_iff : 0 < a ^ bit1 n ↔ 0 < a :=
@@ -418,7 +418,7 @@ theorem zpow_bit0_abs (a : α) (p : ℤ) : |a| ^ bit0 p = a ^ bit0 p :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) a n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) a n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))))
Case conversion may be inaccurate. Consider using '#align nat.cast_le_pow_sub_div_sub Nat.cast_le_pow_sub_div_subₓ'. -/
/-- Bernoulli's inequality reformulated to estimate `(n : α)`. -/
theorem Nat.cast_le_pow_sub_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ (a ^ n - 1) / (a - 1) :=
@@ -430,7 +430,7 @@ theorem Nat.cast_le_pow_sub_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ (a ^ n
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Nat.cast.{u1} α (Semiring.toNatCast.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Semiring.toOne.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))))))
Case conversion may be inaccurate. Consider using '#align nat.cast_le_pow_div_sub Nat.cast_le_pow_div_subₓ'. -/
/-- For any `a > 1` and a natural `n` we have `n ≤ a ^ n / (a - 1)`. See also
`nat.cast_le_pow_sub_div_sub` for a stronger inequality with `a ^ n - 1` in the numerator. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -392,7 +392,7 @@ alias Odd.zpow_nonpos_iff ↔ _ Odd.zpow_nonpos
/- warning: even.zpow_abs -> Even.zpow_abs is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {p : Int}, (Even.{0} Int Int.hasAdd p) -> (forall (a : α), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a) p) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a p))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {p : Int}, (Even.{0} Int Int.hasAdd p) -> (forall (a : α), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a) p) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a p))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {p : Int}, (Even.{0} Int Int.instAddInt p) -> (forall (a : α), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) a) p) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a p))
Case conversion may be inaccurate. Consider using '#align even.zpow_abs Even.zpow_absₓ'. -/
@@ -402,7 +402,7 @@ theorem Even.zpow_abs {p : ℤ} (hp : Even p) (a : α) : |a| ^ p = a ^ p := by
/- warning: zpow_bit0_abs -> zpow_bit0_abs is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (p : Int), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a) (bit0.{0} Int Int.hasAdd p)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd p))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (p : Int), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a) (bit0.{0} Int Int.hasAdd p)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd p))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (p : Int), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) a) (bit0.{0} Int Int.instAddInt p)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.instAddInt p))
Case conversion may be inaccurate. Consider using '#align zpow_bit0_abs zpow_bit0_absₓ'. -/
@@ -416,7 +416,7 @@ theorem zpow_bit0_abs (a : α) (p : ℤ) : |a| ^ bit0 p = a ^ bit0 p :=
/- warning: nat.cast_le_pow_sub_div_sub -> Nat.cast_le_pow_sub_div_sub is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) a n) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))
Case conversion may be inaccurate. Consider using '#align nat.cast_le_pow_sub_div_sub Nat.cast_le_pow_sub_div_subₓ'. -/
@@ -428,7 +428,7 @@ theorem Nat.cast_le_pow_sub_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ (a ^ n
/- warning: nat.cast_le_pow_div_sub -> Nat.cast_le_pow_div_sub is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Nat α (HasLiftT.mk.{1, succ u1} Nat α (CoeTCₓ.coe.{1, succ u1} Nat α (Nat.castCoe.{u1} α (AddMonoidWithOne.toNatCast.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (Ring.toMonoid.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (AddMonoidWithOne.toOne.{u1} α (AddGroupWithOne.toAddMonoidWithOne.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))) a) -> (forall (n : Nat), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Nat.cast.{u1} α (NonAssocRing.toNatCast.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) n) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (LinearOrderedField.toDiv.{u1} α _inst_1)) (HPow.hPow.{u1, 0, u1} α Nat α (instHPow.{u1, 0} α Nat (Monoid.Pow.{u1} α (MonoidWithZero.toMonoid.{u1} α (Semiring.toMonoidWithZero.{u1} α (DivisionSemiring.toSemiring.{u1} α (Semifield.toDivisionSemiring.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) a n) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (NonAssocRing.toOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))
Case conversion may be inaccurate. Consider using '#align nat.cast_le_pow_div_sub Nat.cast_le_pow_div_subₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/b19481deb571022990f1baa9cbf9172e6757a479
@@ -214,6 +214,12 @@ theorem zpow_two_nonneg (a : α) : 0 ≤ a ^ (2 : ℤ) :=
zpow_bit0_nonneg _ _
#align zpow_two_nonneg zpow_two_nonneg
+/- warning: zpow_neg_two_nonneg -> zpow_neg_two_nonneg is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))))
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))))
+Case conversion may be inaccurate. Consider using '#align zpow_neg_two_nonneg zpow_neg_two_nonnegₓ'. -/
theorem zpow_neg_two_nonneg (a : α) : 0 ≤ a ^ (-2 : ℤ) :=
zpow_bit0_nonneg _ (-1)
#align zpow_neg_two_nonneg zpow_neg_two_nonneg
mathlib commit https://github.com/leanprover-community/mathlib/commit/da3fc4a33ff6bc75f077f691dc94c217b8d41559
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Lewis, Leonardo de Moura, Mario Carneiro, Floris van Doorn
! This file was ported from Lean 3 source module algebra.order.field.power
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
+! leanprover-community/mathlib commit acb3d204d4ee883eb686f45d486a2a6811a01329
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -214,6 +214,10 @@ theorem zpow_two_nonneg (a : α) : 0 ≤ a ^ (2 : ℤ) :=
zpow_bit0_nonneg _ _
#align zpow_two_nonneg zpow_two_nonneg
+theorem zpow_neg_two_nonneg (a : α) : 0 ≤ a ^ (-2 : ℤ) :=
+ zpow_bit0_nonneg _ (-1)
+#align zpow_neg_two_nonneg zpow_neg_two_nonneg
+
/- warning: zpow_bit0_pos -> zpow_bit0_pos is a dubious translation:
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (forall (n : Int), LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd n)))
mathlib commit https://github.com/leanprover-community/mathlib/commit/4c586d291f189eecb9d00581aeb3dd998ac34442
@@ -40,7 +40,7 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
calc
a ^ m = a ^ m * 1 := (mul_one _).symm
_ ≤ a ^ m * a ^ k :=
- mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _)
+ (mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _))
_ = a ^ n := by rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
#align zpow_le_of_le zpow_le_of_le
@@ -108,7 +108,7 @@ theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti ((· ^ ·) a
strictAnti_int_of_succ_lt fun n =>
calc
a ^ (n + 1) = a ^ n * a := zpow_add_one₀ h₀.ne' _
- _ < a ^ n * 1 := (mul_lt_mul_left <| zpow_pos_of_pos h₀ _).2 h₁
+ _ < a ^ n * 1 := ((mul_lt_mul_left <| zpow_pos_of_pos h₀ _).2 h₁)
_ = a ^ n := mul_one _
#align zpow_strict_anti zpow_strictAnti
mathlib commit https://github.com/leanprover-community/mathlib/commit/9da1b3534b65d9661eb8f42443598a92bbb49211
@@ -384,7 +384,7 @@ alias Odd.zpow_nonpos_iff ↔ _ Odd.zpow_nonpos
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {p : Int}, (Even.{0} Int Int.hasAdd p) -> (forall (a : α), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a) p) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a p))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {p : Int}, (Even.{0} Int Int.instAddInt p) -> (forall (a : α), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) a) p) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a p))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {p : Int}, (Even.{0} Int Int.instAddInt p) -> (forall (a : α), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) a) p) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a p))
Case conversion may be inaccurate. Consider using '#align even.zpow_abs Even.zpow_absₓ'. -/
theorem Even.zpow_abs {p : ℤ} (hp : Even p) (a : α) : |a| ^ p = a ^ p := by
cases' abs_choice a with h h <;> simp only [h, hp.neg_zpow _]
@@ -394,7 +394,7 @@ theorem Even.zpow_abs {p : ℤ} (hp : Even p) (a : α) : |a| ^ p = a ^ p := by
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (p : Int), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a) (bit0.{0} Int Int.hasAdd p)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.hasAdd p))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (p : Int), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) a) (bit0.{0} Int Int.instAddInt p)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.instAddInt p))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : α) (p : Int), Eq.{succ u1} α (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) a) (bit0.{0} Int Int.instAddInt p)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (DivisionRing.toDivInvMonoid.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a (bit0.{0} Int Int.instAddInt p))
Case conversion may be inaccurate. Consider using '#align zpow_bit0_abs zpow_bit0_absₓ'. -/
@[simp]
theorem zpow_bit0_abs (a : α) (p : ℤ) : |a| ^ bit0 p = a ^ bit0 p :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Occasionally, remove a "deprecated by" or "deprecated since", to fit the line length.
This is desirable (to me) because
@@ -83,8 +83,7 @@ theorem zpow_lt_iff_lt (hx : 1 < a) : a ^ m < a ^ n ↔ m < n :=
@[gcongr] alias ⟨_, GCongr.zpow_lt_of_lt⟩ := zpow_lt_iff_lt
-@[deprecated] -- Since 2024-02-10
-alias zpow_lt_of_lt := GCongr.zpow_lt_of_lt
+@[deprecated] alias zpow_lt_of_lt := GCongr.zpow_lt_of_lt -- Since 2024-02-10
@[simp]
theorem zpow_le_iff_le (hx : 1 < a) : a ^ m ≤ a ^ n ↔ m ≤ n :=
coe_nat
to natCast
(#11637)
Reduce the diff of #11499
All in the Int
namespace:
ofNat_eq_cast
→ ofNat_eq_natCast
cast_eq_cast_iff_Nat
→ natCast_inj
natCast_eq_ofNat
→ ofNat_eq_natCast
coe_nat_sub
→ natCast_sub
coe_nat_nonneg
→ natCast_nonneg
sign_coe_add_one
→ sign_natCast_add_one
nat_succ_eq_int_succ
→ natCast_succ
succ_neg_nat_succ
→ succ_neg_natCast_succ
coe_pred_of_pos
→ natCast_pred_of_pos
coe_nat_div
→ natCast_div
coe_nat_ediv
→ natCast_ediv
sign_coe_nat_of_nonzero
→ sign_natCast_of_ne_zero
toNat_coe_nat
→ toNat_natCast
toNat_coe_nat_add_one
→ toNat_natCast_add_one
coe_nat_dvd
→ natCast_dvd_natCast
coe_nat_dvd_left
→ natCast_dvd
coe_nat_dvd_right
→ dvd_natCast
le_coe_nat_sub
→ le_natCast_sub
succ_coe_nat_pos
→ succ_natCast_pos
coe_nat_modEq_iff
→ natCast_modEq_iff
coe_natAbs
→ natCast_natAbs
coe_nat_eq_zero
→ natCast_eq_zero
coe_nat_ne_zero
→ natCast_ne_zero
coe_nat_ne_zero_iff_pos
→ natCast_ne_zero_iff_pos
abs_coe_nat
→ abs_natCast
coe_nat_nonpos_iff
→ natCast_nonpos_iff
Also rename Nat.coe_nat_dvd
to Nat.cast_dvd_cast
@@ -56,7 +56,7 @@ theorem Nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α) ^ n
#align nat.zpow_ne_zero_of_pos Nat.zpow_ne_zero_of_pos
theorem one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n
- | (n : ℕ), h => (zpow_natCast _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
+ | (n : ℕ), h => (zpow_natCast _ _).symm.subst (one_lt_pow ha <| Int.natCast_ne_zero.mp h.ne')
| -[_+1], h => ((Int.negSucc_not_pos _).mp h).elim
#align one_lt_zpow one_lt_zpow
mul
-div
cancellation lemmas (#11530)
Lemma names around cancellation of multiplication and division are a mess.
This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero
lemma name, the Group
lemma, the AddGroup
lemma name).
| Statement | New name | Old name | |
@@ -35,7 +35,7 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n := by
a ^ m = a ^ m * 1 := (mul_one _).symm
_ ≤ a ^ m * a ^ k :=
mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _)
- _ = a ^ n := by rw [← zpow_natCast, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
+ _ = a ^ n := by rw [← zpow_natCast, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel]
#align zpow_le_of_le zpow_le_of_le
theorem zpow_le_one_of_nonpos (ha : 1 ≤ a) (hn : n ≤ 0) : a ^ n ≤ 1 :=
zpow_coe_nat
to zpow_natCast
(#11528)
... and add a deprecated alias for the old name. This is mostly just me discovering the power of F2
@@ -35,7 +35,7 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n := by
a ^ m = a ^ m * 1 := (mul_one _).symm
_ ≤ a ^ m * a ^ k :=
mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _)
- _ = a ^ n := by rw [← zpow_coe_nat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
+ _ = a ^ n := by rw [← zpow_natCast, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
#align zpow_le_of_le zpow_le_of_le
theorem zpow_le_one_of_nonpos (ha : 1 ≤ a) (hn : n ≤ 0) : a ^ n ≤ 1 :=
@@ -56,7 +56,7 @@ theorem Nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α) ^ n
#align nat.zpow_ne_zero_of_pos Nat.zpow_ne_zero_of_pos
theorem one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n
- | (n : ℕ), h => (zpow_coe_nat _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
+ | (n : ℕ), h => (zpow_natCast _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
| -[_+1], h => ((Int.negSucc_not_pos _).mp h).elim
#align one_lt_zpow one_lt_zpow
/
lemmas (#10634)
The new names and argument orders match the corresponding *
lemmas, which I already took care of in a previous PR.
From LeanAPAP
@@ -237,7 +237,7 @@ theorem Nat.cast_le_pow_sub_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ (a ^ n
`Nat.cast_le_pow_sub_div_sub` for a stronger inequality with `a ^ n - 1` in the numerator. -/
theorem Nat.cast_le_pow_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ a ^ n / (a - 1) :=
(n.cast_le_pow_sub_div_sub H).trans <|
- div_le_div_of_le (sub_nonneg.2 H.le) (sub_le_self _ zero_le_one)
+ div_le_div_of_nonneg_right (sub_le_self _ zero_le_one) (sub_nonneg.2 H.le)
#align nat.cast_le_pow_div_sub Nat.cast_le_pow_div_sub
end LinearOrderedField
zpow_ofNat
and ofNat_zsmul
(#10969)
Previously these were syntactically identical to the corresponding zpow_coe_nat
and coe_nat_zsmul
lemmas, now they are about OfNat.ofNat
.
Unfortunately, almost every call site uses the ofNat
name to refer to Nat.cast
, so the downstream proofs had to be adjusted too.
@@ -35,7 +35,7 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n := by
a ^ m = a ^ m * 1 := (mul_one _).symm
_ ≤ a ^ m * a ^ k :=
mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _)
- _ = a ^ n := by rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
+ _ = a ^ n := by rw [← zpow_coe_nat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
#align zpow_le_of_le zpow_le_of_le
theorem zpow_le_one_of_nonpos (ha : 1 ≤ a) (hn : n ≤ 0) : a ^ n ≤ 1 :=
@@ -56,7 +56,7 @@ theorem Nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α) ^ n
#align nat.zpow_ne_zero_of_pos Nat.zpow_ne_zero_of_pos
theorem one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n
- | (n : ℕ), h => (zpow_ofNat _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
+ | (n : ℕ), h => (zpow_coe_nat _ _).symm.subst (one_lt_pow ha <| Int.coe_nat_ne_zero.mp h.ne')
| -[_+1], h => ((Int.negSucc_not_pos _).mp h).elim
#align one_lt_zpow one_lt_zpow
@[gcongr]
tags around (#9393)
import Mathlib.Tactic.GCongr.Core
to Algebra/Order/Ring/Lemmas
.@[gcongr]
tags next to the lemmas.See Zulip thread
Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>
@@ -27,7 +27,7 @@ variable [LinearOrderedSemifield α] {a b c d e : α} {m n : ℤ}
/-! ### Integer powers -/
-
+@[gcongr]
theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n := by
have ha₀ : 0 < a := one_pos.trans_le ha
lift n - m to ℕ using sub_nonneg.2 h with k hk
@@ -81,6 +81,11 @@ theorem zpow_lt_iff_lt (hx : 1 < a) : a ^ m < a ^ n ↔ m < n :=
(zpow_strictMono hx).lt_iff_lt
#align zpow_lt_iff_lt zpow_lt_iff_lt
+@[gcongr] alias ⟨_, GCongr.zpow_lt_of_lt⟩ := zpow_lt_iff_lt
+
+@[deprecated] -- Since 2024-02-10
+alias zpow_lt_of_lt := GCongr.zpow_lt_of_lt
+
@[simp]
theorem zpow_le_iff_le (hx : 1 < a) : a ^ m ≤ a ^ n ↔ m ≤ n :=
(zpow_strictMono hx).le_iff_le
q()
notation (#10227)
There is no need to write (q(some_lemma))
, q(some_lemma)
already has the right precedence. This also removes some by exact
s that were either cargo-culted, or fixed by a recent change to Lean / Quote4.
@@ -254,7 +254,7 @@ def evalZPow : PositivityExt where eval {u α} zα pα e := do
have m : Q(ℕ) := mkRawNatLit (n / 2)
haveI' : $b =Q $m + $m := ⟨⟩ -- b = bit0 m
haveI' : $e =Q $a ^ $b := ⟨⟩
- pure (by exact .nonnegative q(zpow_bit0_nonneg $a $m))
+ pure (.nonnegative q(zpow_bit0_nonneg $a $m))
| .app (.app (.app (.const `Neg.neg _) _) _) b' =>
let b' ← whnfR b'
let .true := b'.isAppOfArity ``OfNat.ofNat 3 | throwError "not a ^ -n where n is a literal"
@@ -263,7 +263,7 @@ def evalZPow : PositivityExt where eval {u α} zα pα e := do
have m : Q(ℕ) := mkRawNatLit (n / 2)
haveI' : $b =Q (-$m) + (-$m) := ⟨⟩ -- b = bit0 (-m)
haveI' : $e =Q $a ^ $b := ⟨⟩
- pure (by exact .nonnegative q(zpow_bit0_nonneg $a (-$m)))
+ pure (.nonnegative q(zpow_bit0_nonneg $a (-$m)))
| _ => throwError "not a ^ n where n is a literal or a negated literal"
orElse result do
let ra ← core zα pα a
@@ -271,19 +271,19 @@ def evalZPow : PositivityExt where eval {u α} zα pα e := do
MetaM (Strictness zα pα e) := do
haveI' : $e =Q $a ^ $b := ⟨⟩
assumeInstancesCommute
- pure (by exact .nonnegative (q(zpow_nonneg $pa $b)))
+ pure (.nonnegative q(zpow_nonneg $pa $b))
let ofNonzero (pa : Q($a ≠ 0)) (_oα : Q(GroupWithZero $α)) : MetaM (Strictness zα pα e) := do
haveI' : $e =Q $a ^ $b := ⟨⟩
let _a ← synthInstanceQ q(GroupWithZero $α)
assumeInstancesCommute
- pure (.nonzero (by exact q(zpow_ne_zero $b $pa)))
+ pure (.nonzero q(zpow_ne_zero $b $pa))
match ra with
| .positive pa =>
try
let _a ← synthInstanceQ (q(LinearOrderedSemifield $α) : Q(Type u))
haveI' : $e =Q $a ^ $b := ⟨⟩
assumeInstancesCommute
- pure (by exact .positive (q(zpow_pos_of_pos $pa $b)))
+ pure (.positive q(zpow_pos_of_pos $pa $b))
catch e : Exception =>
trace[Tactic.positivity.failure] "{e.toMessageData}"
let oα ← synthInstanceQ q(LinearOrderedSemifield $α)
positivity
extensions (#10140)
The goal here is to have access to positivity
earlier in the import hierarchy
@@ -236,3 +236,60 @@ theorem Nat.cast_le_pow_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ a ^ n / (a
#align nat.cast_le_pow_div_sub Nat.cast_le_pow_div_sub
end LinearOrderedField
+
+namespace Mathlib.Meta.Positivity
+open Lean Meta Qq Function
+
+/-- The `positivity` extension which identifies expressions of the form `a ^ (b : ℤ)`,
+such that `positivity` successfully recognises both `a` and `b`. -/
+@[positivity _ ^ (_ : ℤ), Pow.pow _ (_ : ℤ)]
+def evalZPow : PositivityExt where eval {u α} zα pα e := do
+ let .app (.app _ (a : Q($α))) (b : Q(ℤ)) ← withReducible (whnf e) | throwError "not ^"
+ let result ← catchNone do
+ let _a ← synthInstanceQ q(LinearOrderedField $α)
+ assumeInstancesCommute
+ match ← whnfR b with
+ | .app (.app (.app (.const `OfNat.ofNat _) _) (.lit (Literal.natVal n))) _ =>
+ guard (n % 2 = 0)
+ have m : Q(ℕ) := mkRawNatLit (n / 2)
+ haveI' : $b =Q $m + $m := ⟨⟩ -- b = bit0 m
+ haveI' : $e =Q $a ^ $b := ⟨⟩
+ pure (by exact .nonnegative q(zpow_bit0_nonneg $a $m))
+ | .app (.app (.app (.const `Neg.neg _) _) _) b' =>
+ let b' ← whnfR b'
+ let .true := b'.isAppOfArity ``OfNat.ofNat 3 | throwError "not a ^ -n where n is a literal"
+ let some n := (b'.getRevArg! 1).natLit? | throwError "not a ^ -n where n is a literal"
+ guard (n % 2 = 0)
+ have m : Q(ℕ) := mkRawNatLit (n / 2)
+ haveI' : $b =Q (-$m) + (-$m) := ⟨⟩ -- b = bit0 (-m)
+ haveI' : $e =Q $a ^ $b := ⟨⟩
+ pure (by exact .nonnegative q(zpow_bit0_nonneg $a (-$m)))
+ | _ => throwError "not a ^ n where n is a literal or a negated literal"
+ orElse result do
+ let ra ← core zα pα a
+ let ofNonneg (pa : Q(0 ≤ $a)) (_oα : Q(LinearOrderedSemifield $α)) :
+ MetaM (Strictness zα pα e) := do
+ haveI' : $e =Q $a ^ $b := ⟨⟩
+ assumeInstancesCommute
+ pure (by exact .nonnegative (q(zpow_nonneg $pa $b)))
+ let ofNonzero (pa : Q($a ≠ 0)) (_oα : Q(GroupWithZero $α)) : MetaM (Strictness zα pα e) := do
+ haveI' : $e =Q $a ^ $b := ⟨⟩
+ let _a ← synthInstanceQ q(GroupWithZero $α)
+ assumeInstancesCommute
+ pure (.nonzero (by exact q(zpow_ne_zero $b $pa)))
+ match ra with
+ | .positive pa =>
+ try
+ let _a ← synthInstanceQ (q(LinearOrderedSemifield $α) : Q(Type u))
+ haveI' : $e =Q $a ^ $b := ⟨⟩
+ assumeInstancesCommute
+ pure (by exact .positive (q(zpow_pos_of_pos $pa $b)))
+ catch e : Exception =>
+ trace[Tactic.positivity.failure] "{e.toMessageData}"
+ let oα ← synthInstanceQ q(LinearOrderedSemifield $α)
+ orElse (← catchNone (ofNonneg q(le_of_lt $pa) oα)) (ofNonzero q(ne_of_gt $pa) oα)
+ | .nonnegative pa => ofNonneg pa (← synthInstanceQ (_ : Q(Type u)))
+ | .nonzero pa => ofNonzero pa (← synthInstanceQ (_ : Q(Type u)))
+ | .none => pure .none
+
+end Mathlib.Meta.Positivity
@@ -7,6 +7,7 @@ import Mathlib.Algebra.Parity
import Mathlib.Algebra.CharZero.Lemmas
import Mathlib.Algebra.GroupWithZero.Power
import Mathlib.Algebra.Order.Field.Basic
+import Mathlib.Algebra.Order.Ring.Pow
import Mathlib.Data.Int.Bitwise
#align_import algebra.order.field.power from "leanprover-community/mathlib"@"acb3d204d4ee883eb686f45d486a2a6811a01329"
@@ -219,8 +220,7 @@ theorem zpow_bit0_abs (a : α) (p : ℤ) : |a| ^ bit0 p = a ^ bit0 p :=
(even_bit0 _).zpow_abs _
#align zpow_bit0_abs zpow_bit0_abs
-/-! ### Miscellaneous lemmmas -/
-
+/-! ### Bernoulli's inequality -/
/-- Bernoulli's inequality reformulated to estimate `(n : α)`. -/
theorem Nat.cast_le_pow_sub_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ (a ^ n - 1) / (a - 1) :=
(· op ·) a
by (a op ·)
(#8843)
I used the regex \(\(· (.) ·\) (.)\)
, replacing with ($2 $1 ·)
.
@@ -59,7 +59,7 @@ theorem one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n
| -[_+1], h => ((Int.negSucc_not_pos _).mp h).elim
#align one_lt_zpow one_lt_zpow
-theorem zpow_strictMono (hx : 1 < a) : StrictMono ((· ^ ·) a : ℤ → α) :=
+theorem zpow_strictMono (hx : 1 < a) : StrictMono (a ^ · : ℤ → α) :=
strictMono_int_of_lt_succ fun n =>
have xpos : 0 < a := zero_lt_one.trans hx
calc
@@ -67,7 +67,7 @@ theorem zpow_strictMono (hx : 1 < a) : StrictMono ((· ^ ·) a : ℤ → α) :=
_ = a ^ (n + 1) := (zpow_add_one₀ xpos.ne' _).symm
#align zpow_strict_mono zpow_strictMono
-theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti ((· ^ ·) a : ℤ → α) :=
+theorem zpow_strictAnti (h₀ : 0 < a) (h₁ : a < 1) : StrictAnti (a ^ · : ℤ → α) :=
strictAnti_int_of_succ_lt fun n =>
calc
a ^ (n + 1) = a ^ n * a := zpow_add_one₀ h₀.ne' _
@@ -90,7 +90,7 @@ theorem div_pow_le (ha : 0 ≤ a) (hb : 1 ≤ b) (k : ℕ) : a / b ^ k ≤ a :=
div_le_self ha <| one_le_pow_of_one_le hb _
#align div_pow_le div_pow_le
-theorem zpow_injective (h₀ : 0 < a) (h₁ : a ≠ 1) : Injective ((· ^ ·) a : ℤ → α) := by
+theorem zpow_injective (h₀ : 0 < a) (h₁ : a ≠ 1) : Injective (a ^ · : ℤ → α) := by
rcases h₁.lt_or_lt with (H | H)
· exact (zpow_strictAnti h₀ H).injective
· exact (zpow_strictMono H).injective
exact_mod_cast
tactic with mod_cast
elaborator where possible (#8404)
We still have the exact_mod_cast
tactic, used in a few places, which somehow (?) works a little bit harder to prevent the expected type influencing the elaboration of the term. I would like to get to the bottom of this, and it will be easier once the only usages of exact_mod_cast
are the ones that don't work using the term elaborator by itself.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -47,7 +47,7 @@ theorem one_le_zpow_of_nonneg (ha : 1 ≤ a) (hn : 0 ≤ n) : 1 ≤ a ^ n :=
protected theorem Nat.zpow_pos_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : 0 < (a : α) ^ n := by
apply zpow_pos_of_pos
- exact_mod_cast h
+ exact mod_cast h
#align nat.zpow_pos_of_pos Nat.zpow_pos_of_pos
theorem Nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α) ^ n ≠ 0 :=
@@ -7,6 +7,7 @@ import Mathlib.Algebra.Parity
import Mathlib.Algebra.CharZero.Lemmas
import Mathlib.Algebra.GroupWithZero.Power
import Mathlib.Algebra.Order.Field.Basic
+import Mathlib.Data.Int.Bitwise
#align_import algebra.order.field.power from "leanprover-community/mathlib"@"acb3d204d4ee883eb686f45d486a2a6811a01329"
@@ -199,13 +199,13 @@ theorem Odd.zpow_pos_iff (hn : Odd n) : 0 < a ^ n ↔ 0 < a := by
cases' hn with k hk; simpa only [hk, two_mul] using zpow_bit1_pos_iff
#align odd.zpow_pos_iff Odd.zpow_pos_iff
-alias Even.zpow_pos_iff ↔ _ Even.zpow_pos
+alias ⟨_, Even.zpow_pos⟩ := Even.zpow_pos_iff
#align even.zpow_pos Even.zpow_pos
-alias Odd.zpow_neg_iff ↔ _ Odd.zpow_neg
+alias ⟨_, Odd.zpow_neg⟩ := Odd.zpow_neg_iff
#align odd.zpow_neg Odd.zpow_neg
-alias Odd.zpow_nonpos_iff ↔ _ Odd.zpow_nonpos
+alias ⟨_, Odd.zpow_nonpos⟩ := Odd.zpow_nonpos_iff
#align odd.zpow_nonpos Odd.zpow_nonpos
theorem Even.zpow_abs {p : ℤ} (hp : Even p) (a : α) : |a| ^ p = a ^ p := by
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -15,7 +15,7 @@ import Mathlib.Algebra.Order.Field.Basic
-/
-variable {α : Type _}
+variable {α : Type*}
open Function Int
@@ -2,17 +2,14 @@
Copyright (c) 2014 Robert Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Lewis, Leonardo de Moura, Mario Carneiro, Floris van Doorn
-
-! This file was ported from Lean 3 source module algebra.order.field.power
-! leanprover-community/mathlib commit acb3d204d4ee883eb686f45d486a2a6811a01329
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Algebra.Parity
import Mathlib.Algebra.CharZero.Lemmas
import Mathlib.Algebra.GroupWithZero.Power
import Mathlib.Algebra.Order.Field.Basic
+#align_import algebra.order.field.power from "leanprover-community/mathlib"@"acb3d204d4ee883eb686f45d486a2a6811a01329"
+
/-!
# Lemmas about powers in ordered fields.
-/
fix-comments.py
on all files.@@ -231,7 +231,7 @@ theorem Nat.cast_le_pow_sub_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ (a ^ n
#align nat.cast_le_pow_sub_div_sub Nat.cast_le_pow_sub_div_sub
/-- For any `a > 1` and a natural `n` we have `n ≤ a ^ n / (a - 1)`. See also
-`nat.cast_le_pow_sub_div_sub` for a stronger inequality with `a ^ n - 1` in the numerator. -/
+`Nat.cast_le_pow_sub_div_sub` for a stronger inequality with `a ^ n - 1` in the numerator. -/
theorem Nat.cast_le_pow_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ a ^ n / (a - 1) :=
(n.cast_le_pow_sub_div_sub H).trans <|
div_le_div_of_le (sub_nonneg.2 H.le) (sub_le_self _ zero_le_one)
This PR fixes two things:
align
statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align
). This is often seen in the mathport output after ending calc
blocks.#align
statements. (This was needed for a script I wrote for #3630.)@@ -37,7 +37,6 @@ theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n := by
_ ≤ a ^ m * a ^ k :=
mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _)
_ = a ^ n := by rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
-
#align zpow_le_of_le zpow_le_of_le
theorem zpow_le_one_of_nonpos (ha : 1 ≤ a) (hn : n ≤ 0) : a ^ n ≤ 1 :=
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Lewis, Leonardo de Moura, Mario Carneiro, Floris van Doorn
! This file was ported from Lean 3 source module algebra.order.field.power
-! leanprover-community/mathlib commit 422e70f7ce183d2900c586a8cda8381e788a0c62
+! leanprover-community/mathlib commit acb3d204d4ee883eb686f45d486a2a6811a01329
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -135,6 +135,10 @@ theorem zpow_two_nonneg (a : α) : 0 ≤ a ^ (2 : ℤ) := by
convert zpow_bit0_nonneg a 1
#align zpow_two_nonneg zpow_two_nonneg
+theorem zpow_neg_two_nonneg (a : α) : 0 ≤ a ^ (-2 : ℤ) :=
+ zpow_bit0_nonneg _ (-1)
+#align zpow_neg_two_nonneg zpow_neg_two_nonneg
+
theorem zpow_bit0_pos (h : a ≠ 0) (n : ℤ) : 0 < a ^ bit0 n :=
(zpow_bit0_nonneg a n).lt_of_ne (zpow_ne_zero _ h).symm
#align zpow_bit0_pos zpow_bit0_pos
by
line breaks (#1523)
During porting, I usually fix the desired format we seem to want for the line breaks around by
with
awk '{do {{if (match($0, "^ by$") && length(p) < 98) {p=p " by";} else {if (NR!=1) {print p}; p=$0}}} while (getline == 1) if (getline==0) print p}' Mathlib/File/Im/Working/On.lean
I noticed there are some more files that slipped through.
This pull request is the result of running this command:
grep -lr "^ by\$" Mathlib | xargs -n 1 awk -i inplace '{do {{if (match($0, "^ by$") && length(p) < 98 && not (match(p, "^[ \t]*--"))) {p=p " by";} else {if (NR!=1) {print p}; p=$0}}} while (getline == 1) if (getline==0) print p}'
Co-authored-by: Moritz Firsching <firsching@google.com>
@@ -29,8 +29,7 @@ variable [LinearOrderedSemifield α] {a b c d e : α} {m n : ℤ}
/-! ### Integer powers -/
-theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
- by
+theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n := by
have ha₀ : 0 < a := one_pos.trans_le ha
lift n - m to ℕ using sub_nonneg.2 h with k hk
calc
@@ -49,8 +48,7 @@ theorem one_le_zpow_of_nonneg (ha : 1 ≤ a) (hn : 0 ≤ n) : 1 ≤ a ^ n :=
(zpow_zero _).symm.trans_le <| zpow_le_of_le ha hn
#align one_le_zpow_of_nonneg one_le_zpow_of_nonneg
-protected theorem Nat.zpow_pos_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : 0 < (a : α) ^ n :=
- by
+protected theorem Nat.zpow_pos_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : 0 < (a : α) ^ n := by
apply zpow_pos_of_pos
exact_mod_cast h
#align nat.zpow_pos_of_pos Nat.zpow_pos_of_pos
@@ -95,8 +93,7 @@ theorem div_pow_le (ha : 0 ≤ a) (hb : 1 ≤ b) (k : ℕ) : a / b ^ k ≤ a :=
div_le_self ha <| one_le_pow_of_one_le hb _
#align div_pow_le div_pow_le
-theorem zpow_injective (h₀ : 0 < a) (h₁ : a ≠ 1) : Injective ((· ^ ·) a : ℤ → α) :=
- by
+theorem zpow_injective (h₀ : 0 < a) (h₁ : a ≠ 1) : Injective ((· ^ ·) a : ℤ → α) := by
rcases h₁.lt_or_lt with (H | H)
· exact (zpow_strictAnti h₀ H).injective
· exact (zpow_strictMono H).injective
@@ -32,9 +32,7 @@ variable [LinearOrderedSemifield α] {a b c d e : α} {m n : ℤ}
theorem zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n :=
by
have ha₀ : 0 < a := one_pos.trans_le ha
- -- Porting note: was `lift n - m to ℕ using sub_nonneg.2 h with k hk`
- let k := (n - m).natAbs
- have hk := Int.ofNat_natAbs_eq_of_nonneg _ (sub_nonneg.2 h)
+ lift n - m to ℕ using sub_nonneg.2 h with k hk
calc
a ^ m = a ^ m * 1 := (mul_one _).symm
_ ≤ a ^ m * a ^ k :=
The unported dependencies are