algebra.order.group.min_maxMathlib.Algebra.Order.Group.MinMax

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2016 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl
 -/
-import Mathbin.Algebra.Order.Group.Abs
-import Mathbin.Algebra.Order.Monoid.MinMax
+import Algebra.Order.Group.Abs
+import Algebra.Order.Monoid.MinMax
 
 #align_import algebra.order.group.min_max from "leanprover-community/mathlib"@"448144f7ae193a8990cb7473c9e9a01990f64ac7"
 
Diff
@@ -28,7 +28,7 @@ theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a :=
 #align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
 -/
 
-alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
+alias max_zero_sub_eq_self := max_zero_sub_max_neg_zero_eq_self
 #align max_zero_sub_eq_self max_zero_sub_eq_self
 
 end
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2016 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl
-
-! This file was ported from Lean 3 source module algebra.order.group.min_max
-! leanprover-community/mathlib commit 448144f7ae193a8990cb7473c9e9a01990f64ac7
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.Order.Group.Abs
 import Mathbin.Algebra.Order.Monoid.MinMax
 
+#align_import algebra.order.group.min_max from "leanprover-community/mathlib"@"448144f7ae193a8990cb7473c9e9a01990f64ac7"
+
 /-!
 # `min` and `max` in linearly ordered groups.
 
Diff
@@ -108,7 +108,7 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
 -/
 
 #print abs_max_sub_max_le_max /-
-theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
+theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max |a - c| |b - d| :=
   by
   refine' abs_sub_le_iff.2 ⟨_, _⟩
   · exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _))
@@ -118,7 +118,7 @@ theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a
 -/
 
 #print abs_min_sub_min_le_max /-
-theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by
+theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max |a - c| |b - d| := by
   simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using
     abs_max_sub_max_le_max (-a) (-b) (-c) (-d)
 #align abs_min_sub_min_le_max abs_min_sub_min_le_max
Diff
@@ -23,11 +23,13 @@ section
 
 variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (· * ·) (· ≤ ·)]
 
+#print max_one_div_max_inv_one_eq_self /-
 @[simp, to_additive]
 theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
   rcases le_total a 1 with (h | h) <;> simp [h]
 #align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_self
 #align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
+-/
 
 alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
 #align max_zero_sub_eq_self max_zero_sub_eq_self
@@ -38,41 +40,53 @@ section LinearOrderedCommGroup
 
 variable {α : Type _} [LinearOrderedCommGroup α] {a b c : α}
 
+#print min_inv_inv' /-
 @[to_additive min_neg_neg]
 theorem min_inv_inv' (a b : α) : min a⁻¹ b⁻¹ = (max a b)⁻¹ :=
   Eq.symm <| @Monotone.map_max α αᵒᵈ _ _ Inv.inv a b fun a b => inv_le_inv_iff.mpr
 #align min_inv_inv' min_inv_inv'
 #align min_neg_neg min_neg_neg
+-/
 
+#print max_inv_inv' /-
 @[to_additive max_neg_neg]
 theorem max_inv_inv' (a b : α) : max a⁻¹ b⁻¹ = (min a b)⁻¹ :=
   Eq.symm <| @Monotone.map_min α αᵒᵈ _ _ Inv.inv a b fun a b => inv_le_inv_iff.mpr
 #align max_inv_inv' max_inv_inv'
 #align max_neg_neg max_neg_neg
+-/
 
+#print min_div_div_right' /-
 @[to_additive min_sub_sub_right]
 theorem min_div_div_right' (a b c : α) : min (a / c) (b / c) = min a b / c := by
   simpa only [div_eq_mul_inv] using min_mul_mul_right a b c⁻¹
 #align min_div_div_right' min_div_div_right'
 #align min_sub_sub_right min_sub_sub_right
+-/
 
+#print max_div_div_right' /-
 @[to_additive max_sub_sub_right]
 theorem max_div_div_right' (a b c : α) : max (a / c) (b / c) = max a b / c := by
   simpa only [div_eq_mul_inv] using max_mul_mul_right a b c⁻¹
 #align max_div_div_right' max_div_div_right'
 #align max_sub_sub_right max_sub_sub_right
+-/
 
+#print min_div_div_left' /-
 @[to_additive min_sub_sub_left]
 theorem min_div_div_left' (a b c : α) : min (a / b) (a / c) = a / max b c := by
   simp only [div_eq_mul_inv, min_mul_mul_left, min_inv_inv']
 #align min_div_div_left' min_div_div_left'
 #align min_sub_sub_left min_sub_sub_left
+-/
 
+#print max_div_div_left' /-
 @[to_additive max_sub_sub_left]
 theorem max_div_div_left' (a b c : α) : max (a / b) (a / c) = a / min b c := by
   simp only [div_eq_mul_inv, max_mul_mul_left, max_inv_inv']
 #align max_div_div_left' max_div_div_left'
 #align max_sub_sub_left max_sub_sub_left
+-/
 
 end LinearOrderedCommGroup
 
@@ -80,6 +94,7 @@ section LinearOrderedAddCommGroup
 
 variable {α : Type _} [LinearOrderedAddCommGroup α] {a b c : α}
 
+#print max_sub_max_le_max /-
 theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b - d) :=
   by
   simp only [sub_le_iff_le_add, max_le_iff]; constructor
@@ -90,7 +105,9 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
     b = b - d + d := (sub_add_cancel b d).symm
     _ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _)
 #align max_sub_max_le_max max_sub_max_le_max
+-/
 
+#print abs_max_sub_max_le_max /-
 theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
   by
   refine' abs_sub_le_iff.2 ⟨_, _⟩
@@ -98,15 +115,20 @@ theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a
   · rw [abs_sub_comm a c, abs_sub_comm b d]
     exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _))
 #align abs_max_sub_max_le_max abs_max_sub_max_le_max
+-/
 
+#print abs_min_sub_min_le_max /-
 theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by
   simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using
     abs_max_sub_max_le_max (-a) (-b) (-c) (-d)
 #align abs_min_sub_min_le_max abs_min_sub_min_le_max
+-/
 
+#print abs_max_sub_max_le_abs /-
 theorem abs_max_sub_max_le_abs (a b c : α) : |max a c - max b c| ≤ |a - b| := by
   simpa only [sub_self, abs_zero, max_eq_left (abs_nonneg _)] using abs_max_sub_max_le_max a c b c
 #align abs_max_sub_max_le_abs abs_max_sub_max_le_abs
+-/
 
 end LinearOrderedAddCommGroup
 
Diff
@@ -86,11 +86,9 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
   calc
     a = a - c + c := (sub_add_cancel a c).symm
     _ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_left _ _) (le_max_left _ _)
-    
   calc
     b = b - d + d := (sub_add_cancel b d).symm
     _ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _)
-    
 #align max_sub_max_le_max max_sub_max_le_max
 
 theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
Diff
@@ -23,24 +23,12 @@ section
 
 variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (· * ·) (· ≤ ·)]
 
-/- warning: max_one_div_max_inv_one_eq_self -> max_one_div_max_inv_one_eq_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Group.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))))))))) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Group.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67) (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_2)))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82)] (a : α), Eq.{succ u1} α (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1))))))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) a) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))))))) a
-Case conversion may be inaccurate. Consider using '#align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_selfₓ'. -/
 @[simp, to_additive]
 theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
   rcases le_total a 1 with (h | h) <;> simp [h]
 #align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_self
 #align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
 
-/- warning: max_zero_sub_eq_self -> max_zero_sub_eq_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : AddGroup.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Neg.neg.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))))))))) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : AddGroup.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67 : α) => HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67) (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_2)))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82)] (a : α), Eq.{succ u1} α (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1))))))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) (Neg.neg.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1)))) a) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1)))))))) a
-Case conversion may be inaccurate. Consider using '#align max_zero_sub_eq_self max_zero_sub_eq_selfₓ'. -/
 alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
 #align max_zero_sub_eq_self max_zero_sub_eq_self
 
@@ -50,72 +38,36 @@ section LinearOrderedCommGroup
 
 variable {α : Type _} [LinearOrderedCommGroup α] {a b c : α}
 
-/- warning: min_inv_inv' -> min_inv_inv' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α), Eq.{succ u1} α (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) a) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) b)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) a) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) b)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align min_inv_inv' min_inv_inv'ₓ'. -/
 @[to_additive min_neg_neg]
 theorem min_inv_inv' (a b : α) : min a⁻¹ b⁻¹ = (max a b)⁻¹ :=
   Eq.symm <| @Monotone.map_max α αᵒᵈ _ _ Inv.inv a b fun a b => inv_le_inv_iff.mpr
 #align min_inv_inv' min_inv_inv'
 #align min_neg_neg min_neg_neg
 
-/- warning: max_inv_inv' -> max_inv_inv' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α), Eq.{succ u1} α (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) a) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) b)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) a) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) b)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align max_inv_inv' max_inv_inv'ₓ'. -/
 @[to_additive max_neg_neg]
 theorem max_inv_inv' (a b : α) : max a⁻¹ b⁻¹ = (min a b)⁻¹ :=
   Eq.symm <| @Monotone.map_min α αᵒᵈ _ _ Inv.inv a b fun a b => inv_le_inv_iff.mpr
 #align max_inv_inv' max_inv_inv'
 #align max_neg_neg max_neg_neg
 
-/- warning: min_div_div_right' -> min_div_div_right' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) b c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) b c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align min_div_div_right' min_div_div_right'ₓ'. -/
 @[to_additive min_sub_sub_right]
 theorem min_div_div_right' (a b c : α) : min (a / c) (b / c) = min a b / c := by
   simpa only [div_eq_mul_inv] using min_mul_mul_right a b c⁻¹
 #align min_div_div_right' min_div_div_right'
 #align min_sub_sub_right min_sub_sub_right
 
-/- warning: max_div_div_right' -> max_div_div_right' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) b c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) b c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align max_div_div_right' max_div_div_right'ₓ'. -/
 @[to_additive max_sub_sub_right]
 theorem max_div_div_right' (a b c : α) : max (a / c) (b / c) = max a b / c := by
   simpa only [div_eq_mul_inv] using max_mul_mul_right a b c⁻¹
 #align max_div_div_right' max_div_div_right'
 #align max_sub_sub_right max_sub_sub_right
 
-/- warning: min_div_div_left' -> min_div_div_left' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a b) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a b) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align min_div_div_left' min_div_div_left'ₓ'. -/
 @[to_additive min_sub_sub_left]
 theorem min_div_div_left' (a b c : α) : min (a / b) (a / c) = a / max b c := by
   simp only [div_eq_mul_inv, min_mul_mul_left, min_inv_inv']
 #align min_div_div_left' min_div_div_left'
 #align min_sub_sub_left min_sub_sub_left
 
-/- warning: max_div_div_left' -> max_div_div_left' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a b) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a b) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align max_div_div_left' max_div_div_left'ₓ'. -/
 @[to_additive max_sub_sub_left]
 theorem max_div_div_left' (a b c : α) : max (a / b) (a / c) = a / min b c := by
   simp only [div_eq_mul_inv, max_mul_mul_left, max_inv_inv']
@@ -128,12 +80,6 @@ section LinearOrderedAddCommGroup
 
 variable {α : Type _} [LinearOrderedAddCommGroup α] {a b c : α}
 
-/- warning: max_sub_max_le_max -> max_sub_max_le_max is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d)) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d)) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d))
-Case conversion may be inaccurate. Consider using '#align max_sub_max_le_max max_sub_max_le_maxₓ'. -/
 theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b - d) :=
   by
   simp only [sub_le_iff_le_add, max_le_iff]; constructor
@@ -147,12 +93,6 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
     
 #align max_sub_max_le_max max_sub_max_le_max
 
-/- warning: abs_max_sub_max_le_max -> abs_max_sub_max_le_max is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
-Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_max abs_max_sub_max_le_maxₓ'. -/
 theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
   by
   refine' abs_sub_le_iff.2 ⟨_, _⟩
@@ -161,23 +101,11 @@ theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a
     exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _))
 #align abs_max_sub_max_le_max abs_max_sub_max_le_max
 
-/- warning: abs_min_sub_min_le_max -> abs_min_sub_min_le_max is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) a b) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
-Case conversion may be inaccurate. Consider using '#align abs_min_sub_min_le_max abs_min_sub_min_le_maxₓ'. -/
 theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by
   simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using
     abs_max_sub_max_le_max (-a) (-b) (-c) (-d)
 #align abs_min_sub_min_le_max abs_min_sub_min_le_max
 
-/- warning: abs_max_sub_max_le_abs -> abs_max_sub_max_le_abs is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a c) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a c) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
-Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_abs abs_max_sub_max_le_absₓ'. -/
 theorem abs_max_sub_max_le_abs (a b c : α) : |max a c - max b c| ≤ |a - b| := by
   simpa only [sub_self, abs_zero, max_eq_left (abs_nonneg _)] using abs_max_sub_max_le_max a c b c
 #align abs_max_sub_max_le_abs abs_max_sub_max_le_abs
Diff
@@ -25,7 +25,7 @@ variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (· * 
 
 /- warning: max_one_div_max_inv_one_eq_self -> max_one_div_max_inv_one_eq_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Group.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))))))))) a
+  forall {α : Type.{u1}} [_inst_1 : Group.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))))))))) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Group.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67) (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_2)))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82)] (a : α), Eq.{succ u1} α (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1))))))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) a) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))))))) a
 Case conversion may be inaccurate. Consider using '#align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_selfₓ'. -/
@@ -37,7 +37,7 @@ theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a :=
 
 /- warning: max_zero_sub_eq_self -> max_zero_sub_eq_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : AddGroup.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Neg.neg.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))))))))) a
+  forall {α : Type.{u1}} [_inst_1 : AddGroup.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Neg.neg.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))))))))) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : AddGroup.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67 : α) => HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67) (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_2)))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82)] (a : α), Eq.{succ u1} α (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1))))))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) (Neg.neg.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1)))) a) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1)))))))) a
 Case conversion may be inaccurate. Consider using '#align max_zero_sub_eq_self max_zero_sub_eq_selfₓ'. -/
@@ -130,7 +130,7 @@ variable {α : Type _} [LinearOrderedAddCommGroup α] {a b c : α}
 
 /- warning: max_sub_max_le_max -> max_sub_max_le_max is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d)) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d)) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d)) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d))
 Case conversion may be inaccurate. Consider using '#align max_sub_max_le_max max_sub_max_le_maxₓ'. -/
@@ -149,7 +149,7 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
 
 /- warning: abs_max_sub_max_le_max -> abs_max_sub_max_le_max is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
 Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_max abs_max_sub_max_le_maxₓ'. -/
@@ -163,7 +163,7 @@ theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a
 
 /- warning: abs_min_sub_min_le_max -> abs_min_sub_min_le_max is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) a b) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
 Case conversion may be inaccurate. Consider using '#align abs_min_sub_min_le_max abs_min_sub_min_le_maxₓ'. -/
@@ -174,7 +174,7 @@ theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a
 
 /- warning: abs_max_sub_max_le_abs -> abs_max_sub_max_le_abs is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a c) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a c) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a c) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
 Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_abs abs_max_sub_max_le_absₓ'. -/
Diff
@@ -151,7 +151,7 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
 Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_max abs_max_sub_max_le_maxₓ'. -/
 theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
   by
@@ -165,7 +165,7 @@ theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) a b) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) a b) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
 Case conversion may be inaccurate. Consider using '#align abs_min_sub_min_le_max abs_min_sub_min_le_maxₓ'. -/
 theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by
   simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using
@@ -176,7 +176,7 @@ theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a c) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a c) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a c) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
 Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_abs abs_max_sub_max_le_absₓ'. -/
 theorem abs_max_sub_max_le_abs (a b c : α) : |max a c - max b c| ≤ |a - b| := by
   simpa only [sub_self, abs_zero, max_eq_left (abs_nonneg _)] using abs_max_sub_max_le_max a c b c

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 1 (#12338)

A PR accompanying #12339.

Zulip discussion

Diff
@@ -85,10 +85,10 @@ variable {α : Type*} [LinearOrderedAddCommGroup α] {a b c : α}
 
 theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b - d) := by
   simp only [sub_le_iff_le_add, max_le_iff]; constructor
-  calc
+  · calc
     a = a - c + c := (sub_add_cancel a c).symm
     _ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_left _ _) (le_max_left _ _)
-  calc
+  · calc
     b = b - d + d := (sub_add_cancel b d).symm
     _ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _)
 #align max_sub_max_le_max max_sub_max_le_max
feat: uniqueness of the continuous functional calculus (#11256)

This establishes uniqueness of the continuous functional calculus for unital algebras. When the scalar ring is or , this follows immediately from Stone-Weierstrass, but for ℝ≥0, we need to reuse the result for . This is tricky, as we need to upgrade an ℝ≥0-algebra homomorphism (with domain C((s : Set ℝ≥0), ℝ≥0)) to a -algebra homomorphism (with domain C(((↑) '' s : Set ℝ), ℝ)). This is the reason the UniqueContinuousFunctionalCalculus class exists in the first place, as opposed to simply appealing directly to Stone-Weierstrass to prove StarAlgHom.ext_continuousMap.

Diff
@@ -26,6 +26,11 @@ theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a :=
 alias max_zero_sub_eq_self := max_zero_sub_max_neg_zero_eq_self
 #align max_zero_sub_eq_self max_zero_sub_eq_self
 
+@[to_additive]
+lemma max_inv_one (a : α) : max a⁻¹ 1 = a⁻¹ * max a 1 := by
+  have := congr($(max_one_div_max_inv_one_eq_self a)⁻¹)
+  rwa [inv_div, div_eq_iff_eq_mul] at this
+
 end
 
 section LinearOrderedCommGroup
feat: patch for new alias command (#6172)
Diff
@@ -23,7 +23,7 @@ theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a :=
 #align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_self
 #align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
 
-alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
+alias max_zero_sub_eq_self := max_zero_sub_max_neg_zero_eq_self
 #align max_zero_sub_eq_self max_zero_sub_eq_self
 
 end
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -15,7 +15,7 @@ import Mathlib.Algebra.Order.Monoid.MinMax
 
 section
 
-variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (· * ·) (· ≤ ·)]
+variable {α : Type*} [Group α] [LinearOrder α] [CovariantClass α α (· * ·) (· ≤ ·)]
 
 @[to_additive (attr := simp)]
 theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
@@ -30,7 +30,7 @@ end
 
 section LinearOrderedCommGroup
 
-variable {α : Type _} [LinearOrderedCommGroup α] {a b c : α}
+variable {α : Type*} [LinearOrderedCommGroup α] {a b c : α}
 
 @[to_additive min_neg_neg]
 theorem min_inv_inv' (a b : α) : min a⁻¹ b⁻¹ = (max a b)⁻¹ :=
@@ -76,7 +76,7 @@ end LinearOrderedCommGroup
 
 section LinearOrderedAddCommGroup
 
-variable {α : Type _} [LinearOrderedAddCommGroup α] {a b c : α}
+variable {α : Type*} [LinearOrderedAddCommGroup α] {a b c : α}
 
 theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b - d) := by
   simp only [sub_le_iff_le_add, max_le_iff]; constructor
chore: use · instead of . (#6085)
Diff
@@ -15,7 +15,7 @@ import Mathlib.Algebra.Order.Monoid.MinMax
 
 section
 
-variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (. * .) (. ≤ .)]
+variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (· * ·) (· ≤ ·)]
 
 @[to_additive (attr := simp)]
 theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2016 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl
-
-! This file was ported from Lean 3 source module algebra.order.group.min_max
-! leanprover-community/mathlib commit 10b4e499f43088dd3bb7b5796184ad5216648ab1
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Order.Group.Abs
 import Mathlib.Algebra.Order.Monoid.MinMax
 
+#align_import algebra.order.group.min_max from "leanprover-community/mathlib"@"10b4e499f43088dd3bb7b5796184ad5216648ab1"
+
 /-!
 # `min` and `max` in linearly ordered groups.
 -/
fix: precedence of , and abs (#5619)
Diff
@@ -91,14 +91,14 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
     _ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _)
 #align max_sub_max_le_max max_sub_max_le_max
 
-theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) := by
+theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max |a - c| |b - d| := by
   refine' abs_sub_le_iff.2 ⟨_, _⟩
   · exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _))
   · rw [abs_sub_comm a c, abs_sub_comm b d]
     exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _))
 #align abs_max_sub_max_le_max abs_max_sub_max_le_max
 
-theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by
+theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max |a - c| |b - d| := by
   simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using
     abs_max_sub_max_le_max (-a) (-b) (-c) (-d)
 #align abs_min_sub_min_le_max abs_min_sub_min_le_max
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -86,11 +86,9 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
   calc
     a = a - c + c := (sub_add_cancel a c).symm
     _ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_left _ _) (le_max_left _ _)
-
   calc
     b = b - d + d := (sub_add_cancel b d).symm
     _ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _)
-
 #align max_sub_max_le_max max_sub_max_le_max
 
 theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) := by
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -27,6 +27,7 @@ theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a :=
 #align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
 
 alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
+#align max_zero_sub_eq_self max_zero_sub_eq_self
 
 end
 
chore: add #align statements for to_additive decls (#1816)

Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com>

Diff
@@ -24,6 +24,7 @@ variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (. * .)
 theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
   rcases le_total a 1 with (h | h) <;> simp [h]
 #align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_self
+#align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
 
 alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
 
@@ -39,6 +40,7 @@ theorem min_inv_inv' (a b : α) : min a⁻¹ b⁻¹ = (max a b)⁻¹ :=
   -- Porting note: Explicit `α` necessary to infer `CovariantClass` instance
     (@inv_le_inv_iff α _ _ _).mpr
 #align min_inv_inv' min_inv_inv'
+#align min_neg_neg min_neg_neg
 
 @[to_additive max_neg_neg]
 theorem max_inv_inv' (a b : α) : max a⁻¹ b⁻¹ = (min a b)⁻¹ :=
@@ -46,26 +48,31 @@ theorem max_inv_inv' (a b : α) : max a⁻¹ b⁻¹ = (min a b)⁻¹ :=
   -- Porting note: Explicit `α` necessary to infer `CovariantClass` instance
     (@inv_le_inv_iff α _ _ _).mpr
 #align max_inv_inv' max_inv_inv'
+#align max_neg_neg max_neg_neg
 
 @[to_additive min_sub_sub_right]
 theorem min_div_div_right' (a b c : α) : min (a / c) (b / c) = min a b / c := by
   simpa only [div_eq_mul_inv] using min_mul_mul_right a b c⁻¹
 #align min_div_div_right' min_div_div_right'
+#align min_sub_sub_right min_sub_sub_right
 
 @[to_additive max_sub_sub_right]
 theorem max_div_div_right' (a b c : α) : max (a / c) (b / c) = max a b / c := by
   simpa only [div_eq_mul_inv] using max_mul_mul_right a b c⁻¹
 #align max_div_div_right' max_div_div_right'
+#align max_sub_sub_right max_sub_sub_right
 
 @[to_additive min_sub_sub_left]
 theorem min_div_div_left' (a b c : α) : min (a / b) (a / c) = a / max b c := by
   simp only [div_eq_mul_inv, min_mul_mul_left, min_inv_inv']
 #align min_div_div_left' min_div_div_left'
+#align min_sub_sub_left min_sub_sub_left
 
 @[to_additive max_sub_sub_left]
 theorem max_div_div_left' (a b c : α) : max (a / b) (a / c) = a / min b c := by
   simp only [div_eq_mul_inv, max_mul_mul_left, max_inv_inv']
 #align max_div_div_left' max_div_div_left'
+#align max_sub_sub_left max_sub_sub_left
 
 end LinearOrderedCommGroup
 
feat: improve the way to_additive deals with attributes (#1314)
  • The new syntax for any attributes that need to be copied by to_additive is @[to_additive (attrs := simp, ext, simps)]
  • Adds the auxiliary declarations generated by the simp and simps attributes to the to_additive-dictionary.
  • Future issue: Does not yet translate auxiliary declarations for other attributes (including custom simp-attributes). In particular it's possible that norm_cast might generate some auxiliary declarations.
  • Fixes #950
  • Fixes #953
  • Fixes #1149
  • This moves the interaction between to_additive and simps from the Simps file to the toAdditive file for uniformity.
  • Make the same changes to @[reassoc]

Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -20,7 +20,7 @@ section
 
 variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (. * .) (. ≤ .)]
 
-@[simp, to_additive]
+@[to_additive (attr := simp)]
 theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
   rcases le_total a 1 with (h | h) <;> simp [h]
 #align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_self
chore: add source headers to ported theory files (#1094)

The script used to do this is included. The yaml file was obtained from https://raw.githubusercontent.com/wiki/leanprover-community/mathlib/mathlib4-port-status.md

Diff
@@ -2,6 +2,11 @@
 Copyright (c) 2016 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl
+
+! This file was ported from Lean 3 source module algebra.order.group.min_max
+! leanprover-community/mathlib commit 10b4e499f43088dd3bb7b5796184ad5216648ab1
+! Please do not edit these lines, except to modify the commit id
+! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Order.Group.Abs
 import Mathlib.Algebra.Order.Monoid.MinMax

Dependencies 2 + 53

54 files ported (96.4%)
25300 lines ported (99.4%)
Show graph

The unported dependencies are