algebra.order.group.min_max
⟷
Mathlib.Algebra.Order.Group.MinMax
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl
-/
-import Mathbin.Algebra.Order.Group.Abs
-import Mathbin.Algebra.Order.Monoid.MinMax
+import Algebra.Order.Group.Abs
+import Algebra.Order.Monoid.MinMax
#align_import algebra.order.group.min_max from "leanprover-community/mathlib"@"448144f7ae193a8990cb7473c9e9a01990f64ac7"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -28,7 +28,7 @@ theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a :=
#align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
-/
-alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
+alias max_zero_sub_eq_self := max_zero_sub_max_neg_zero_eq_self
#align max_zero_sub_eq_self max_zero_sub_eq_self
end
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl
-
-! This file was ported from Lean 3 source module algebra.order.group.min_max
-! leanprover-community/mathlib commit 448144f7ae193a8990cb7473c9e9a01990f64ac7
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Algebra.Order.Group.Abs
import Mathbin.Algebra.Order.Monoid.MinMax
+#align_import algebra.order.group.min_max from "leanprover-community/mathlib"@"448144f7ae193a8990cb7473c9e9a01990f64ac7"
+
/-!
# `min` and `max` in linearly ordered groups.
mathlib commit https://github.com/leanprover-community/mathlib/commit/9240e8be927a0955b9a82c6c85ef499ee3a626b8
@@ -108,7 +108,7 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
-/
#print abs_max_sub_max_le_max /-
-theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
+theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max |a - c| |b - d| :=
by
refine' abs_sub_le_iff.2 ⟨_, _⟩
· exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _))
@@ -118,7 +118,7 @@ theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a
-/
#print abs_min_sub_min_le_max /-
-theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by
+theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max |a - c| |b - d| := by
simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using
abs_max_sub_max_le_max (-a) (-b) (-c) (-d)
#align abs_min_sub_min_le_max abs_min_sub_min_le_max
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -23,11 +23,13 @@ section
variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (· * ·) (· ≤ ·)]
+#print max_one_div_max_inv_one_eq_self /-
@[simp, to_additive]
theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
rcases le_total a 1 with (h | h) <;> simp [h]
#align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_self
#align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
+-/
alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
#align max_zero_sub_eq_self max_zero_sub_eq_self
@@ -38,41 +40,53 @@ section LinearOrderedCommGroup
variable {α : Type _} [LinearOrderedCommGroup α] {a b c : α}
+#print min_inv_inv' /-
@[to_additive min_neg_neg]
theorem min_inv_inv' (a b : α) : min a⁻¹ b⁻¹ = (max a b)⁻¹ :=
Eq.symm <| @Monotone.map_max α αᵒᵈ _ _ Inv.inv a b fun a b => inv_le_inv_iff.mpr
#align min_inv_inv' min_inv_inv'
#align min_neg_neg min_neg_neg
+-/
+#print max_inv_inv' /-
@[to_additive max_neg_neg]
theorem max_inv_inv' (a b : α) : max a⁻¹ b⁻¹ = (min a b)⁻¹ :=
Eq.symm <| @Monotone.map_min α αᵒᵈ _ _ Inv.inv a b fun a b => inv_le_inv_iff.mpr
#align max_inv_inv' max_inv_inv'
#align max_neg_neg max_neg_neg
+-/
+#print min_div_div_right' /-
@[to_additive min_sub_sub_right]
theorem min_div_div_right' (a b c : α) : min (a / c) (b / c) = min a b / c := by
simpa only [div_eq_mul_inv] using min_mul_mul_right a b c⁻¹
#align min_div_div_right' min_div_div_right'
#align min_sub_sub_right min_sub_sub_right
+-/
+#print max_div_div_right' /-
@[to_additive max_sub_sub_right]
theorem max_div_div_right' (a b c : α) : max (a / c) (b / c) = max a b / c := by
simpa only [div_eq_mul_inv] using max_mul_mul_right a b c⁻¹
#align max_div_div_right' max_div_div_right'
#align max_sub_sub_right max_sub_sub_right
+-/
+#print min_div_div_left' /-
@[to_additive min_sub_sub_left]
theorem min_div_div_left' (a b c : α) : min (a / b) (a / c) = a / max b c := by
simp only [div_eq_mul_inv, min_mul_mul_left, min_inv_inv']
#align min_div_div_left' min_div_div_left'
#align min_sub_sub_left min_sub_sub_left
+-/
+#print max_div_div_left' /-
@[to_additive max_sub_sub_left]
theorem max_div_div_left' (a b c : α) : max (a / b) (a / c) = a / min b c := by
simp only [div_eq_mul_inv, max_mul_mul_left, max_inv_inv']
#align max_div_div_left' max_div_div_left'
#align max_sub_sub_left max_sub_sub_left
+-/
end LinearOrderedCommGroup
@@ -80,6 +94,7 @@ section LinearOrderedAddCommGroup
variable {α : Type _} [LinearOrderedAddCommGroup α] {a b c : α}
+#print max_sub_max_le_max /-
theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b - d) :=
by
simp only [sub_le_iff_le_add, max_le_iff]; constructor
@@ -90,7 +105,9 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
b = b - d + d := (sub_add_cancel b d).symm
_ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _)
#align max_sub_max_le_max max_sub_max_le_max
+-/
+#print abs_max_sub_max_le_max /-
theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
by
refine' abs_sub_le_iff.2 ⟨_, _⟩
@@ -98,15 +115,20 @@ theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a
· rw [abs_sub_comm a c, abs_sub_comm b d]
exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _))
#align abs_max_sub_max_le_max abs_max_sub_max_le_max
+-/
+#print abs_min_sub_min_le_max /-
theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by
simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using
abs_max_sub_max_le_max (-a) (-b) (-c) (-d)
#align abs_min_sub_min_le_max abs_min_sub_min_le_max
+-/
+#print abs_max_sub_max_le_abs /-
theorem abs_max_sub_max_le_abs (a b c : α) : |max a c - max b c| ≤ |a - b| := by
simpa only [sub_self, abs_zero, max_eq_left (abs_nonneg _)] using abs_max_sub_max_le_max a c b c
#align abs_max_sub_max_le_abs abs_max_sub_max_le_abs
+-/
end LinearOrderedAddCommGroup
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -86,11 +86,9 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
calc
a = a - c + c := (sub_add_cancel a c).symm
_ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_left _ _) (le_max_left _ _)
-
calc
b = b - d + d := (sub_add_cancel b d).symm
_ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _)
-
#align max_sub_max_le_max max_sub_max_le_max
theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -23,24 +23,12 @@ section
variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (· * ·) (· ≤ ·)]
-/- warning: max_one_div_max_inv_one_eq_self -> max_one_div_max_inv_one_eq_self is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : Group.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))))))))) a
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : Group.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67) (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_2)))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82)] (a : α), Eq.{succ u1} α (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1))))))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) a) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))))))) a
-Case conversion may be inaccurate. Consider using '#align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_selfₓ'. -/
@[simp, to_additive]
theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
rcases le_total a 1 with (h | h) <;> simp [h]
#align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_self
#align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
-/- warning: max_zero_sub_eq_self -> max_zero_sub_eq_self is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : AddGroup.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Neg.neg.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))))))))) a
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : AddGroup.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67 : α) => HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67) (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_2)))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82)] (a : α), Eq.{succ u1} α (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1))))))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) (Neg.neg.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1)))) a) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1)))))))) a
-Case conversion may be inaccurate. Consider using '#align max_zero_sub_eq_self max_zero_sub_eq_selfₓ'. -/
alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
#align max_zero_sub_eq_self max_zero_sub_eq_self
@@ -50,72 +38,36 @@ section LinearOrderedCommGroup
variable {α : Type _} [LinearOrderedCommGroup α] {a b c : α}
-/- warning: min_inv_inv' -> min_inv_inv' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α), Eq.{succ u1} α (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) a) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) b)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) a b))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) a) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) b)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align min_inv_inv' min_inv_inv'ₓ'. -/
@[to_additive min_neg_neg]
theorem min_inv_inv' (a b : α) : min a⁻¹ b⁻¹ = (max a b)⁻¹ :=
Eq.symm <| @Monotone.map_max α αᵒᵈ _ _ Inv.inv a b fun a b => inv_le_inv_iff.mpr
#align min_inv_inv' min_inv_inv'
#align min_neg_neg min_neg_neg
-/- warning: max_inv_inv' -> max_inv_inv' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α), Eq.{succ u1} α (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) a) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) b)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))) (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) a b))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) a) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) b)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1))))))) (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align max_inv_inv' max_inv_inv'ₓ'. -/
@[to_additive max_neg_neg]
theorem max_inv_inv' (a b : α) : max a⁻¹ b⁻¹ = (min a b)⁻¹ :=
Eq.symm <| @Monotone.map_min α αᵒᵈ _ _ Inv.inv a b fun a b => inv_le_inv_iff.mpr
#align max_inv_inv' max_inv_inv'
#align max_neg_neg max_neg_neg
-/- warning: min_div_div_right' -> min_div_div_right' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) b c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) a b) c)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) b c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align min_div_div_right' min_div_div_right'ₓ'. -/
@[to_additive min_sub_sub_right]
theorem min_div_div_right' (a b c : α) : min (a / c) (b / c) = min a b / c := by
simpa only [div_eq_mul_inv] using min_mul_mul_right a b c⁻¹
#align min_div_div_right' min_div_div_right'
#align min_sub_sub_right min_sub_sub_right
-/- warning: max_div_div_right' -> max_div_div_right' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) b c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) a b) c)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) b c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align max_div_div_right' max_div_div_right'ₓ'. -/
@[to_additive max_sub_sub_right]
theorem max_div_div_right' (a b c : α) : max (a / c) (b / c) = max a b / c := by
simpa only [div_eq_mul_inv] using max_mul_mul_right a b c⁻¹
#align max_div_div_right' max_div_div_right'
#align max_sub_sub_right max_sub_sub_right
-/- warning: min_div_div_left' -> min_div_div_left' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a b) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) b c))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a b) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align min_div_div_left' min_div_div_left'ₓ'. -/
@[to_additive min_sub_sub_left]
theorem min_div_div_left' (a b c : α) : min (a / b) (a / c) = a / max b c := by
simp only [div_eq_mul_inv, min_mul_mul_left, min_inv_inv']
#align min_div_div_left' min_div_div_left'
#align min_sub_sub_left min_sub_sub_left
-/- warning: max_div_div_left' -> max_div_div_left' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (LinearOrder.max.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a b) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a (LinearOrder.min.{u1} α (LinearOrderedCommGroup.toLinearOrder.{u1} α _inst_1) b c))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedCommGroup.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrderedCommGroup.toMax.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a b) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a c)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α (LinearOrderedCommGroup.toOrderedCommGroup.{u1} α _inst_1)))))) a (Min.min.{u1} α (LinearOrderedCommGroup.toMin.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align max_div_div_left' max_div_div_left'ₓ'. -/
@[to_additive max_sub_sub_left]
theorem max_div_div_left' (a b c : α) : max (a / b) (a / c) = a / min b c := by
simp only [div_eq_mul_inv, max_mul_mul_left, max_inv_inv']
@@ -128,12 +80,6 @@ section LinearOrderedAddCommGroup
variable {α : Type _} [LinearOrderedAddCommGroup α] {a b c : α}
-/- warning: max_sub_max_le_max -> max_sub_max_le_max is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d)) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d)) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d))
-Case conversion may be inaccurate. Consider using '#align max_sub_max_le_max max_sub_max_le_maxₓ'. -/
theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b - d) :=
by
simp only [sub_le_iff_le_add, max_le_iff]; constructor
@@ -147,12 +93,6 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
#align max_sub_max_le_max max_sub_max_le_max
-/- warning: abs_max_sub_max_le_max -> abs_max_sub_max_le_max is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
-Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_max abs_max_sub_max_le_maxₓ'. -/
theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
by
refine' abs_sub_le_iff.2 ⟨_, _⟩
@@ -161,23 +101,11 @@ theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a
exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _))
#align abs_max_sub_max_le_max abs_max_sub_max_le_max
-/- warning: abs_min_sub_min_le_max -> abs_min_sub_min_le_max is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) a b) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
-Case conversion may be inaccurate. Consider using '#align abs_min_sub_min_le_max abs_min_sub_min_le_maxₓ'. -/
theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by
simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using
abs_max_sub_max_le_max (-a) (-b) (-c) (-d)
#align abs_min_sub_min_le_max abs_min_sub_min_le_max
-/- warning: abs_max_sub_max_le_abs -> abs_max_sub_max_le_abs is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a c) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a c) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
-Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_abs abs_max_sub_max_le_absₓ'. -/
theorem abs_max_sub_max_le_abs (a b c : α) : |max a c - max b c| ≤ |a - b| := by
simpa only [sub_self, abs_zero, max_eq_left (abs_nonneg _)] using abs_max_sub_max_le_max a c b c
#align abs_max_sub_max_le_abs abs_max_sub_max_le_abs
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -25,7 +25,7 @@ variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (· *
/- warning: max_one_div_max_inv_one_eq_self -> max_one_div_max_inv_one_eq_self is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : Group.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))))))))) a
+ forall {α : Type.{u1}} [_inst_1 : Group.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))))))))) a
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : Group.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67) (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_2)))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82)] (a : α), Eq.{succ u1} α (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) a (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1))))))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) a) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))))))) a
Case conversion may be inaccurate. Consider using '#align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_selfₓ'. -/
@@ -37,7 +37,7 @@ theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a :=
/- warning: max_zero_sub_eq_self -> max_zero_sub_eq_self is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : AddGroup.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Neg.neg.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))))))))) a
+ forall {α : Type.{u1}} [_inst_1 : AddGroup.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toHasAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_2))))))] (a : α), Eq.{succ u1} α (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))) (LinearOrder.max.{u1} α _inst_2 a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)))))))) (LinearOrder.max.{u1} α _inst_2 (Neg.neg.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1)) a) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (AddZeroClass.toHasZero.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))))))))) a
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : AddGroup.{u1} α] [_inst_2 : LinearOrder.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67 : α) => HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddZeroClass.toAdd.{u1} α (AddMonoid.toAddZeroClass.{u1} α (SubNegMonoid.toAddMonoid.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.65 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.67) (fun (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 : α) (x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_2)))))) x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.80 x._@.Mathlib.Algebra.Order.Group.MinMax._hyg.82)] (a : α), Eq.{succ u1} α (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_1))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1))))))) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_2) (Neg.neg.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1)))) a) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (NegZeroClass.toZero.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (AddGroup.toSubtractionMonoid.{u1} α _inst_1)))))))) a
Case conversion may be inaccurate. Consider using '#align max_zero_sub_eq_self max_zero_sub_eq_selfₓ'. -/
@@ -130,7 +130,7 @@ variable {α : Type _} [LinearOrderedAddCommGroup α] {a b c : α}
/- warning: max_sub_max_le_max -> max_sub_max_le_max is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d)) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d)) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d)) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d))
Case conversion may be inaccurate. Consider using '#align max_sub_max_le_max max_sub_max_le_maxₓ'. -/
@@ -149,7 +149,7 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
/- warning: abs_max_sub_max_le_max -> abs_max_sub_max_le_max is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_max abs_max_sub_max_le_maxₓ'. -/
@@ -163,7 +163,7 @@ theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a
/- warning: abs_min_sub_min_le_max -> abs_min_sub_min_le_max is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) a b) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
Case conversion may be inaccurate. Consider using '#align abs_min_sub_min_le_max abs_min_sub_min_le_maxₓ'. -/
@@ -174,7 +174,7 @@ theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a
/- warning: abs_max_sub_max_le_abs -> abs_max_sub_max_le_abs is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a c) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a c) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a c) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_abs abs_max_sub_max_le_absₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/9da1b3534b65d9661eb8f42443598a92bbb49211
@@ -151,7 +151,7 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a b) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_max abs_max_sub_max_le_maxₓ'. -/
theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
by
@@ -165,7 +165,7 @@ theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a b) (LinearOrder.min.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) c d))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) a b) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α) (d : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) a b) (Min.min.{u1} α (LinearOrderedAddCommGroup.toMin.{u1} α _inst_1) c d))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a c)) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) b d)))
Case conversion may be inaccurate. Consider using '#align abs_min_sub_min_le_max abs_min_sub_min_le_maxₓ'. -/
theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by
simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using
@@ -176,7 +176,7 @@ theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) a c) (LinearOrder.max.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a c) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedAddCommGroup.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) a c) (Max.max.{u1} α (LinearOrderedAddCommGroup.toMax.{u1} α _inst_1) b c))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (NegZeroClass.toNeg.{u1} α (SubNegZeroMonoid.toNegZeroClass.{u1} α (SubtractionMonoid.toSubNegZeroMonoid.{u1} α (SubtractionCommMonoid.toSubtractionMonoid.{u1} α (AddCommGroup.toDivisionAddCommMonoid.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1))))))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedAddCommGroup.toLinearOrder.{u1} α _inst_1)))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddCommGroup.toAddGroup.{u1} α (OrderedAddCommGroup.toAddCommGroup.{u1} α (LinearOrderedAddCommGroup.toOrderedAddCommGroup.{u1} α _inst_1)))))) a b))
Case conversion may be inaccurate. Consider using '#align abs_max_sub_max_le_abs abs_max_sub_max_le_absₓ'. -/
theorem abs_max_sub_max_le_abs (a b c : α) : |max a c - max b c| ≤ |a - b| := by
simpa only [sub_self, abs_zero, max_eq_left (abs_nonneg _)] using abs_max_sub_max_le_max a c b c
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -85,10 +85,10 @@ variable {α : Type*} [LinearOrderedAddCommGroup α] {a b c : α}
theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b - d) := by
simp only [sub_le_iff_le_add, max_le_iff]; constructor
- calc
+ · calc
a = a - c + c := (sub_add_cancel a c).symm
_ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_left _ _) (le_max_left _ _)
- calc
+ · calc
b = b - d + d := (sub_add_cancel b d).symm
_ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _)
#align max_sub_max_le_max max_sub_max_le_max
This establishes uniqueness of the continuous functional calculus for unital algebras. When the scalar ring is ℝ
or ℂ
, this follows immediately from Stone-Weierstrass, but for ℝ≥0
, we need to reuse the result for ℝ
. This is tricky, as we need to upgrade an ℝ≥0
-algebra homomorphism (with domain C((s : Set ℝ≥0), ℝ≥0)
) to a ℝ
-algebra homomorphism (with domain C(((↑) '' s : Set ℝ), ℝ)
). This is the reason the UniqueContinuousFunctionalCalculus
class exists in the first place, as opposed to simply appealing directly to Stone-Weierstrass to prove StarAlgHom.ext_continuousMap
.
@@ -26,6 +26,11 @@ theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a :=
alias max_zero_sub_eq_self := max_zero_sub_max_neg_zero_eq_self
#align max_zero_sub_eq_self max_zero_sub_eq_self
+@[to_additive]
+lemma max_inv_one (a : α) : max a⁻¹ 1 = a⁻¹ * max a 1 := by
+ have := congr($(max_one_div_max_inv_one_eq_self a)⁻¹)
+ rwa [inv_div, div_eq_iff_eq_mul] at this
+
end
section LinearOrderedCommGroup
@@ -23,7 +23,7 @@ theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a :=
#align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_self
#align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
-alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
+alias max_zero_sub_eq_self := max_zero_sub_max_neg_zero_eq_self
#align max_zero_sub_eq_self max_zero_sub_eq_self
end
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -15,7 +15,7 @@ import Mathlib.Algebra.Order.Monoid.MinMax
section
-variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (· * ·) (· ≤ ·)]
+variable {α : Type*} [Group α] [LinearOrder α] [CovariantClass α α (· * ·) (· ≤ ·)]
@[to_additive (attr := simp)]
theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
@@ -30,7 +30,7 @@ end
section LinearOrderedCommGroup
-variable {α : Type _} [LinearOrderedCommGroup α] {a b c : α}
+variable {α : Type*} [LinearOrderedCommGroup α] {a b c : α}
@[to_additive min_neg_neg]
theorem min_inv_inv' (a b : α) : min a⁻¹ b⁻¹ = (max a b)⁻¹ :=
@@ -76,7 +76,7 @@ end LinearOrderedCommGroup
section LinearOrderedAddCommGroup
-variable {α : Type _} [LinearOrderedAddCommGroup α] {a b c : α}
+variable {α : Type*} [LinearOrderedAddCommGroup α] {a b c : α}
theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b - d) := by
simp only [sub_le_iff_le_add, max_le_iff]; constructor
@@ -15,7 +15,7 @@ import Mathlib.Algebra.Order.Monoid.MinMax
section
-variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (. * .) (. ≤ .)]
+variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (· * ·) (· ≤ ·)]
@[to_additive (attr := simp)]
theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
@@ -2,15 +2,12 @@
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl
-
-! This file was ported from Lean 3 source module algebra.order.group.min_max
-! leanprover-community/mathlib commit 10b4e499f43088dd3bb7b5796184ad5216648ab1
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Algebra.Order.Group.Abs
import Mathlib.Algebra.Order.Monoid.MinMax
+#align_import algebra.order.group.min_max from "leanprover-community/mathlib"@"10b4e499f43088dd3bb7b5796184ad5216648ab1"
+
/-!
# `min` and `max` in linearly ordered groups.
-/
@@ -91,14 +91,14 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
_ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _)
#align max_sub_max_le_max max_sub_max_le_max
-theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) := by
+theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max |a - c| |b - d| := by
refine' abs_sub_le_iff.2 ⟨_, _⟩
· exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _))
· rw [abs_sub_comm a c, abs_sub_comm b d]
exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _))
#align abs_max_sub_max_le_max abs_max_sub_max_le_max
-theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by
+theorem abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max |a - c| |b - d| := by
simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using
abs_max_sub_max_le_max (-a) (-b) (-c) (-d)
#align abs_min_sub_min_le_max abs_min_sub_min_le_max
This PR fixes two things:
align
statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align
). This is often seen in the mathport output after ending calc
blocks.#align
statements. (This was needed for a script I wrote for #3630.)@@ -86,11 +86,9 @@ theorem max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b
calc
a = a - c + c := (sub_add_cancel a c).symm
_ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_left _ _) (le_max_left _ _)
-
calc
b = b - d + d := (sub_add_cancel b d).symm
_ ≤ max (a - c) (b - d) + max c d := add_le_add (le_max_right _ _) (le_max_right _ _)
-
#align max_sub_max_le_max max_sub_max_le_max
theorem abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) := by
This PR is the result of a slight variant on the following "algorithm"
_
and make all uppercase letters into lowercase_
and make all uppercase letters into lowercase(original_lean3_name, OriginalLean4Name)
#align
statement just before the next empty line#align
statement to have been inserted too early)@@ -27,6 +27,7 @@ theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a :=
#align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
+#align max_zero_sub_eq_self max_zero_sub_eq_self
end
@@ -24,6 +24,7 @@ variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (. * .)
theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
rcases le_total a 1 with (h | h) <;> simp [h]
#align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_self
+#align max_zero_sub_max_neg_zero_eq_self max_zero_sub_max_neg_zero_eq_self
alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
@@ -39,6 +40,7 @@ theorem min_inv_inv' (a b : α) : min a⁻¹ b⁻¹ = (max a b)⁻¹ :=
-- Porting note: Explicit `α` necessary to infer `CovariantClass` instance
(@inv_le_inv_iff α _ _ _).mpr
#align min_inv_inv' min_inv_inv'
+#align min_neg_neg min_neg_neg
@[to_additive max_neg_neg]
theorem max_inv_inv' (a b : α) : max a⁻¹ b⁻¹ = (min a b)⁻¹ :=
@@ -46,26 +48,31 @@ theorem max_inv_inv' (a b : α) : max a⁻¹ b⁻¹ = (min a b)⁻¹ :=
-- Porting note: Explicit `α` necessary to infer `CovariantClass` instance
(@inv_le_inv_iff α _ _ _).mpr
#align max_inv_inv' max_inv_inv'
+#align max_neg_neg max_neg_neg
@[to_additive min_sub_sub_right]
theorem min_div_div_right' (a b c : α) : min (a / c) (b / c) = min a b / c := by
simpa only [div_eq_mul_inv] using min_mul_mul_right a b c⁻¹
#align min_div_div_right' min_div_div_right'
+#align min_sub_sub_right min_sub_sub_right
@[to_additive max_sub_sub_right]
theorem max_div_div_right' (a b c : α) : max (a / c) (b / c) = max a b / c := by
simpa only [div_eq_mul_inv] using max_mul_mul_right a b c⁻¹
#align max_div_div_right' max_div_div_right'
+#align max_sub_sub_right max_sub_sub_right
@[to_additive min_sub_sub_left]
theorem min_div_div_left' (a b c : α) : min (a / b) (a / c) = a / max b c := by
simp only [div_eq_mul_inv, min_mul_mul_left, min_inv_inv']
#align min_div_div_left' min_div_div_left'
+#align min_sub_sub_left min_sub_sub_left
@[to_additive max_sub_sub_left]
theorem max_div_div_left' (a b c : α) : max (a / b) (a / c) = a / min b c := by
simp only [div_eq_mul_inv, max_mul_mul_left, max_inv_inv']
#align max_div_div_left' max_div_div_left'
+#align max_sub_sub_left max_sub_sub_left
end LinearOrderedCommGroup
to_additive
is @[to_additive (attrs := simp, ext, simps)]
simp
and simps
attributes to the to_additive
-dictionary.simp
-attributes). In particular it's possible that norm_cast
might generate some auxiliary declarations.to_additive
and simps
from the Simps
file to the toAdditive
file for uniformity.@[reassoc]
Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -20,7 +20,7 @@ section
variable {α : Type _} [Group α] [LinearOrder α] [CovariantClass α α (. * .) (. ≤ .)]
-@[simp, to_additive]
+@[to_additive (attr := simp)]
theorem max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by
rcases le_total a 1 with (h | h) <;> simp [h]
#align max_one_div_max_inv_one_eq_self max_one_div_max_inv_one_eq_self
The script used to do this is included. The yaml file was obtained from https://raw.githubusercontent.com/wiki/leanprover-community/mathlib/mathlib4-port-status.md
@@ -2,6 +2,11 @@
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl
+
+! This file was ported from Lean 3 source module algebra.order.group.min_max
+! leanprover-community/mathlib commit 10b4e499f43088dd3bb7b5796184ad5216648ab1
+! Please do not edit these lines, except to modify the commit id
+! if you have ported upstream changes.
-/
import Mathlib.Algebra.Order.Group.Abs
import Mathlib.Algebra.Order.Monoid.MinMax
The unported dependencies are