algebra.order.pointwiseMathlib.Algebra.Order.Pointwise

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Alex J. Best, Yaël Dillies
 -/
 import Algebra.Bounds
-import Data.Set.Pointwise.Smul
+import Data.Set.Pointwise.SMul
 
 #align_import algebra.order.pointwise from "leanprover-community/mathlib"@"f2f413b9d4be3a02840d0663dace76e8fe3da053"
 
@@ -219,7 +219,7 @@ theorem smul_Ioo : r • Ioo a b = Ioo (r • a) (r • b) :=
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(lt_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩
-    rw [mul_div_cancel' _ (ne_of_gt hr)]
+    rw [mul_div_cancel₀ _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ioo LinearOrderedField.smul_Ioo
 -/
 
@@ -235,7 +235,7 @@ theorem smul_Icc : r • Icc a b = Icc (r • a) (r • b) :=
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_le_iff' hr).mpr a_right⟩, _⟩
-    rw [mul_div_cancel' _ (ne_of_gt hr)]
+    rw [mul_div_cancel₀ _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Icc LinearOrderedField.smul_Icc
 -/
 
@@ -251,7 +251,7 @@ theorem smul_Ico : r • Ico a b = Ico (r • a) (r • b) :=
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩
-    rw [mul_div_cancel' _ (ne_of_gt hr)]
+    rw [mul_div_cancel₀ _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ico LinearOrderedField.smul_Ico
 -/
 
@@ -267,7 +267,7 @@ theorem smul_Ioc : r • Ioc a b = Ioc (r • a) (r • b) :=
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(lt_div_iff' hr).mpr a_left, (div_le_iff' hr).mpr a_right⟩, _⟩
-    rw [mul_div_cancel' _ (ne_of_gt hr)]
+    rw [mul_div_cancel₀ _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ioc LinearOrderedField.smul_Ioc
 -/
 
@@ -282,7 +282,7 @@ theorem smul_Ioi : r • Ioi a = Ioi (r • a) := by
     use x / r
     constructor
     exact (lt_div_iff' hr).mpr h
-    exact mul_div_cancel' _ (ne_of_gt hr)
+    exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Ioi LinearOrderedField.smul_Ioi
 -/
 
@@ -297,7 +297,7 @@ theorem smul_Iio : r • Iio a = Iio (r • a) := by
     use x / r
     constructor
     exact (div_lt_iff' hr).mpr h
-    exact mul_div_cancel' _ (ne_of_gt hr)
+    exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Iio LinearOrderedField.smul_Iio
 -/
 
@@ -312,7 +312,7 @@ theorem smul_Ici : r • Ici a = Ici (r • a) := by
     use x / r
     constructor
     exact (le_div_iff' hr).mpr h
-    exact mul_div_cancel' _ (ne_of_gt hr)
+    exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Ici LinearOrderedField.smul_Ici
 -/
 
@@ -327,7 +327,7 @@ theorem smul_Iic : r • Iic a = Iic (r • a) := by
     use x / r
     constructor
     exact (div_le_iff' hr).mpr h
-    exact mul_div_cancel' _ (ne_of_gt hr)
+    exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Iic LinearOrderedField.smul_Iic
 -/
 
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Alex J. Best. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Alex J. Best, Yaël Dillies
 -/
-import Mathbin.Algebra.Bounds
-import Mathbin.Data.Set.Pointwise.Smul
+import Algebra.Bounds
+import Data.Set.Pointwise.Smul
 
 #align_import algebra.order.pointwise from "leanprover-community/mathlib"@"f2f413b9d4be3a02840d0663dace76e8fe3da053"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Alex J. Best. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Alex J. Best, Yaël Dillies
-
-! This file was ported from Lean 3 source module algebra.order.pointwise
-! leanprover-community/mathlib commit f2f413b9d4be3a02840d0663dace76e8fe3da053
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.Bounds
 import Mathbin.Data.Set.Pointwise.Smul
 
+#align_import algebra.order.pointwise from "leanprover-community/mathlib"@"f2f413b9d4be3a02840d0663dace76e8fe3da053"
+
 /-!
 # Pointwise operations on ordered algebraic objects
 
Diff
@@ -40,17 +40,21 @@ section One
 
 variable [One α]
 
+#print csSup_one /-
 @[simp, to_additive]
 theorem csSup_one : sSup (1 : Set α) = 1 :=
   csSup_singleton _
 #align cSup_one csSup_one
 #align cSup_zero csSup_zero
+-/
 
+#print csInf_one /-
 @[simp, to_additive]
 theorem csInf_one : sInf (1 : Set α) = 1 :=
   csInf_singleton _
 #align cInf_one csInf_one
 #align cInf_zero csInf_zero
+-/
 
 end One
 
@@ -59,18 +63,23 @@ section Group
 variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass α α (swap (· * ·)) (· ≤ ·)]
   {s t : Set α}
 
+#print csSup_inv /-
 @[to_additive]
 theorem csSup_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : sSup s⁻¹ = (sInf s)⁻¹ := by
   rw [← image_inv]; exact ((OrderIso.inv α).map_csInf' hs₀ hs₁).symm
 #align cSup_inv csSup_inv
 #align cSup_neg csSup_neg
+-/
 
+#print csInf_inv /-
 @[to_additive]
 theorem csInf_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : sInf s⁻¹ = (sSup s)⁻¹ := by
   rw [← image_inv]; exact ((OrderIso.inv α).map_csSup' hs₀ hs₁).symm
 #align cInf_inv csInf_inv
 #align cInf_neg csInf_neg
+-/
 
+#print csSup_mul /-
 @[to_additive]
 theorem csSup_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
     sSup (s * t) = sSup s * sSup t :=
@@ -78,7 +87,9 @@ theorem csSup_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty)
     (fun _ => (OrderIso.mulLeft _).to_galoisConnection) hs₀ hs₁ ht₀ ht₁
 #align cSup_mul csSup_mul
 #align cSup_add csSup_add
+-/
 
+#print csInf_mul /-
 @[to_additive]
 theorem csInf_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
     sInf (s * t) = sInf s * sInf t :=
@@ -86,20 +97,25 @@ theorem csInf_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty)
     (fun _ => (OrderIso.mulLeft _).symm.to_galoisConnection) hs₀ hs₁ ht₀ ht₁
 #align cInf_mul csInf_mul
 #align cInf_add csInf_add
+-/
 
+#print csSup_div /-
 @[to_additive]
 theorem csSup_div (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
     sSup (s / t) = sSup s / sInf t := by
   rw [div_eq_mul_inv, csSup_mul hs₀ hs₁ ht₀.inv ht₁.inv, csSup_inv ht₀ ht₁, div_eq_mul_inv]
 #align cSup_div csSup_div
 #align cSup_sub csSup_sub
+-/
 
+#print csInf_div /-
 @[to_additive]
 theorem csInf_div (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
     sInf (s / t) = sInf s / sSup t := by
   rw [div_eq_mul_inv, csInf_mul hs₀ hs₁ ht₀.inv ht₁.inv, csInf_inv ht₀ ht₁, div_eq_mul_inv]
 #align cInf_div csInf_div
 #align cInf_sub csInf_sub
+-/
 
 end Group
 
@@ -113,17 +129,21 @@ section One
 
 variable [One α]
 
+#print sSup_one /-
 @[simp, to_additive]
 theorem sSup_one : sSup (1 : Set α) = 1 :=
   sSup_singleton
 #align Sup_one sSup_one
 #align Sup_zero sSup_zero
+-/
 
+#print sInf_one /-
 @[simp, to_additive]
 theorem sInf_one : sInf (1 : Set α) = 1 :=
   sInf_singleton
 #align Inf_one sInf_one
 #align Inf_zero sInf_zero
+-/
 
 end One
 
@@ -132,41 +152,53 @@ section Group
 variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass α α (swap (· * ·)) (· ≤ ·)]
   (s t : Set α)
 
+#print sSup_inv /-
 @[to_additive]
 theorem sSup_inv (s : Set α) : sSup s⁻¹ = (sInf s)⁻¹ := by rw [← image_inv, sSup_image];
   exact ((OrderIso.inv α).map_sInf _).symm
 #align Sup_inv sSup_inv
 #align Sup_neg sSup_neg
+-/
 
+#print sInf_inv /-
 @[to_additive]
 theorem sInf_inv (s : Set α) : sInf s⁻¹ = (sSup s)⁻¹ := by rw [← image_inv, sInf_image];
   exact ((OrderIso.inv α).map_sSup _).symm
 #align Inf_inv sInf_inv
 #align Inf_neg sInf_neg
+-/
 
+#print sSup_mul /-
 @[to_additive]
 theorem sSup_mul : sSup (s * t) = sSup s * sSup t :=
   sSup_image2_eq_sSup_sSup (fun _ => (OrderIso.mulRight _).to_galoisConnection) fun _ =>
     (OrderIso.mulLeft _).to_galoisConnection
 #align Sup_mul sSup_mul
 #align Sup_add sSup_add
+-/
 
+#print sInf_mul /-
 @[to_additive]
 theorem sInf_mul : sInf (s * t) = sInf s * sInf t :=
   sInf_image2_eq_sInf_sInf (fun _ => (OrderIso.mulRight _).symm.to_galoisConnection) fun _ =>
     (OrderIso.mulLeft _).symm.to_galoisConnection
 #align Inf_mul sInf_mul
 #align Inf_add sInf_add
+-/
 
+#print sSup_div /-
 @[to_additive]
 theorem sSup_div : sSup (s / t) = sSup s / sInf t := by simp_rw [div_eq_mul_inv, sSup_mul, sSup_inv]
 #align Sup_div sSup_div
 #align Sup_sub sSup_sub
+-/
 
+#print sInf_div /-
 @[to_additive]
 theorem sInf_div : sInf (s / t) = sInf s / sSup t := by simp_rw [div_eq_mul_inv, sInf_mul, sInf_inv]
 #align Inf_div sInf_div
 #align Inf_sub sInf_sub
+-/
 
 end Group
 
@@ -178,8 +210,7 @@ variable {K : Type _} [LinearOrderedField K] {a b r : K} (hr : 0 < r)
 
 open Set
 
-include hr
-
+#print LinearOrderedField.smul_Ioo /-
 theorem smul_Ioo : r • Ioo a b = Ioo (r • a) (r • b) :=
   by
   ext x
@@ -193,7 +224,9 @@ theorem smul_Ioo : r • Ioo a b = Ioo (r • a) (r • b) :=
     refine' ⟨⟨(lt_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩
     rw [mul_div_cancel' _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ioo LinearOrderedField.smul_Ioo
+-/
 
+#print LinearOrderedField.smul_Icc /-
 theorem smul_Icc : r • Icc a b = Icc (r • a) (r • b) :=
   by
   ext x
@@ -207,7 +240,9 @@ theorem smul_Icc : r • Icc a b = Icc (r • a) (r • b) :=
     refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_le_iff' hr).mpr a_right⟩, _⟩
     rw [mul_div_cancel' _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Icc LinearOrderedField.smul_Icc
+-/
 
+#print LinearOrderedField.smul_Ico /-
 theorem smul_Ico : r • Ico a b = Ico (r • a) (r • b) :=
   by
   ext x
@@ -221,7 +256,9 @@ theorem smul_Ico : r • Ico a b = Ico (r • a) (r • b) :=
     refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩
     rw [mul_div_cancel' _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ico LinearOrderedField.smul_Ico
+-/
 
+#print LinearOrderedField.smul_Ioc /-
 theorem smul_Ioc : r • Ioc a b = Ioc (r • a) (r • b) :=
   by
   ext x
@@ -235,7 +272,9 @@ theorem smul_Ioc : r • Ioc a b = Ioc (r • a) (r • b) :=
     refine' ⟨⟨(lt_div_iff' hr).mpr a_left, (div_le_iff' hr).mpr a_right⟩, _⟩
     rw [mul_div_cancel' _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ioc LinearOrderedField.smul_Ioc
+-/
 
+#print LinearOrderedField.smul_Ioi /-
 theorem smul_Ioi : r • Ioi a = Ioi (r • a) := by
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Ioi]
@@ -248,7 +287,9 @@ theorem smul_Ioi : r • Ioi a = Ioi (r • a) := by
     exact (lt_div_iff' hr).mpr h
     exact mul_div_cancel' _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Ioi LinearOrderedField.smul_Ioi
+-/
 
+#print LinearOrderedField.smul_Iio /-
 theorem smul_Iio : r • Iio a = Iio (r • a) := by
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Iio]
@@ -261,7 +302,9 @@ theorem smul_Iio : r • Iio a = Iio (r • a) := by
     exact (div_lt_iff' hr).mpr h
     exact mul_div_cancel' _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Iio LinearOrderedField.smul_Iio
+-/
 
+#print LinearOrderedField.smul_Ici /-
 theorem smul_Ici : r • Ici a = Ici (r • a) := by
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Ioi]
@@ -274,7 +317,9 @@ theorem smul_Ici : r • Ici a = Ici (r • a) := by
     exact (le_div_iff' hr).mpr h
     exact mul_div_cancel' _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Ici LinearOrderedField.smul_Ici
+-/
 
+#print LinearOrderedField.smul_Iic /-
 theorem smul_Iic : r • Iic a = Iic (r • a) := by
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Iio]
@@ -287,6 +332,7 @@ theorem smul_Iic : r • Iic a = Iic (r • a) := by
     exact (div_le_iff' hr).mpr h
     exact mul_div_cancel' _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Iic LinearOrderedField.smul_Iic
+-/
 
 end LinearOrderedField
 
Diff
@@ -28,7 +28,7 @@ This file contains lemmas about the effect of pointwise operations on sets with
 
 open Function Set
 
-open Pointwise
+open scoped Pointwise
 
 variable {α : Type _}
 
Diff
@@ -40,24 +40,12 @@ section One
 
 variable [One α]
 
-/- warning: cSup_one -> csSup_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
-Case conversion may be inaccurate. Consider using '#align cSup_one csSup_oneₓ'. -/
 @[simp, to_additive]
 theorem csSup_one : sSup (1 : Set α) = 1 :=
   csSup_singleton _
 #align cSup_one csSup_one
 #align cSup_zero csSup_zero
 
-/- warning: cInf_one -> csInf_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
-Case conversion may be inaccurate. Consider using '#align cInf_one csInf_oneₓ'. -/
 @[simp, to_additive]
 theorem csInf_one : sInf (1 : Set α) = 1 :=
   csInf_singleton _
@@ -71,36 +59,18 @@ section Group
 variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass α α (swap (· * ·)) (· ≤ ·)]
   {s t : Set α}
 
-/- warning: cSup_inv -> csSup_inv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align cSup_inv csSup_invₓ'. -/
 @[to_additive]
 theorem csSup_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : sSup s⁻¹ = (sInf s)⁻¹ := by
   rw [← image_inv]; exact ((OrderIso.inv α).map_csInf' hs₀ hs₁).symm
 #align cSup_inv csSup_inv
 #align cSup_neg csSup_neg
 
-/- warning: cInf_inv -> csInf_inv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align cInf_inv csInf_invₓ'. -/
 @[to_additive]
 theorem csInf_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : sInf s⁻¹ = (sSup s)⁻¹ := by
   rw [← image_inv]; exact ((OrderIso.inv α).map_csSup' hs₀ hs₁).symm
 #align cInf_inv csInf_inv
 #align cInf_neg csInf_neg
 
-/- warning: cSup_mul -> csSup_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1367 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1369 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1367 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1369) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1382 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1384 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1382 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1384)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1404 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1406 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1404 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1406)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1419 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1421 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1419 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1421)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_mul csSup_mulₓ'. -/
 @[to_additive]
 theorem csSup_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
     sSup (s * t) = sSup s * sSup t :=
@@ -109,12 +79,6 @@ theorem csSup_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty)
 #align cSup_mul csSup_mul
 #align cSup_add csSup_add
 
-/- warning: cInf_mul -> csInf_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1501 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1503 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1501 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1503) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1516 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1518 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1516 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1518)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1538 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1540 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1538 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1540)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1553 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1555 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1553 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1555)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_mul csInf_mulₓ'. -/
 @[to_additive]
 theorem csInf_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
     sInf (s * t) = sInf s * sInf t :=
@@ -123,12 +87,6 @@ theorem csInf_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty)
 #align cInf_mul csInf_mul
 #align cInf_add csInf_add
 
-/- warning: cSup_div -> csSup_div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1635 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1637 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1635 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1637) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1650 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1652 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1650 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1652)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1672 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1674 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1672 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1674)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1687 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1689 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1687 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1689)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_div csSup_divₓ'. -/
 @[to_additive]
 theorem csSup_div (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
     sSup (s / t) = sSup s / sInf t := by
@@ -136,12 +94,6 @@ theorem csSup_div (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty)
 #align cSup_div csSup_div
 #align cSup_sub csSup_sub
 
-/- warning: cInf_div -> csInf_div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1780 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1782 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1780 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1782) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1795 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1797 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1795 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1797)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1817 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1819 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1817 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1819)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1832 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1834 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1832 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1834)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_div csInf_divₓ'. -/
 @[to_additive]
 theorem csInf_div (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
     sInf (s / t) = sInf s / sSup t := by
@@ -161,24 +113,12 @@ section One
 
 variable [One α]
 
-/- warning: Sup_one -> sSup_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
-Case conversion may be inaccurate. Consider using '#align Sup_one sSup_oneₓ'. -/
 @[simp, to_additive]
 theorem sSup_one : sSup (1 : Set α) = 1 :=
   sSup_singleton
 #align Sup_one sSup_one
 #align Sup_zero sSup_zero
 
-/- warning: Inf_one -> sInf_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
-Case conversion may be inaccurate. Consider using '#align Inf_one sInf_oneₓ'. -/
 @[simp, to_additive]
 theorem sInf_one : sInf (1 : Set α) = 1 :=
   sInf_singleton
@@ -192,36 +132,18 @@ section Group
 variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass α α (swap (· * ·)) (· ≤ ·)]
   (s t : Set α)
 
-/- warning: Sup_inv -> sSup_inv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.172 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.174 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.172 x._@.Mathlib.Algebra.Order.Pointwise._hyg.174) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.187 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.189 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.187 x._@.Mathlib.Algebra.Order.Pointwise._hyg.189)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.209 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.211 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.209 x._@.Mathlib.Algebra.Order.Pointwise._hyg.211)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.224 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.226 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.224 x._@.Mathlib.Algebra.Order.Pointwise._hyg.226)] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align Sup_inv sSup_invₓ'. -/
 @[to_additive]
 theorem sSup_inv (s : Set α) : sSup s⁻¹ = (sInf s)⁻¹ := by rw [← image_inv, sSup_image];
   exact ((OrderIso.inv α).map_sInf _).symm
 #align Sup_inv sSup_inv
 #align Sup_neg sSup_neg
 
-/- warning: Inf_inv -> sInf_inv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.316 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.318 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.316 x._@.Mathlib.Algebra.Order.Pointwise._hyg.318) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.331 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.333 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.331 x._@.Mathlib.Algebra.Order.Pointwise._hyg.333)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.353 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.355 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.353 x._@.Mathlib.Algebra.Order.Pointwise._hyg.355)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.368 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.370 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.368 x._@.Mathlib.Algebra.Order.Pointwise._hyg.370)] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align Inf_inv sInf_invₓ'. -/
 @[to_additive]
 theorem sInf_inv (s : Set α) : sInf s⁻¹ = (sSup s)⁻¹ := by rw [← image_inv, sInf_image];
   exact ((OrderIso.inv α).map_sSup _).symm
 #align Inf_inv sInf_inv
 #align Inf_neg sInf_neg
 
-/- warning: Sup_mul -> sSup_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.460 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.462 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.460 x._@.Mathlib.Algebra.Order.Pointwise._hyg.462) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.475 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.477 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.475 x._@.Mathlib.Algebra.Order.Pointwise._hyg.477)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.497 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.499 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.497 x._@.Mathlib.Algebra.Order.Pointwise._hyg.499)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.512 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.514 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.512 x._@.Mathlib.Algebra.Order.Pointwise._hyg.514)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align Sup_mul sSup_mulₓ'. -/
 @[to_additive]
 theorem sSup_mul : sSup (s * t) = sSup s * sSup t :=
   sSup_image2_eq_sSup_sSup (fun _ => (OrderIso.mulRight _).to_galoisConnection) fun _ =>
@@ -229,12 +151,6 @@ theorem sSup_mul : sSup (s * t) = sSup s * sSup t :=
 #align Sup_mul sSup_mul
 #align Sup_add sSup_add
 
-/- warning: Inf_mul -> sInf_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.583 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.585 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.583 x._@.Mathlib.Algebra.Order.Pointwise._hyg.585) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.598 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.600 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.598 x._@.Mathlib.Algebra.Order.Pointwise._hyg.600)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.620 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.622 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.620 x._@.Mathlib.Algebra.Order.Pointwise._hyg.622)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.635 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.637 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.635 x._@.Mathlib.Algebra.Order.Pointwise._hyg.637)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align Inf_mul sInf_mulₓ'. -/
 @[to_additive]
 theorem sInf_mul : sInf (s * t) = sInf s * sInf t :=
   sInf_image2_eq_sInf_sInf (fun _ => (OrderIso.mulRight _).symm.to_galoisConnection) fun _ =>
@@ -242,23 +158,11 @@ theorem sInf_mul : sInf (s * t) = sInf s * sInf t :=
 #align Inf_mul sInf_mul
 #align Inf_add sInf_add
 
-/- warning: Sup_div -> sSup_div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.706 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.708 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.706 x._@.Mathlib.Algebra.Order.Pointwise._hyg.708) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.721 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.723 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.721 x._@.Mathlib.Algebra.Order.Pointwise._hyg.723)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.743 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.745 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.743 x._@.Mathlib.Algebra.Order.Pointwise._hyg.745)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.758 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.760 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.758 x._@.Mathlib.Algebra.Order.Pointwise._hyg.760)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align Sup_div sSup_divₓ'. -/
 @[to_additive]
 theorem sSup_div : sSup (s / t) = sSup s / sInf t := by simp_rw [div_eq_mul_inv, sSup_mul, sSup_inv]
 #align Sup_div sSup_div
 #align Sup_sub sSup_sub
 
-/- warning: Inf_div -> sInf_div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.815 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.817 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.815 x._@.Mathlib.Algebra.Order.Pointwise._hyg.817) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.830 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.832 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.830 x._@.Mathlib.Algebra.Order.Pointwise._hyg.832)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.852 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.854 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.852 x._@.Mathlib.Algebra.Order.Pointwise._hyg.854)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.867 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.869 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.867 x._@.Mathlib.Algebra.Order.Pointwise._hyg.869)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align Inf_div sInf_divₓ'. -/
 @[to_additive]
 theorem sInf_div : sInf (s / t) = sInf s / sSup t := by simp_rw [div_eq_mul_inv, sInf_mul, sInf_inv]
 #align Inf_div sInf_div
@@ -276,12 +180,6 @@ open Set
 
 include hr
 
-/- warning: linear_ordered_field.smul_Ioo -> LinearOrderedField.smul_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ioo.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Ioo.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Ioo.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a b)) (Set.Ioo.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r b)))
-Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Ioo LinearOrderedField.smul_Iooₓ'. -/
 theorem smul_Ioo : r • Ioo a b = Ioo (r • a) (r • b) :=
   by
   ext x
@@ -296,12 +194,6 @@ theorem smul_Ioo : r • Ioo a b = Ioo (r • a) (r • b) :=
     rw [mul_div_cancel' _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ioo LinearOrderedField.smul_Ioo
 
-/- warning: linear_ordered_field.smul_Icc -> LinearOrderedField.smul_Icc is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Icc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Icc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Icc.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a b)) (Set.Icc.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r b)))
-Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Icc LinearOrderedField.smul_Iccₓ'. -/
 theorem smul_Icc : r • Icc a b = Icc (r • a) (r • b) :=
   by
   ext x
@@ -316,12 +208,6 @@ theorem smul_Icc : r • Icc a b = Icc (r • a) (r • b) :=
     rw [mul_div_cancel' _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Icc LinearOrderedField.smul_Icc
 
-/- warning: linear_ordered_field.smul_Ico -> LinearOrderedField.smul_Ico is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ico.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Ico.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Ico.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a b)) (Set.Ico.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r b)))
-Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Ico LinearOrderedField.smul_Icoₓ'. -/
 theorem smul_Ico : r • Ico a b = Ico (r • a) (r • b) :=
   by
   ext x
@@ -336,12 +222,6 @@ theorem smul_Ico : r • Ico a b = Ico (r • a) (r • b) :=
     rw [mul_div_cancel' _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ico LinearOrderedField.smul_Ico
 
-/- warning: linear_ordered_field.smul_Ioc -> LinearOrderedField.smul_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ioc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Ioc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Ioc.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a b)) (Set.Ioc.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r b)))
-Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Ioc LinearOrderedField.smul_Iocₓ'. -/
 theorem smul_Ioc : r • Ioc a b = Ioc (r • a) (r • b) :=
   by
   ext x
@@ -356,12 +236,6 @@ theorem smul_Ioc : r • Ioc a b = Ioc (r • a) (r • b) :=
     rw [mul_div_cancel' _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ioc LinearOrderedField.smul_Ioc
 
-/- warning: linear_ordered_field.smul_Ioi -> LinearOrderedField.smul_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ioi.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Ioi.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Ioi.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a)) (Set.Ioi.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a)))
-Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Ioi LinearOrderedField.smul_Ioiₓ'. -/
 theorem smul_Ioi : r • Ioi a = Ioi (r • a) := by
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Ioi]
@@ -375,12 +249,6 @@ theorem smul_Ioi : r • Ioi a = Ioi (r • a) := by
     exact mul_div_cancel' _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Ioi LinearOrderedField.smul_Ioi
 
-/- warning: linear_ordered_field.smul_Iio -> LinearOrderedField.smul_Iio is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Iio.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Iio.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Iio.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a)) (Set.Iio.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a)))
-Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Iio LinearOrderedField.smul_Iioₓ'. -/
 theorem smul_Iio : r • Iio a = Iio (r • a) := by
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Iio]
@@ -394,12 +262,6 @@ theorem smul_Iio : r • Iio a = Iio (r • a) := by
     exact mul_div_cancel' _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Iio LinearOrderedField.smul_Iio
 
-/- warning: linear_ordered_field.smul_Ici -> LinearOrderedField.smul_Ici is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ici.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Ici.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Ici.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a)) (Set.Ici.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a)))
-Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Ici LinearOrderedField.smul_Iciₓ'. -/
 theorem smul_Ici : r • Ici a = Ici (r • a) := by
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Ioi]
@@ -413,12 +275,6 @@ theorem smul_Ici : r • Ici a = Ici (r • a) := by
     exact mul_div_cancel' _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Ici LinearOrderedField.smul_Ici
 
-/- warning: linear_ordered_field.smul_Iic -> LinearOrderedField.smul_Iic is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Iic.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Iic.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Iic.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a)) (Set.Iic.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a)))
-Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Iic LinearOrderedField.smul_Iicₓ'. -/
 theorem smul_Iic : r • Iic a = Iic (r • a) := by
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Iio]
Diff
@@ -78,10 +78,8 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
 Case conversion may be inaccurate. Consider using '#align cSup_inv csSup_invₓ'. -/
 @[to_additive]
-theorem csSup_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : sSup s⁻¹ = (sInf s)⁻¹ :=
-  by
-  rw [← image_inv]
-  exact ((OrderIso.inv α).map_csInf' hs₀ hs₁).symm
+theorem csSup_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : sSup s⁻¹ = (sInf s)⁻¹ := by
+  rw [← image_inv]; exact ((OrderIso.inv α).map_csInf' hs₀ hs₁).symm
 #align cSup_inv csSup_inv
 #align cSup_neg csSup_neg
 
@@ -92,10 +90,8 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
 Case conversion may be inaccurate. Consider using '#align cInf_inv csInf_invₓ'. -/
 @[to_additive]
-theorem csInf_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : sInf s⁻¹ = (sSup s)⁻¹ :=
-  by
-  rw [← image_inv]
-  exact ((OrderIso.inv α).map_csSup' hs₀ hs₁).symm
+theorem csInf_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : sInf s⁻¹ = (sSup s)⁻¹ := by
+  rw [← image_inv]; exact ((OrderIso.inv α).map_csSup' hs₀ hs₁).symm
 #align cInf_inv csInf_inv
 #align cInf_neg csInf_neg
 
@@ -203,9 +199,7 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.172 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.174 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.172 x._@.Mathlib.Algebra.Order.Pointwise._hyg.174) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.187 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.189 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.187 x._@.Mathlib.Algebra.Order.Pointwise._hyg.189)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.209 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.211 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.209 x._@.Mathlib.Algebra.Order.Pointwise._hyg.211)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.224 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.226 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.224 x._@.Mathlib.Algebra.Order.Pointwise._hyg.226)] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align Sup_inv sSup_invₓ'. -/
 @[to_additive]
-theorem sSup_inv (s : Set α) : sSup s⁻¹ = (sInf s)⁻¹ :=
-  by
-  rw [← image_inv, sSup_image]
+theorem sSup_inv (s : Set α) : sSup s⁻¹ = (sInf s)⁻¹ := by rw [← image_inv, sSup_image];
   exact ((OrderIso.inv α).map_sInf _).symm
 #align Sup_inv sSup_inv
 #align Sup_neg sSup_neg
@@ -217,9 +211,7 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.316 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.318 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.316 x._@.Mathlib.Algebra.Order.Pointwise._hyg.318) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.331 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.333 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.331 x._@.Mathlib.Algebra.Order.Pointwise._hyg.333)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.353 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.355 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.353 x._@.Mathlib.Algebra.Order.Pointwise._hyg.355)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.368 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.370 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.368 x._@.Mathlib.Algebra.Order.Pointwise._hyg.370)] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align Inf_inv sInf_invₓ'. -/
 @[to_additive]
-theorem sInf_inv (s : Set α) : sInf s⁻¹ = (sSup s)⁻¹ :=
-  by
-  rw [← image_inv, sInf_image]
+theorem sInf_inv (s : Set α) : sInf s⁻¹ = (sSup s)⁻¹ := by rw [← image_inv, sInf_image];
   exact ((OrderIso.inv α).map_sSup _).symm
 #align Inf_inv sInf_inv
 #align Inf_neg sInf_neg
@@ -295,8 +287,7 @@ theorem smul_Ioo : r • Ioo a b = Ioo (r • a) (r • b) :=
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Ioo]
   constructor
-  · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩
-    constructor
+  · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩; constructor
     exact (mul_lt_mul_left hr).mpr a_h_left_left
     exact (mul_lt_mul_left hr).mpr a_h_left_right
   · rintro ⟨a_left, a_right⟩
@@ -316,8 +307,7 @@ theorem smul_Icc : r • Icc a b = Icc (r • a) (r • b) :=
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Icc]
   constructor
-  · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩
-    constructor
+  · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩; constructor
     exact (mul_le_mul_left hr).mpr a_h_left_left
     exact (mul_le_mul_left hr).mpr a_h_left_right
   · rintro ⟨a_left, a_right⟩
@@ -337,8 +327,7 @@ theorem smul_Ico : r • Ico a b = Ico (r • a) (r • b) :=
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Ico]
   constructor
-  · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩
-    constructor
+  · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩; constructor
     exact (mul_le_mul_left hr).mpr a_h_left_left
     exact (mul_lt_mul_left hr).mpr a_h_left_right
   · rintro ⟨a_left, a_right⟩
@@ -358,8 +347,7 @@ theorem smul_Ioc : r • Ioc a b = Ioc (r • a) (r • b) :=
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Ioc]
   constructor
-  · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩
-    constructor
+  · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩; constructor
     exact (mul_lt_mul_left hr).mpr a_h_left_left
     exact (mul_le_mul_left hr).mpr a_h_left_right
   · rintro ⟨a_left, a_right⟩
Diff
@@ -73,7 +73,7 @@ variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass
 
 /- warning: cSup_inv -> csSup_inv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
 Case conversion may be inaccurate. Consider using '#align cSup_inv csSup_invₓ'. -/
@@ -87,7 +87,7 @@ theorem csSup_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : sSup s⁻¹ = (sIn
 
 /- warning: cInf_inv -> csInf_inv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
 Case conversion may be inaccurate. Consider using '#align cInf_inv csInf_invₓ'. -/
@@ -101,7 +101,7 @@ theorem csInf_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : sInf s⁻¹ = (sSu
 
 /- warning: cSup_mul -> csSup_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1367 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1369 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1367 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1369) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1382 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1384 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1382 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1384)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1404 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1406 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1404 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1406)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1419 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1421 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1419 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1421)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_mul csSup_mulₓ'. -/
@@ -115,7 +115,7 @@ theorem csSup_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty)
 
 /- warning: cInf_mul -> csInf_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1501 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1503 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1501 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1503) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1516 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1518 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1516 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1518)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1538 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1540 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1538 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1540)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1553 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1555 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1553 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1555)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_mul csInf_mulₓ'. -/
@@ -129,7 +129,7 @@ theorem csInf_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty)
 
 /- warning: cSup_div -> csSup_div is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1635 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1637 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1635 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1637) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1650 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1652 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1650 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1652)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1672 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1674 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1672 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1674)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1687 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1689 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1687 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1689)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_div csSup_divₓ'. -/
@@ -142,7 +142,7 @@ theorem csSup_div (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty)
 
 /- warning: cInf_div -> csInf_div is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1780 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1782 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1780 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1782) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1795 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1797 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1795 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1797)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1817 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1819 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1817 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1819)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1832 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1834 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1832 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1834)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_div csInf_divₓ'. -/
@@ -198,7 +198,7 @@ variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass
 
 /- warning: Sup_inv -> sSup_inv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.172 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.174 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.172 x._@.Mathlib.Algebra.Order.Pointwise._hyg.174) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.187 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.189 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.187 x._@.Mathlib.Algebra.Order.Pointwise._hyg.189)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.209 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.211 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.209 x._@.Mathlib.Algebra.Order.Pointwise._hyg.211)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.224 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.226 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.224 x._@.Mathlib.Algebra.Order.Pointwise._hyg.226)] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align Sup_inv sSup_invₓ'. -/
@@ -212,7 +212,7 @@ theorem sSup_inv (s : Set α) : sSup s⁻¹ = (sInf s)⁻¹ :=
 
 /- warning: Inf_inv -> sInf_inv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.316 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.318 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.316 x._@.Mathlib.Algebra.Order.Pointwise._hyg.318) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.331 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.333 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.331 x._@.Mathlib.Algebra.Order.Pointwise._hyg.333)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.353 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.355 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.353 x._@.Mathlib.Algebra.Order.Pointwise._hyg.355)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.368 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.370 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.368 x._@.Mathlib.Algebra.Order.Pointwise._hyg.370)] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align Inf_inv sInf_invₓ'. -/
@@ -226,7 +226,7 @@ theorem sInf_inv (s : Set α) : sInf s⁻¹ = (sSup s)⁻¹ :=
 
 /- warning: Sup_mul -> sSup_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.460 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.462 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.460 x._@.Mathlib.Algebra.Order.Pointwise._hyg.462) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.475 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.477 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.475 x._@.Mathlib.Algebra.Order.Pointwise._hyg.477)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.497 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.499 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.497 x._@.Mathlib.Algebra.Order.Pointwise._hyg.499)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.512 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.514 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.512 x._@.Mathlib.Algebra.Order.Pointwise._hyg.514)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 Case conversion may be inaccurate. Consider using '#align Sup_mul sSup_mulₓ'. -/
@@ -239,7 +239,7 @@ theorem sSup_mul : sSup (s * t) = sSup s * sSup t :=
 
 /- warning: Inf_mul -> sInf_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.583 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.585 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.583 x._@.Mathlib.Algebra.Order.Pointwise._hyg.585) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.598 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.600 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.598 x._@.Mathlib.Algebra.Order.Pointwise._hyg.600)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.620 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.622 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.620 x._@.Mathlib.Algebra.Order.Pointwise._hyg.622)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.635 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.637 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.635 x._@.Mathlib.Algebra.Order.Pointwise._hyg.637)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 Case conversion may be inaccurate. Consider using '#align Inf_mul sInf_mulₓ'. -/
@@ -252,7 +252,7 @@ theorem sInf_mul : sInf (s * t) = sInf s * sInf t :=
 
 /- warning: Sup_div -> sSup_div is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.706 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.708 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.706 x._@.Mathlib.Algebra.Order.Pointwise._hyg.708) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.721 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.723 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.721 x._@.Mathlib.Algebra.Order.Pointwise._hyg.723)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.743 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.745 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.743 x._@.Mathlib.Algebra.Order.Pointwise._hyg.745)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.758 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.760 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.758 x._@.Mathlib.Algebra.Order.Pointwise._hyg.760)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 Case conversion may be inaccurate. Consider using '#align Sup_div sSup_divₓ'. -/
@@ -263,7 +263,7 @@ theorem sSup_div : sSup (s / t) = sSup s / sInf t := by simp_rw [div_eq_mul_inv,
 
 /- warning: Inf_div -> sInf_div is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.815 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.817 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.815 x._@.Mathlib.Algebra.Order.Pointwise._hyg.817) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.830 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.832 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.830 x._@.Mathlib.Algebra.Order.Pointwise._hyg.832)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.852 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.854 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.852 x._@.Mathlib.Algebra.Order.Pointwise._hyg.854)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.867 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.869 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.867 x._@.Mathlib.Algebra.Order.Pointwise._hyg.869)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 Case conversion may be inaccurate. Consider using '#align Inf_div sInf_divₓ'. -/
@@ -286,7 +286,7 @@ include hr
 
 /- warning: linear_ordered_field.smul_Ioo -> LinearOrderedField.smul_Ioo is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ioo.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Ioo.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
+  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ioo.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Ioo.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Ioo.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a b)) (Set.Ioo.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r b)))
 Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Ioo LinearOrderedField.smul_Iooₓ'. -/
@@ -307,7 +307,7 @@ theorem smul_Ioo : r • Ioo a b = Ioo (r • a) (r • b) :=
 
 /- warning: linear_ordered_field.smul_Icc -> LinearOrderedField.smul_Icc is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Icc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Icc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
+  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Icc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Icc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Icc.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a b)) (Set.Icc.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r b)))
 Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Icc LinearOrderedField.smul_Iccₓ'. -/
@@ -328,7 +328,7 @@ theorem smul_Icc : r • Icc a b = Icc (r • a) (r • b) :=
 
 /- warning: linear_ordered_field.smul_Ico -> LinearOrderedField.smul_Ico is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ico.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Ico.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
+  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ico.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Ico.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Ico.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a b)) (Set.Ico.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r b)))
 Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Ico LinearOrderedField.smul_Icoₓ'. -/
@@ -349,7 +349,7 @@ theorem smul_Ico : r • Ico a b = Ico (r • a) (r • b) :=
 
 /- warning: linear_ordered_field.smul_Ioc -> LinearOrderedField.smul_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ioc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Ioc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
+  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ioc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a b)) (Set.Ioc.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r b)))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {b : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Ioc.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a b)) (Set.Ioc.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r b)))
 Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Ioc LinearOrderedField.smul_Iocₓ'. -/
@@ -370,7 +370,7 @@ theorem smul_Ioc : r • Ioc a b = Ioc (r • a) (r • b) :=
 
 /- warning: linear_ordered_field.smul_Ioi -> LinearOrderedField.smul_Ioi is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ioi.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Ioi.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
+  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ioi.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Ioi.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Ioi.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a)) (Set.Ioi.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a)))
 Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Ioi LinearOrderedField.smul_Ioiₓ'. -/
@@ -389,7 +389,7 @@ theorem smul_Ioi : r • Ioi a = Ioi (r • a) := by
 
 /- warning: linear_ordered_field.smul_Iio -> LinearOrderedField.smul_Iio is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Iio.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Iio.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
+  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Iio.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Iio.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Iio.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a)) (Set.Iio.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a)))
 Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Iio LinearOrderedField.smul_Iioₓ'. -/
@@ -408,7 +408,7 @@ theorem smul_Iio : r • Iio a = Iio (r • a) := by
 
 /- warning: linear_ordered_field.smul_Ici -> LinearOrderedField.smul_Ici is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ici.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Ici.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
+  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Ici.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Ici.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Ici.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a)) (Set.Ici.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a)))
 Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Ici LinearOrderedField.smul_Iciₓ'. -/
@@ -427,7 +427,7 @@ theorem smul_Ici : r • Ici a = Ici (r • a) := by
 
 /- warning: linear_ordered_field.smul_Iic -> LinearOrderedField.smul_Iic is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Iic.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Iic.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
+  forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toHasLt.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (SMul.smul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))) r (Set.Iic.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) a)) (Set.Iic.{u1} K (PartialOrder.toPreorder.{u1} K (OrderedAddCommGroup.toPartialOrder.{u1} K (StrictOrderedRing.toOrderedAddCommGroup.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (SMul.smul.{u1, u1} K K (Mul.toSMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))) r a)))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} K] {a : K} {r : K}, (LT.lt.{u1} K (Preorder.toLT.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))))) r) -> (Eq.{succ u1} (Set.{u1} K) (HSMul.hSMul.{u1, u1, u1} K (Set.{u1} K) (Set.{u1} K) (instHSMul.{u1, u1} K (Set.{u1} K) (Set.smulSet.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1)))))))))))) r (Set.Iic.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) a)) (Set.Iic.{u1} K (PartialOrder.toPreorder.{u1} K (StrictOrderedRing.toPartialOrder.{u1} K (LinearOrderedRing.toStrictOrderedRing.{u1} K (LinearOrderedCommRing.toLinearOrderedRing.{u1} K (LinearOrderedField.toLinearOrderedCommRing.{u1} K _inst_1))))) (HSMul.hSMul.{u1, u1, u1} K K K (instHSMul.{u1, u1} K K (SMulZeroClass.toSMul.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (SMulWithZero.toSMulZeroClass.{u1, u1} K K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (LinearOrderedSemifield.toSemifield.{u1} K (LinearOrderedField.toLinearOrderedSemifield.{u1} K _inst_1))))) (MulZeroClass.toSMulWithZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K (LinearOrderedField.toField.{u1} K _inst_1))))))))))) r a)))
 Case conversion may be inaccurate. Consider using '#align linear_ordered_field.smul_Iic LinearOrderedField.smul_Iicₓ'. -/
Diff
@@ -40,29 +40,29 @@ section One
 
 variable [One α]
 
-/- warning: cSup_one -> csupₛ_one is a dubious translation:
+/- warning: cSup_one -> csSup_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
-Case conversion may be inaccurate. Consider using '#align cSup_one csupₛ_oneₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
+Case conversion may be inaccurate. Consider using '#align cSup_one csSup_oneₓ'. -/
 @[simp, to_additive]
-theorem csupₛ_one : supₛ (1 : Set α) = 1 :=
-  csupₛ_singleton _
-#align cSup_one csupₛ_one
-#align cSup_zero csupₛ_zero
+theorem csSup_one : sSup (1 : Set α) = 1 :=
+  csSup_singleton _
+#align cSup_one csSup_one
+#align cSup_zero csSup_zero
 
-/- warning: cInf_one -> cinfₛ_one is a dubious translation:
+/- warning: cInf_one -> csInf_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
-Case conversion may be inaccurate. Consider using '#align cInf_one cinfₛ_oneₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
+Case conversion may be inaccurate. Consider using '#align cInf_one csInf_oneₓ'. -/
 @[simp, to_additive]
-theorem cinfₛ_one : infₛ (1 : Set α) = 1 :=
-  cinfₛ_singleton _
-#align cInf_one cinfₛ_one
-#align cInf_zero cinfₛ_zero
+theorem csInf_one : sInf (1 : Set α) = 1 :=
+  csInf_singleton _
+#align cInf_one csInf_one
+#align cInf_zero csInf_zero
 
 end One
 
@@ -71,87 +71,87 @@ section Group
 variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass α α (swap (· * ·)) (· ≤ ·)]
   {s t : Set α}
 
-/- warning: cSup_inv -> csupₛ_inv is a dubious translation:
+/- warning: cSup_inv -> csSup_inv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align cSup_inv csupₛ_invₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
+Case conversion may be inaccurate. Consider using '#align cSup_inv csSup_invₓ'. -/
 @[to_additive]
-theorem csupₛ_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : supₛ s⁻¹ = (infₛ s)⁻¹ :=
+theorem csSup_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : sSup s⁻¹ = (sInf s)⁻¹ :=
   by
   rw [← image_inv]
-  exact ((OrderIso.inv α).map_cinfₛ' hs₀ hs₁).symm
-#align cSup_inv csupₛ_inv
-#align cSup_neg csupₛ_neg
+  exact ((OrderIso.inv α).map_csInf' hs₀ hs₁).symm
+#align cSup_inv csSup_inv
+#align cSup_neg csSup_neg
 
-/- warning: cInf_inv -> cinfₛ_inv is a dubious translation:
+/- warning: cInf_inv -> csInf_inv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align cInf_inv cinfₛ_invₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
+Case conversion may be inaccurate. Consider using '#align cInf_inv csInf_invₓ'. -/
 @[to_additive]
-theorem cinfₛ_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : infₛ s⁻¹ = (supₛ s)⁻¹ :=
+theorem csInf_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : sInf s⁻¹ = (sSup s)⁻¹ :=
   by
   rw [← image_inv]
-  exact ((OrderIso.inv α).map_csupₛ' hs₀ hs₁).symm
-#align cInf_inv cinfₛ_inv
-#align cInf_neg cinfₛ_neg
+  exact ((OrderIso.inv α).map_csSup' hs₀ hs₁).symm
+#align cInf_inv csInf_inv
+#align cInf_neg csInf_neg
 
-/- warning: cSup_mul -> csupₛ_mul is a dubious translation:
+/- warning: cSup_mul -> csSup_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1367 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1369 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1367 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1369) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1382 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1384 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1382 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1384)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1404 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1406 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1404 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1406)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1419 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1421 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1419 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1421)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_mul csupₛ_mulₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1367 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1369 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1367 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1369) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1382 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1384 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1382 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1384)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1404 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1406 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1404 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1406)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1419 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1421 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1419 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1421)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
+Case conversion may be inaccurate. Consider using '#align cSup_mul csSup_mulₓ'. -/
 @[to_additive]
-theorem csupₛ_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
-    supₛ (s * t) = supₛ s * supₛ t :=
-  csupₛ_image2_eq_csupₛ_csupₛ (fun _ => (OrderIso.mulRight _).to_galoisConnection)
+theorem csSup_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
+    sSup (s * t) = sSup s * sSup t :=
+  csSup_image2_eq_csSup_csSup (fun _ => (OrderIso.mulRight _).to_galoisConnection)
     (fun _ => (OrderIso.mulLeft _).to_galoisConnection) hs₀ hs₁ ht₀ ht₁
-#align cSup_mul csupₛ_mul
-#align cSup_add csupₛ_add
+#align cSup_mul csSup_mul
+#align cSup_add csSup_add
 
-/- warning: cInf_mul -> cinfₛ_mul is a dubious translation:
+/- warning: cInf_mul -> csInf_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1501 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1503 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1501 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1503) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1516 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1518 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1516 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1518)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1538 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1540 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1538 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1540)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1553 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1555 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1553 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1555)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_mul cinfₛ_mulₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1501 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1503 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1501 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1503) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1516 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1518 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1516 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1518)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1538 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1540 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1538 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1540)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1553 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1555 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1553 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1555)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
+Case conversion may be inaccurate. Consider using '#align cInf_mul csInf_mulₓ'. -/
 @[to_additive]
-theorem cinfₛ_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
-    infₛ (s * t) = infₛ s * infₛ t :=
-  cinfₛ_image2_eq_cinfₛ_cinfₛ (fun _ => (OrderIso.mulRight _).symm.to_galoisConnection)
+theorem csInf_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
+    sInf (s * t) = sInf s * sInf t :=
+  csInf_image2_eq_csInf_csInf (fun _ => (OrderIso.mulRight _).symm.to_galoisConnection)
     (fun _ => (OrderIso.mulLeft _).symm.to_galoisConnection) hs₀ hs₁ ht₀ ht₁
-#align cInf_mul cinfₛ_mul
-#align cInf_add cinfₛ_add
+#align cInf_mul csInf_mul
+#align cInf_add csInf_add
 
-/- warning: cSup_div -> csupₛ_div is a dubious translation:
+/- warning: cSup_div -> csSup_div is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1635 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1637 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1635 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1637) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1650 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1652 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1650 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1652)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1672 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1674 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1672 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1674)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1687 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1689 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1687 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1689)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_div csupₛ_divₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1635 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1637 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1635 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1637) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1650 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1652 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1650 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1652)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1672 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1674 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1672 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1674)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1687 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1689 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1687 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1689)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
+Case conversion may be inaccurate. Consider using '#align cSup_div csSup_divₓ'. -/
 @[to_additive]
-theorem csupₛ_div (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
-    supₛ (s / t) = supₛ s / infₛ t := by
-  rw [div_eq_mul_inv, csupₛ_mul hs₀ hs₁ ht₀.inv ht₁.inv, csupₛ_inv ht₀ ht₁, div_eq_mul_inv]
-#align cSup_div csupₛ_div
-#align cSup_sub csupₛ_sub
+theorem csSup_div (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
+    sSup (s / t) = sSup s / sInf t := by
+  rw [div_eq_mul_inv, csSup_mul hs₀ hs₁ ht₀.inv ht₁.inv, csSup_inv ht₀ ht₁, div_eq_mul_inv]
+#align cSup_div csSup_div
+#align cSup_sub csSup_sub
 
-/- warning: cInf_div -> cinfₛ_div is a dubious translation:
+/- warning: cInf_div -> csInf_div is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1780 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1782 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1780 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1782) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1795 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1797 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1795 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1797)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1817 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1819 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1817 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1819)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1832 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1834 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1832 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1834)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_div cinfₛ_divₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1780 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1782 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1780 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1782) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1795 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1797 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1795 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1797)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1817 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1819 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1817 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1819)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1832 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1834 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1832 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1834)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
+Case conversion may be inaccurate. Consider using '#align cInf_div csInf_divₓ'. -/
 @[to_additive]
-theorem cinfₛ_div (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
-    infₛ (s / t) = infₛ s / supₛ t := by
-  rw [div_eq_mul_inv, cinfₛ_mul hs₀ hs₁ ht₀.inv ht₁.inv, cinfₛ_inv ht₀ ht₁, div_eq_mul_inv]
-#align cInf_div cinfₛ_div
-#align cInf_sub cinfₛ_sub
+theorem csInf_div (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
+    sInf (s / t) = sInf s / sSup t := by
+  rw [div_eq_mul_inv, csInf_mul hs₀ hs₁ ht₀.inv ht₁.inv, csInf_inv ht₀ ht₁, div_eq_mul_inv]
+#align cInf_div csInf_div
+#align cInf_sub csInf_sub
 
 end Group
 
@@ -165,29 +165,29 @@ section One
 
 variable [One α]
 
-/- warning: Sup_one -> supₛ_one is a dubious translation:
+/- warning: Sup_one -> sSup_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
-Case conversion may be inaccurate. Consider using '#align Sup_one supₛ_oneₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
+Case conversion may be inaccurate. Consider using '#align Sup_one sSup_oneₓ'. -/
 @[simp, to_additive]
-theorem supₛ_one : supₛ (1 : Set α) = 1 :=
-  supₛ_singleton
-#align Sup_one supₛ_one
-#align Sup_zero supₛ_zero
+theorem sSup_one : sSup (1 : Set α) = 1 :=
+  sSup_singleton
+#align Sup_one sSup_one
+#align Sup_zero sSup_zero
 
-/- warning: Inf_one -> infₛ_one is a dubious translation:
+/- warning: Inf_one -> sInf_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2))))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
-Case conversion may be inaccurate. Consider using '#align Inf_one infₛ_oneₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : One.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α _inst_2)))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_2))
+Case conversion may be inaccurate. Consider using '#align Inf_one sInf_oneₓ'. -/
 @[simp, to_additive]
-theorem infₛ_one : infₛ (1 : Set α) = 1 :=
-  infₛ_singleton
-#align Inf_one infₛ_one
-#align Inf_zero infₛ_zero
+theorem sInf_one : sInf (1 : Set α) = 1 :=
+  sInf_singleton
+#align Inf_one sInf_one
+#align Inf_zero sInf_zero
 
 end One
 
@@ -196,81 +196,81 @@ section Group
 variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass α α (swap (· * ·)) (· ≤ ·)]
   (s t : Set α)
 
-/- warning: Sup_inv -> supₛ_inv is a dubious translation:
+/- warning: Sup_inv -> sSup_inv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.172 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.174 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.172 x._@.Mathlib.Algebra.Order.Pointwise._hyg.174) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.187 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.189 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.187 x._@.Mathlib.Algebra.Order.Pointwise._hyg.189)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.209 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.211 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.209 x._@.Mathlib.Algebra.Order.Pointwise._hyg.211)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.224 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.226 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.224 x._@.Mathlib.Algebra.Order.Pointwise._hyg.226)] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align Sup_inv supₛ_invₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.172 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.174 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.172 x._@.Mathlib.Algebra.Order.Pointwise._hyg.174) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.187 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.189 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.187 x._@.Mathlib.Algebra.Order.Pointwise._hyg.189)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.209 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.211 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.209 x._@.Mathlib.Algebra.Order.Pointwise._hyg.211)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.224 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.226 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.224 x._@.Mathlib.Algebra.Order.Pointwise._hyg.226)] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+Case conversion may be inaccurate. Consider using '#align Sup_inv sSup_invₓ'. -/
 @[to_additive]
-theorem supₛ_inv (s : Set α) : supₛ s⁻¹ = (infₛ s)⁻¹ :=
+theorem sSup_inv (s : Set α) : sSup s⁻¹ = (sInf s)⁻¹ :=
   by
-  rw [← image_inv, supₛ_image]
-  exact ((OrderIso.inv α).map_infₛ _).symm
-#align Sup_inv supₛ_inv
-#align Sup_neg supₛ_neg
+  rw [← image_inv, sSup_image]
+  exact ((OrderIso.inv α).map_sInf _).symm
+#align Sup_inv sSup_inv
+#align Sup_neg sSup_neg
 
-/- warning: Inf_inv -> infₛ_inv is a dubious translation:
+/- warning: Inf_inv -> sInf_inv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.316 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.318 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.316 x._@.Mathlib.Algebra.Order.Pointwise._hyg.318) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.331 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.333 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.331 x._@.Mathlib.Algebra.Order.Pointwise._hyg.333)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.353 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.355 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.353 x._@.Mathlib.Algebra.Order.Pointwise._hyg.355)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.368 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.370 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.368 x._@.Mathlib.Algebra.Order.Pointwise._hyg.370)] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align Inf_inv infₛ_invₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.316 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.318 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.316 x._@.Mathlib.Algebra.Order.Pointwise._hyg.318) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.331 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.333 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.331 x._@.Mathlib.Algebra.Order.Pointwise._hyg.333)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.353 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.355 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.353 x._@.Mathlib.Algebra.Order.Pointwise._hyg.355)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.368 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.370 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.368 x._@.Mathlib.Algebra.Order.Pointwise._hyg.370)] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+Case conversion may be inaccurate. Consider using '#align Inf_inv sInf_invₓ'. -/
 @[to_additive]
-theorem infₛ_inv (s : Set α) : infₛ s⁻¹ = (supₛ s)⁻¹ :=
+theorem sInf_inv (s : Set α) : sInf s⁻¹ = (sSup s)⁻¹ :=
   by
-  rw [← image_inv, infₛ_image]
-  exact ((OrderIso.inv α).map_supₛ _).symm
-#align Inf_inv infₛ_inv
-#align Inf_neg infₛ_neg
+  rw [← image_inv, sInf_image]
+  exact ((OrderIso.inv α).map_sSup _).symm
+#align Inf_inv sInf_inv
+#align Inf_neg sInf_neg
 
-/- warning: Sup_mul -> supₛ_mul is a dubious translation:
+/- warning: Sup_mul -> sSup_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.460 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.462 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.460 x._@.Mathlib.Algebra.Order.Pointwise._hyg.462) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.475 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.477 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.475 x._@.Mathlib.Algebra.Order.Pointwise._hyg.477)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.497 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.499 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.497 x._@.Mathlib.Algebra.Order.Pointwise._hyg.499)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.512 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.514 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.512 x._@.Mathlib.Algebra.Order.Pointwise._hyg.514)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align Sup_mul supₛ_mulₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.460 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.462 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.460 x._@.Mathlib.Algebra.Order.Pointwise._hyg.462) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.475 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.477 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.475 x._@.Mathlib.Algebra.Order.Pointwise._hyg.477)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.497 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.499 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.497 x._@.Mathlib.Algebra.Order.Pointwise._hyg.499)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.512 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.514 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.512 x._@.Mathlib.Algebra.Order.Pointwise._hyg.514)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+Case conversion may be inaccurate. Consider using '#align Sup_mul sSup_mulₓ'. -/
 @[to_additive]
-theorem supₛ_mul : supₛ (s * t) = supₛ s * supₛ t :=
-  supₛ_image2_eq_supₛ_supₛ (fun _ => (OrderIso.mulRight _).to_galoisConnection) fun _ =>
+theorem sSup_mul : sSup (s * t) = sSup s * sSup t :=
+  sSup_image2_eq_sSup_sSup (fun _ => (OrderIso.mulRight _).to_galoisConnection) fun _ =>
     (OrderIso.mulLeft _).to_galoisConnection
-#align Sup_mul supₛ_mul
-#align Sup_add supₛ_add
+#align Sup_mul sSup_mul
+#align Sup_add sSup_add
 
-/- warning: Inf_mul -> infₛ_mul is a dubious translation:
+/- warning: Inf_mul -> sInf_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.583 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.585 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.583 x._@.Mathlib.Algebra.Order.Pointwise._hyg.585) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.598 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.600 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.598 x._@.Mathlib.Algebra.Order.Pointwise._hyg.600)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.620 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.622 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.620 x._@.Mathlib.Algebra.Order.Pointwise._hyg.622)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.635 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.637 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.635 x._@.Mathlib.Algebra.Order.Pointwise._hyg.637)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align Inf_mul infₛ_mulₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.583 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.585 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.583 x._@.Mathlib.Algebra.Order.Pointwise._hyg.585) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.598 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.600 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.598 x._@.Mathlib.Algebra.Order.Pointwise._hyg.600)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.620 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.622 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.620 x._@.Mathlib.Algebra.Order.Pointwise._hyg.622)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.635 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.637 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.635 x._@.Mathlib.Algebra.Order.Pointwise._hyg.637)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+Case conversion may be inaccurate. Consider using '#align Inf_mul sInf_mulₓ'. -/
 @[to_additive]
-theorem infₛ_mul : infₛ (s * t) = infₛ s * infₛ t :=
-  infₛ_image2_eq_infₛ_infₛ (fun _ => (OrderIso.mulRight _).symm.to_galoisConnection) fun _ =>
+theorem sInf_mul : sInf (s * t) = sInf s * sInf t :=
+  sInf_image2_eq_sInf_sInf (fun _ => (OrderIso.mulRight _).symm.to_galoisConnection) fun _ =>
     (OrderIso.mulLeft _).symm.to_galoisConnection
-#align Inf_mul infₛ_mul
-#align Inf_add infₛ_add
+#align Inf_mul sInf_mul
+#align Inf_add sInf_add
 
-/- warning: Sup_div -> supₛ_div is a dubious translation:
+/- warning: Sup_div -> sSup_div is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.706 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.708 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.706 x._@.Mathlib.Algebra.Order.Pointwise._hyg.708) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.721 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.723 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.721 x._@.Mathlib.Algebra.Order.Pointwise._hyg.723)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.743 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.745 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.743 x._@.Mathlib.Algebra.Order.Pointwise._hyg.745)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.758 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.760 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.758 x._@.Mathlib.Algebra.Order.Pointwise._hyg.760)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align Sup_div supₛ_divₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.706 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.708 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.706 x._@.Mathlib.Algebra.Order.Pointwise._hyg.708) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.721 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.723 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.721 x._@.Mathlib.Algebra.Order.Pointwise._hyg.723)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.743 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.745 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.743 x._@.Mathlib.Algebra.Order.Pointwise._hyg.745)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.758 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.760 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.758 x._@.Mathlib.Algebra.Order.Pointwise._hyg.760)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+Case conversion may be inaccurate. Consider using '#align Sup_div sSup_divₓ'. -/
 @[to_additive]
-theorem supₛ_div : supₛ (s / t) = supₛ s / infₛ t := by simp_rw [div_eq_mul_inv, supₛ_mul, supₛ_inv]
-#align Sup_div supₛ_div
-#align Sup_sub supₛ_sub
+theorem sSup_div : sSup (s / t) = sSup s / sInf t := by simp_rw [div_eq_mul_inv, sSup_mul, sSup_inv]
+#align Sup_div sSup_div
+#align Sup_sub sSup_sub
 
-/- warning: Inf_div -> infₛ_div is a dubious translation:
+/- warning: Inf_div -> sInf_div is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.815 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.817 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.815 x._@.Mathlib.Algebra.Order.Pointwise._hyg.817) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.830 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.832 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.830 x._@.Mathlib.Algebra.Order.Pointwise._hyg.832)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.852 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.854 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.852 x._@.Mathlib.Algebra.Order.Pointwise._hyg.854)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.867 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.869 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.867 x._@.Mathlib.Algebra.Order.Pointwise._hyg.869)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align Inf_div infₛ_divₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.815 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.817 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.815 x._@.Mathlib.Algebra.Order.Pointwise._hyg.817) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.830 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.832 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.830 x._@.Mathlib.Algebra.Order.Pointwise._hyg.832)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.852 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.854 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.852 x._@.Mathlib.Algebra.Order.Pointwise._hyg.854)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.867 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.869 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.867 x._@.Mathlib.Algebra.Order.Pointwise._hyg.869)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+Case conversion may be inaccurate. Consider using '#align Inf_div sInf_divₓ'. -/
 @[to_additive]
-theorem infₛ_div : infₛ (s / t) = infₛ s / supₛ t := by simp_rw [div_eq_mul_inv, infₛ_mul, infₛ_inv]
-#align Inf_div infₛ_div
-#align Inf_sub infₛ_sub
+theorem sInf_div : sInf (s / t) = sInf s / sSup t := by simp_rw [div_eq_mul_inv, sInf_mul, sInf_inv]
+#align Inf_div sInf_div
+#align Inf_sub sInf_sub
 
 end Group
 
Diff
@@ -75,7 +75,7 @@ variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1081 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1083 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1081 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1083) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1096 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1098 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1096 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1098)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1118 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1120 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1118 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1120)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1133 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1135 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1133 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1135)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1077 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1079) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1092 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1094)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1114 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1116)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1129 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1131)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
 Case conversion may be inaccurate. Consider using '#align cSup_inv csupₛ_invₓ'. -/
 @[to_additive]
 theorem csupₛ_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : supₛ s⁻¹ = (infₛ s)⁻¹ :=
@@ -89,7 +89,7 @@ theorem csupₛ_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : supₛ s⁻¹ =
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) s)) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1226 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1228 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1226 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1228) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1241 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1243 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1241 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1243)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1263 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1265 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1263 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1265)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1278 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1280 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1278 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1280)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1222 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1224) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1237 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1239)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1259 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1261)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1274 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1276)] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2))))) s)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_2)))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
 Case conversion may be inaccurate. Consider using '#align cInf_inv cinfₛ_invₓ'. -/
 @[to_additive]
 theorem cinfₛ_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : infₛ s⁻¹ = (supₛ s)⁻¹ :=
@@ -103,7 +103,7 @@ theorem cinfₛ_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : infₛ s⁻¹ =
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1371 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1373 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1371 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1373) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1386 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1388 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1386 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1388)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1408 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1410 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1408 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1410)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1423 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1425 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1423 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1425)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1367 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1369 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1367 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1369) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1382 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1384 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1382 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1384)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1404 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1406 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1404 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1406)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1419 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1421 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1419 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1421)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_mul csupₛ_mulₓ'. -/
 @[to_additive]
 theorem csupₛ_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
@@ -117,7 +117,7 @@ theorem csupₛ_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempt
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1505 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1507 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1505 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1507) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1520 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1522 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1520 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1522)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1542 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1544 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1542 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1544)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1557 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1559 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1557 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1559)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1501 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1503 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1501 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1503) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1516 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1518 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1516 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1518)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1538 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1540 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1538 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1540)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1553 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1555 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1553 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1555)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) s t)) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_mul cinfₛ_mulₓ'. -/
 @[to_additive]
 theorem cinfₛ_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
@@ -131,7 +131,7 @@ theorem cinfₛ_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempt
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1639 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1641 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1639 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1641) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1654 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1656 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1654 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1656)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1676 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1678 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1676 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1678)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1691 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1693 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1691 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1693)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1635 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1637 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1635 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1637) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1650 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1652 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1650 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1652)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1672 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1674 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1672 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1674)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1687 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1689 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1687 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1689)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_div csupₛ_divₓ'. -/
 @[to_additive]
 theorem csupₛ_div (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
@@ -144,7 +144,7 @@ theorem csupₛ_div (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempt
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))))] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1784 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1786 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1784 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1786) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1799 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1801 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1799 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1801)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1821 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1823 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1821 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1823)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1836 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1838 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1836 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1838)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1780 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1782 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1780 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1782) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1795 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1797 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1795 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1797)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1817 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1819 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1817 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1819)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1832 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.1834 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.1832 x._@.Mathlib.Algebra.Order.Pointwise._hyg.1834)] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α t) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_div cinfₛ_divₓ'. -/
 @[to_additive]
 theorem cinfₛ_div (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
@@ -265,7 +265,7 @@ theorem supₛ_div : supₛ (s / t) = supₛ s / infₛ t := by simp_rw [div_eq_
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))))] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.817 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.819 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.817 x._@.Mathlib.Algebra.Order.Pointwise._hyg.819) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.832 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.834 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.832 x._@.Mathlib.Algebra.Order.Pointwise._hyg.834)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.854 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.856 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.854 x._@.Mathlib.Algebra.Order.Pointwise._hyg.856)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.869 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.871 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.869 x._@.Mathlib.Algebra.Order.Pointwise._hyg.871)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Group.{u1} α] [_inst_3 : CovariantClass.{u1, u1} α α (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.815 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.817 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.815 x._@.Mathlib.Algebra.Order.Pointwise._hyg.817) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.830 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.832 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.830 x._@.Mathlib.Algebra.Order.Pointwise._hyg.832)] [_inst_4 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.852 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.854 : α) => HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.852 x._@.Mathlib.Algebra.Order.Pointwise._hyg.854)) (fun (x._@.Mathlib.Algebra.Order.Pointwise._hyg.867 : α) (x._@.Mathlib.Algebra.Order.Pointwise._hyg.869 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Algebra.Order.Pointwise._hyg.867 x._@.Mathlib.Algebra.Order.Pointwise._hyg.869)] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2)))) s t)) (HDiv.hDiv.{u1, u1, u1} α α α (instHDiv.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_2))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (CompleteLattice.toConditionallyCompleteLattice.{u1} α _inst_1)) t))
 Case conversion may be inaccurate. Consider using '#align Inf_div infₛ_divₓ'. -/
 @[to_additive]
 theorem infₛ_div : infₛ (s / t) = infₛ s / supₛ t := by simp_rw [div_eq_mul_inv, infₛ_mul, infₛ_inv]

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 1 (#12338)

A PR accompanying #12339.

Zulip discussion

Diff
@@ -186,8 +186,8 @@ theorem smul_Ioo : r • Ioo a b = Ioo (r • a) (r • b) := by
   constructor
   · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩
     constructor
-    exact (mul_lt_mul_left hr).mpr a_h_left_left
-    exact (mul_lt_mul_left hr).mpr a_h_left_right
+    · exact (mul_lt_mul_left hr).mpr a_h_left_left
+    · exact (mul_lt_mul_left hr).mpr a_h_left_right
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(lt_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩
@@ -200,8 +200,8 @@ theorem smul_Icc : r • Icc a b = Icc (r • a) (r • b) := by
   constructor
   · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩
     constructor
-    exact (mul_le_mul_left hr).mpr a_h_left_left
-    exact (mul_le_mul_left hr).mpr a_h_left_right
+    · exact (mul_le_mul_left hr).mpr a_h_left_left
+    · exact (mul_le_mul_left hr).mpr a_h_left_right
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_le_iff' hr).mpr a_right⟩, _⟩
@@ -214,8 +214,8 @@ theorem smul_Ico : r • Ico a b = Ico (r • a) (r • b) := by
   constructor
   · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩
     constructor
-    exact (mul_le_mul_left hr).mpr a_h_left_left
-    exact (mul_lt_mul_left hr).mpr a_h_left_right
+    · exact (mul_le_mul_left hr).mpr a_h_left_left
+    · exact (mul_lt_mul_left hr).mpr a_h_left_right
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩
@@ -228,8 +228,8 @@ theorem smul_Ioc : r • Ioc a b = Ioc (r • a) (r • b) := by
   constructor
   · rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩
     constructor
-    exact (mul_lt_mul_left hr).mpr a_h_left_left
-    exact (mul_le_mul_left hr).mpr a_h_left_right
+    · exact (mul_lt_mul_left hr).mpr a_h_left_left
+    · exact (mul_le_mul_left hr).mpr a_h_left_right
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(lt_div_iff' hr).mpr a_left, (div_le_iff' hr).mpr a_right⟩, _⟩
@@ -245,8 +245,8 @@ theorem smul_Ioi : r • Ioi a = Ioi (r • a) := by
   · rintro h
     use x / r
     constructor
-    exact (lt_div_iff' hr).mpr h
-    exact mul_div_cancel₀ _ (ne_of_gt hr)
+    · exact (lt_div_iff' hr).mpr h
+    · exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Ioi LinearOrderedField.smul_Ioi
 
 theorem smul_Iio : r • Iio a = Iio (r • a) := by
@@ -258,8 +258,8 @@ theorem smul_Iio : r • Iio a = Iio (r • a) := by
   · rintro h
     use x / r
     constructor
-    exact (div_lt_iff' hr).mpr h
-    exact mul_div_cancel₀ _ (ne_of_gt hr)
+    · exact (div_lt_iff' hr).mpr h
+    · exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Iio LinearOrderedField.smul_Iio
 
 theorem smul_Ici : r • Ici a = Ici (r • a) := by
@@ -271,8 +271,8 @@ theorem smul_Ici : r • Ici a = Ici (r • a) := by
   · rintro h
     use x / r
     constructor
-    exact (le_div_iff' hr).mpr h
-    exact mul_div_cancel₀ _ (ne_of_gt hr)
+    · exact (le_div_iff' hr).mpr h
+    · exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Ici LinearOrderedField.smul_Ici
 
 theorem smul_Iic : r • Iic a = Iic (r • a) := by
@@ -284,8 +284,8 @@ theorem smul_Iic : r • Iic a = Iic (r • a) := by
   · rintro h
     use x / r
     constructor
-    exact (div_le_iff' hr).mpr h
-    exact mul_div_cancel₀ _ (ne_of_gt hr)
+    · exact (div_le_iff' hr).mpr h
+    · exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Iic LinearOrderedField.smul_Iic
 
 end LinearOrderedField
chore: Rename mul-div cancellation lemmas (#11530)

Lemma names around cancellation of multiplication and division are a mess.

This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero lemma name, the Group lemma, the AddGroup lemma name).

| Statement | New name | Old name | |

Diff
@@ -191,7 +191,7 @@ theorem smul_Ioo : r • Ioo a b = Ioo (r • a) (r • b) := by
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(lt_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩
-    rw [mul_div_cancel' _ (ne_of_gt hr)]
+    rw [mul_div_cancel₀ _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ioo LinearOrderedField.smul_Ioo
 
 theorem smul_Icc : r • Icc a b = Icc (r • a) (r • b) := by
@@ -205,7 +205,7 @@ theorem smul_Icc : r • Icc a b = Icc (r • a) (r • b) := by
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_le_iff' hr).mpr a_right⟩, _⟩
-    rw [mul_div_cancel' _ (ne_of_gt hr)]
+    rw [mul_div_cancel₀ _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Icc LinearOrderedField.smul_Icc
 
 theorem smul_Ico : r • Ico a b = Ico (r • a) (r • b) := by
@@ -219,7 +219,7 @@ theorem smul_Ico : r • Ico a b = Ico (r • a) (r • b) := by
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩
-    rw [mul_div_cancel' _ (ne_of_gt hr)]
+    rw [mul_div_cancel₀ _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ico LinearOrderedField.smul_Ico
 
 theorem smul_Ioc : r • Ioc a b = Ioc (r • a) (r • b) := by
@@ -233,7 +233,7 @@ theorem smul_Ioc : r • Ioc a b = Ioc (r • a) (r • b) := by
   · rintro ⟨a_left, a_right⟩
     use x / r
     refine' ⟨⟨(lt_div_iff' hr).mpr a_left, (div_le_iff' hr).mpr a_right⟩, _⟩
-    rw [mul_div_cancel' _ (ne_of_gt hr)]
+    rw [mul_div_cancel₀ _ (ne_of_gt hr)]
 #align linear_ordered_field.smul_Ioc LinearOrderedField.smul_Ioc
 
 theorem smul_Ioi : r • Ioi a = Ioi (r • a) := by
@@ -246,7 +246,7 @@ theorem smul_Ioi : r • Ioi a = Ioi (r • a) := by
     use x / r
     constructor
     exact (lt_div_iff' hr).mpr h
-    exact mul_div_cancel' _ (ne_of_gt hr)
+    exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Ioi LinearOrderedField.smul_Ioi
 
 theorem smul_Iio : r • Iio a = Iio (r • a) := by
@@ -259,7 +259,7 @@ theorem smul_Iio : r • Iio a = Iio (r • a) := by
     use x / r
     constructor
     exact (div_lt_iff' hr).mpr h
-    exact mul_div_cancel' _ (ne_of_gt hr)
+    exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Iio LinearOrderedField.smul_Iio
 
 theorem smul_Ici : r • Ici a = Ici (r • a) := by
@@ -272,7 +272,7 @@ theorem smul_Ici : r • Ici a = Ici (r • a) := by
     use x / r
     constructor
     exact (le_div_iff' hr).mpr h
-    exact mul_div_cancel' _ (ne_of_gt hr)
+    exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Ici LinearOrderedField.smul_Ici
 
 theorem smul_Iic : r • Iic a = Iic (r • a) := by
@@ -285,7 +285,7 @@ theorem smul_Iic : r • Iic a = Iic (r • a) := by
     use x / r
     constructor
     exact (div_le_iff' hr).mpr h
-    exact mul_div_cancel' _ (ne_of_gt hr)
+    exact mul_div_cancel₀ _ (ne_of_gt hr)
 #align linear_ordered_field.smul_Iic LinearOrderedField.smul_Iic
 
 end LinearOrderedField
style: reduce spacing variation in "porting note" comments (#10886)

In this pull request, I have systematically eliminated the leading whitespace preceding the colon (:) within all unlabelled or unclassified porting notes. This adjustment facilitates a more efficient review process for the remaining notes by ensuring no entries are overlooked due to formatting inconsistencies.

Diff
@@ -27,7 +27,7 @@ open Pointwise
 
 variable {α : Type*}
 
--- Porting note : Swapped the place of `CompleteLattice` and `ConditionallyCompleteLattice`
+-- Porting note: Swapped the place of `CompleteLattice` and `ConditionallyCompleteLattice`
 -- due to simpNF problem between `sSup_xx` `csSup_xx`.
 
 section CompleteLattice
chore: remove include/omit porting notes (#10517)

See this Zulip discussion.

Diff
@@ -180,8 +180,6 @@ variable {K : Type*} [LinearOrderedField K] {a b r : K} (hr : 0 < r)
 
 open Set
 
--- Porting note: Removing `include hr`
-
 theorem smul_Ioo : r • Ioo a b = Ioo (r • a) (r • b) := by
   ext x
   simp only [mem_smul_set, smul_eq_mul, mem_Ioo]
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -25,7 +25,7 @@ open Function Set
 
 open Pointwise
 
-variable {α : Type _}
+variable {α : Type*}
 
 -- Porting note : Swapped the place of `CompleteLattice` and `ConditionallyCompleteLattice`
 -- due to simpNF problem between `sSup_xx` `csSup_xx`.
@@ -176,7 +176,7 @@ end ConditionallyCompleteLattice
 
 namespace LinearOrderedField
 
-variable {K : Type _} [LinearOrderedField K] {a b r : K} (hr : 0 < r)
+variable {K : Type*} [LinearOrderedField K] {a b r : K} (hr : 0 < r)
 
 open Set
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Alex J. Best. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Alex J. Best, Yaël Dillies
-
-! This file was ported from Lean 3 source module algebra.order.pointwise
-! leanprover-community/mathlib commit 9003f28797c0664a49e4179487267c494477d853
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Bounds
 import Mathlib.Algebra.Order.Field.Basic -- Porting note: `LinearOrderedField`, etc
 import Mathlib.Data.Set.Pointwise.SMul
 
+#align_import algebra.order.pointwise from "leanprover-community/mathlib"@"9003f28797c0664a49e4179487267c494477d853"
+
 /-!
 # Pointwise operations on ordered algebraic objects
 
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -19,7 +19,7 @@ This file contains lemmas about the effect of pointwise operations on sets with
 
 ## TODO
 
-`supₛ (s • t) = supₛ s • supₛ t` and `infₛ (s • t) = infₛ s • infₛ t` hold as well but
+`sSup (s • t) = sSup s • sSup t` and `sInf (s • t) = sInf s • sInf t` hold as well but
 `CovariantClass` is currently not polymorphic enough to state it.
 -/
 
@@ -31,7 +31,7 @@ open Pointwise
 variable {α : Type _}
 
 -- Porting note : Swapped the place of `CompleteLattice` and `ConditionallyCompleteLattice`
--- due to simpNF problem between `supₛ_xx` `csupₛ_xx`.
+-- due to simpNF problem between `sSup_xx` `csSup_xx`.
 
 section CompleteLattice
 
@@ -42,16 +42,16 @@ section One
 variable [One α]
 
 @[to_additive (attr := simp)]
-theorem supₛ_one : supₛ (1 : Set α) = 1 :=
-  supₛ_singleton
-#align Sup_zero supₛ_zero
-#align Sup_one supₛ_one
+theorem sSup_one : sSup (1 : Set α) = 1 :=
+  sSup_singleton
+#align Sup_zero sSup_zero
+#align Sup_one sSup_one
 
 @[to_additive (attr := simp)]
-theorem infₛ_one : infₛ (1 : Set α) = 1 :=
-  infₛ_singleton
-#align Inf_zero infₛ_zero
-#align Inf_one infₛ_one
+theorem sInf_one : sInf (1 : Set α) = 1 :=
+  sInf_singleton
+#align Inf_zero sInf_zero
+#align Inf_one sInf_one
 
 end One
 
@@ -61,42 +61,42 @@ variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass
   (s t : Set α)
 
 @[to_additive]
-theorem supₛ_inv (s : Set α) : supₛ s⁻¹ = (infₛ s)⁻¹ := by
-  rw [← image_inv, supₛ_image]
-  exact ((OrderIso.inv α).map_infₛ _).symm
-#align Sup_inv supₛ_inv
-#align Sup_neg supₛ_neg
+theorem sSup_inv (s : Set α) : sSup s⁻¹ = (sInf s)⁻¹ := by
+  rw [← image_inv, sSup_image]
+  exact ((OrderIso.inv α).map_sInf _).symm
+#align Sup_inv sSup_inv
+#align Sup_neg sSup_neg
 
 @[to_additive]
-theorem infₛ_inv (s : Set α) : infₛ s⁻¹ = (supₛ s)⁻¹ := by
-  rw [← image_inv, infₛ_image]
-  exact ((OrderIso.inv α).map_supₛ _).symm
-#align Inf_inv infₛ_inv
-#align Inf_neg infₛ_neg
+theorem sInf_inv (s : Set α) : sInf s⁻¹ = (sSup s)⁻¹ := by
+  rw [← image_inv, sInf_image]
+  exact ((OrderIso.inv α).map_sSup _).symm
+#align Inf_inv sInf_inv
+#align Inf_neg sInf_neg
 
 @[to_additive]
-theorem supₛ_mul : supₛ (s * t) = supₛ s * supₛ t :=
-  (supₛ_image2_eq_supₛ_supₛ fun _ => (OrderIso.mulRight _).to_galoisConnection) fun _ =>
+theorem sSup_mul : sSup (s * t) = sSup s * sSup t :=
+  (sSup_image2_eq_sSup_sSup fun _ => (OrderIso.mulRight _).to_galoisConnection) fun _ =>
     (OrderIso.mulLeft _).to_galoisConnection
-#align Sup_mul supₛ_mul
-#align Sup_add supₛ_add
+#align Sup_mul sSup_mul
+#align Sup_add sSup_add
 
 @[to_additive]
-theorem infₛ_mul : infₛ (s * t) = infₛ s * infₛ t :=
-  (infₛ_image2_eq_infₛ_infₛ fun _ => (OrderIso.mulRight _).symm.to_galoisConnection) fun _ =>
+theorem sInf_mul : sInf (s * t) = sInf s * sInf t :=
+  (sInf_image2_eq_sInf_sInf fun _ => (OrderIso.mulRight _).symm.to_galoisConnection) fun _ =>
     (OrderIso.mulLeft _).symm.to_galoisConnection
-#align Inf_mul infₛ_mul
-#align Inf_add infₛ_add
+#align Inf_mul sInf_mul
+#align Inf_add sInf_add
 
 @[to_additive]
-theorem supₛ_div : supₛ (s / t) = supₛ s / infₛ t := by simp_rw [div_eq_mul_inv, supₛ_mul, supₛ_inv]
-#align Sup_div supₛ_div
-#align Sup_sub supₛ_sub
+theorem sSup_div : sSup (s / t) = sSup s / sInf t := by simp_rw [div_eq_mul_inv, sSup_mul, sSup_inv]
+#align Sup_div sSup_div
+#align Sup_sub sSup_sub
 
 @[to_additive]
-theorem infₛ_div : infₛ (s / t) = infₛ s / supₛ t := by simp_rw [div_eq_mul_inv, infₛ_mul, infₛ_inv]
-#align Inf_div infₛ_div
-#align Inf_sub infₛ_sub
+theorem sInf_div : sInf (s / t) = sInf s / sSup t := by simp_rw [div_eq_mul_inv, sInf_mul, sInf_inv]
+#align Inf_div sInf_div
+#align Inf_sub sInf_sub
 
 end Group
 
@@ -111,16 +111,16 @@ section One
 variable [One α]
 
 @[to_additive (attr := simp)]
-theorem csupₛ_one : supₛ (1 : Set α) = 1 :=
-  csupₛ_singleton _
-#align cSup_zero csupₛ_zero
-#align cSup_one csupₛ_one
+theorem csSup_one : sSup (1 : Set α) = 1 :=
+  csSup_singleton _
+#align cSup_zero csSup_zero
+#align cSup_one csSup_one
 
 @[to_additive (attr := simp)]
-theorem cinfₛ_one : infₛ (1 : Set α) = 1 :=
-  cinfₛ_singleton _
-#align cInf_zero cinfₛ_zero
-#align cInf_one cinfₛ_one
+theorem csInf_one : sInf (1 : Set α) = 1 :=
+  csInf_singleton _
+#align cInf_zero csInf_zero
+#align cInf_one csInf_one
 
 end One
 
@@ -130,48 +130,48 @@ variable [Group α] [CovariantClass α α (· * ·) (· ≤ ·)] [CovariantClass
   {s t : Set α}
 
 @[to_additive]
-theorem csupₛ_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : supₛ s⁻¹ = (infₛ s)⁻¹ := by
+theorem csSup_inv (hs₀ : s.Nonempty) (hs₁ : BddBelow s) : sSup s⁻¹ = (sInf s)⁻¹ := by
   rw [← image_inv]
-  exact ((OrderIso.inv α).map_cinfₛ' hs₀ hs₁).symm
-#align cSup_inv csupₛ_inv
-#align cSup_neg csupₛ_neg
+  exact ((OrderIso.inv α).map_csInf' hs₀ hs₁).symm
+#align cSup_inv csSup_inv
+#align cSup_neg csSup_neg
 
 @[to_additive]
-theorem cinfₛ_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : infₛ s⁻¹ = (supₛ s)⁻¹ := by
+theorem csInf_inv (hs₀ : s.Nonempty) (hs₁ : BddAbove s) : sInf s⁻¹ = (sSup s)⁻¹ := by
   rw [← image_inv]
-  exact ((OrderIso.inv α).map_csupₛ' hs₀ hs₁).symm
-#align cInf_inv cinfₛ_inv
-#align cInf_neg cinfₛ_neg
+  exact ((OrderIso.inv α).map_csSup' hs₀ hs₁).symm
+#align cInf_inv csInf_inv
+#align cInf_neg csInf_neg
 
 @[to_additive]
-theorem csupₛ_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
-    supₛ (s * t) = supₛ s * supₛ t :=
-  csupₛ_image2_eq_csupₛ_csupₛ (fun _ => (OrderIso.mulRight _).to_galoisConnection)
+theorem csSup_mul (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
+    sSup (s * t) = sSup s * sSup t :=
+  csSup_image2_eq_csSup_csSup (fun _ => (OrderIso.mulRight _).to_galoisConnection)
     (fun _ => (OrderIso.mulLeft _).to_galoisConnection) hs₀ hs₁ ht₀ ht₁
-#align cSup_mul csupₛ_mul
-#align cSup_add csupₛ_add
+#align cSup_mul csSup_mul
+#align cSup_add csSup_add
 
 @[to_additive]
-theorem cinfₛ_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
-    infₛ (s * t) = infₛ s * infₛ t :=
-  cinfₛ_image2_eq_cinfₛ_cinfₛ (fun _ => (OrderIso.mulRight _).symm.to_galoisConnection)
+theorem csInf_mul (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
+    sInf (s * t) = sInf s * sInf t :=
+  csInf_image2_eq_csInf_csInf (fun _ => (OrderIso.mulRight _).symm.to_galoisConnection)
     (fun _ => (OrderIso.mulLeft _).symm.to_galoisConnection) hs₀ hs₁ ht₀ ht₁
-#align cInf_mul cinfₛ_mul
-#align cInf_add cinfₛ_add
+#align cInf_mul csInf_mul
+#align cInf_add csInf_add
 
 @[to_additive]
-theorem csupₛ_div (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
-    supₛ (s / t) = supₛ s / infₛ t := by
-  rw [div_eq_mul_inv, csupₛ_mul hs₀ hs₁ ht₀.inv ht₁.inv, csupₛ_inv ht₀ ht₁, div_eq_mul_inv]
-#align cSup_div csupₛ_div
-#align cSup_sub csupₛ_sub
+theorem csSup_div (hs₀ : s.Nonempty) (hs₁ : BddAbove s) (ht₀ : t.Nonempty) (ht₁ : BddBelow t) :
+    sSup (s / t) = sSup s / sInf t := by
+  rw [div_eq_mul_inv, csSup_mul hs₀ hs₁ ht₀.inv ht₁.inv, csSup_inv ht₀ ht₁, div_eq_mul_inv]
+#align cSup_div csSup_div
+#align cSup_sub csSup_sub
 
 @[to_additive]
-theorem cinfₛ_div (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
-    infₛ (s / t) = infₛ s / supₛ t := by
-  rw [div_eq_mul_inv, cinfₛ_mul hs₀ hs₁ ht₀.inv ht₁.inv, cinfₛ_inv ht₀ ht₁, div_eq_mul_inv]
-#align cInf_div cinfₛ_div
-#align cInf_sub cinfₛ_sub
+theorem csInf_div (hs₀ : s.Nonempty) (hs₁ : BddBelow s) (ht₀ : t.Nonempty) (ht₁ : BddAbove t) :
+    sInf (s / t) = sInf s / sSup t := by
+  rw [div_eq_mul_inv, csInf_mul hs₀ hs₁ ht₀.inv ht₁.inv, csInf_inv ht₀ ht₁, div_eq_mul_inv]
+#align cInf_div csInf_div
+#align cInf_sub csInf_sub
 
 end Group
 
chore: tidy various files (#2236)
Diff
@@ -19,7 +19,7 @@ This file contains lemmas about the effect of pointwise operations on sets with
 
 ## TODO
 
-`Sup (s • t) = Sup s • Sup t` and `Inf (s • t) = Inf s • Inf t` hold as well but
+`supₛ (s • t) = supₛ s • supₛ t` and `infₛ (s • t) = infₛ s • infₛ t` hold as well but
 `CovariantClass` is currently not polymorphic enough to state it.
 -/
 
feat: port Algebra.Order.Pointwise (#1533)

Co-authored-by: qawbecrdtey <qawbecrdtey@naver.com>

Dependencies 3 + 160

161 files ported (98.2%)
67014 lines ported (98.5%)
Show graph

The unported dependencies are