algebra.order.upper_lowerMathlib.Algebra.Order.UpperLower

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(order/upper_lower/basic): Linear order (#19068)

Upper/lower sets on a linear order themselves form a linear order.

Diff
@@ -34,13 +34,10 @@ section ordered_comm_group
 variables {α : Type*} [ordered_comm_group α] {s t : set α} {a : α}
 
 @[to_additive] lemma is_upper_set.smul (hs : is_upper_set s) : is_upper_set (a • s) :=
-begin
-  rintro _ y hxy ⟨x, hx, rfl⟩,
-  exact mem_smul_set_iff_inv_smul_mem.2 (hs (le_inv_mul_iff_mul_le.2 hxy) hx),
-end
+hs.image $ order_iso.mul_left _
 
 @[to_additive] lemma is_lower_set.smul (hs : is_lower_set s) : is_lower_set (a • s) :=
-hs.of_dual.smul
+hs.image $ order_iso.mul_left _
 
 @[to_additive] lemma set.ord_connected.smul (hs : s.ord_connected) : (a • s).ord_connected :=
 begin
@@ -55,10 +52,10 @@ by { rw [←smul_eq_mul, ←bUnion_smul_set], exact is_upper_set_Union₂ (λ x
 by { rw mul_comm, exact hs.mul_left }
 
 @[to_additive] lemma is_lower_set.mul_left (ht : is_lower_set t) : is_lower_set (s * t) :=
-ht.of_dual.mul_left
+ht.to_dual.mul_left
 
 @[to_additive] lemma is_lower_set.mul_right (hs : is_lower_set s) : is_lower_set (s * t) :=
-hs.of_dual.mul_right
+hs.to_dual.mul_right
 
 @[to_additive] lemma is_upper_set.inv (hs : is_upper_set s) : is_lower_set s⁻¹ :=
 λ x y h, hs $ inv_le_inv' h
@@ -73,10 +70,10 @@ by { rw div_eq_mul_inv, exact ht.inv.mul_left }
 by { rw div_eq_mul_inv, exact hs.mul_right }
 
 @[to_additive] lemma is_lower_set.div_left (ht : is_lower_set t) : is_upper_set (s / t) :=
-ht.of_dual.div_left
+ht.to_dual.div_left
 
 @[to_additive] lemma is_lower_set.div_right (hs : is_lower_set s) : is_lower_set (s / t) :=
-hs.of_dual.div_right
+hs.to_dual.div_right
 
 namespace upper_set
 

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 -/
 import Algebra.Order.Group.Defs
-import Data.Set.Pointwise.Smul
+import Data.Set.Pointwise.SMul
 import Order.UpperLower.Basic
 
 #align_import algebra.order.upper_lower from "leanprover-community/mathlib"@"c0c52abb75074ed8b73a948341f50521fbf43b4c"
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2022 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 -/
-import Mathbin.Algebra.Order.Group.Defs
-import Mathbin.Data.Set.Pointwise.Smul
-import Mathbin.Order.UpperLower.Basic
+import Algebra.Order.Group.Defs
+import Data.Set.Pointwise.Smul
+import Order.UpperLower.Basic
 
 #align_import algebra.order.upper_lower from "leanprover-community/mathlib"@"c0c52abb75074ed8b73a948341f50521fbf43b4c"
 
Diff
@@ -94,7 +94,7 @@ theorem IsUpperSet.mul_right (hs : IsUpperSet s) : IsUpperSet (s * t) := by rw [
 #print IsLowerSet.mul_left /-
 @[to_additive]
 theorem IsLowerSet.mul_left (ht : IsLowerSet t) : IsLowerSet (s * t) :=
-  ht.toDual.mul_left
+  ht.toDual.hMul_left
 #align is_lower_set.mul_left IsLowerSet.mul_left
 #align is_lower_set.add_left IsLowerSet.add_left
 -/
@@ -102,7 +102,7 @@ theorem IsLowerSet.mul_left (ht : IsLowerSet t) : IsLowerSet (s * t) :=
 #print IsLowerSet.mul_right /-
 @[to_additive]
 theorem IsLowerSet.mul_right (hs : IsLowerSet s) : IsLowerSet (s * t) :=
-  hs.toDual.mul_right
+  hs.toDual.hMul_right
 #align is_lower_set.mul_right IsLowerSet.mul_right
 #align is_lower_set.add_right IsLowerSet.add_right
 -/
@@ -161,7 +161,7 @@ instance : One (UpperSet α) :=
 
 @[to_additive]
 instance : Mul (UpperSet α) :=
-  ⟨fun s t => ⟨image2 (· * ·) s t, s.2.mul_right⟩⟩
+  ⟨fun s t => ⟨image2 (· * ·) s t, s.2.hMul_right⟩⟩
 
 @[to_additive]
 instance : Div (UpperSet α) :=
@@ -241,7 +241,7 @@ instance : One (LowerSet α) :=
 
 @[to_additive]
 instance : Mul (LowerSet α) :=
-  ⟨fun s t => ⟨image2 (· * ·) s t, s.2.mul_right⟩⟩
+  ⟨fun s t => ⟨image2 (· * ·) s t, s.2.hMul_right⟩⟩
 
 @[to_additive]
 instance : Div (LowerSet α) :=
Diff
@@ -7,7 +7,7 @@ import Mathbin.Algebra.Order.Group.Defs
 import Mathbin.Data.Set.Pointwise.Smul
 import Mathbin.Order.UpperLower.Basic
 
-#align_import algebra.order.upper_lower from "leanprover-community/mathlib"@"ad0089aca372256fe53dde13ca0dfea569bf5ac7"
+#align_import algebra.order.upper_lower from "leanprover-community/mathlib"@"c0c52abb75074ed8b73a948341f50521fbf43b4c"
 
 /-!
 # Algebraic operations on upper/lower sets
@@ -52,9 +52,7 @@ variable {α : Type _} [OrderedCommGroup α] {s t : Set α} {a : α}
 #print IsUpperSet.smul /-
 @[to_additive]
 theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) :=
-  by
-  rintro _ y hxy ⟨x, hx, rfl⟩
-  exact mem_smul_set_iff_inv_smul_mem.2 (hs (le_inv_mul_iff_mul_le.2 hxy) hx)
+  hs.image <| OrderIso.mulLeft _
 #align is_upper_set.smul IsUpperSet.smul
 #align is_upper_set.vadd IsUpperSet.vadd
 -/
@@ -62,7 +60,7 @@ theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) :=
 #print IsLowerSet.smul /-
 @[to_additive]
 theorem IsLowerSet.smul (hs : IsLowerSet s) : IsLowerSet (a • s) :=
-  hs.ofDual.smul
+  hs.image <| OrderIso.mulLeft _
 #align is_lower_set.smul IsLowerSet.smul
 #align is_lower_set.vadd IsLowerSet.vadd
 -/
@@ -96,7 +94,7 @@ theorem IsUpperSet.mul_right (hs : IsUpperSet s) : IsUpperSet (s * t) := by rw [
 #print IsLowerSet.mul_left /-
 @[to_additive]
 theorem IsLowerSet.mul_left (ht : IsLowerSet t) : IsLowerSet (s * t) :=
-  ht.ofDual.mul_left
+  ht.toDual.mul_left
 #align is_lower_set.mul_left IsLowerSet.mul_left
 #align is_lower_set.add_left IsLowerSet.add_left
 -/
@@ -104,7 +102,7 @@ theorem IsLowerSet.mul_left (ht : IsLowerSet t) : IsLowerSet (s * t) :=
 #print IsLowerSet.mul_right /-
 @[to_additive]
 theorem IsLowerSet.mul_right (hs : IsLowerSet s) : IsLowerSet (s * t) :=
-  hs.ofDual.mul_right
+  hs.toDual.mul_right
 #align is_lower_set.mul_right IsLowerSet.mul_right
 #align is_lower_set.add_right IsLowerSet.add_right
 -/
@@ -142,7 +140,7 @@ theorem IsUpperSet.div_right (hs : IsUpperSet s) : IsUpperSet (s / t) := by rw [
 #print IsLowerSet.div_left /-
 @[to_additive]
 theorem IsLowerSet.div_left (ht : IsLowerSet t) : IsUpperSet (s / t) :=
-  ht.ofDual.div_left
+  ht.toDual.div_left
 #align is_lower_set.div_left IsLowerSet.div_left
 #align is_lower_set.sub_left IsLowerSet.sub_left
 -/
@@ -150,7 +148,7 @@ theorem IsLowerSet.div_left (ht : IsLowerSet t) : IsUpperSet (s / t) :=
 #print IsLowerSet.div_right /-
 @[to_additive]
 theorem IsLowerSet.div_right (hs : IsLowerSet s) : IsLowerSet (s / t) :=
-  hs.ofDual.div_right
+  hs.toDual.div_right
 #align is_lower_set.div_right IsLowerSet.div_right
 #align is_lower_set.sub_right IsLowerSet.sub_right
 -/
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2022 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module algebra.order.upper_lower
-! leanprover-community/mathlib commit ad0089aca372256fe53dde13ca0dfea569bf5ac7
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.Order.Group.Defs
 import Mathbin.Data.Set.Pointwise.Smul
 import Mathbin.Order.UpperLower.Basic
 
+#align_import algebra.order.upper_lower from "leanprover-community/mathlib"@"ad0089aca372256fe53dde13ca0dfea569bf5ac7"
+
 /-!
 # Algebraic operations on upper/lower sets
 
Diff
@@ -30,17 +30,21 @@ section OrderedCommMonoid
 
 variable {α : Type _} [OrderedCommMonoid α] {s : Set α} {x : α}
 
+#print IsUpperSet.smul_subset /-
 @[to_additive]
 theorem IsUpperSet.smul_subset (hs : IsUpperSet s) (hx : 1 ≤ x) : x • s ⊆ s :=
   smul_set_subset_iff.2 fun y => hs <| le_mul_of_one_le_left' hx
 #align is_upper_set.smul_subset IsUpperSet.smul_subset
 #align is_upper_set.vadd_subset IsUpperSet.vadd_subset
+-/
 
+#print IsLowerSet.smul_subset /-
 @[to_additive]
 theorem IsLowerSet.smul_subset (hs : IsLowerSet s) (hx : x ≤ 1) : x • s ⊆ s :=
   smul_set_subset_iff.2 fun y => hs <| mul_le_of_le_one_left' hx
 #align is_lower_set.smul_subset IsLowerSet.smul_subset
 #align is_lower_set.vadd_subset IsLowerSet.vadd_subset
+-/
 
 end OrderedCommMonoid
 
@@ -48,6 +52,7 @@ section OrderedCommGroup
 
 variable {α : Type _} [OrderedCommGroup α] {s t : Set α} {a : α}
 
+#print IsUpperSet.smul /-
 @[to_additive]
 theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) :=
   by
@@ -55,13 +60,17 @@ theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) :=
   exact mem_smul_set_iff_inv_smul_mem.2 (hs (le_inv_mul_iff_mul_le.2 hxy) hx)
 #align is_upper_set.smul IsUpperSet.smul
 #align is_upper_set.vadd IsUpperSet.vadd
+-/
 
+#print IsLowerSet.smul /-
 @[to_additive]
 theorem IsLowerSet.smul (hs : IsLowerSet s) : IsLowerSet (a • s) :=
   hs.ofDual.smul
 #align is_lower_set.smul IsLowerSet.smul
 #align is_lower_set.vadd IsLowerSet.vadd
+-/
 
+#print Set.OrdConnected.smul /-
 @[to_additive]
 theorem Set.OrdConnected.smul (hs : s.OrdConnected) : (a • s).OrdConnected :=
   by
@@ -69,64 +78,85 @@ theorem Set.OrdConnected.smul (hs : s.OrdConnected) : (a • s).OrdConnected :=
   exact (upperClosure _).upper.smul.OrdConnected.inter (lowerClosure _).lower.smul.OrdConnected
 #align set.ord_connected.smul Set.OrdConnected.smul
 #align set.ord_connected.vadd Set.OrdConnected.vadd
+-/
 
+#print IsUpperSet.mul_left /-
 @[to_additive]
 theorem IsUpperSet.mul_left (ht : IsUpperSet t) : IsUpperSet (s * t) := by
   rw [← smul_eq_mul, ← bUnion_smul_set]; exact isUpperSet_iUnion₂ fun x hx => ht.smul
 #align is_upper_set.mul_left IsUpperSet.mul_left
 #align is_upper_set.add_left IsUpperSet.add_left
+-/
 
+#print IsUpperSet.mul_right /-
 @[to_additive]
 theorem IsUpperSet.mul_right (hs : IsUpperSet s) : IsUpperSet (s * t) := by rw [mul_comm];
   exact hs.mul_left
 #align is_upper_set.mul_right IsUpperSet.mul_right
 #align is_upper_set.add_right IsUpperSet.add_right
+-/
 
+#print IsLowerSet.mul_left /-
 @[to_additive]
 theorem IsLowerSet.mul_left (ht : IsLowerSet t) : IsLowerSet (s * t) :=
   ht.ofDual.mul_left
 #align is_lower_set.mul_left IsLowerSet.mul_left
 #align is_lower_set.add_left IsLowerSet.add_left
+-/
 
+#print IsLowerSet.mul_right /-
 @[to_additive]
 theorem IsLowerSet.mul_right (hs : IsLowerSet s) : IsLowerSet (s * t) :=
   hs.ofDual.mul_right
 #align is_lower_set.mul_right IsLowerSet.mul_right
 #align is_lower_set.add_right IsLowerSet.add_right
+-/
 
+#print IsUpperSet.inv /-
 @[to_additive]
 theorem IsUpperSet.inv (hs : IsUpperSet s) : IsLowerSet s⁻¹ := fun x y h => hs <| inv_le_inv' h
 #align is_upper_set.inv IsUpperSet.inv
 #align is_upper_set.neg IsUpperSet.neg
+-/
 
+#print IsLowerSet.inv /-
 @[to_additive]
 theorem IsLowerSet.inv (hs : IsLowerSet s) : IsUpperSet s⁻¹ := fun x y h => hs <| inv_le_inv' h
 #align is_lower_set.inv IsLowerSet.inv
 #align is_lower_set.neg IsLowerSet.neg
+-/
 
+#print IsUpperSet.div_left /-
 @[to_additive]
 theorem IsUpperSet.div_left (ht : IsUpperSet t) : IsLowerSet (s / t) := by rw [div_eq_mul_inv];
   exact ht.inv.mul_left
 #align is_upper_set.div_left IsUpperSet.div_left
 #align is_upper_set.sub_left IsUpperSet.sub_left
+-/
 
+#print IsUpperSet.div_right /-
 @[to_additive]
 theorem IsUpperSet.div_right (hs : IsUpperSet s) : IsUpperSet (s / t) := by rw [div_eq_mul_inv];
   exact hs.mul_right
 #align is_upper_set.div_right IsUpperSet.div_right
 #align is_upper_set.sub_right IsUpperSet.sub_right
+-/
 
+#print IsLowerSet.div_left /-
 @[to_additive]
 theorem IsLowerSet.div_left (ht : IsLowerSet t) : IsUpperSet (s / t) :=
   ht.ofDual.div_left
 #align is_lower_set.div_left IsLowerSet.div_left
 #align is_lower_set.sub_left IsLowerSet.sub_left
+-/
 
+#print IsLowerSet.div_right /-
 @[to_additive]
 theorem IsLowerSet.div_right (hs : IsLowerSet s) : IsLowerSet (s / t) :=
   hs.ofDual.div_right
 #align is_lower_set.div_right IsLowerSet.div_right
 #align is_lower_set.sub_right IsLowerSet.sub_right
+-/
 
 namespace UpperSet
 
@@ -146,11 +176,13 @@ instance : Div (UpperSet α) :=
 instance : SMul α (UpperSet α) :=
   ⟨fun a s => ⟨(· • ·) a '' s, s.2.smul⟩⟩
 
+#print UpperSet.coe_one /-
 @[simp, norm_cast, to_additive]
 theorem coe_one : ((1 : UpperSet α) : Set α) = Set.Ici 1 :=
   rfl
 #align upper_set.coe_one UpperSet.coe_one
 #align upper_set.coe_zero UpperSet.coe_zero
+-/
 
 @[simp, norm_cast, to_additive]
 theorem coe_smul (a : α) (s : UpperSet α) : (↑(a • s) : Set α) = a • s :=
@@ -158,23 +190,29 @@ theorem coe_smul (a : α) (s : UpperSet α) : (↑(a • s) : Set α) = a • s
 #align upper_set.coe_smul UpperSet.coe_smul
 #align upper_set.coe_vadd UpperSet.coe_vadd
 
+#print UpperSet.coe_mul /-
 @[simp, norm_cast, to_additive]
 theorem coe_mul (s t : UpperSet α) : (↑(s * t) : Set α) = s * t :=
   rfl
 #align upper_set.coe_mul UpperSet.coe_mul
 #align upper_set.coe_add UpperSet.coe_add
+-/
 
+#print UpperSet.coe_div /-
 @[simp, norm_cast, to_additive]
 theorem coe_div (s t : UpperSet α) : (↑(s / t) : Set α) = s / t :=
   rfl
 #align upper_set.coe_div UpperSet.coe_div
 #align upper_set.coe_sub UpperSet.coe_sub
+-/
 
+#print UpperSet.Ici_one /-
 @[simp, to_additive]
 theorem Ici_one : Ici (1 : α) = 1 :=
   rfl
 #align upper_set.Ici_one UpperSet.Ici_one
 #align upper_set.Ici_zero UpperSet.Ici_zero
+-/
 
 @[to_additive]
 instance : MulAction α (UpperSet α) :=
@@ -224,23 +262,29 @@ theorem coe_smul (a : α) (s : LowerSet α) : (↑(a • s) : Set α) = a • s
 #align lower_set.coe_smul LowerSet.coe_smul
 #align lower_set.coe_vadd LowerSet.coe_vadd
 
+#print LowerSet.coe_mul /-
 @[simp, norm_cast, to_additive]
 theorem coe_mul (s t : LowerSet α) : (↑(s * t) : Set α) = s * t :=
   rfl
 #align lower_set.coe_mul LowerSet.coe_mul
 #align lower_set.coe_add LowerSet.coe_add
+-/
 
+#print LowerSet.coe_div /-
 @[simp, norm_cast, to_additive]
 theorem coe_div (s t : LowerSet α) : (↑(s / t) : Set α) = s / t :=
   rfl
 #align lower_set.coe_div LowerSet.coe_div
 #align lower_set.coe_sub LowerSet.coe_sub
+-/
 
+#print LowerSet.Iic_one /-
 @[simp, to_additive]
 theorem Iic_one : Iic (1 : α) = 1 :=
   rfl
 #align lower_set.Iic_one LowerSet.Iic_one
 #align lower_set.Iic_zero LowerSet.Iic_zero
+-/
 
 @[to_additive]
 instance : MulAction α (LowerSet α) :=
@@ -268,69 +312,89 @@ end LowerSet
 
 variable (a s t)
 
+#print upperClosure_one /-
 @[simp, to_additive]
 theorem upperClosure_one : upperClosure (1 : Set α) = 1 :=
   upperClosure_singleton _
 #align upper_closure_one upperClosure_one
 #align upper_closure_zero upperClosure_zero
+-/
 
+#print lowerClosure_one /-
 @[simp, to_additive]
 theorem lowerClosure_one : lowerClosure (1 : Set α) = 1 :=
   lowerClosure_singleton _
 #align lower_closure_one lowerClosure_one
 #align lower_closure_zero lowerClosure_zero
+-/
 
+#print upperClosure_smul /-
 @[simp, to_additive]
 theorem upperClosure_smul : upperClosure (a • s) = a • upperClosure s :=
   upperClosure_image <| OrderIso.mulLeft a
 #align upper_closure_smul upperClosure_smul
 #align upper_closure_vadd upperClosure_vadd
+-/
 
+#print lowerClosure_smul /-
 @[simp, to_additive]
 theorem lowerClosure_smul : lowerClosure (a • s) = a • lowerClosure s :=
   lowerClosure_image <| OrderIso.mulLeft a
 #align lower_closure_smul lowerClosure_smul
 #align lower_closure_vadd lowerClosure_vadd
+-/
 
+#print mul_upperClosure /-
 @[to_additive]
 theorem mul_upperClosure : s * upperClosure t = upperClosure (s * t) := by
   simp_rw [← smul_eq_mul, ← bUnion_smul_set, upperClosure_iUnion, upperClosure_smul,
     UpperSet.coe_iInf₂, UpperSet.coe_smul]
 #align mul_upper_closure mul_upperClosure
 #align add_upper_closure add_upperClosure
+-/
 
+#print mul_lowerClosure /-
 @[to_additive]
 theorem mul_lowerClosure : s * lowerClosure t = lowerClosure (s * t) := by
   simp_rw [← smul_eq_mul, ← bUnion_smul_set, lowerClosure_iUnion, lowerClosure_smul,
     LowerSet.coe_iSup₂, LowerSet.coe_smul]
 #align mul_lower_closure mul_lowerClosure
 #align add_lower_closure add_lowerClosure
+-/
 
+#print upperClosure_mul /-
 @[to_additive]
 theorem upperClosure_mul : ↑(upperClosure s) * t = upperClosure (s * t) := by
   simp_rw [mul_comm _ t]; exact mul_upperClosure _ _
 #align upper_closure_mul upperClosure_mul
 #align upper_closure_add upperClosure_add
+-/
 
+#print lowerClosure_mul /-
 @[to_additive]
 theorem lowerClosure_mul : ↑(lowerClosure s) * t = lowerClosure (s * t) := by
   simp_rw [mul_comm _ t]; exact mul_lowerClosure _ _
 #align lower_closure_mul lowerClosure_mul
 #align lower_closure_add lowerClosure_add
+-/
 
+#print upperClosure_mul_distrib /-
 @[simp, to_additive]
 theorem upperClosure_mul_distrib : upperClosure (s * t) = upperClosure s * upperClosure t :=
   SetLike.coe_injective <| by
     rw [UpperSet.coe_mul, mul_upperClosure, upperClosure_mul, UpperSet.upperClosure]
 #align upper_closure_mul_distrib upperClosure_mul_distrib
 #align upper_closure_add_distrib upperClosure_add_distrib
+-/
 
+#print lowerClosure_mul_distrib /-
 @[simp, to_additive]
 theorem lowerClosure_mul_distrib : lowerClosure (s * t) = lowerClosure s * lowerClosure t :=
   SetLike.coe_injective <| by
     rw [LowerSet.coe_mul, mul_lowerClosure, lowerClosure_mul, LowerSet.lowerClosure]
 #align lower_closure_mul_distrib lowerClosure_mul_distrib
 #align lower_closure_add_distrib lowerClosure_add_distrib
+-/
 
 end OrderedCommGroup
 
Diff
@@ -24,7 +24,7 @@ Upper/lower sets are preserved under pointwise algebraic operations in ordered g
 
 open Function Set
 
-open Pointwise
+open scoped Pointwise
 
 section OrderedCommMonoid
 
Diff
@@ -30,24 +30,12 @@ section OrderedCommMonoid
 
 variable {α : Type _} [OrderedCommMonoid α] {s : Set α} {x : α}
 
-/- warning: is_upper_set.smul_subset -> IsUpperSet.smul_subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommMonoid.{u1} α] {s : Set.{u1} α} {x : α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1))))))) x) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) x s) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommMonoid.{u1} α] {s : Set.{u1} α} {x : α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Monoid.toOne.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1))))) x) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)) (Monoid.toMulAction.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) x s) s)
-Case conversion may be inaccurate. Consider using '#align is_upper_set.smul_subset IsUpperSet.smul_subsetₓ'. -/
 @[to_additive]
 theorem IsUpperSet.smul_subset (hs : IsUpperSet s) (hx : 1 ≤ x) : x • s ⊆ s :=
   smul_set_subset_iff.2 fun y => hs <| le_mul_of_one_le_left' hx
 #align is_upper_set.smul_subset IsUpperSet.smul_subset
 #align is_upper_set.vadd_subset IsUpperSet.vadd_subset
 
-/- warning: is_lower_set.smul_subset -> IsLowerSet.smul_subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommMonoid.{u1} α] {s : Set.{u1} α} {x : α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) x (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) x s) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommMonoid.{u1} α] {s : Set.{u1} α} {x : α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) x (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Monoid.toOne.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)) (Monoid.toMulAction.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) x s) s)
-Case conversion may be inaccurate. Consider using '#align is_lower_set.smul_subset IsLowerSet.smul_subsetₓ'. -/
 @[to_additive]
 theorem IsLowerSet.smul_subset (hs : IsLowerSet s) (hx : x ≤ 1) : x • s ⊆ s :=
   smul_set_subset_iff.2 fun y => hs <| mul_le_of_le_one_left' hx
@@ -60,12 +48,6 @@ section OrderedCommGroup
 
 variable {α : Type _} [OrderedCommGroup α] {s t : Set α} {a : α}
 
-/- warning: is_upper_set.smul -> IsUpperSet.smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))) (Monoid.toMulAction.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
-Case conversion may be inaccurate. Consider using '#align is_upper_set.smul IsUpperSet.smulₓ'. -/
 @[to_additive]
 theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) :=
   by
@@ -74,24 +56,12 @@ theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) :=
 #align is_upper_set.smul IsUpperSet.smul
 #align is_upper_set.vadd IsUpperSet.vadd
 
-/- warning: is_lower_set.smul -> IsLowerSet.smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))) (Monoid.toMulAction.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
-Case conversion may be inaccurate. Consider using '#align is_lower_set.smul IsLowerSet.smulₓ'. -/
 @[to_additive]
 theorem IsLowerSet.smul (hs : IsLowerSet s) : IsLowerSet (a • s) :=
   hs.ofDual.smul
 #align is_lower_set.smul IsLowerSet.smul
 #align is_lower_set.vadd IsLowerSet.vadd
 
-/- warning: set.ord_connected.smul -> Set.OrdConnected.smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (Set.OrdConnected.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) -> (Set.OrdConnected.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (Set.OrdConnected.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) -> (Set.OrdConnected.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))) (Monoid.toMulAction.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
-Case conversion may be inaccurate. Consider using '#align set.ord_connected.smul Set.OrdConnected.smulₓ'. -/
 @[to_additive]
 theorem Set.OrdConnected.smul (hs : s.OrdConnected) : (a • s).OrdConnected :=
   by
@@ -100,118 +70,58 @@ theorem Set.OrdConnected.smul (hs : s.OrdConnected) : (a • s).OrdConnected :=
 #align set.ord_connected.smul Set.OrdConnected.smul
 #align set.ord_connected.vadd Set.OrdConnected.vadd
 
-/- warning: is_upper_set.mul_left -> IsUpperSet.mul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
-Case conversion may be inaccurate. Consider using '#align is_upper_set.mul_left IsUpperSet.mul_leftₓ'. -/
 @[to_additive]
 theorem IsUpperSet.mul_left (ht : IsUpperSet t) : IsUpperSet (s * t) := by
   rw [← smul_eq_mul, ← bUnion_smul_set]; exact isUpperSet_iUnion₂ fun x hx => ht.smul
 #align is_upper_set.mul_left IsUpperSet.mul_left
 #align is_upper_set.add_left IsUpperSet.add_left
 
-/- warning: is_upper_set.mul_right -> IsUpperSet.mul_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
-Case conversion may be inaccurate. Consider using '#align is_upper_set.mul_right IsUpperSet.mul_rightₓ'. -/
 @[to_additive]
 theorem IsUpperSet.mul_right (hs : IsUpperSet s) : IsUpperSet (s * t) := by rw [mul_comm];
   exact hs.mul_left
 #align is_upper_set.mul_right IsUpperSet.mul_right
 #align is_upper_set.add_right IsUpperSet.add_right
 
-/- warning: is_lower_set.mul_left -> IsLowerSet.mul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
-Case conversion may be inaccurate. Consider using '#align is_lower_set.mul_left IsLowerSet.mul_leftₓ'. -/
 @[to_additive]
 theorem IsLowerSet.mul_left (ht : IsLowerSet t) : IsLowerSet (s * t) :=
   ht.ofDual.mul_left
 #align is_lower_set.mul_left IsLowerSet.mul_left
 #align is_lower_set.add_left IsLowerSet.add_left
 
-/- warning: is_lower_set.mul_right -> IsLowerSet.mul_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
-Case conversion may be inaccurate. Consider using '#align is_lower_set.mul_right IsLowerSet.mul_rightₓ'. -/
 @[to_additive]
 theorem IsLowerSet.mul_right (hs : IsLowerSet s) : IsLowerSet (s * t) :=
   hs.ofDual.mul_right
 #align is_lower_set.mul_right IsLowerSet.mul_right
 #align is_lower_set.add_right IsLowerSet.add_right
 
-/- warning: is_upper_set.inv -> IsUpperSet.inv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))) s))
-Case conversion may be inaccurate. Consider using '#align is_upper_set.inv IsUpperSet.invₓ'. -/
 @[to_additive]
 theorem IsUpperSet.inv (hs : IsUpperSet s) : IsLowerSet s⁻¹ := fun x y h => hs <| inv_le_inv' h
 #align is_upper_set.inv IsUpperSet.inv
 #align is_upper_set.neg IsUpperSet.neg
 
-/- warning: is_lower_set.inv -> IsLowerSet.inv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))) s))
-Case conversion may be inaccurate. Consider using '#align is_lower_set.inv IsLowerSet.invₓ'. -/
 @[to_additive]
 theorem IsLowerSet.inv (hs : IsLowerSet s) : IsUpperSet s⁻¹ := fun x y h => hs <| inv_le_inv' h
 #align is_lower_set.inv IsLowerSet.inv
 #align is_lower_set.neg IsLowerSet.neg
 
-/- warning: is_upper_set.div_left -> IsUpperSet.div_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
-Case conversion may be inaccurate. Consider using '#align is_upper_set.div_left IsUpperSet.div_leftₓ'. -/
 @[to_additive]
 theorem IsUpperSet.div_left (ht : IsUpperSet t) : IsLowerSet (s / t) := by rw [div_eq_mul_inv];
   exact ht.inv.mul_left
 #align is_upper_set.div_left IsUpperSet.div_left
 #align is_upper_set.sub_left IsUpperSet.sub_left
 
-/- warning: is_upper_set.div_right -> IsUpperSet.div_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
-Case conversion may be inaccurate. Consider using '#align is_upper_set.div_right IsUpperSet.div_rightₓ'. -/
 @[to_additive]
 theorem IsUpperSet.div_right (hs : IsUpperSet s) : IsUpperSet (s / t) := by rw [div_eq_mul_inv];
   exact hs.mul_right
 #align is_upper_set.div_right IsUpperSet.div_right
 #align is_upper_set.sub_right IsUpperSet.sub_right
 
-/- warning: is_lower_set.div_left -> IsLowerSet.div_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
-Case conversion may be inaccurate. Consider using '#align is_lower_set.div_left IsLowerSet.div_leftₓ'. -/
 @[to_additive]
 theorem IsLowerSet.div_left (ht : IsLowerSet t) : IsUpperSet (s / t) :=
   ht.ofDual.div_left
 #align is_lower_set.div_left IsLowerSet.div_left
 #align is_lower_set.sub_left IsLowerSet.sub_left
 
-/- warning: is_lower_set.div_right -> IsLowerSet.div_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
-Case conversion may be inaccurate. Consider using '#align is_lower_set.div_right IsLowerSet.div_rightₓ'. -/
 @[to_additive]
 theorem IsLowerSet.div_right (hs : IsLowerSet s) : IsLowerSet (s / t) :=
   hs.ofDual.div_right
@@ -236,12 +146,6 @@ instance : Div (UpperSet α) :=
 instance : SMul α (UpperSet α) :=
   ⟨fun a s => ⟨(· • ·) a '' s, s.2.smul⟩⟩
 
-/- warning: upper_set.coe_one -> UpperSet.coe_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasOne.{u1} α _inst_1))))) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instOneUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)))) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))
-Case conversion may be inaccurate. Consider using '#align upper_set.coe_one UpperSet.coe_oneₓ'. -/
 @[simp, norm_cast, to_additive]
 theorem coe_one : ((1 : UpperSet α) : Set α) = Set.Ici 1 :=
   rfl
@@ -254,36 +158,18 @@ theorem coe_smul (a : α) (s : UpperSet α) : (↑(a • s) : Set α) = a • s
 #align upper_set.coe_smul UpperSet.coe_smul
 #align upper_set.coe_vadd UpperSet.coe_vadd
 
-/- warning: upper_set.coe_mul -> UpperSet.coe_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HMul.hMul.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasMul.{u1} α _inst_1)) s t)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instMulUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) s t)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) s) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) t))
-Case conversion may be inaccurate. Consider using '#align upper_set.coe_mul UpperSet.coe_mulₓ'. -/
 @[simp, norm_cast, to_additive]
 theorem coe_mul (s t : UpperSet α) : (↑(s * t) : Set α) = s * t :=
   rfl
 #align upper_set.coe_mul UpperSet.coe_mul
 #align upper_set.coe_add UpperSet.coe_add
 
-/- warning: upper_set.coe_div -> UpperSet.coe_div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHDiv.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasDiv.{u1} α _inst_1)) s t)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (HDiv.hDiv.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHDiv.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instDivUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) s t)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) s) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) t))
-Case conversion may be inaccurate. Consider using '#align upper_set.coe_div UpperSet.coe_divₓ'. -/
 @[simp, norm_cast, to_additive]
 theorem coe_div (s t : UpperSet α) : (↑(s / t) : Set α) = s / t :=
   rfl
 #align upper_set.coe_div UpperSet.coe_div
 #align upper_set.coe_sub UpperSet.coe_sub
 
-/- warning: upper_set.Ici_one -> UpperSet.Ici_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasOne.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instOneUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align upper_set.Ici_one UpperSet.Ici_oneₓ'. -/
 @[simp, to_additive]
 theorem Ici_one : Ici (1 : α) = 1 :=
   rfl
@@ -338,36 +224,18 @@ theorem coe_smul (a : α) (s : LowerSet α) : (↑(a • s) : Set α) = a • s
 #align lower_set.coe_smul LowerSet.coe_smul
 #align lower_set.coe_vadd LowerSet.coe_vadd
 
-/- warning: lower_set.coe_mul -> LowerSet.coe_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HMul.hMul.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasMul.{u1} α _inst_1)) s t)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instMulLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) s t)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) s) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) t))
-Case conversion may be inaccurate. Consider using '#align lower_set.coe_mul LowerSet.coe_mulₓ'. -/
 @[simp, norm_cast, to_additive]
 theorem coe_mul (s t : LowerSet α) : (↑(s * t) : Set α) = s * t :=
   rfl
 #align lower_set.coe_mul LowerSet.coe_mul
 #align lower_set.coe_add LowerSet.coe_add
 
-/- warning: lower_set.coe_div -> LowerSet.coe_div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHDiv.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasDiv.{u1} α _inst_1)) s t)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (HDiv.hDiv.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHDiv.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instDivLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) s t)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) s) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) t))
-Case conversion may be inaccurate. Consider using '#align lower_set.coe_div LowerSet.coe_divₓ'. -/
 @[simp, norm_cast, to_additive]
 theorem coe_div (s t : LowerSet α) : (↑(s / t) : Set α) = s / t :=
   rfl
 #align lower_set.coe_div LowerSet.coe_div
 #align lower_set.coe_sub LowerSet.coe_sub
 
-/- warning: lower_set.Iic_one -> LowerSet.Iic_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))) (OfNat.ofNat.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasOne.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instOneLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align lower_set.Iic_one LowerSet.Iic_oneₓ'. -/
 @[simp, to_additive]
 theorem Iic_one : Iic (1 : α) = 1 :=
   rfl
@@ -400,60 +268,30 @@ end LowerSet
 
 variable (a s t)
 
-/- warning: upper_closure_one -> upperClosure_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasOne.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instOneUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align upper_closure_one upperClosure_oneₓ'. -/
 @[simp, to_additive]
 theorem upperClosure_one : upperClosure (1 : Set α) = 1 :=
   upperClosure_singleton _
 #align upper_closure_one upperClosure_one
 #align upper_closure_zero upperClosure_zero
 
-/- warning: lower_closure_one -> lowerClosure_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))))) (OfNat.ofNat.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasOne.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))) (OfNat.ofNat.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instOneLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align lower_closure_one lowerClosure_oneₓ'. -/
 @[simp, to_additive]
 theorem lowerClosure_one : lowerClosure (1 : Set α) = 1 :=
   lowerClosure_singleton _
 #align lower_closure_one lowerClosure_one
 #align lower_closure_zero lowerClosure_zero
 
-/- warning: upper_closure_smul -> upperClosure_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (a : α), Eq.{succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s)) (SMul.smul.{u1, u1} α (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasSmul.{u1} α _inst_1) a (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (a : α), Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))) (Monoid.toMulAction.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s)) (HSMul.hSMul.{u1, u1, u1} α (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHSMul.{u1, u1} α (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instSMulUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) a (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align upper_closure_smul upperClosure_smulₓ'. -/
 @[simp, to_additive]
 theorem upperClosure_smul : upperClosure (a • s) = a • upperClosure s :=
   upperClosure_image <| OrderIso.mulLeft a
 #align upper_closure_smul upperClosure_smul
 #align upper_closure_vadd upperClosure_vadd
 
-/- warning: lower_closure_smul -> lowerClosure_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (a : α), Eq.{succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s)) (SMul.smul.{u1, u1} α (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasSmul.{u1} α _inst_1) a (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (a : α), Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))) (Monoid.toMulAction.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s)) (HSMul.hSMul.{u1, u1, u1} α (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHSMul.{u1, u1} α (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instSMulLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) a (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align lower_closure_smul lowerClosure_smulₓ'. -/
 @[simp, to_additive]
 theorem lowerClosure_smul : lowerClosure (a • s) = a • lowerClosure s :=
   lowerClosure_image <| OrderIso.mulLeft a
 #align lower_closure_smul lowerClosure_smul
 #align lower_closure_vadd lowerClosure_vadd
 
-/- warning: mul_upper_closure -> mul_upperClosure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
-Case conversion may be inaccurate. Consider using '#align mul_upper_closure mul_upperClosureₓ'. -/
 @[to_additive]
 theorem mul_upperClosure : s * upperClosure t = upperClosure (s * t) := by
   simp_rw [← smul_eq_mul, ← bUnion_smul_set, upperClosure_iUnion, upperClosure_smul,
@@ -461,12 +299,6 @@ theorem mul_upperClosure : s * upperClosure t = upperClosure (s * t) := by
 #align mul_upper_closure mul_upperClosure
 #align add_upper_closure add_upperClosure
 
-/- warning: mul_lower_closure -> mul_lowerClosure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
-Case conversion may be inaccurate. Consider using '#align mul_lower_closure mul_lowerClosureₓ'. -/
 @[to_additive]
 theorem mul_lowerClosure : s * lowerClosure t = lowerClosure (s * t) := by
   simp_rw [← smul_eq_mul, ← bUnion_smul_set, lowerClosure_iUnion, lowerClosure_smul,
@@ -474,36 +306,18 @@ theorem mul_lowerClosure : s * lowerClosure t = lowerClosure (s * t) := by
 #align mul_lower_closure mul_lowerClosure
 #align add_lower_closure add_lowerClosure
 
-/- warning: upper_closure_mul -> upperClosure_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
-Case conversion may be inaccurate. Consider using '#align upper_closure_mul upperClosure_mulₓ'. -/
 @[to_additive]
 theorem upperClosure_mul : ↑(upperClosure s) * t = upperClosure (s * t) := by
   simp_rw [mul_comm _ t]; exact mul_upperClosure _ _
 #align upper_closure_mul upperClosure_mul
 #align upper_closure_add upperClosure_add
 
-/- warning: lower_closure_mul -> lowerClosure_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
-Case conversion may be inaccurate. Consider using '#align lower_closure_mul lowerClosure_mulₓ'. -/
 @[to_additive]
 theorem lowerClosure_mul : ↑(lowerClosure s) * t = lowerClosure (s * t) := by
   simp_rw [mul_comm _ t]; exact mul_lowerClosure _ _
 #align lower_closure_mul lowerClosure_mul
 #align lower_closure_add lowerClosure_add
 
-/- warning: upper_closure_mul_distrib -> upperClosure_mul_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)) (HMul.hMul.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasMul.{u1} α _inst_1)) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)) (HMul.hMul.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instMulUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align upper_closure_mul_distrib upperClosure_mul_distribₓ'. -/
 @[simp, to_additive]
 theorem upperClosure_mul_distrib : upperClosure (s * t) = upperClosure s * upperClosure t :=
   SetLike.coe_injective <| by
@@ -511,12 +325,6 @@ theorem upperClosure_mul_distrib : upperClosure (s * t) = upperClosure s * upper
 #align upper_closure_mul_distrib upperClosure_mul_distrib
 #align upper_closure_add_distrib upperClosure_add_distrib
 
-/- warning: lower_closure_mul_distrib -> lowerClosure_mul_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)) (HMul.hMul.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasMul.{u1} α _inst_1)) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)) (HMul.hMul.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instMulLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align lower_closure_mul_distrib lowerClosure_mul_distribₓ'. -/
 @[simp, to_additive]
 theorem lowerClosure_mul_distrib : lowerClosure (s * t) = lowerClosure s * lowerClosure t :=
   SetLike.coe_injective <| by
Diff
@@ -107,10 +107,8 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_upper_set.mul_left IsUpperSet.mul_leftₓ'. -/
 @[to_additive]
-theorem IsUpperSet.mul_left (ht : IsUpperSet t) : IsUpperSet (s * t) :=
-  by
-  rw [← smul_eq_mul, ← bUnion_smul_set]
-  exact isUpperSet_iUnion₂ fun x hx => ht.smul
+theorem IsUpperSet.mul_left (ht : IsUpperSet t) : IsUpperSet (s * t) := by
+  rw [← smul_eq_mul, ← bUnion_smul_set]; exact isUpperSet_iUnion₂ fun x hx => ht.smul
 #align is_upper_set.mul_left IsUpperSet.mul_left
 #align is_upper_set.add_left IsUpperSet.add_left
 
@@ -121,9 +119,7 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_upper_set.mul_right IsUpperSet.mul_rightₓ'. -/
 @[to_additive]
-theorem IsUpperSet.mul_right (hs : IsUpperSet s) : IsUpperSet (s * t) :=
-  by
-  rw [mul_comm]
+theorem IsUpperSet.mul_right (hs : IsUpperSet s) : IsUpperSet (s * t) := by rw [mul_comm];
   exact hs.mul_left
 #align is_upper_set.mul_right IsUpperSet.mul_right
 #align is_upper_set.add_right IsUpperSet.add_right
@@ -181,9 +177,7 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_upper_set.div_left IsUpperSet.div_leftₓ'. -/
 @[to_additive]
-theorem IsUpperSet.div_left (ht : IsUpperSet t) : IsLowerSet (s / t) :=
-  by
-  rw [div_eq_mul_inv]
+theorem IsUpperSet.div_left (ht : IsUpperSet t) : IsLowerSet (s / t) := by rw [div_eq_mul_inv];
   exact ht.inv.mul_left
 #align is_upper_set.div_left IsUpperSet.div_left
 #align is_upper_set.sub_left IsUpperSet.sub_left
@@ -195,9 +189,7 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_upper_set.div_right IsUpperSet.div_rightₓ'. -/
 @[to_additive]
-theorem IsUpperSet.div_right (hs : IsUpperSet s) : IsUpperSet (s / t) :=
-  by
-  rw [div_eq_mul_inv]
+theorem IsUpperSet.div_right (hs : IsUpperSet s) : IsUpperSet (s / t) := by rw [div_eq_mul_inv];
   exact hs.mul_right
 #align is_upper_set.div_right IsUpperSet.div_right
 #align is_upper_set.sub_right IsUpperSet.sub_right
@@ -310,9 +302,7 @@ instance : CommSemigroup (UpperSet α) :=
 @[to_additive]
 private theorem one_mul (s : UpperSet α) : 1 * s = s :=
   SetLike.coe_injective <|
-    (subset_mul_right _ left_mem_Ici).antisymm' <|
-      by
-      rw [← smul_eq_mul, ← bUnion_smul_set]
+    (subset_mul_right _ left_mem_Ici).antisymm' <| by rw [← smul_eq_mul, ← bUnion_smul_set];
       exact Union₂_subset fun _ => s.upper.smul_subset
 
 @[to_additive]
@@ -320,9 +310,7 @@ instance : CommMonoid (UpperSet α) :=
   { UpperSet.commSemigroup with
     one := 1
     one_mul := one_mul
-    mul_one := fun s => by
-      rw [mul_comm]
-      exact one_mul _ }
+    mul_one := fun s => by rw [mul_comm]; exact one_mul _ }
 
 end UpperSet
 
@@ -398,9 +386,7 @@ instance : CommSemigroup (LowerSet α) :=
 @[to_additive]
 private theorem one_mul (s : LowerSet α) : 1 * s = s :=
   SetLike.coe_injective <|
-    (subset_mul_right _ right_mem_Iic).antisymm' <|
-      by
-      rw [← smul_eq_mul, ← bUnion_smul_set]
+    (subset_mul_right _ right_mem_Iic).antisymm' <| by rw [← smul_eq_mul, ← bUnion_smul_set];
       exact Union₂_subset fun _ => s.lower.smul_subset
 
 @[to_additive]
@@ -408,9 +394,7 @@ instance : CommMonoid (LowerSet α) :=
   { LowerSet.commSemigroup with
     one := 1
     one_mul := one_mul
-    mul_one := fun s => by
-      rw [mul_comm]
-      exact one_mul _ }
+    mul_one := fun s => by rw [mul_comm]; exact one_mul _ }
 
 end LowerSet
 
@@ -497,10 +481,8 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
 Case conversion may be inaccurate. Consider using '#align upper_closure_mul upperClosure_mulₓ'. -/
 @[to_additive]
-theorem upperClosure_mul : ↑(upperClosure s) * t = upperClosure (s * t) :=
-  by
-  simp_rw [mul_comm _ t]
-  exact mul_upperClosure _ _
+theorem upperClosure_mul : ↑(upperClosure s) * t = upperClosure (s * t) := by
+  simp_rw [mul_comm _ t]; exact mul_upperClosure _ _
 #align upper_closure_mul upperClosure_mul
 #align upper_closure_add upperClosure_add
 
@@ -511,10 +493,8 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
 Case conversion may be inaccurate. Consider using '#align lower_closure_mul lowerClosure_mulₓ'. -/
 @[to_additive]
-theorem lowerClosure_mul : ↑(lowerClosure s) * t = lowerClosure (s * t) :=
-  by
-  simp_rw [mul_comm _ t]
-  exact mul_lowerClosure _ _
+theorem lowerClosure_mul : ↑(lowerClosure s) * t = lowerClosure (s * t) := by
+  simp_rw [mul_comm _ t]; exact mul_lowerClosure _ _
 #align lower_closure_mul lowerClosure_mul
 #align lower_closure_add lowerClosure_add
 
Diff
@@ -314,7 +314,6 @@ private theorem one_mul (s : UpperSet α) : 1 * s = s :=
       by
       rw [← smul_eq_mul, ← bUnion_smul_set]
       exact Union₂_subset fun _ => s.upper.smul_subset
-#align upper_set.one_mul upper_set.one_mul
 
 @[to_additive]
 instance : CommMonoid (UpperSet α) :=
@@ -403,7 +402,6 @@ private theorem one_mul (s : LowerSet α) : 1 * s = s :=
       by
       rw [← smul_eq_mul, ← bUnion_smul_set]
       exact Union₂_subset fun _ => s.lower.smul_subset
-#align lower_set.one_mul lower_set.one_mul
 
 @[to_additive]
 instance : CommMonoid (LowerSet α) :=
Diff
@@ -32,7 +32,7 @@ variable {α : Type _} [OrderedCommMonoid α] {s : Set α} {x : α}
 
 /- warning: is_upper_set.smul_subset -> IsUpperSet.smul_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommMonoid.{u1} α] {s : Set.{u1} α} {x : α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1))))))) x) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) x s) s)
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommMonoid.{u1} α] {s : Set.{u1} α} {x : α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1))))))) x) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) x s) s)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommMonoid.{u1} α] {s : Set.{u1} α} {x : α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Monoid.toOne.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1))))) x) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)) (Monoid.toMulAction.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) x s) s)
 Case conversion may be inaccurate. Consider using '#align is_upper_set.smul_subset IsUpperSet.smul_subsetₓ'. -/
@@ -44,7 +44,7 @@ theorem IsUpperSet.smul_subset (hs : IsUpperSet s) (hx : 1 ≤ x) : x • s ⊆
 
 /- warning: is_lower_set.smul_subset -> IsLowerSet.smul_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommMonoid.{u1} α] {s : Set.{u1} α} {x : α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) x (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) x s) s)
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommMonoid.{u1} α] {s : Set.{u1} α} {x : α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) x (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) x s) s)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommMonoid.{u1} α] {s : Set.{u1} α} {x : α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommMonoid.toPartialOrder.{u1} α _inst_1))) x (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (Monoid.toOne.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)) (Monoid.toMulAction.{u1} α (CommMonoid.toMonoid.{u1} α (OrderedCommMonoid.toCommMonoid.{u1} α _inst_1)))))) x s) s)
 Case conversion may be inaccurate. Consider using '#align is_lower_set.smul_subset IsLowerSet.smul_subsetₓ'. -/
@@ -62,7 +62,7 @@ variable {α : Type _} [OrderedCommGroup α] {s t : Set α} {a : α}
 
 /- warning: is_upper_set.smul -> IsUpperSet.smul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))) (Monoid.toMulAction.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
 Case conversion may be inaccurate. Consider using '#align is_upper_set.smul IsUpperSet.smulₓ'. -/
@@ -76,7 +76,7 @@ theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) :=
 
 /- warning: is_lower_set.smul -> IsLowerSet.smul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))) (Monoid.toMulAction.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s))
 Case conversion may be inaccurate. Consider using '#align is_lower_set.smul IsLowerSet.smulₓ'. -/
@@ -102,7 +102,7 @@ theorem Set.OrdConnected.smul (hs : s.OrdConnected) : (a • s).OrdConnected :=
 
 /- warning: is_upper_set.mul_left -> IsUpperSet.mul_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_upper_set.mul_left IsUpperSet.mul_leftₓ'. -/
@@ -116,7 +116,7 @@ theorem IsUpperSet.mul_left (ht : IsUpperSet t) : IsUpperSet (s * t) :=
 
 /- warning: is_upper_set.mul_right -> IsUpperSet.mul_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_upper_set.mul_right IsUpperSet.mul_rightₓ'. -/
@@ -130,7 +130,7 @@ theorem IsUpperSet.mul_right (hs : IsUpperSet s) : IsUpperSet (s * t) :=
 
 /- warning: is_lower_set.mul_left -> IsLowerSet.mul_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_lower_set.mul_left IsLowerSet.mul_leftₓ'. -/
@@ -142,7 +142,7 @@ theorem IsLowerSet.mul_left (ht : IsLowerSet t) : IsLowerSet (s * t) :=
 
 /- warning: is_lower_set.mul_right -> IsLowerSet.mul_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_lower_set.mul_right IsLowerSet.mul_rightₓ'. -/
@@ -154,7 +154,7 @@ theorem IsLowerSet.mul_right (hs : IsLowerSet s) : IsLowerSet (s * t) :=
 
 /- warning: is_upper_set.inv -> IsUpperSet.inv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))) s))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))) s))
 Case conversion may be inaccurate. Consider using '#align is_upper_set.inv IsUpperSet.invₓ'. -/
@@ -165,7 +165,7 @@ theorem IsUpperSet.inv (hs : IsUpperSet s) : IsLowerSet s⁻¹ := fun x y h => h
 
 /- warning: is_lower_set.inv -> IsLowerSet.inv is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))) s))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (Inv.inv.{u1} (Set.{u1} α) (Set.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))) s))
 Case conversion may be inaccurate. Consider using '#align is_lower_set.inv IsLowerSet.invₓ'. -/
@@ -176,7 +176,7 @@ theorem IsLowerSet.inv (hs : IsLowerSet s) : IsUpperSet s⁻¹ := fun x y h => h
 
 /- warning: is_upper_set.div_left -> IsUpperSet.div_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_upper_set.div_left IsUpperSet.div_leftₓ'. -/
@@ -190,7 +190,7 @@ theorem IsUpperSet.div_left (ht : IsUpperSet t) : IsLowerSet (s / t) :=
 
 /- warning: is_upper_set.div_right -> IsUpperSet.div_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_upper_set.div_right IsUpperSet.div_rightₓ'. -/
@@ -204,7 +204,7 @@ theorem IsUpperSet.div_right (hs : IsUpperSet s) : IsUpperSet (s / t) :=
 
 /- warning: is_lower_set.div_left -> IsLowerSet.div_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) t) -> (IsUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_lower_set.div_left IsLowerSet.div_leftₓ'. -/
@@ -216,7 +216,7 @@ theorem IsLowerSet.div_left (ht : IsLowerSet t) : IsUpperSet (s / t) :=
 
 /- warning: is_lower_set.div_right -> IsLowerSet.div_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) s) -> (IsLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) s t))
 Case conversion may be inaccurate. Consider using '#align is_lower_set.div_right IsLowerSet.div_rightₓ'. -/
@@ -246,7 +246,7 @@ instance : SMul α (UpperSet α) :=
 
 /- warning: upper_set.coe_one -> UpperSet.coe_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasOne.{u1} α _inst_1))))) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasOne.{u1} α _inst_1))))) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instOneUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)))) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))
 Case conversion may be inaccurate. Consider using '#align upper_set.coe_one UpperSet.coe_oneₓ'. -/
@@ -264,7 +264,7 @@ theorem coe_smul (a : α) (s : UpperSet α) : (↑(a • s) : Set α) = a • s
 
 /- warning: upper_set.coe_mul -> UpperSet.coe_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HMul.hMul.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasMul.{u1} α _inst_1)) s t)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HMul.hMul.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasMul.{u1} α _inst_1)) s t)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instMulUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) s t)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) s) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) t))
 Case conversion may be inaccurate. Consider using '#align upper_set.coe_mul UpperSet.coe_mulₓ'. -/
@@ -276,7 +276,7 @@ theorem coe_mul (s t : UpperSet α) : (↑(s * t) : Set α) = s * t :=
 
 /- warning: upper_set.coe_div -> UpperSet.coe_div is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHDiv.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasDiv.{u1} α _inst_1)) s t)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHDiv.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasDiv.{u1} α _inst_1)) s t)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (HDiv.hDiv.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHDiv.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instDivUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) s t)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) s) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) t))
 Case conversion may be inaccurate. Consider using '#align upper_set.coe_div UpperSet.coe_divₓ'. -/
@@ -288,7 +288,7 @@ theorem coe_div (s t : UpperSet α) : (↑(s / t) : Set α) = s / t :=
 
 /- warning: upper_set.Ici_one -> UpperSet.Ici_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasOne.{u1} α _inst_1))))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasOne.{u1} α _inst_1))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instOneUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)))
 Case conversion may be inaccurate. Consider using '#align upper_set.Ici_one UpperSet.Ici_oneₓ'. -/
@@ -353,7 +353,7 @@ theorem coe_smul (a : α) (s : LowerSet α) : (↑(a • s) : Set α) = a • s
 
 /- warning: lower_set.coe_mul -> LowerSet.coe_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HMul.hMul.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasMul.{u1} α _inst_1)) s t)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HMul.hMul.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasMul.{u1} α _inst_1)) s t)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (HMul.hMul.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instMulLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) s t)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) s) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) t))
 Case conversion may be inaccurate. Consider using '#align lower_set.coe_mul LowerSet.coe_mulₓ'. -/
@@ -365,7 +365,7 @@ theorem coe_mul (s t : LowerSet α) : (↑(s * t) : Set α) = s * t :=
 
 /- warning: lower_set.coe_div -> LowerSet.coe_div is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHDiv.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasDiv.{u1} α _inst_1)) s t)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHDiv.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasDiv.{u1} α _inst_1)) s t)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toHasDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (t : LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))), Eq.{succ u1} (Set.{u1} α) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (HDiv.hDiv.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHDiv.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instDivLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) s t)) (HDiv.hDiv.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHDiv.{u1} (Set.{u1} α) (Set.div.{u1} α (DivInvMonoid.toDiv.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) s) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) t))
 Case conversion may be inaccurate. Consider using '#align lower_set.coe_div LowerSet.coe_divₓ'. -/
@@ -377,7 +377,7 @@ theorem coe_div (s t : LowerSet α) : (↑(s / t) : Set α) = s / t :=
 
 /- warning: lower_set.Iic_one -> LowerSet.Iic_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))) (OfNat.ofNat.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasOne.{u1} α _inst_1))))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))) (OfNat.ofNat.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasOne.{u1} α _inst_1))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))) (OfNat.ofNat.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instOneLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)))
 Case conversion may be inaccurate. Consider using '#align lower_set.Iic_one LowerSet.Iic_oneₓ'. -/
@@ -420,7 +420,7 @@ variable (a s t)
 
 /- warning: upper_closure_one -> upperClosure_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasOne.{u1} α _inst_1))))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasOne.{u1} α _inst_1))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))) (OfNat.ofNat.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instOneUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)))
 Case conversion may be inaccurate. Consider using '#align upper_closure_one upperClosure_oneₓ'. -/
@@ -432,7 +432,7 @@ theorem upperClosure_one : upperClosure (1 : Set α) = 1 :=
 
 /- warning: lower_closure_one -> lowerClosure_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))))) (OfNat.ofNat.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasOne.{u1} α _inst_1))))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (OfNat.mk.{u1} (Set.{u1} α) 1 (One.one.{u1} (Set.{u1} α) (Set.one.{u1} α (MulOneClass.toHasOne.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1))))))))))) (OfNat.ofNat.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (OfNat.mk.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.one.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasOne.{u1} α _inst_1))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α], Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (OfNat.ofNat.{u1} (Set.{u1} α) 1 (One.toOfNat1.{u1} (Set.{u1} α) (Set.one.{u1} α (InvOneClass.toOne.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (DivisionCommMonoid.toDivisionMonoid.{u1} α (CommGroup.toDivisionCommMonoid.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))))) (OfNat.ofNat.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) 1 (One.toOfNat1.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instOneLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)))
 Case conversion may be inaccurate. Consider using '#align lower_closure_one lowerClosure_oneₓ'. -/
@@ -444,7 +444,7 @@ theorem lowerClosure_one : lowerClosure (1 : Set α) = 1 :=
 
 /- warning: upper_closure_smul -> upperClosure_smul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (a : α), Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s)) (SMul.smul.{u1, u1} α (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasSmul.{u1} α _inst_1) a (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (a : α), Eq.{succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s)) (SMul.smul.{u1, u1} α (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasSmul.{u1} α _inst_1) a (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (a : α), Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))) (Monoid.toMulAction.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s)) (HSMul.hSMul.{u1, u1, u1} α (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHSMul.{u1, u1} α (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instSMulUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) a (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align upper_closure_smul upperClosure_smulₓ'. -/
@@ -456,7 +456,7 @@ theorem upperClosure_smul : upperClosure (a • s) = a • upperClosure s :=
 
 /- warning: lower_closure_smul -> lowerClosure_smul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (a : α), Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s)) (SMul.smul.{u1, u1} α (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasSmul.{u1} α _inst_1) a (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (a : α), Eq.{succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (SMul.smul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s)) (SMul.smul.{u1, u1} α (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasSmul.{u1} α _inst_1) a (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (a : α), Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HSMul.hSMul.{u1, u1, u1} α (Set.{u1} α) (Set.{u1} α) (instHSMul.{u1, u1} α (Set.{u1} α) (Set.smulSet.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))) (Monoid.toMulAction.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) a s)) (HSMul.hSMul.{u1, u1, u1} α (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHSMul.{u1, u1} α (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instSMulLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) a (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align lower_closure_smul lowerClosure_smulₓ'. -/
@@ -468,7 +468,7 @@ theorem lowerClosure_smul : lowerClosure (a • s) = a • lowerClosure s :=
 
 /- warning: mul_upper_closure -> mul_upperClosure is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
 Case conversion may be inaccurate. Consider using '#align mul_upper_closure mul_upperClosureₓ'. -/
@@ -481,7 +481,7 @@ theorem mul_upperClosure : s * upperClosure t = upperClosure (s * t) := by
 
 /- warning: mul_lower_closure -> mul_lowerClosure is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
 Case conversion may be inaccurate. Consider using '#align mul_lower_closure mul_lowerClosureₓ'. -/
@@ -494,7 +494,7 @@ theorem mul_lowerClosure : s * lowerClosure t = lowerClosure (s * t) := by
 
 /- warning: upper_closure_mul -> upperClosure_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) (SetLike.coe.{u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (UpperSet.instSetLikeUpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
 Case conversion may be inaccurate. Consider using '#align upper_closure_mul upperClosure_mulₓ'. -/
@@ -508,7 +508,7 @@ theorem upperClosure_mul : ↑(upperClosure s) * t = upperClosure (s * t) :=
 
 /- warning: lower_closure_mul -> lowerClosure_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (Set.{u1} α) (SetLike.Set.hasCoeT.{u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.setLike.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1))))))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (Set.{u1} α) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s)) t) (SetLike.coe.{u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) α (LowerSet.instSetLikeLowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)))
 Case conversion may be inaccurate. Consider using '#align lower_closure_mul lowerClosure_mulₓ'. -/
@@ -522,7 +522,7 @@ theorem lowerClosure_mul : ↑(lowerClosure s) * t = lowerClosure (s * t) :=
 
 /- warning: upper_closure_mul_distrib -> upperClosure_mul_distrib is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)) (HMul.hMul.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasMul.{u1} α _inst_1)) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)) (HMul.hMul.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (UpperSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.hasMul.{u1} α _inst_1)) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)) (HMul.hMul.{u1, u1, u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (UpperSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (UpperSet.instMulUpperSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) (upperClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))
 Case conversion may be inaccurate. Consider using '#align upper_closure_mul_distrib upperClosure_mul_distribₓ'. -/
@@ -535,7 +535,7 @@ theorem upperClosure_mul_distrib : upperClosure (s * t) = upperClosure s * upper
 
 /- warning: lower_closure_mul_distrib -> lowerClosure_mul_distrib is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)) (HMul.hMul.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasMul.{u1} α _inst_1)) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)) (HMul.hMul.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (LowerSet.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.hasMul.{u1} α _inst_1)) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : OrderedCommGroup.{u1} α] (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) (HMul.hMul.{u1, u1, u1} (Set.{u1} α) (Set.{u1} α) (Set.{u1} α) (instHMul.{u1} (Set.{u1} α) (Set.mul.{u1} α (MulOneClass.toMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α (CommGroup.toGroup.{u1} α (OrderedCommGroup.toCommGroup.{u1} α _inst_1)))))))) s t)) (HMul.hMul.{u1, u1, u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (instHMul.{u1} (LowerSet.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)))) (LowerSet.instMulLowerSetToLEToPreorderToPartialOrder.{u1} α _inst_1)) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) s) (lowerClosure.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedCommGroup.toPartialOrder.{u1} α _inst_1)) t))
 Case conversion may be inaccurate. Consider using '#align lower_closure_mul_distrib lowerClosure_mul_distribₓ'. -/
Diff
@@ -110,7 +110,7 @@ Case conversion may be inaccurate. Consider using '#align is_upper_set.mul_left
 theorem IsUpperSet.mul_left (ht : IsUpperSet t) : IsUpperSet (s * t) :=
   by
   rw [← smul_eq_mul, ← bUnion_smul_set]
-  exact isUpperSet_unionᵢ₂ fun x hx => ht.smul
+  exact isUpperSet_iUnion₂ fun x hx => ht.smul
 #align is_upper_set.mul_left IsUpperSet.mul_left
 #align is_upper_set.add_left IsUpperSet.add_left
 
@@ -474,8 +474,8 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align mul_upper_closure mul_upperClosureₓ'. -/
 @[to_additive]
 theorem mul_upperClosure : s * upperClosure t = upperClosure (s * t) := by
-  simp_rw [← smul_eq_mul, ← bUnion_smul_set, upperClosure_unionᵢ, upperClosure_smul,
-    UpperSet.coe_infᵢ₂, UpperSet.coe_smul]
+  simp_rw [← smul_eq_mul, ← bUnion_smul_set, upperClosure_iUnion, upperClosure_smul,
+    UpperSet.coe_iInf₂, UpperSet.coe_smul]
 #align mul_upper_closure mul_upperClosure
 #align add_upper_closure add_upperClosure
 
@@ -487,8 +487,8 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align mul_lower_closure mul_lowerClosureₓ'. -/
 @[to_additive]
 theorem mul_lowerClosure : s * lowerClosure t = lowerClosure (s * t) := by
-  simp_rw [← smul_eq_mul, ← bUnion_smul_set, lowerClosure_unionᵢ, lowerClosure_smul,
-    LowerSet.coe_supᵢ₂, LowerSet.coe_smul]
+  simp_rw [← smul_eq_mul, ← bUnion_smul_set, lowerClosure_iUnion, lowerClosure_smul,
+    LowerSet.coe_iSup₂, LowerSet.coe_smul]
 #align mul_lower_closure mul_lowerClosure
 #align add_lower_closure add_lowerClosure
 

Changes in mathlib4

mathlib3
mathlib4
chore: replace λ by fun (#11301)

Per the style guidelines, λ is disallowed in mathlib. This is close to exhaustive; I left some tactic code alone when it seemed to me that tactic could be upstreamed soon.

Notes

  • In lines I was modifying anyway, I also converted => to .
  • Also contains some mild in-passing indentation fixes in Mathlib/Order/SupClosed.
  • Some doc comments still contained Lean 3 syntax λ x, , which I also replaced.
Diff
@@ -161,7 +161,7 @@ theorem Ici_one : Ici (1 : α) = 1 :=
 
 @[to_additive]
 instance : MulAction α (UpperSet α) :=
-  SetLike.coe_injective.mulAction _ (λ _ _ => rfl)
+  SetLike.coe_injective.mulAction _ (fun _ _ => rfl)
 
 @[to_additive]
 instance commSemigroup : CommSemigroup (UpperSet α) :=
@@ -223,7 +223,7 @@ theorem Iic_one : Iic (1 : α) = 1 :=
 
 @[to_additive]
 instance : MulAction α (LowerSet α) :=
-  SetLike.coe_injective.mulAction _ (λ _ _ => rfl)
+  SetLike.coe_injective.mulAction _ (fun _ _ => rfl)
 
 @[to_additive]
 instance commSemigroup : CommSemigroup (LowerSet α) :=
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 -/
 import Mathlib.Algebra.Order.Group.Defs
+import Mathlib.Algebra.Order.Group.Instances
 import Mathlib.Data.Set.Pointwise.SMul
 import Mathlib.Order.UpperLower.Basic
 
chore: Replace (· op ·) a by (a op ·) (#8843)

I used the regex \(\(· (.) ·\) (.)\), replacing with ($2 $1 ·).

Diff
@@ -132,7 +132,7 @@ instance : Div (UpperSet α) :=
 
 @[to_additive]
 instance : SMul α (UpperSet α) :=
-  ⟨fun a s ↦ ⟨(· • ·) a '' s, s.2.smul⟩⟩
+  ⟨fun a s ↦ ⟨(a • ·) '' s, s.2.smul⟩⟩
 
 @[to_additive (attr := simp,norm_cast)]
 theorem coe_one : ((1 : UpperSet α) : Set α) = Set.Ici 1 :=
@@ -200,7 +200,7 @@ instance : Div (LowerSet α) :=
 
 @[to_additive]
 instance : SMul α (LowerSet α) :=
-  ⟨fun a s ↦ ⟨(· • ·) a '' s, s.2.smul⟩⟩
+  ⟨fun a s ↦ ⟨(a • ·) '' s, s.2.smul⟩⟩
 
 @[to_additive (attr := simp,norm_cast)]
 theorem coe_mul (s t : LowerSet α) : (↑(s * t) : Set α) = s * t :=
perf: remove overspecified fields (#6965)

This removes redundant field values of the form add := add for smaller terms and less unfolding during unification.

A list of all files containing a structure instance of the form { a1, ... with x1 := val, ... } where some xi is a field of some aj was generated by modifying the structure instance elaboration algorithm to print such overlaps to stdout in a custom toolchain.

Using that toolchain, I went through each file on the list and attempted to remove algebraic fields that overlapped and were redundant, eg add := add and not toFun (though some other ones did creep in). If things broke (which was the case in a couple of cases), I did not push further and reverted.

It is possible that pushing harder and trying to remove all redundant overlaps will yield further improvements.

Diff
@@ -164,8 +164,7 @@ instance : MulAction α (UpperSet α) :=
 
 @[to_additive]
 instance commSemigroup : CommSemigroup (UpperSet α) :=
-  { (SetLike.coe_injective.commSemigroup _ coe_mul : CommSemigroup (UpperSet α)) with
-    mul := (· * ·) }
+  { (SetLike.coe_injective.commSemigroup _ coe_mul : CommSemigroup (UpperSet α)) with }
 
 @[to_additive]
 private theorem one_mul (s : UpperSet α) : 1 * s = s :=
@@ -227,8 +226,7 @@ instance : MulAction α (LowerSet α) :=
 
 @[to_additive]
 instance commSemigroup : CommSemigroup (LowerSet α) :=
-  { (SetLike.coe_injective.commSemigroup _ coe_mul : CommSemigroup (LowerSet α)) with
-    mul := (· * ·) }
+  { (SetLike.coe_injective.commSemigroup _ coe_mul : CommSemigroup (LowerSet α)) with }
 
 @[to_additive]
 private theorem one_mul (s : LowerSet α) : 1 * s = s :=
feat: Linear order on upper/lower sets (#6816)

Match https://github.com/leanprover-community/mathlib/pull/19068

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -7,7 +7,7 @@ import Mathlib.Algebra.Order.Group.Defs
 import Mathlib.Data.Set.Pointwise.SMul
 import Mathlib.Order.UpperLower.Basic
 
-#align_import algebra.order.upper_lower from "leanprover-community/mathlib"@"d90e4e186f1d18e375dcd4e5b5f6364b01cb3e46"
+#align_import algebra.order.upper_lower from "leanprover-community/mathlib"@"c0c52abb75074ed8b73a948341f50521fbf43b4c"
 /-!
 # Algebraic operations on upper/lower sets
 
@@ -42,15 +42,12 @@ section OrderedCommGroup
 variable {α : Type*} [OrderedCommGroup α] {s t : Set α} {a : α}
 
 @[to_additive]
-theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) := by
-  rintro _ y hxy ⟨x, hx, rfl⟩
-  exact mem_smul_set_iff_inv_smul_mem.2 (hs (le_inv_mul_iff_mul_le.2 hxy) hx)
+theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) := hs.image <| OrderIso.mulLeft _
 #align is_upper_set.smul IsUpperSet.smul
 #align is_upper_set.vadd IsUpperSet.vadd
 
 @[to_additive]
-theorem IsLowerSet.smul (hs : IsLowerSet s) : IsLowerSet (a • s) :=
-  hs.ofDual.smul
+theorem IsLowerSet.smul (hs : IsLowerSet s) : IsLowerSet (a • s) := hs.image <| OrderIso.mulLeft _
 #align is_lower_set.smul IsLowerSet.smul
 #align is_lower_set.vadd IsLowerSet.vadd
 
@@ -76,14 +73,12 @@ theorem IsUpperSet.mul_right (hs : IsUpperSet s) : IsUpperSet (s * t) := by
 #align is_upper_set.add_right IsUpperSet.add_right
 
 @[to_additive]
-theorem IsLowerSet.mul_left (ht : IsLowerSet t) : IsLowerSet (s * t) :=
-  ht.ofDual.mul_left
+theorem IsLowerSet.mul_left (ht : IsLowerSet t) : IsLowerSet (s * t) := ht.toDual.mul_left
 #align is_lower_set.mul_left IsLowerSet.mul_left
 #align is_lower_set.add_left IsLowerSet.add_left
 
 @[to_additive]
-theorem IsLowerSet.mul_right (hs : IsLowerSet s) : IsLowerSet (s * t) :=
-  hs.ofDual.mul_right
+theorem IsLowerSet.mul_right (hs : IsLowerSet s) : IsLowerSet (s * t) := hs.toDual.mul_right
 #align is_lower_set.mul_right IsLowerSet.mul_right
 #align is_lower_set.add_right IsLowerSet.add_right
 
@@ -112,14 +107,12 @@ theorem IsUpperSet.div_right (hs : IsUpperSet s) : IsUpperSet (s / t) := by
 #align is_upper_set.sub_right IsUpperSet.sub_right
 
 @[to_additive]
-theorem IsLowerSet.div_left (ht : IsLowerSet t) : IsUpperSet (s / t) :=
-  ht.ofDual.div_left
+theorem IsLowerSet.div_left (ht : IsLowerSet t) : IsUpperSet (s / t) := ht.toDual.div_left
 #align is_lower_set.div_left IsLowerSet.div_left
 #align is_lower_set.sub_left IsLowerSet.sub_left
 
 @[to_additive]
-theorem IsLowerSet.div_right (hs : IsLowerSet s) : IsLowerSet (s / t) :=
-  hs.ofDual.div_right
+theorem IsLowerSet.div_right (hs : IsLowerSet s) : IsLowerSet (s / t) := hs.toDual.div_right
 #align is_lower_set.div_right IsLowerSet.div_right
 #align is_lower_set.sub_right IsLowerSet.sub_right
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -21,7 +21,7 @@ open Pointwise
 
 section OrderedCommMonoid
 
-variable {α : Type _} [OrderedCommMonoid α] {s : Set α} {x : α}
+variable {α : Type*} [OrderedCommMonoid α] {s : Set α} {x : α}
 
 @[to_additive]
 theorem IsUpperSet.smul_subset (hs : IsUpperSet s) (hx : 1 ≤ x) : x • s ⊆ s :=
@@ -39,7 +39,7 @@ end OrderedCommMonoid
 
 section OrderedCommGroup
 
-variable {α : Type _} [OrderedCommGroup α] {s t : Set α} {a : α}
+variable {α : Type*} [OrderedCommGroup α] {s t : Set α} {a : α}
 
 @[to_additive]
 theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) := by
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2022 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module algebra.order.upper_lower
-! leanprover-community/mathlib commit d90e4e186f1d18e375dcd4e5b5f6364b01cb3e46
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Order.Group.Defs
 import Mathlib.Data.Set.Pointwise.SMul
 import Mathlib.Order.UpperLower.Basic
+
+#align_import algebra.order.upper_lower from "leanprover-community/mathlib"@"d90e4e186f1d18e375dcd4e5b5f6364b01cb3e46"
 /-!
 # Algebraic operations on upper/lower sets
 
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -66,8 +66,8 @@ theorem Set.OrdConnected.smul (hs : s.OrdConnected) : (a • s).OrdConnected :=
 
 @[to_additive]
 theorem IsUpperSet.mul_left (ht : IsUpperSet t) : IsUpperSet (s * t) := by
-  rw [← smul_eq_mul, ← Set.unionᵢ_smul_set]
-  exact isUpperSet_unionᵢ₂ fun x _ ↦ ht.smul
+  rw [← smul_eq_mul, ← Set.iUnion_smul_set]
+  exact isUpperSet_iUnion₂ fun x _ ↦ ht.smul
 #align is_upper_set.mul_left IsUpperSet.mul_left
 #align is_upper_set.add_left IsUpperSet.add_left
 
@@ -181,8 +181,8 @@ instance commSemigroup : CommSemigroup (UpperSet α) :=
 private theorem one_mul (s : UpperSet α) : 1 * s = s :=
   SetLike.coe_injective <|
     (subset_mul_right _ left_mem_Ici).antisymm' <| by
-      rw [← smul_eq_mul, ← Set.unionᵢ_smul_set]
-      exact Set.unionᵢ₂_subset fun _ ↦ s.upper.smul_subset
+      rw [← smul_eq_mul, ← Set.iUnion_smul_set]
+      exact Set.iUnion₂_subset fun _ ↦ s.upper.smul_subset
 
 @[to_additive]
 instance : CommMonoid (UpperSet α) :=
@@ -244,8 +244,8 @@ instance commSemigroup : CommSemigroup (LowerSet α) :=
 private theorem one_mul (s : LowerSet α) : 1 * s = s :=
   SetLike.coe_injective <|
     (subset_mul_right _ right_mem_Iic).antisymm' <| by
-      rw [← smul_eq_mul, ← Set.unionᵢ_smul_set]
-      exact Set.unionᵢ₂_subset fun _ ↦ s.lower.smul_subset
+      rw [← smul_eq_mul, ← Set.iUnion_smul_set]
+      exact Set.iUnion₂_subset fun _ ↦ s.lower.smul_subset
 
 @[to_additive]
 instance : CommMonoid (LowerSet α) :=
@@ -286,16 +286,16 @@ theorem lowerClosure_smul : lowerClosure (a • s) = a • lowerClosure s :=
 
 @[to_additive]
 theorem mul_upperClosure : s * upperClosure t = upperClosure (s * t) := by
-  simp_rw [← smul_eq_mul, ← Set.unionᵢ_smul_set, upperClosure_unionᵢ, upperClosure_smul,
-    UpperSet.coe_infᵢ₂]
+  simp_rw [← smul_eq_mul, ← Set.iUnion_smul_set, upperClosure_iUnion, upperClosure_smul,
+    UpperSet.coe_iInf₂]
   rfl
 #align mul_upper_closure mul_upperClosure
 #align add_upper_closure add_upperClosure
 
 @[to_additive]
 theorem mul_lowerClosure : s * lowerClosure t = lowerClosure (s * t) := by
-  simp_rw [← smul_eq_mul, ← Set.unionᵢ_smul_set, lowerClosure_unionᵢ, lowerClosure_smul,
-    LowerSet.coe_supᵢ₂]
+  simp_rw [← smul_eq_mul, ← Set.iUnion_smul_set, lowerClosure_iUnion, lowerClosure_smul,
+    LowerSet.coe_iSup₂]
   rfl
 #align mul_lower_closure mul_lowerClosure
 #align add_lower_closure add_lowerClosure
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -45,8 +45,7 @@ section OrderedCommGroup
 variable {α : Type _} [OrderedCommGroup α] {s t : Set α} {a : α}
 
 @[to_additive]
-theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) :=
-  by
+theorem IsUpperSet.smul (hs : IsUpperSet s) : IsUpperSet (a • s) := by
   rintro _ y hxy ⟨x, hx, rfl⟩
   exact mem_smul_set_iff_inv_smul_mem.2 (hs (le_inv_mul_iff_mul_le.2 hxy) hx)
 #align is_upper_set.smul IsUpperSet.smul
@@ -59,24 +58,21 @@ theorem IsLowerSet.smul (hs : IsLowerSet s) : IsLowerSet (a • s) :=
 #align is_lower_set.vadd IsLowerSet.vadd
 
 @[to_additive]
-theorem Set.OrdConnected.smul (hs : s.OrdConnected) : (a • s).OrdConnected :=
-  by
+theorem Set.OrdConnected.smul (hs : s.OrdConnected) : (a • s).OrdConnected := by
   rw [← hs.upperClosure_inter_lowerClosure, smul_set_inter]
   exact (upperClosure _).upper.smul.ordConnected.inter (lowerClosure _).lower.smul.ordConnected
 #align set.ord_connected.smul Set.OrdConnected.smul
 #align set.ord_connected.vadd Set.OrdConnected.vadd
 
 @[to_additive]
-theorem IsUpperSet.mul_left (ht : IsUpperSet t) : IsUpperSet (s * t) :=
-  by
+theorem IsUpperSet.mul_left (ht : IsUpperSet t) : IsUpperSet (s * t) := by
   rw [← smul_eq_mul, ← Set.unionᵢ_smul_set]
   exact isUpperSet_unionᵢ₂ fun x _ ↦ ht.smul
 #align is_upper_set.mul_left IsUpperSet.mul_left
 #align is_upper_set.add_left IsUpperSet.add_left
 
 @[to_additive]
-theorem IsUpperSet.mul_right (hs : IsUpperSet s) : IsUpperSet (s * t) :=
-  by
+theorem IsUpperSet.mul_right (hs : IsUpperSet s) : IsUpperSet (s * t) := by
   rw [mul_comm]
   exact hs.mul_left
 #align is_upper_set.mul_right IsUpperSet.mul_right
@@ -105,16 +101,14 @@ theorem IsLowerSet.inv (hs : IsLowerSet s) : IsUpperSet s⁻¹ := fun _ _ h ↦
 #align is_lower_set.neg IsLowerSet.neg
 
 @[to_additive]
-theorem IsUpperSet.div_left (ht : IsUpperSet t) : IsLowerSet (s / t) :=
-  by
+theorem IsUpperSet.div_left (ht : IsUpperSet t) : IsLowerSet (s / t) := by
   rw [div_eq_mul_inv]
   exact ht.inv.mul_left
 #align is_upper_set.div_left IsUpperSet.div_left
 #align is_upper_set.sub_left IsUpperSet.sub_left
 
 @[to_additive]
-theorem IsUpperSet.div_right (hs : IsUpperSet s) : IsUpperSet (s / t) :=
-  by
+theorem IsUpperSet.div_right (hs : IsUpperSet s) : IsUpperSet (s / t) := by
   rw [div_eq_mul_inv]
   exact hs.mul_right
 #align is_upper_set.div_right IsUpperSet.div_right
@@ -186,8 +180,7 @@ instance commSemigroup : CommSemigroup (UpperSet α) :=
 @[to_additive]
 private theorem one_mul (s : UpperSet α) : 1 * s = s :=
   SetLike.coe_injective <|
-    (subset_mul_right _ left_mem_Ici).antisymm' <|
-      by
+    (subset_mul_right _ left_mem_Ici).antisymm' <| by
       rw [← smul_eq_mul, ← Set.unionᵢ_smul_set]
       exact Set.unionᵢ₂_subset fun _ ↦ s.upper.smul_subset
 
@@ -250,8 +243,7 @@ instance commSemigroup : CommSemigroup (LowerSet α) :=
 @[to_additive]
 private theorem one_mul (s : LowerSet α) : 1 * s = s :=
   SetLike.coe_injective <|
-    (subset_mul_right _ right_mem_Iic).antisymm' <|
-      by
+    (subset_mul_right _ right_mem_Iic).antisymm' <| by
       rw [← smul_eq_mul, ← Set.unionᵢ_smul_set]
       exact Set.unionᵢ₂_subset fun _ ↦ s.lower.smul_subset
 
@@ -309,16 +301,14 @@ theorem mul_lowerClosure : s * lowerClosure t = lowerClosure (s * t) := by
 #align add_lower_closure add_lowerClosure
 
 @[to_additive]
-theorem upperClosure_mul : ↑(upperClosure s) * t = upperClosure (s * t) :=
-  by
+theorem upperClosure_mul : ↑(upperClosure s) * t = upperClosure (s * t) := by
   simp_rw [mul_comm _ t]
   exact mul_upperClosure _ _
 #align upper_closure_mul upperClosure_mul
 #align upper_closure_add upperClosure_add
 
 @[to_additive]
-theorem lowerClosure_mul : ↑(lowerClosure s) * t = lowerClosure (s * t) :=
-  by
+theorem lowerClosure_mul : ↑(lowerClosure s) * t = lowerClosure (s * t) := by
   simp_rw [mul_comm _ t]
   exact mul_lowerClosure _ _
 #align lower_closure_mul lowerClosure_mul

Dependencies 3 + 162

163 files ported (98.2%)
67352 lines ported (98.5%)
Show graph

The unported dependencies are