algebra.polynomial.big_operators
⟷
Mathlib.Algebra.Polynomial.BigOperators
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jalex Stark
-/
import Algebra.Order.WithZero
-import Data.Polynomial.Monic
+import Algebra.Polynomial.Monic
#align_import algebra.polynomial.big_operators from "leanprover-community/mathlib"@"69c6a5a12d8a2b159f20933e60115a4f2de62b58"
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -81,7 +81,7 @@ theorem degree_list_sum_le (l : List S[X]) : degree l.Sum ≤ (l.map natDegree).
rw [← List.foldr_max_of_ne_nil]
· congr
contrapose! h
- rw [List.map_eq_nil] at h
+ rw [List.map_eq_nil] at h
simp [h]
#align polynomial.degree_list_sum_le Polynomial.degree_list_sum_le
-/
@@ -319,9 +319,9 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
nontriviality R
convert multiset_prod_X_sub_C_next_coeff (by assumption)
rw [next_coeff]; split_ifs
- · rw [nat_degree_multiset_prod_of_monic] at h <;> simp only [Multiset.mem_map] at *
+ · rw [nat_degree_multiset_prod_of_monic] at h <;> simp only [Multiset.mem_map] at *
swap; · rintro _ ⟨_, _, rfl⟩; apply monic_X_sub_C
- simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map] at h
+ simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map] at h
contrapose! h
obtain ⟨x, hx⟩ := card_pos_iff_exists_mem.mp ht
exact ⟨_, ⟨_, ⟨x, hx, rfl⟩, nat_degree_X_sub_C _⟩, one_ne_zero⟩
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jalex Stark
-/
-import Mathbin.Algebra.Order.WithZero
-import Mathbin.Data.Polynomial.Monic
+import Algebra.Order.WithZero
+import Data.Polynomial.Monic
#align_import algebra.polynomial.big_operators from "leanprover-community/mathlib"@"69c6a5a12d8a2b159f20933e60115a4f2de62b58"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jalex Stark
-
-! This file was ported from Lean 3 source module algebra.polynomial.big_operators
-! leanprover-community/mathlib commit 69c6a5a12d8a2b159f20933e60115a4f2de62b58
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Algebra.Order.WithZero
import Mathbin.Data.Polynomial.Monic
+#align_import algebra.polynomial.big_operators from "leanprover-community/mathlib"@"69c6a5a12d8a2b159f20933e60115a4f2de62b58"
+
/-!
# Lemmas for the interaction between polynomials and `∑` and `∏`.
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -51,20 +51,27 @@ section Semiring
variable {S : Type _} [Semiring S]
+#print Polynomial.natDegree_list_sum_le /-
theorem natDegree_list_sum_le (l : List S[X]) : natDegree l.Sum ≤ (l.map natDegree).foldr max 0 :=
List.sum_le_foldr_max natDegree (by simp) natDegree_add_le _
#align polynomial.nat_degree_list_sum_le Polynomial.natDegree_list_sum_le
+-/
+#print Polynomial.natDegree_multiset_sum_le /-
theorem natDegree_multiset_sum_le (l : Multiset S[X]) :
natDegree l.Sum ≤ (l.map natDegree).foldr max max_left_comm 0 :=
Quotient.inductionOn l (by simpa using nat_degree_list_sum_le)
#align polynomial.nat_degree_multiset_sum_le Polynomial.natDegree_multiset_sum_le
+-/
+#print Polynomial.natDegree_sum_le /-
theorem natDegree_sum_le (f : ι → S[X]) :
natDegree (∑ i in s, f i) ≤ s.fold max 0 (natDegree ∘ f) := by
simpa using nat_degree_multiset_sum_le (s.val.map f)
#align polynomial.nat_degree_sum_le Polynomial.natDegree_sum_le
+-/
+#print Polynomial.degree_list_sum_le /-
theorem degree_list_sum_le (l : List S[X]) : degree l.Sum ≤ (l.map natDegree).maximum :=
by
by_cases h : l.sum = 0
@@ -80,6 +87,7 @@ theorem degree_list_sum_le (l : List S[X]) : degree l.Sum ≤ (l.map natDegree).
rw [List.map_eq_nil] at h
simp [h]
#align polynomial.degree_list_sum_le Polynomial.degree_list_sum_le
+-/
#print Polynomial.natDegree_list_prod_le /-
theorem natDegree_list_prod_le (l : List S[X]) : natDegree l.Prod ≤ (l.map natDegree).Sum :=
@@ -99,6 +107,7 @@ theorem degree_list_prod_le (l : List S[X]) : degree l.Prod ≤ (l.map degree).S
#align polynomial.degree_list_prod_le Polynomial.degree_list_prod_le
-/
+#print Polynomial.coeff_list_prod_of_natDegree_le /-
theorem coeff_list_prod_of_natDegree_le (l : List S[X]) (n : ℕ) (hl : ∀ p ∈ l, natDegree p ≤ n) :
coeff (List.prod l) (l.length * n) = (l.map fun p => coeff p n).Prod :=
by
@@ -124,6 +133,7 @@ theorem coeff_list_prod_of_natDegree_le (l : List S[X]) (n : ℕ) (hl : ∀ p
MulZeroClass.zero_mul]
exact nat_degree_mul_le.trans_lt (add_lt_add_of_lt_of_le hdn' h)
#align polynomial.coeff_list_prod_of_nat_degree_le Polynomial.coeff_list_prod_of_natDegree_le
+-/
end Semiring
@@ -158,6 +168,7 @@ theorem degree_prod_le : (∏ i in s, f i).degree ≤ ∑ i in s, (f i).degree :
#align polynomial.degree_prod_le Polynomial.degree_prod_le
-/
+#print Polynomial.leadingCoeff_multiset_prod' /-
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients, provided that this product is nonzero.
@@ -171,7 +182,9 @@ theorem leadingCoeff_multiset_prod' (h : (t.map leadingCoeff).Prod ≠ 0) :
simp only [Multiset.map_cons, Multiset.prod_cons] at h ⊢
rw [Polynomial.leadingCoeff_mul'] <;> · rwa [ih]; apply right_ne_zero_of_mul h
#align polynomial.leading_coeff_multiset_prod' Polynomial.leadingCoeff_multiset_prod'
+-/
+#print Polynomial.leadingCoeff_prod' /-
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients, provided that this product is nonzero.
@@ -182,7 +195,9 @@ theorem leadingCoeff_prod' (h : ∏ i in s, (f i).leadingCoeff ≠ 0) :
(∏ i in s, f i).leadingCoeff = ∏ i in s, (f i).leadingCoeff := by
simpa using leading_coeff_multiset_prod' (s.1.map f) (by simpa using h)
#align polynomial.leading_coeff_prod' Polynomial.leadingCoeff_prod'
+-/
+#print Polynomial.natDegree_multiset_prod' /-
/-- The degree of a product of polynomials is equal to
the sum of the degrees, provided that the product of leading coefficients is nonzero.
@@ -199,7 +214,9 @@ theorem natDegree_multiset_prod' (h : (t.map fun f => leadingCoeff f).Prod ≠ 0
· apply right_ne_zero_of_mul ht
· rwa [Polynomial.leadingCoeff_multiset_prod']; apply right_ne_zero_of_mul ht
#align polynomial.nat_degree_multiset_prod' Polynomial.natDegree_multiset_prod'
+-/
+#print Polynomial.natDegree_prod' /-
/-- The degree of a product of polynomials is equal to
the sum of the degrees, provided that the product of leading coefficients is nonzero.
@@ -210,6 +227,7 @@ theorem natDegree_prod' (h : ∏ i in s, (f i).leadingCoeff ≠ 0) :
(∏ i in s, f i).natDegree = ∑ i in s, (f i).natDegree := by
simpa using nat_degree_multiset_prod' (s.1.map f) (by simpa using h)
#align polynomial.nat_degree_prod' Polynomial.natDegree_prod'
+-/
#print Polynomial.natDegree_multiset_prod_of_monic /-
theorem natDegree_multiset_prod_of_monic (h : ∀ f ∈ t, Monic f) :
@@ -234,12 +252,14 @@ theorem natDegree_prod_of_monic (h : ∀ i ∈ s, (f i).Monic) :
#align polynomial.nat_degree_prod_of_monic Polynomial.natDegree_prod_of_monic
-/
+#print Polynomial.coeff_multiset_prod_of_natDegree_le /-
theorem coeff_multiset_prod_of_natDegree_le (n : ℕ) (hl : ∀ p ∈ t, natDegree p ≤ n) :
coeff t.Prod (t.card * n) = (t.map fun p => coeff p n).Prod :=
by
induction t using Quotient.inductionOn
simpa using coeff_list_prod_of_nat_degree_le _ _ hl
#align polynomial.coeff_multiset_prod_of_nat_degree_le Polynomial.coeff_multiset_prod_of_natDegree_le
+-/
#print Polynomial.coeff_prod_of_natDegree_le /-
theorem coeff_prod_of_natDegree_le (f : ι → R[X]) (n : ℕ) (h : ∀ p ∈ s, natDegree (f p) ≤ n) :
@@ -275,6 +295,7 @@ variable [CommRing R]
open Monic
+#print Polynomial.multiset_prod_X_sub_C_nextCoeff /-
-- Eventually this can be generalized with Vieta's formulas
-- plus the connection between roots and factorization.
theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
@@ -285,12 +306,16 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
exact t.sum_hom (-AddMonoidHom.id R)
· intros; apply monic_X_sub_C
#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeff
+-/
+#print Polynomial.prod_X_sub_C_nextCoeff /-
theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
nextCoeff (∏ i in s, (X - C (f i))) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_next_coeff (s.1.map f)
#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeff
+-/
+#print Polynomial.multiset_prod_X_sub_C_coeff_card_pred /-
theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card) :
(t.map fun x => X - C x).Prod.coeff (t.card - 1) = -t.Sum :=
by
@@ -305,11 +330,14 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
exact ⟨_, ⟨_, ⟨x, hx, rfl⟩, nat_degree_X_sub_C _⟩, one_ne_zero⟩
congr; rw [nat_degree_multiset_prod_of_monic] <;> · simp [nat_degree_X_sub_C, monic_X_sub_C]
#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_pred
+-/
+#print Polynomial.prod_X_sub_C_coeff_card_pred /-
theorem prod_X_sub_C_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
(∏ i in s, (X - C (f i))).coeff (s.card - 1) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_coeff_card_pred (s.1.map f) (by simpa using hs)
#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_X_sub_C_coeff_card_pred
+-/
end CommRing
@@ -319,6 +347,7 @@ section Semiring
variable [Semiring R] [NoZeroDivisors R]
+#print Polynomial.degree_list_prod /-
/-- The degree of a product of polynomials is equal to
the sum of the degrees, where the degree of the zero polynomial is ⊥.
`[nontrivial R]` is needed, otherwise for `l = []` we have `⊥` in the LHS and `0` in the RHS.
@@ -326,6 +355,7 @@ the sum of the degrees, where the degree of the zero polynomial is ⊥.
theorem degree_list_prod [Nontrivial R] (l : List R[X]) : l.Prod.degree = (l.map degree).Sum :=
map_list_prod (@degreeMonoidHom R _ _ _) l
#align polynomial.degree_list_prod Polynomial.degree_list_prod
+-/
end Semiring
@@ -333,6 +363,7 @@ section CommSemiring
variable [CommSemiring R] [NoZeroDivisors R] (f : ι → R[X]) (t : Multiset R[X])
+#print Polynomial.natDegree_prod /-
/-- The degree of a product of polynomials is equal to
the sum of the degrees.
@@ -347,7 +378,9 @@ theorem natDegree_prod (h : ∀ i ∈ s, f i ≠ 0) :
rw [prod_ne_zero_iff]
intro x hx; simp [h x hx]
#align polynomial.nat_degree_prod Polynomial.natDegree_prod
+-/
+#print Polynomial.natDegree_multiset_prod /-
theorem natDegree_multiset_prod (h : (0 : R[X]) ∉ t) : natDegree t.Prod = (t.map natDegree).Sum :=
by
nontriviality R
@@ -356,21 +389,27 @@ theorem natDegree_multiset_prod (h : (0 : R[X]) ∉ t) : natDegree t.Prod = (t.m
rintro ⟨_, h, rfl⟩
contradiction
#align polynomial.nat_degree_multiset_prod Polynomial.natDegree_multiset_prod
+-/
+#print Polynomial.degree_multiset_prod /-
/-- The degree of a product of polynomials is equal to
the sum of the degrees, where the degree of the zero polynomial is ⊥.
-/
theorem degree_multiset_prod [Nontrivial R] : t.Prod.degree = (t.map fun f => degree f).Sum :=
map_multiset_prod (@degreeMonoidHom R _ _ _) _
#align polynomial.degree_multiset_prod Polynomial.degree_multiset_prod
+-/
+#print Polynomial.degree_prod /-
/-- The degree of a product of polynomials is equal to
the sum of the degrees, where the degree of the zero polynomial is ⊥.
-/
theorem degree_prod [Nontrivial R] : (∏ i in s, f i).degree = ∑ i in s, (f i).degree :=
map_prod (@degreeMonoidHom R _ _ _) _ _
#align polynomial.degree_prod Polynomial.degree_prod
+-/
+#print Polynomial.leadingCoeff_multiset_prod /-
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients.
@@ -380,7 +419,9 @@ where additionally, the product of the leading coefficients must be nonzero.
theorem leadingCoeff_multiset_prod : t.Prod.leadingCoeff = (t.map fun f => leadingCoeff f).Prod :=
by rw [← leading_coeff_hom_apply, MonoidHom.map_multiset_prod]; rfl
#align polynomial.leading_coeff_multiset_prod Polynomial.leadingCoeff_multiset_prod
+-/
+#print Polynomial.leadingCoeff_prod /-
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients.
@@ -390,6 +431,7 @@ where additionally, the product of the leading coefficients must be nonzero.
theorem leadingCoeff_prod : (∏ i in s, f i).leadingCoeff = ∏ i in s, (f i).leadingCoeff := by
simpa using leading_coeff_multiset_prod (s.1.map f)
#align polynomial.leading_coeff_prod Polynomial.leadingCoeff_prod
+-/
end CommSemiring
mathlib commit https://github.com/leanprover-community/mathlib/commit/a3e83f0fa4391c8740f7d773a7a9b74e311ae2a3
@@ -178,7 +178,7 @@ the product of the leading coefficients, provided that this product is nonzero.
See `polynomial.leading_coeff_prod` (without the `'`) for a version for integral domains,
where this condition is automatically satisfied.
-/
-theorem leadingCoeff_prod' (h : (∏ i in s, (f i).leadingCoeff) ≠ 0) :
+theorem leadingCoeff_prod' (h : ∏ i in s, (f i).leadingCoeff ≠ 0) :
(∏ i in s, f i).leadingCoeff = ∏ i in s, (f i).leadingCoeff := by
simpa using leading_coeff_multiset_prod' (s.1.map f) (by simpa using h)
#align polynomial.leading_coeff_prod' Polynomial.leadingCoeff_prod'
@@ -206,7 +206,7 @@ the sum of the degrees, provided that the product of leading coefficients is non
See `polynomial.nat_degree_prod` (without the `'`) for a version for integral domains,
where this condition is automatically satisfied.
-/
-theorem natDegree_prod' (h : (∏ i in s, (f i).leadingCoeff) ≠ 0) :
+theorem natDegree_prod' (h : ∏ i in s, (f i).leadingCoeff ≠ 0) :
(∏ i in s, f i).natDegree = ∑ i in s, (f i).natDegree := by
simpa using nat_degree_multiset_prod' (s.1.map f) (by simpa using h)
#align polynomial.nat_degree_prod' Polynomial.natDegree_prod'
@@ -287,7 +287,7 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeff
theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
- nextCoeff (∏ i in s, X - C (f i)) = -∑ i in s, f i := by
+ nextCoeff (∏ i in s, (X - C (f i))) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_next_coeff (s.1.map f)
#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeff
@@ -307,7 +307,7 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_pred
theorem prod_X_sub_C_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
- (∏ i in s, X - C (f i)).coeff (s.card - 1) = -∑ i in s, f i := by
+ (∏ i in s, (X - C (f i))).coeff (s.card - 1) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_coeff_card_pred (s.1.map f) (by simpa using hs)
#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_X_sub_C_coeff_card_pred
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -77,7 +77,7 @@ theorem degree_list_sum_le (l : List S[X]) : degree l.Sum ≤ (l.map natDegree).
rw [← List.foldr_max_of_ne_nil]
· congr
contrapose! h
- rw [List.map_eq_nil] at h
+ rw [List.map_eq_nil] at h
simp [h]
#align polynomial.degree_list_sum_le Polynomial.degree_list_sum_le
@@ -168,7 +168,7 @@ theorem leadingCoeff_multiset_prod' (h : (t.map leadingCoeff).Prod ≠ 0) :
t.Prod.leadingCoeff = (t.map leadingCoeff).Prod :=
by
induction' t using Multiset.induction_on with a t ih; · simp
- simp only [Multiset.map_cons, Multiset.prod_cons] at h⊢
+ simp only [Multiset.map_cons, Multiset.prod_cons] at h ⊢
rw [Polynomial.leadingCoeff_mul'] <;> · rwa [ih]; apply right_ne_zero_of_mul h
#align polynomial.leading_coeff_multiset_prod' Polynomial.leadingCoeff_multiset_prod'
@@ -194,7 +194,7 @@ theorem natDegree_multiset_prod' (h : (t.map fun f => leadingCoeff f).Prod ≠ 0
by
revert h
refine' Multiset.induction_on t _ fun a t ih ht => _; · simp
- rw [Multiset.map_cons, Multiset.prod_cons] at ht⊢
+ rw [Multiset.map_cons, Multiset.prod_cons] at ht ⊢
rw [Multiset.sum_cons, Polynomial.natDegree_mul', ih]
· apply right_ne_zero_of_mul ht
· rwa [Polynomial.leadingCoeff_multiset_prod']; apply right_ne_zero_of_mul ht
@@ -283,7 +283,7 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
rw [next_coeff_multiset_prod]
· simp only [next_coeff_X_sub_C]
exact t.sum_hom (-AddMonoidHom.id R)
- · intros ; apply monic_X_sub_C
+ · intros; apply monic_X_sub_C
#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeff
theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
@@ -297,13 +297,13 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
nontriviality R
convert multiset_prod_X_sub_C_next_coeff (by assumption)
rw [next_coeff]; split_ifs
- · rw [nat_degree_multiset_prod_of_monic] at h <;> simp only [Multiset.mem_map] at *
+ · rw [nat_degree_multiset_prod_of_monic] at h <;> simp only [Multiset.mem_map] at *
swap; · rintro _ ⟨_, _, rfl⟩; apply monic_X_sub_C
- simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map] at h
+ simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map] at h
contrapose! h
obtain ⟨x, hx⟩ := card_pos_iff_exists_mem.mp ht
exact ⟨_, ⟨_, ⟨x, hx, rfl⟩, nat_degree_X_sub_C _⟩, one_ne_zero⟩
- congr ; rw [nat_degree_multiset_prod_of_monic] <;> · simp [nat_degree_X_sub_C, monic_X_sub_C]
+ congr; rw [nat_degree_multiset_prod_of_monic] <;> · simp [nat_degree_X_sub_C, monic_X_sub_C]
#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_pred
theorem prod_X_sub_C_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -37,7 +37,7 @@ open Finset
open Multiset
-open BigOperators Polynomial
+open scoped BigOperators Polynomial
universe u w
@@ -90,12 +90,14 @@ theorem natDegree_list_prod_le (l : List S[X]) : natDegree l.Prod ≤ (l.map nat
#align polynomial.nat_degree_list_prod_le Polynomial.natDegree_list_prod_le
-/
+#print Polynomial.degree_list_prod_le /-
theorem degree_list_prod_le (l : List S[X]) : degree l.Prod ≤ (l.map degree).Sum :=
by
induction' l with hd tl IH
· simp
· simpa using (degree_mul_le _ _).trans (add_le_add_left IH _)
#align polynomial.degree_list_prod_le Polynomial.degree_list_prod_le
+-/
theorem coeff_list_prod_of_natDegree_le (l : List S[X]) (n : ℕ) (hl : ∀ p ∈ l, natDegree p ≤ n) :
coeff (List.prod l) (l.length * n) = (l.map fun p => coeff p n).Prod :=
@@ -141,16 +143,20 @@ theorem natDegree_prod_le : (∏ i in s, f i).natDegree ≤ ∑ i in s, (f i).na
#align polynomial.nat_degree_prod_le Polynomial.natDegree_prod_le
-/
+#print Polynomial.degree_multiset_prod_le /-
/-- The degree of a product of polynomials is at most the sum of the degrees,
where the degree of the zero polynomial is ⊥.
-/
theorem degree_multiset_prod_le : t.Prod.degree ≤ (t.map Polynomial.degree).Sum :=
Quotient.inductionOn t (by simpa using degree_list_prod_le)
#align polynomial.degree_multiset_prod_le Polynomial.degree_multiset_prod_le
+-/
+#print Polynomial.degree_prod_le /-
theorem degree_prod_le : (∏ i in s, f i).degree ≤ ∑ i in s, (f i).degree := by
simpa only [Multiset.map_map] using degree_multiset_prod_le (s.1.map f)
#align polynomial.degree_prod_le Polynomial.degree_prod_le
+-/
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients, provided that this product is nonzero.
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -51,44 +51,20 @@ section Semiring
variable {S : Type _} [Semiring S]
-/- warning: polynomial.nat_degree_list_sum_le -> Polynomial.natDegree_list_sum_le is a dubious translation:
-lean 3 declaration is
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.foldr.{0, 0} Nat Nat (LinearOrder.max.{0} Nat Nat.linearOrder) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
-but is expected to have type
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.foldr.{0, 0} Nat Nat (Max.max.{0} Nat Nat.instMaxNat) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
-Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_list_sum_le Polynomial.natDegree_list_sum_leₓ'. -/
theorem natDegree_list_sum_le (l : List S[X]) : natDegree l.Sum ≤ (l.map natDegree).foldr max 0 :=
List.sum_le_foldr_max natDegree (by simp) natDegree_add_le _
#align polynomial.nat_degree_list_sum_le Polynomial.natDegree_list_sum_le
-/- warning: polynomial.nat_degree_multiset_sum_le -> Polynomial.natDegree_multiset_sum_le is a dubious translation:
-lean 3 declaration is
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : Multiset.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} S _inst_1 (Multiset.sum.{u1} (Polynomial.{u1} S _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} S _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.semiring.{u1} S _inst_1)))) l)) (Multiset.foldr.{0, 0} Nat Nat (LinearOrder.max.{0} Nat Nat.linearOrder) (max_left_comm.{0} Nat Nat.linearOrder) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Multiset.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
-but is expected to have type
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : Multiset.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} S _inst_1 (Multiset.sum.{u1} (Polynomial.{u1} S _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} S _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.semiring.{u1} S _inst_1)))) l)) (Multiset.foldr.{0, 0} Nat Nat (Max.max.{0} Nat (LinearOrder.toMax.{0} Nat Nat.linearOrder)) (max_left_comm.{0} Nat Nat.linearOrder) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Multiset.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
-Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_multiset_sum_le Polynomial.natDegree_multiset_sum_leₓ'. -/
theorem natDegree_multiset_sum_le (l : Multiset S[X]) :
natDegree l.Sum ≤ (l.map natDegree).foldr max max_left_comm 0 :=
Quotient.inductionOn l (by simpa using nat_degree_list_sum_le)
#align polynomial.nat_degree_multiset_sum_le Polynomial.natDegree_multiset_sum_le
-/- warning: polynomial.nat_degree_sum_le -> Polynomial.natDegree_sum_le is a dubious translation:
-lean 3 declaration is
- forall {ι : Type.{u1}} (s : Finset.{u1} ι) {S : Type.{u2}} [_inst_1 : Semiring.{u2} S] (f : ι -> (Polynomial.{u2} S _inst_1)), LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u2} S _inst_1 (Finset.sum.{u2, u1} (Polynomial.{u2} S _inst_1) ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} (Polynomial.{u2} S _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} S _inst_1) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} S _inst_1) (Polynomial.semiring.{u2} S _inst_1)))) s (fun (i : ι) => f i))) (Finset.fold.{u1, 0} ι Nat (LinearOrder.max.{0} Nat Nat.linearOrder) (sup_isCommutative.{0} Nat (CanonicallyLinearOrderedAddMonoid.semilatticeSup.{0} Nat Nat.canonicallyLinearOrderedAddMonoid)) (sup_isAssociative.{0} Nat (CanonicallyLinearOrderedAddMonoid.semilatticeSup.{0} Nat Nat.canonicallyLinearOrderedAddMonoid)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Function.comp.{succ u1, succ u2, 1} ι (Polynomial.{u2} S _inst_1) Nat (Polynomial.natDegree.{u2} S _inst_1) f) s)
-but is expected to have type
- forall {ι : Type.{u2}} (s : Finset.{u2} ι) {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (f : ι -> (Polynomial.{u1} S _inst_1)), LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} S _inst_1 (Finset.sum.{u1, u2} (Polynomial.{u1} S _inst_1) ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} S _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.semiring.{u1} S _inst_1)))) s (fun (i : ι) => f i))) (Finset.fold.{u2, 0} ι Nat (Max.max.{0} Nat (LinearOrder.toMax.{0} Nat Nat.linearOrder)) (instIsCommutativeMaxToMax.{0} Nat Nat.linearOrder) (instIsAssociativeMaxToMax.{0} Nat Nat.linearOrder) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Function.comp.{succ u2, succ u1, 1} ι (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) f) s)
-Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_sum_le Polynomial.natDegree_sum_leₓ'. -/
theorem natDegree_sum_le (f : ι → S[X]) :
natDegree (∑ i in s, f i) ≤ s.fold max 0 (natDegree ∘ f) := by
simpa using nat_degree_multiset_sum_le (s.val.map f)
#align polynomial.nat_degree_sum_le Polynomial.natDegree_sum_le
-/- warning: polynomial.degree_list_sum_le -> Polynomial.degree_list_sum_le is a dubious translation:
-lean 3 declaration is
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.maximum.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (fun (a : Nat) (b : Nat) => Nat.decidableLt a b) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
-but is expected to have type
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.maximum.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (fun (a : Nat) (b : Nat) => Nat.decLt a b) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_list_sum_le Polynomial.degree_list_sum_leₓ'. -/
theorem degree_list_sum_le (l : List S[X]) : degree l.Sum ≤ (l.map natDegree).maximum :=
by
by_cases h : l.sum = 0
@@ -114,12 +90,6 @@ theorem natDegree_list_prod_le (l : List S[X]) : natDegree l.Prod ≤ (l.map nat
#align polynomial.nat_degree_list_prod_le Polynomial.natDegree_list_prod_le
-/
-/- warning: polynomial.degree_list_prod_le -> Polynomial.degree_list_prod_le is a dubious translation:
-lean 3 declaration is
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} S _inst_1 (List.prod.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.mul'.{u1} S _inst_1) (Polynomial.hasOne.{u1} S _inst_1) l)) (List.sum.{0} (WithBot.{0} Nat) (WithBot.hasAdd.{0} Nat Nat.hasAdd) (WithBot.hasZero.{0} Nat Nat.hasZero) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) (WithBot.{0} Nat) (Polynomial.degree.{u1} S _inst_1) l))
-but is expected to have type
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} S _inst_1 (List.prod.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.mul'.{u1} S _inst_1) (Polynomial.one.{u1} S _inst_1) l)) (List.sum.{0} (WithBot.{0} Nat) (WithBot.add.{0} Nat instAddNat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) (WithBot.{0} Nat) (Polynomial.degree.{u1} S _inst_1) l))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_list_prod_le Polynomial.degree_list_prod_leₓ'. -/
theorem degree_list_prod_le (l : List S[X]) : degree l.Prod ≤ (l.map degree).Sum :=
by
induction' l with hd tl IH
@@ -127,12 +97,6 @@ theorem degree_list_prod_le (l : List S[X]) : degree l.Prod ≤ (l.map degree).S
· simpa using (degree_mul_le _ _).trans (add_le_add_left IH _)
#align polynomial.degree_list_prod_le Polynomial.degree_list_prod_le
-/- warning: polynomial.coeff_list_prod_of_nat_degree_le -> Polynomial.coeff_list_prod_of_natDegree_le is a dubious translation:
-lean 3 declaration is
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)) (n : Nat), (forall (p : Polynomial.{u1} S _inst_1), (Membership.Mem.{u1, u1} (Polynomial.{u1} S _inst_1) (List.{u1} (Polynomial.{u1} S _inst_1)) (List.hasMem.{u1} (Polynomial.{u1} S _inst_1)) p l) -> (LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} S _inst_1 p) n)) -> (Eq.{succ u1} S (Polynomial.coeff.{u1} S _inst_1 (List.prod.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.mul'.{u1} S _inst_1) (Polynomial.hasOne.{u1} S _inst_1) l) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (List.length.{u1} (Polynomial.{u1} S _inst_1) l) n)) (List.prod.{u1} S (Distrib.toHasMul.{u1} S (NonUnitalNonAssocSemiring.toDistrib.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S _inst_1)))) (AddMonoidWithOne.toOne.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S _inst_1)))) (List.map.{u1, u1} (Polynomial.{u1} S _inst_1) S (fun (p : Polynomial.{u1} S _inst_1) => Polynomial.coeff.{u1} S _inst_1 p n) l)))
-but is expected to have type
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)) (n : Nat), (forall (p : Polynomial.{u1} S _inst_1), (Membership.mem.{u1, u1} (Polynomial.{u1} S _inst_1) (List.{u1} (Polynomial.{u1} S _inst_1)) (List.instMembershipList.{u1} (Polynomial.{u1} S _inst_1)) p l) -> (LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} S _inst_1 p) n)) -> (Eq.{succ u1} S (Polynomial.coeff.{u1} S _inst_1 (List.prod.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.mul'.{u1} S _inst_1) (Polynomial.one.{u1} S _inst_1) l) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (List.length.{u1} (Polynomial.{u1} S _inst_1) l) n)) (List.prod.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S _inst_1))) (Semiring.toOne.{u1} S _inst_1) (List.map.{u1, u1} (Polynomial.{u1} S _inst_1) S (fun (p : Polynomial.{u1} S _inst_1) => Polynomial.coeff.{u1} S _inst_1 p n) l)))
-Case conversion may be inaccurate. Consider using '#align polynomial.coeff_list_prod_of_nat_degree_le Polynomial.coeff_list_prod_of_natDegree_leₓ'. -/
theorem coeff_list_prod_of_natDegree_le (l : List S[X]) (n : ℕ) (hl : ∀ p ∈ l, natDegree p ≤ n) :
coeff (List.prod l) (l.length * n) = (l.map fun p => coeff p n).Prod :=
by
@@ -177,12 +141,6 @@ theorem natDegree_prod_le : (∏ i in s, f i).natDegree ≤ ∑ i in s, (f i).na
#align polynomial.nat_degree_prod_le Polynomial.natDegree_prod_le
-/
-/- warning: polynomial.degree_multiset_prod_le -> Polynomial.degree_multiset_prod_le is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} (WithBot.{0} Nat) (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} (WithBot.{0} Nat) (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_multiset_prod_le Polynomial.degree_multiset_prod_leₓ'. -/
/-- The degree of a product of polynomials is at most the sum of the degrees,
where the degree of the zero polynomial is ⊥.
-/
@@ -190,22 +148,10 @@ theorem degree_multiset_prod_le : t.Prod.degree ≤ (t.map Polynomial.degree).Su
Quotient.inductionOn t (by simpa using degree_list_prod_le)
#align polynomial.degree_multiset_prod_le Polynomial.degree_multiset_prod_le
-/- warning: polynomial.degree_prod_le -> Polynomial.degree_prod_le is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} (WithBot.{0} Nat) ι (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) s (fun (i : ι) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
-but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} (WithBot.{0} Nat) ι (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) s (fun (i : ι) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_prod_le Polynomial.degree_prod_leₓ'. -/
theorem degree_prod_le : (∏ i in s, f i).degree ≤ ∑ i in s, (f i).degree := by
simpa only [Multiset.map_map] using degree_multiset_prod_le (s.1.map f)
#align polynomial.degree_prod_le Polynomial.degree_prod_le
-/- warning: polynomial.leading_coeff_multiset_prod' -> Polynomial.leadingCoeff_multiset_prod' is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) -> (Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)))
-Case conversion may be inaccurate. Consider using '#align polynomial.leading_coeff_multiset_prod' Polynomial.leadingCoeff_multiset_prod'ₓ'. -/
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients, provided that this product is nonzero.
@@ -220,12 +166,6 @@ theorem leadingCoeff_multiset_prod' (h : (t.map leadingCoeff).Prod ≠ 0) :
rw [Polynomial.leadingCoeff_mul'] <;> · rwa [ih]; apply right_ne_zero_of_mul h
#align polynomial.leading_coeff_multiset_prod' Polynomial.leadingCoeff_multiset_prod'
-/- warning: polynomial.leading_coeff_prod' -> Polynomial.leadingCoeff_prod' is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) -> (Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
-but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
-Case conversion may be inaccurate. Consider using '#align polynomial.leading_coeff_prod' Polynomial.leadingCoeff_prod'ₓ'. -/
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients, provided that this product is nonzero.
@@ -237,12 +177,6 @@ theorem leadingCoeff_prod' (h : (∏ i in s, (f i).leadingCoeff) ≠ 0) :
simpa using leading_coeff_multiset_prod' (s.1.map f) (by simpa using h)
#align polynomial.leading_coeff_prod' Polynomial.leadingCoeff_prod'
-/- warning: polynomial.nat_degree_multiset_prod' -> Polynomial.natDegree_multiset_prod' is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} Nat Nat.addCommMonoid (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t)))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} Nat Nat.addCommMonoid (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t)))
-Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_multiset_prod' Polynomial.natDegree_multiset_prod'ₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees, provided that the product of leading coefficients is nonzero.
@@ -260,12 +194,6 @@ theorem natDegree_multiset_prod' (h : (t.map fun f => leadingCoeff f).Prod ≠ 0
· rwa [Polynomial.leadingCoeff_multiset_prod']; apply right_ne_zero_of_mul ht
#align polynomial.nat_degree_multiset_prod' Polynomial.natDegree_multiset_prod'
-/- warning: polynomial.nat_degree_prod' -> Polynomial.natDegree_prod' is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} Nat ι Nat.addCommMonoid s (fun (i : ι) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
-but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} Nat ι Nat.addCommMonoid s (fun (i : ι) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
-Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_prod' Polynomial.natDegree_prod'ₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees, provided that the product of leading coefficients is nonzero.
@@ -300,9 +228,6 @@ theorem natDegree_prod_of_monic (h : ∀ i ∈ s, (f i).Monic) :
#align polynomial.nat_degree_prod_of_monic Polynomial.natDegree_prod_of_monic
-/
-/- warning: polynomial.coeff_multiset_prod_of_nat_degree_le -> Polynomial.coeff_multiset_prod_of_natDegree_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.coeff_multiset_prod_of_nat_degree_le Polynomial.coeff_multiset_prod_of_natDegree_leₓ'. -/
theorem coeff_multiset_prod_of_natDegree_le (n : ℕ) (hl : ∀ p ∈ t, natDegree p ≤ n) :
coeff t.Prod (t.card * n) = (t.map fun p => coeff p n).Prod :=
by
@@ -344,12 +269,6 @@ variable [CommRing R]
open Monic
-/- warning: polynomial.multiset_prod_X_sub_C_next_coeff -> Polynomial.multiset_prod_X_sub_C_nextCoeff is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
-Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeffₓ'. -/
-- Eventually this can be generalized with Vieta's formulas
-- plus the connection between roots and factorization.
theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
@@ -361,20 +280,11 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
· intros ; apply monic_X_sub_C
#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeff
-/- warning: polynomial.prod_X_sub_C_next_coeff -> Polynomial.prod_X_sub_C_nextCoeff is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
-but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeffₓ'. -/
theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
nextCoeff (∏ i in s, X - C (f i)) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_next_coeff (s.1.map f)
#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeff
-/- warning: polynomial.multiset_prod_X_sub_C_coeff_card_pred -> Polynomial.multiset_prod_X_sub_C_coeff_card_pred is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_predₓ'. -/
theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card) :
(t.map fun x => X - C x).Prod.coeff (t.card - 1) = -t.Sum :=
by
@@ -390,9 +300,6 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
congr ; rw [nat_degree_multiset_prod_of_monic] <;> · simp [nat_degree_X_sub_C, monic_X_sub_C]
#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_pred
-/- warning: polynomial.prod_X_sub_C_coeff_card_pred -> Polynomial.prod_X_sub_C_coeff_card_pred is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_X_sub_C_coeff_card_predₓ'. -/
theorem prod_X_sub_C_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
(∏ i in s, X - C (f i)).coeff (s.card - 1) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_coeff_card_pred (s.1.map f) (by simpa using hs)
@@ -406,12 +313,6 @@ section Semiring
variable [Semiring R] [NoZeroDivisors R]
-/- warning: polynomial.degree_list_prod -> Polynomial.degree_list_prod is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))] [_inst_3 : Nontrivial.{u1} R] (l : List.{u1} (Polynomial.{u1} R _inst_1)), Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R _inst_1 (List.prod.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1) (Polynomial.hasOne.{u1} R _inst_1) l)) (List.sum.{0} (WithBot.{0} Nat) (WithBot.hasAdd.{0} Nat Nat.hasAdd) (WithBot.hasZero.{0} Nat Nat.hasZero) (List.map.{u1, 0} (Polynomial.{u1} R _inst_1) (WithBot.{0} Nat) (Polynomial.degree.{u1} R _inst_1) l))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))] [_inst_3 : Nontrivial.{u1} R] (l : List.{u1} (Polynomial.{u1} R _inst_1)), Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R _inst_1 (List.prod.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1) (Polynomial.one.{u1} R _inst_1) l)) (List.sum.{0} (WithBot.{0} Nat) (WithBot.add.{0} Nat instAddNat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (List.map.{u1, 0} (Polynomial.{u1} R _inst_1) (WithBot.{0} Nat) (Polynomial.degree.{u1} R _inst_1) l))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_list_prod Polynomial.degree_list_prodₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees, where the degree of the zero polynomial is ⊥.
`[nontrivial R]` is needed, otherwise for `l = []` we have `⊥` in the LHS and `0` in the RHS.
@@ -426,12 +327,6 @@ section CommSemiring
variable [CommSemiring R] [NoZeroDivisors R] (f : ι → R[X]) (t : Multiset R[X])
-/- warning: polynomial.nat_degree_prod -> Polynomial.natDegree_prod is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (f i) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} Nat ι Nat.addCommMonoid s (fun (i : ι) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
-but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (f i) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} Nat ι Nat.addCommMonoid s (fun (i : ι) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
-Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_prod Polynomial.natDegree_prodₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees.
@@ -447,12 +342,6 @@ theorem natDegree_prod (h : ∀ i ∈ s, f i ≠ 0) :
intro x hx; simp [h x hx]
#align polynomial.nat_degree_prod Polynomial.natDegree_prod
-/- warning: polynomial.nat_degree_multiset_prod -> Polynomial.natDegree_multiset_prod is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Not (Membership.Mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.hasMem.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) t)) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} Nat Nat.addCommMonoid (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Not (Membership.mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instMembershipMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) t)) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} Nat Nat.addCommMonoid (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)))
-Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_multiset_prod Polynomial.natDegree_multiset_prodₓ'. -/
theorem natDegree_multiset_prod (h : (0 : R[X]) ∉ t) : natDegree t.Prod = (t.map natDegree).Sum :=
by
nontriviality R
@@ -462,12 +351,6 @@ theorem natDegree_multiset_prod (h : (0 : R[X]) ∉ t) : natDegree t.Prod = (t.m
contradiction
#align polynomial.nat_degree_multiset_prod Polynomial.natDegree_multiset_prod
-/- warning: polynomial.degree_multiset_prod -> Polynomial.degree_multiset_prod is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) [_inst_3 : Nontrivial.{u1} R], Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} (WithBot.{0} Nat) (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (WithBot.{0} Nat) (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) [_inst_3 : Nontrivial.{u1} R], Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} (WithBot.{0} Nat) (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (WithBot.{0} Nat) (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_multiset_prod Polynomial.degree_multiset_prodₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees, where the degree of the zero polynomial is ⊥.
-/
@@ -475,12 +358,6 @@ theorem degree_multiset_prod [Nontrivial R] : t.Prod.degree = (t.map fun f => de
map_multiset_prod (@degreeMonoidHom R _ _ _) _
#align polynomial.degree_multiset_prod Polynomial.degree_multiset_prod
-/- warning: polynomial.degree_prod -> Polynomial.degree_prod is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) [_inst_3 : Nontrivial.{u1} R], Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} (WithBot.{0} Nat) ι (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) s (fun (i : ι) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
-but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) [_inst_3 : Nontrivial.{u1} R], Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} (WithBot.{0} Nat) ι (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) s (fun (i : ι) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_prod Polynomial.degree_prodₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees, where the degree of the zero polynomial is ⊥.
-/
@@ -488,12 +365,6 @@ theorem degree_prod [Nontrivial R] : (∏ i in s, f i).degree = ∑ i in s, (f i
map_prod (@degreeMonoidHom R _ _ _) _ _
#align polynomial.degree_prod Polynomial.degree_prod
-/- warning: polynomial.leading_coeff_multiset_prod -> Polynomial.leadingCoeff_multiset_prod is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t))
-Case conversion may be inaccurate. Consider using '#align polynomial.leading_coeff_multiset_prod Polynomial.leadingCoeff_multiset_prodₓ'. -/
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients.
@@ -504,12 +375,6 @@ theorem leadingCoeff_multiset_prod : t.Prod.leadingCoeff = (t.map fun f => leadi
by rw [← leading_coeff_hom_apply, MonoidHom.map_multiset_prod]; rfl
#align polynomial.leading_coeff_multiset_prod Polynomial.leadingCoeff_multiset_prod
-/- warning: polynomial.leading_coeff_prod -> Polynomial.leadingCoeff_prod is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
-but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
-Case conversion may be inaccurate. Consider using '#align polynomial.leading_coeff_prod Polynomial.leadingCoeff_prodₓ'. -/
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients.
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -217,9 +217,7 @@ theorem leadingCoeff_multiset_prod' (h : (t.map leadingCoeff).Prod ≠ 0) :
by
induction' t using Multiset.induction_on with a t ih; · simp
simp only [Multiset.map_cons, Multiset.prod_cons] at h⊢
- rw [Polynomial.leadingCoeff_mul'] <;>
- · rwa [ih]
- apply right_ne_zero_of_mul h
+ rw [Polynomial.leadingCoeff_mul'] <;> · rwa [ih]; apply right_ne_zero_of_mul h
#align polynomial.leading_coeff_multiset_prod' Polynomial.leadingCoeff_multiset_prod'
/- warning: polynomial.leading_coeff_prod' -> Polynomial.leadingCoeff_prod' is a dubious translation:
@@ -259,8 +257,7 @@ theorem natDegree_multiset_prod' (h : (t.map fun f => leadingCoeff f).Prod ≠ 0
rw [Multiset.map_cons, Multiset.prod_cons] at ht⊢
rw [Multiset.sum_cons, Polynomial.natDegree_mul', ih]
· apply right_ne_zero_of_mul ht
- · rwa [Polynomial.leadingCoeff_multiset_prod']
- apply right_ne_zero_of_mul ht
+ · rwa [Polynomial.leadingCoeff_multiset_prod']; apply right_ne_zero_of_mul ht
#align polynomial.nat_degree_multiset_prod' Polynomial.natDegree_multiset_prod'
/- warning: polynomial.nat_degree_prod' -> Polynomial.natDegree_prod' is a dubious translation:
@@ -286,16 +283,12 @@ theorem natDegree_multiset_prod_of_monic (h : ∀ f ∈ t, Monic f) :
by
nontriviality R
apply nat_degree_multiset_prod'
- suffices (t.map fun f => leading_coeff f).Prod = 1
- by
- rw [this]
- simp
+ suffices (t.map fun f => leading_coeff f).Prod = 1 by rw [this]; simp
convert prod_replicate t.card (1 : R)
· simp only [eq_replicate, Multiset.card_map, eq_self_iff_true, true_and_iff]
rintro i hi
obtain ⟨i, hi, rfl⟩ := multiset.mem_map.mp hi
- apply h
- assumption
+ apply h; assumption
· simp
#align polynomial.nat_degree_multiset_prod_of_monic Polynomial.natDegree_multiset_prod_of_monic
-/
@@ -365,8 +358,7 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
rw [next_coeff_multiset_prod]
· simp only [next_coeff_X_sub_C]
exact t.sum_hom (-AddMonoidHom.id R)
- · intros
- apply monic_X_sub_C
+ · intros ; apply monic_X_sub_C
#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeff
/- warning: polynomial.prod_X_sub_C_next_coeff -> Polynomial.prod_X_sub_C_nextCoeff is a dubious translation:
@@ -390,9 +382,7 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
convert multiset_prod_X_sub_C_next_coeff (by assumption)
rw [next_coeff]; split_ifs
· rw [nat_degree_multiset_prod_of_monic] at h <;> simp only [Multiset.mem_map] at *
- swap
- · rintro _ ⟨_, _, rfl⟩
- apply monic_X_sub_C
+ swap; · rintro _ ⟨_, _, rfl⟩; apply monic_X_sub_C
simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map] at h
contrapose! h
obtain ⟨x, hx⟩ := card_pos_iff_exists_mem.mp ht
@@ -511,9 +501,7 @@ See `polynomial.leading_coeff_multiset_prod'` (with a `'`) for a version for com
where additionally, the product of the leading coefficients must be nonzero.
-/
theorem leadingCoeff_multiset_prod : t.Prod.leadingCoeff = (t.map fun f => leadingCoeff f).Prod :=
- by
- rw [← leading_coeff_hom_apply, MonoidHom.map_multiset_prod]
- rfl
+ by rw [← leading_coeff_hom_apply, MonoidHom.map_multiset_prod]; rfl
#align polynomial.leading_coeff_multiset_prod Polynomial.leadingCoeff_multiset_prod
/- warning: polynomial.leading_coeff_prod -> Polynomial.leadingCoeff_prod is a dubious translation:
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -308,10 +308,7 @@ theorem natDegree_prod_of_monic (h : ∀ i ∈ s, (f i).Monic) :
-/
/- warning: polynomial.coeff_multiset_prod_of_nat_degree_le -> Polynomial.coeff_multiset_prod_of_natDegree_le is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (n : Nat), (forall (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)), (Membership.Mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.hasMem.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) p t) -> (LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) n)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.orderedCancelAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.orderedCancelAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.orderedCancelAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) t) n)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p n) t)))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (n : Nat), (forall (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)), (Membership.mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instMembershipMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) p t) -> (LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) n)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t) (HMul.hMul.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) (instHMul.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) instMulNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) t) n)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p n) t)))
+<too large>
Case conversion may be inaccurate. Consider using '#align polynomial.coeff_multiset_prod_of_nat_degree_le Polynomial.coeff_multiset_prod_of_natDegree_leₓ'. -/
theorem coeff_multiset_prod_of_natDegree_le (n : ℕ) (hl : ∀ p ∈ t, natDegree p ≤ n) :
coeff t.Prod (t.card * n) = (t.map fun p => coeff p n).Prod :=
@@ -384,10 +381,7 @@ theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeff
/- warning: polynomial.multiset_prod_X_sub_C_coeff_card_pred -> Polynomial.multiset_prod_X_sub_C_coeff_card_pred is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instLTNat (OfNat.ofNat.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) 0 (instOfNatNat 0)) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) (instHSub.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instSubNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
+<too large>
Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_predₓ'. -/
theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card) :
(t.map fun x => X - C x).Prod.coeff (t.card - 1) = -t.Sum :=
@@ -407,10 +401,7 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_pred
/- warning: polynomial.prod_X_sub_C_coeff_card_pred -> Polynomial.prod_X_sub_C_coeff_card_pred is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
-but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
+<too large>
Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_X_sub_C_coeff_card_predₓ'. -/
theorem prod_X_sub_C_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
(∏ i in s, X - C (f i)).coeff (s.card - 1) = -∑ i in s, f i := by
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -358,7 +358,7 @@ open Monic
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeffₓ'. -/
-- Eventually this can be generalized with Vieta's formulas
-- plus the connection between roots and factorization.
@@ -376,7 +376,7 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
lean 3 declaration is
forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeffₓ'. -/
theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
nextCoeff (∏ i in s, X - C (f i)) = -∑ i in s, f i := by
@@ -387,7 +387,7 @@ theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instLTNat (OfNat.ofNat.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) 0 (instOfNatNat 0)) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) (instHSub.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instSubNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instLTNat (OfNat.ofNat.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) 0 (instOfNatNat 0)) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) (instHSub.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instSubNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_predₓ'. -/
theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card) :
(t.map fun x => X - C x).Prod.coeff (t.card - 1) = -t.Sum :=
@@ -410,7 +410,7 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
lean 3 declaration is
forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_X_sub_C_coeff_card_predₓ'. -/
theorem prod_X_sub_C_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
(∏ i in s, X - C (f i)).coeff (s.card - 1) = -∑ i in s, f i := by
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -85,7 +85,7 @@ theorem natDegree_sum_le (f : ι → S[X]) :
/- warning: polynomial.degree_list_sum_le -> Polynomial.degree_list_sum_le is a dubious translation:
lean 3 declaration is
- forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.maximum.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (fun (a : Nat) (b : Nat) => Nat.decidableLt a b) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.maximum.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (fun (a : Nat) (b : Nat) => Nat.decidableLt a b) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
but is expected to have type
forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.maximum.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (fun (a : Nat) (b : Nat) => Nat.decLt a b) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
Case conversion may be inaccurate. Consider using '#align polynomial.degree_list_sum_le Polynomial.degree_list_sum_leₓ'. -/
@@ -114,14 +114,18 @@ theorem natDegree_list_prod_le (l : List S[X]) : natDegree l.Prod ≤ (l.map nat
#align polynomial.nat_degree_list_prod_le Polynomial.natDegree_list_prod_le
-/
-#print Polynomial.degree_list_prod_le /-
+/- warning: polynomial.degree_list_prod_le -> Polynomial.degree_list_prod_le is a dubious translation:
+lean 3 declaration is
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} S _inst_1 (List.prod.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.mul'.{u1} S _inst_1) (Polynomial.hasOne.{u1} S _inst_1) l)) (List.sum.{0} (WithBot.{0} Nat) (WithBot.hasAdd.{0} Nat Nat.hasAdd) (WithBot.hasZero.{0} Nat Nat.hasZero) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) (WithBot.{0} Nat) (Polynomial.degree.{u1} S _inst_1) l))
+but is expected to have type
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} S _inst_1 (List.prod.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.mul'.{u1} S _inst_1) (Polynomial.one.{u1} S _inst_1) l)) (List.sum.{0} (WithBot.{0} Nat) (WithBot.add.{0} Nat instAddNat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) (WithBot.{0} Nat) (Polynomial.degree.{u1} S _inst_1) l))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_list_prod_le Polynomial.degree_list_prod_leₓ'. -/
theorem degree_list_prod_le (l : List S[X]) : degree l.Prod ≤ (l.map degree).Sum :=
by
induction' l with hd tl IH
· simp
· simpa using (degree_mul_le _ _).trans (add_le_add_left IH _)
#align polynomial.degree_list_prod_le Polynomial.degree_list_prod_le
--/
/- warning: polynomial.coeff_list_prod_of_nat_degree_le -> Polynomial.coeff_list_prod_of_natDegree_le is a dubious translation:
lean 3 declaration is
@@ -173,20 +177,28 @@ theorem natDegree_prod_le : (∏ i in s, f i).natDegree ≤ ∑ i in s, (f i).na
#align polynomial.nat_degree_prod_le Polynomial.natDegree_prod_le
-/
-#print Polynomial.degree_multiset_prod_le /-
+/- warning: polynomial.degree_multiset_prod_le -> Polynomial.degree_multiset_prod_le is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} (WithBot.{0} Nat) (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} (WithBot.{0} Nat) (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_multiset_prod_le Polynomial.degree_multiset_prod_leₓ'. -/
/-- The degree of a product of polynomials is at most the sum of the degrees,
where the degree of the zero polynomial is ⊥.
-/
theorem degree_multiset_prod_le : t.Prod.degree ≤ (t.map Polynomial.degree).Sum :=
Quotient.inductionOn t (by simpa using degree_list_prod_le)
#align polynomial.degree_multiset_prod_le Polynomial.degree_multiset_prod_le
--/
-#print Polynomial.degree_prod_le /-
+/- warning: polynomial.degree_prod_le -> Polynomial.degree_prod_le is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} (WithBot.{0} Nat) ι (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) s (fun (i : ι) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
+but is expected to have type
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} (WithBot.{0} Nat) ι (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) s (fun (i : ι) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_prod_le Polynomial.degree_prod_leₓ'. -/
theorem degree_prod_le : (∏ i in s, f i).degree ≤ ∑ i in s, (f i).degree := by
simpa only [Multiset.map_map] using degree_multiset_prod_le (s.1.map f)
#align polynomial.degree_prod_le Polynomial.degree_prod_le
--/
/- warning: polynomial.leading_coeff_multiset_prod' -> Polynomial.leadingCoeff_multiset_prod' is a dubious translation:
lean 3 declaration is
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -346,7 +346,7 @@ open Monic
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeffₓ'. -/
-- Eventually this can be generalized with Vieta's formulas
-- plus the connection between roots and factorization.
@@ -364,7 +364,7 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
lean 3 declaration is
forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeffₓ'. -/
theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
nextCoeff (∏ i in s, X - C (f i)) = -∑ i in s, f i := by
@@ -375,7 +375,7 @@ theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instLTNat (OfNat.ofNat.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) 0 (instOfNatNat 0)) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) (instHSub.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instSubNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instLTNat (OfNat.ofNat.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) 0 (instOfNatNat 0)) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) (instHSub.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instSubNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_predₓ'. -/
theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card) :
(t.map fun x => X - C x).Prod.coeff (t.card - 1) = -t.Sum :=
@@ -398,7 +398,7 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
lean 3 declaration is
forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_X_sub_C_coeff_card_predₓ'. -/
theorem prod_X_sub_C_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
(∏ i in s, X - C (f i)).coeff (s.card - 1) = -∑ i in s, f i := by
mathlib commit https://github.com/leanprover-community/mathlib/commit/1a4df69ca1a9a0e5e26bfe12e2b92814216016d0
@@ -360,16 +360,16 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
apply monic_X_sub_C
#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeff
-/- warning: polynomial.prod_X_sub_C_next_coeff -> Polynomial.prod_x_sub_c_nextCoeff is a dubious translation:
+/- warning: polynomial.prod_X_sub_C_next_coeff -> Polynomial.prod_X_sub_C_nextCoeff is a dubious translation:
lean 3 declaration is
forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
but is expected to have type
forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_x_sub_c_nextCoeffₓ'. -/
-theorem prod_x_sub_c_nextCoeff {s : Finset ι} (f : ι → R) :
+Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeffₓ'. -/
+theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
nextCoeff (∏ i in s, X - C (f i)) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_next_coeff (s.1.map f)
-#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_x_sub_c_nextCoeff
+#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeff
/- warning: polynomial.multiset_prod_X_sub_C_coeff_card_pred -> Polynomial.multiset_prod_X_sub_C_coeff_card_pred is a dubious translation:
lean 3 declaration is
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -344,7 +344,7 @@ open Monic
/- warning: polynomial.multiset_prod_X_sub_C_next_coeff -> Polynomial.multiset_prod_X_sub_C_nextCoeff is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeffₓ'. -/
@@ -362,7 +362,7 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
/- warning: polynomial.prod_X_sub_C_next_coeff -> Polynomial.prod_x_sub_c_nextCoeff is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
but is expected to have type
forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_x_sub_c_nextCoeffₓ'. -/
@@ -373,7 +373,7 @@ theorem prod_x_sub_c_nextCoeff {s : Finset ι} (f : ι → R) :
/- warning: polynomial.multiset_prod_X_sub_C_coeff_card_pred -> Polynomial.multiset_prod_X_sub_C_coeff_card_pred is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instLTNat (OfNat.ofNat.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) 0 (instOfNatNat 0)) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) (instHSub.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instSubNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_predₓ'. -/
@@ -396,7 +396,7 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
/- warning: polynomial.prod_X_sub_C_coeff_card_pred -> Polynomial.prod_X_sub_C_coeff_card_pred is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
but is expected to have type
forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_X_sub_C_coeff_card_predₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/2196ab363eb097c008d4497125e0dde23fb36db2
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jalex Stark
! This file was ported from Lean 3 source module algebra.polynomial.big_operators
-! leanprover-community/mathlib commit 47adfab39a11a072db552f47594bf8ed2cf8a722
+! leanprover-community/mathlib commit 69c6a5a12d8a2b159f20933e60115a4f2de62b58
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -14,6 +14,9 @@ import Mathbin.Data.Polynomial.Monic
/-!
# Lemmas for the interaction between polynomials and `∑` and `∏`.
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
Recall that `∑` and `∏` are notation for `finset.sum` and `finset.prod` respectively.
## Main results
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -296,7 +296,7 @@ theorem natDegree_prod_of_monic (h : ∀ i ∈ s, (f i).Monic) :
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (n : Nat), (forall (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)), (Membership.Mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.hasMem.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) p t) -> (LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) n)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.orderedCancelAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.orderedCancelAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.orderedCancelAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) t) n)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p n) t)))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (n : Nat), (forall (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)), (Membership.mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instMembershipMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) p t) -> (LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) n)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t) (HMul.hMul.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) (instHMul.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) instMulNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) t) n)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p n) t)))
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (n : Nat), (forall (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)), (Membership.mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instMembershipMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) p t) -> (LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) n)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t) (HMul.hMul.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) (instHMul.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) instMulNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) t) n)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p n) t)))
Case conversion may be inaccurate. Consider using '#align polynomial.coeff_multiset_prod_of_nat_degree_le Polynomial.coeff_multiset_prod_of_natDegree_leₓ'. -/
theorem coeff_multiset_prod_of_natDegree_le (n : ℕ) (hl : ∀ p ∈ t, natDegree p ≤ n) :
coeff t.Prod (t.card * n) = (t.map fun p => coeff p n).Prod :=
@@ -343,7 +343,7 @@ open Monic
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeffₓ'. -/
-- Eventually this can be generalized with Vieta's formulas
-- plus the connection between roots and factorization.
@@ -361,7 +361,7 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
lean 3 declaration is
forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_x_sub_c_nextCoeffₓ'. -/
theorem prod_x_sub_c_nextCoeff {s : Finset ι} (f : ι → R) :
nextCoeff (∏ i in s, X - C (f i)) = -∑ i in s, f i := by
@@ -372,7 +372,7 @@ theorem prod_x_sub_c_nextCoeff {s : Finset ι} (f : ι → R) :
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) t) instLTNat (OfNat.ofNat.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) t) 0 (instOfNatNat 0)) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) t) (instHSub.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) t) instSubNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instLTNat (OfNat.ofNat.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) 0 (instOfNatNat 0)) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) (instHSub.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) t) instSubNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_predₓ'. -/
theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card) :
(t.map fun x => X - C x).Prod.coeff (t.card - 1) = -t.Sum :=
@@ -395,7 +395,7 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
lean 3 declaration is
forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
but is expected to have type
- forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_X_sub_C_coeff_card_predₓ'. -/
theorem prod_X_sub_C_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
(∏ i in s, X - C (f i)).coeff (s.card - 1) = -∑ i in s, f i := by
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -144,9 +144,11 @@ theorem coeff_list_prod_of_natDegree_le (l : List S[X]) (n : ℕ) (hl : ∀ p
rcases hdn.eq_or_lt with (rfl | hdn')
· cases' h.eq_or_lt with h' h'
· rw [← h', coeff_mul_degree_add_degree, leading_coeff, leading_coeff]
- · rw [coeff_eq_zero_of_nat_degree_lt, coeff_eq_zero_of_nat_degree_lt h', mul_zero]
+ · rw [coeff_eq_zero_of_nat_degree_lt, coeff_eq_zero_of_nat_degree_lt h',
+ MulZeroClass.mul_zero]
exact nat_degree_mul_le.trans_lt (add_lt_add_left h' _)
- · rw [coeff_eq_zero_of_nat_degree_lt hdn', coeff_eq_zero_of_nat_degree_lt, zero_mul]
+ · rw [coeff_eq_zero_of_nat_degree_lt hdn', coeff_eq_zero_of_nat_degree_lt,
+ MulZeroClass.zero_mul]
exact nat_degree_mul_le.trans_lt (add_lt_add_of_lt_of_le hdn' h)
#align polynomial.coeff_list_prod_of_nat_degree_le Polynomial.coeff_list_prod_of_natDegree_le
mathlib commit https://github.com/leanprover-community/mathlib/commit/21e3562c5e12d846c7def5eff8cdbc520d7d4936
@@ -48,20 +48,44 @@ section Semiring
variable {S : Type _} [Semiring S]
+/- warning: polynomial.nat_degree_list_sum_le -> Polynomial.natDegree_list_sum_le is a dubious translation:
+lean 3 declaration is
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.foldr.{0, 0} Nat Nat (LinearOrder.max.{0} Nat Nat.linearOrder) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
+but is expected to have type
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.foldr.{0, 0} Nat Nat (Max.max.{0} Nat Nat.instMaxNat) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
+Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_list_sum_le Polynomial.natDegree_list_sum_leₓ'. -/
theorem natDegree_list_sum_le (l : List S[X]) : natDegree l.Sum ≤ (l.map natDegree).foldr max 0 :=
List.sum_le_foldr_max natDegree (by simp) natDegree_add_le _
#align polynomial.nat_degree_list_sum_le Polynomial.natDegree_list_sum_le
+/- warning: polynomial.nat_degree_multiset_sum_le -> Polynomial.natDegree_multiset_sum_le is a dubious translation:
+lean 3 declaration is
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : Multiset.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} S _inst_1 (Multiset.sum.{u1} (Polynomial.{u1} S _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} S _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.semiring.{u1} S _inst_1)))) l)) (Multiset.foldr.{0, 0} Nat Nat (LinearOrder.max.{0} Nat Nat.linearOrder) (max_left_comm.{0} Nat Nat.linearOrder) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Multiset.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
+but is expected to have type
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : Multiset.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} S _inst_1 (Multiset.sum.{u1} (Polynomial.{u1} S _inst_1) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} S _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.semiring.{u1} S _inst_1)))) l)) (Multiset.foldr.{0, 0} Nat Nat (Max.max.{0} Nat (LinearOrder.toMax.{0} Nat Nat.linearOrder)) (max_left_comm.{0} Nat Nat.linearOrder) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Multiset.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
+Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_multiset_sum_le Polynomial.natDegree_multiset_sum_leₓ'. -/
theorem natDegree_multiset_sum_le (l : Multiset S[X]) :
natDegree l.Sum ≤ (l.map natDegree).foldr max max_left_comm 0 :=
Quotient.inductionOn l (by simpa using nat_degree_list_sum_le)
#align polynomial.nat_degree_multiset_sum_le Polynomial.natDegree_multiset_sum_le
+/- warning: polynomial.nat_degree_sum_le -> Polynomial.natDegree_sum_le is a dubious translation:
+lean 3 declaration is
+ forall {ι : Type.{u1}} (s : Finset.{u1} ι) {S : Type.{u2}} [_inst_1 : Semiring.{u2} S] (f : ι -> (Polynomial.{u2} S _inst_1)), LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u2} S _inst_1 (Finset.sum.{u2, u1} (Polynomial.{u2} S _inst_1) ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} (Polynomial.{u2} S _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} (Polynomial.{u2} S _inst_1) (Semiring.toNonAssocSemiring.{u2} (Polynomial.{u2} S _inst_1) (Polynomial.semiring.{u2} S _inst_1)))) s (fun (i : ι) => f i))) (Finset.fold.{u1, 0} ι Nat (LinearOrder.max.{0} Nat Nat.linearOrder) (sup_isCommutative.{0} Nat (CanonicallyLinearOrderedAddMonoid.semilatticeSup.{0} Nat Nat.canonicallyLinearOrderedAddMonoid)) (sup_isAssociative.{0} Nat (CanonicallyLinearOrderedAddMonoid.semilatticeSup.{0} Nat Nat.canonicallyLinearOrderedAddMonoid)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Function.comp.{succ u1, succ u2, 1} ι (Polynomial.{u2} S _inst_1) Nat (Polynomial.natDegree.{u2} S _inst_1) f) s)
+but is expected to have type
+ forall {ι : Type.{u2}} (s : Finset.{u2} ι) {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (f : ι -> (Polynomial.{u1} S _inst_1)), LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} S _inst_1 (Finset.sum.{u1, u2} (Polynomial.{u1} S _inst_1) ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} S _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.semiring.{u1} S _inst_1)))) s (fun (i : ι) => f i))) (Finset.fold.{u2, 0} ι Nat (Max.max.{0} Nat (LinearOrder.toMax.{0} Nat Nat.linearOrder)) (instIsCommutativeMaxToMax.{0} Nat Nat.linearOrder) (instIsAssociativeMaxToMax.{0} Nat Nat.linearOrder) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Function.comp.{succ u2, succ u1, 1} ι (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) f) s)
+Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_sum_le Polynomial.natDegree_sum_leₓ'. -/
theorem natDegree_sum_le (f : ι → S[X]) :
natDegree (∑ i in s, f i) ≤ s.fold max 0 (natDegree ∘ f) := by
simpa using nat_degree_multiset_sum_le (s.val.map f)
#align polynomial.nat_degree_sum_le Polynomial.natDegree_sum_le
+/- warning: polynomial.degree_list_sum_le -> Polynomial.degree_list_sum_le is a dubious translation:
+lean 3 declaration is
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.maximum.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (fun (a : Nat) (b : Nat) => Nat.decidableLt a b) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
+but is expected to have type
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} S _inst_1 (List.sum.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.add'.{u1} S _inst_1) (Polynomial.zero.{u1} S _inst_1) l)) (List.maximum.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (fun (a : Nat) (b : Nat) => Nat.decLt a b) (List.map.{u1, 0} (Polynomial.{u1} S _inst_1) Nat (Polynomial.natDegree.{u1} S _inst_1) l))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_list_sum_le Polynomial.degree_list_sum_leₓ'. -/
theorem degree_list_sum_le (l : List S[X]) : degree l.Sum ≤ (l.map natDegree).maximum :=
by
by_cases h : l.sum = 0
@@ -78,20 +102,30 @@ theorem degree_list_sum_le (l : List S[X]) : degree l.Sum ≤ (l.map natDegree).
simp [h]
#align polynomial.degree_list_sum_le Polynomial.degree_list_sum_le
+#print Polynomial.natDegree_list_prod_le /-
theorem natDegree_list_prod_le (l : List S[X]) : natDegree l.Prod ≤ (l.map natDegree).Sum :=
by
induction' l with hd tl IH
· simp
· simpa using nat_degree_mul_le.trans (add_le_add_left IH _)
#align polynomial.nat_degree_list_prod_le Polynomial.natDegree_list_prod_le
+-/
+#print Polynomial.degree_list_prod_le /-
theorem degree_list_prod_le (l : List S[X]) : degree l.Prod ≤ (l.map degree).Sum :=
by
induction' l with hd tl IH
· simp
· simpa using (degree_mul_le _ _).trans (add_le_add_left IH _)
#align polynomial.degree_list_prod_le Polynomial.degree_list_prod_le
+-/
+/- warning: polynomial.coeff_list_prod_of_nat_degree_le -> Polynomial.coeff_list_prod_of_natDegree_le is a dubious translation:
+lean 3 declaration is
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)) (n : Nat), (forall (p : Polynomial.{u1} S _inst_1), (Membership.Mem.{u1, u1} (Polynomial.{u1} S _inst_1) (List.{u1} (Polynomial.{u1} S _inst_1)) (List.hasMem.{u1} (Polynomial.{u1} S _inst_1)) p l) -> (LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} S _inst_1 p) n)) -> (Eq.{succ u1} S (Polynomial.coeff.{u1} S _inst_1 (List.prod.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.mul'.{u1} S _inst_1) (Polynomial.hasOne.{u1} S _inst_1) l) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (List.length.{u1} (Polynomial.{u1} S _inst_1) l) n)) (List.prod.{u1} S (Distrib.toHasMul.{u1} S (NonUnitalNonAssocSemiring.toDistrib.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S _inst_1)))) (AddMonoidWithOne.toOne.{u1} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u1} S (NonAssocSemiring.toAddCommMonoidWithOne.{u1} S (Semiring.toNonAssocSemiring.{u1} S _inst_1)))) (List.map.{u1, u1} (Polynomial.{u1} S _inst_1) S (fun (p : Polynomial.{u1} S _inst_1) => Polynomial.coeff.{u1} S _inst_1 p n) l)))
+but is expected to have type
+ forall {S : Type.{u1}} [_inst_1 : Semiring.{u1} S] (l : List.{u1} (Polynomial.{u1} S _inst_1)) (n : Nat), (forall (p : Polynomial.{u1} S _inst_1), (Membership.mem.{u1, u1} (Polynomial.{u1} S _inst_1) (List.{u1} (Polynomial.{u1} S _inst_1)) (List.instMembershipList.{u1} (Polynomial.{u1} S _inst_1)) p l) -> (LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} S _inst_1 p) n)) -> (Eq.{succ u1} S (Polynomial.coeff.{u1} S _inst_1 (List.prod.{u1} (Polynomial.{u1} S _inst_1) (Polynomial.mul'.{u1} S _inst_1) (Polynomial.one.{u1} S _inst_1) l) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat instMulNat) (List.length.{u1} (Polynomial.{u1} S _inst_1) l) n)) (List.prod.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S _inst_1))) (Semiring.toOne.{u1} S _inst_1) (List.map.{u1, u1} (Polynomial.{u1} S _inst_1) S (fun (p : Polynomial.{u1} S _inst_1) => Polynomial.coeff.{u1} S _inst_1 p n) l)))
+Case conversion may be inaccurate. Consider using '#align polynomial.coeff_list_prod_of_nat_degree_le Polynomial.coeff_list_prod_of_natDegree_leₓ'. -/
theorem coeff_list_prod_of_natDegree_le (l : List S[X]) (n : ℕ) (hl : ∀ p ∈ l, natDegree p ≤ n) :
coeff (List.prod l) (l.length * n) = (l.map fun p => coeff p n).Prod :=
by
@@ -122,25 +156,39 @@ section CommSemiring
variable [CommSemiring R] (f : ι → R[X]) (t : Multiset R[X])
+#print Polynomial.natDegree_multiset_prod_le /-
theorem natDegree_multiset_prod_le : t.Prod.natDegree ≤ (t.map natDegree).Sum :=
Quotient.inductionOn t (by simpa using nat_degree_list_prod_le)
#align polynomial.nat_degree_multiset_prod_le Polynomial.natDegree_multiset_prod_le
+-/
+#print Polynomial.natDegree_prod_le /-
theorem natDegree_prod_le : (∏ i in s, f i).natDegree ≤ ∑ i in s, (f i).natDegree := by
simpa using nat_degree_multiset_prod_le (s.1.map f)
#align polynomial.nat_degree_prod_le Polynomial.natDegree_prod_le
+-/
+#print Polynomial.degree_multiset_prod_le /-
/-- The degree of a product of polynomials is at most the sum of the degrees,
where the degree of the zero polynomial is ⊥.
-/
theorem degree_multiset_prod_le : t.Prod.degree ≤ (t.map Polynomial.degree).Sum :=
Quotient.inductionOn t (by simpa using degree_list_prod_le)
#align polynomial.degree_multiset_prod_le Polynomial.degree_multiset_prod_le
+-/
+#print Polynomial.degree_prod_le /-
theorem degree_prod_le : (∏ i in s, f i).degree ≤ ∑ i in s, (f i).degree := by
simpa only [Multiset.map_map] using degree_multiset_prod_le (s.1.map f)
#align polynomial.degree_prod_le Polynomial.degree_prod_le
+-/
+/- warning: polynomial.leading_coeff_multiset_prod' -> Polynomial.leadingCoeff_multiset_prod' is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) -> (Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)))
+Case conversion may be inaccurate. Consider using '#align polynomial.leading_coeff_multiset_prod' Polynomial.leadingCoeff_multiset_prod'ₓ'. -/
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients, provided that this product is nonzero.
@@ -157,6 +205,12 @@ theorem leadingCoeff_multiset_prod' (h : (t.map leadingCoeff).Prod ≠ 0) :
apply right_ne_zero_of_mul h
#align polynomial.leading_coeff_multiset_prod' Polynomial.leadingCoeff_multiset_prod'
+/- warning: polynomial.leading_coeff_prod' -> Polynomial.leadingCoeff_prod' is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) -> (Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
+but is expected to have type
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
+Case conversion may be inaccurate. Consider using '#align polynomial.leading_coeff_prod' Polynomial.leadingCoeff_prod'ₓ'. -/
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients, provided that this product is nonzero.
@@ -168,6 +222,12 @@ theorem leadingCoeff_prod' (h : (∏ i in s, (f i).leadingCoeff) ≠ 0) :
simpa using leading_coeff_multiset_prod' (s.1.map f) (by simpa using h)
#align polynomial.leading_coeff_prod' Polynomial.leadingCoeff_prod'
+/- warning: polynomial.nat_degree_multiset_prod' -> Polynomial.natDegree_multiset_prod' is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} Nat Nat.addCommMonoid (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t)))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} Nat Nat.addCommMonoid (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t)))
+Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_multiset_prod' Polynomial.natDegree_multiset_prod'ₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees, provided that the product of leading coefficients is nonzero.
@@ -186,6 +246,12 @@ theorem natDegree_multiset_prod' (h : (t.map fun f => leadingCoeff f).Prod ≠ 0
apply right_ne_zero_of_mul ht
#align polynomial.nat_degree_multiset_prod' Polynomial.natDegree_multiset_prod'
+/- warning: polynomial.nat_degree_prod' -> Polynomial.natDegree_prod' is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} Nat ι Nat.addCommMonoid s (fun (i : ι) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
+but is expected to have type
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Ne.{succ u1} R (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} Nat ι Nat.addCommMonoid s (fun (i : ι) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
+Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_prod' Polynomial.natDegree_prod'ₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees, provided that the product of leading coefficients is nonzero.
@@ -197,6 +263,7 @@ theorem natDegree_prod' (h : (∏ i in s, (f i).leadingCoeff) ≠ 0) :
simpa using nat_degree_multiset_prod' (s.1.map f) (by simpa using h)
#align polynomial.nat_degree_prod' Polynomial.natDegree_prod'
+#print Polynomial.natDegree_multiset_prod_of_monic /-
theorem natDegree_multiset_prod_of_monic (h : ∀ f ∈ t, Monic f) :
t.Prod.natDegree = (t.map natDegree).Sum :=
by
@@ -214,12 +281,21 @@ theorem natDegree_multiset_prod_of_monic (h : ∀ f ∈ t, Monic f) :
assumption
· simp
#align polynomial.nat_degree_multiset_prod_of_monic Polynomial.natDegree_multiset_prod_of_monic
+-/
+#print Polynomial.natDegree_prod_of_monic /-
theorem natDegree_prod_of_monic (h : ∀ i ∈ s, (f i).Monic) :
(∏ i in s, f i).natDegree = ∑ i in s, (f i).natDegree := by
simpa using nat_degree_multiset_prod_of_monic (s.1.map f) (by simpa using h)
#align polynomial.nat_degree_prod_of_monic Polynomial.natDegree_prod_of_monic
+-/
+/- warning: polynomial.coeff_multiset_prod_of_nat_degree_le -> Polynomial.coeff_multiset_prod_of_natDegree_le is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (n : Nat), (forall (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)), (Membership.Mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.hasMem.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) p t) -> (LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) n)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t) (HMul.hMul.{0, 0, 0} Nat Nat Nat (instHMul.{0} Nat Nat.hasMul) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.orderedCancelAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.orderedCancelAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.orderedCancelAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) t) n)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p n) t)))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (n : Nat), (forall (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)), (Membership.mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instMembershipMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) p t) -> (LE.le.{0} Nat instLENat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) n)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t) (HMul.hMul.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) (instHMul.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) t) instMulNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (fun (_x : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) t) n)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p n) t)))
+Case conversion may be inaccurate. Consider using '#align polynomial.coeff_multiset_prod_of_nat_degree_le Polynomial.coeff_multiset_prod_of_natDegree_leₓ'. -/
theorem coeff_multiset_prod_of_natDegree_le (n : ℕ) (hl : ∀ p ∈ t, natDegree p ≤ n) :
coeff t.Prod (t.card * n) = (t.map fun p => coeff p n).Prod :=
by
@@ -227,6 +303,7 @@ theorem coeff_multiset_prod_of_natDegree_le (n : ℕ) (hl : ∀ p ∈ t, natDegr
simpa using coeff_list_prod_of_nat_degree_le _ _ hl
#align polynomial.coeff_multiset_prod_of_nat_degree_le Polynomial.coeff_multiset_prod_of_natDegree_le
+#print Polynomial.coeff_prod_of_natDegree_le /-
theorem coeff_prod_of_natDegree_le (f : ι → R[X]) (n : ℕ) (h : ∀ p ∈ s, natDegree (f p) ≤ n) :
coeff (∏ i in s, f i) (s.card * n) = ∏ i in s, coeff (f i) n :=
by
@@ -236,16 +313,21 @@ theorem coeff_prod_of_natDegree_le (f : ι → R[X]) (n : ℕ) (h : ∀ p ∈ s,
· simp
· simpa using h
#align polynomial.coeff_prod_of_nat_degree_le Polynomial.coeff_prod_of_natDegree_le
+-/
+#print Polynomial.coeff_zero_multiset_prod /-
theorem coeff_zero_multiset_prod : t.Prod.coeff 0 = (t.map fun f => coeff f 0).Prod :=
by
refine' Multiset.induction_on t _ fun a t ht => _; · simp
rw [Multiset.prod_cons, Multiset.map_cons, Multiset.prod_cons, Polynomial.mul_coeff_zero, ht]
#align polynomial.coeff_zero_multiset_prod Polynomial.coeff_zero_multiset_prod
+-/
+#print Polynomial.coeff_zero_prod /-
theorem coeff_zero_prod : (∏ i in s, f i).coeff 0 = ∏ i in s, (f i).coeff 0 := by
simpa using coeff_zero_multiset_prod (s.1.map f)
#align polynomial.coeff_zero_prod Polynomial.coeff_zero_prod
+-/
end CommSemiring
@@ -255,9 +337,15 @@ variable [CommRing R]
open Monic
+/- warning: polynomial.multiset_prod_X_sub_C_next_coeff -> Polynomial.multiset_prod_X_sub_C_nextCoeff is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t))
+Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeffₓ'. -/
-- Eventually this can be generalized with Vieta's formulas
-- plus the connection between roots and factorization.
-theorem multiset_prod_x_sub_c_nextCoeff (t : Multiset R) :
+theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
nextCoeff (t.map fun x => X - C x).Prod = -t.Sum :=
by
rw [next_coeff_multiset_prod]
@@ -265,14 +353,26 @@ theorem multiset_prod_x_sub_c_nextCoeff (t : Multiset R) :
exact t.sum_hom (-AddMonoidHom.id R)
· intros
apply monic_X_sub_C
-#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_x_sub_c_nextCoeff
-
+#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeff
+
+/- warning: polynomial.prod_X_sub_C_next_coeff -> Polynomial.prod_x_sub_c_nextCoeff is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
+but is expected to have type
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] {s : Finset.{u2} ι} (f : ι -> R), Eq.{succ u1} R (Polynomial.nextCoeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i))))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i)))
+Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_x_sub_c_nextCoeffₓ'. -/
theorem prod_x_sub_c_nextCoeff {s : Finset ι} (f : ι → R) :
nextCoeff (∏ i in s, X - C (f i)) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_next_coeff (s.1.map f)
#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_x_sub_c_nextCoeff
-theorem multiset_prod_x_sub_c_coeff_card_pred (t : Multiset R) (ht : 0 < t.card) :
+/- warning: polynomial.multiset_prod_X_sub_C_coeff_card_pred -> Polynomial.multiset_prod_X_sub_C_coeff_card_pred is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) => (Multiset.{u1} R) -> Nat) (AddMonoidHom.hasCoeToFun.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.orderedCancelAddCommMonoid.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Multiset.sum.{u1} R (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (t : Multiset.{u1} R), (LT.lt.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) t) instLTNat (OfNat.ofNat.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) t) 0 (instOfNatNat 0)) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.prod.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) (Multiset.map.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (x : R) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x)) t)) (HSub.hSub.{0, 0, 0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) t) Nat ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) t) (instHSub.{0} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) t) instSubNat) (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) (fun (_x : Multiset.{u1} R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.398 : Multiset.{u1} R) => Nat) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddZeroClass.toAdd.{u1} (Multiset.{u1} R) (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R))))))) (AddZeroClass.toAdd.{0} Nat (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)) (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid) (AddMonoidHom.addMonoidHomClass.{u1, 0} (Multiset.{u1} R) Nat (AddMonoid.toAddZeroClass.{u1} (Multiset.{u1} R) (AddRightCancelMonoid.toAddMonoid.{u1} (Multiset.{u1} R) (AddCancelMonoid.toAddRightCancelMonoid.{u1} (Multiset.{u1} R) (AddCancelCommMonoid.toAddCancelMonoid.{u1} (Multiset.{u1} R) (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{u1} (Multiset.{u1} R) (Multiset.instOrderedCancelAddCommMonoidMultiset.{u1} R)))))) (AddMonoid.toAddZeroClass.{0} Nat Nat.addMonoid)))) (Multiset.card.{u1} R) t) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Multiset.sum.{u1} R (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) t)))
+Case conversion may be inaccurate. Consider using '#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_predₓ'. -/
+theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < t.card) :
(t.map fun x => X - C x).Prod.coeff (t.card - 1) = -t.Sum :=
by
nontriviality R
@@ -287,12 +387,18 @@ theorem multiset_prod_x_sub_c_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
obtain ⟨x, hx⟩ := card_pos_iff_exists_mem.mp ht
exact ⟨_, ⟨_, ⟨x, hx, rfl⟩, nat_degree_X_sub_C _⟩, one_ne_zero⟩
congr ; rw [nat_degree_multiset_prod_of_monic] <;> · simp [nat_degree_X_sub_C, monic_X_sub_C]
-#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_x_sub_c_coeff_card_pred
-
-theorem prod_x_sub_c_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
+#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_pred
+
+/- warning: polynomial.prod_X_sub_C_coeff_card_pred -> Polynomial.prod_X_sub_C_coeff_card_pred is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.sum.{u1, u2} R ι (AddCommGroup.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toAddCommGroup.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
+but is expected to have type
+ forall {R : Type.{u1}} {ι : Type.{u2}} [_inst_1 : CommRing.{u1} R] (s : Finset.{u2} ι) (f : ι -> R), (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (Finset.card.{u2} ι s)) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.prod.{u1, u2} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ι (CommRing.toCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)) s (fun (i : ι) => HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (f i)))) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Finset.card.{u2} ι s) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Neg.neg.{u1} R (Ring.toNeg.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Finset.sum.{u1, u2} R ι (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) s (fun (i : ι) => f i))))
+Case conversion may be inaccurate. Consider using '#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_X_sub_C_coeff_card_predₓ'. -/
+theorem prod_X_sub_C_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
(∏ i in s, X - C (f i)).coeff (s.card - 1) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_coeff_card_pred (s.1.map f) (by simpa using hs)
-#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_x_sub_c_coeff_card_pred
+#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_X_sub_C_coeff_card_pred
end CommRing
@@ -302,6 +408,12 @@ section Semiring
variable [Semiring R] [NoZeroDivisors R]
+/- warning: polynomial.degree_list_prod -> Polynomial.degree_list_prod is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))] [_inst_3 : Nontrivial.{u1} R] (l : List.{u1} (Polynomial.{u1} R _inst_1)), Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R _inst_1 (List.prod.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1) (Polynomial.hasOne.{u1} R _inst_1) l)) (List.sum.{0} (WithBot.{0} Nat) (WithBot.hasAdd.{0} Nat Nat.hasAdd) (WithBot.hasZero.{0} Nat Nat.hasZero) (List.map.{u1, 0} (Polynomial.{u1} R _inst_1) (WithBot.{0} Nat) (Polynomial.degree.{u1} R _inst_1) l))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))] [_inst_3 : Nontrivial.{u1} R] (l : List.{u1} (Polynomial.{u1} R _inst_1)), Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R _inst_1 (List.prod.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1) (Polynomial.one.{u1} R _inst_1) l)) (List.sum.{0} (WithBot.{0} Nat) (WithBot.add.{0} Nat instAddNat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)) (List.map.{u1, 0} (Polynomial.{u1} R _inst_1) (WithBot.{0} Nat) (Polynomial.degree.{u1} R _inst_1) l))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_list_prod Polynomial.degree_list_prodₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees, where the degree of the zero polynomial is ⊥.
`[nontrivial R]` is needed, otherwise for `l = []` we have `⊥` in the LHS and `0` in the RHS.
@@ -316,6 +428,12 @@ section CommSemiring
variable [CommSemiring R] [NoZeroDivisors R] (f : ι → R[X]) (t : Multiset R[X])
+/- warning: polynomial.nat_degree_prod -> Polynomial.natDegree_prod is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (f i) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} Nat ι Nat.addCommMonoid s (fun (i : ι) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
+but is expected to have type
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (f i) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} Nat ι Nat.addCommMonoid s (fun (i : ι) => Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i))))
+Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_prod Polynomial.natDegree_prodₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees.
@@ -331,6 +449,12 @@ theorem natDegree_prod (h : ∀ i ∈ s, f i ≠ 0) :
intro x hx; simp [h x hx]
#align polynomial.nat_degree_prod Polynomial.natDegree_prod
+/- warning: polynomial.nat_degree_multiset_prod -> Polynomial.natDegree_multiset_prod is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Not (Membership.Mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.hasMem.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) t)) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} Nat Nat.addCommMonoid (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), (Not (Membership.mem.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (Multiset.instMembershipMultiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) t)) -> (Eq.{1} Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} Nat Nat.addCommMonoid (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.natDegree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) t)))
+Case conversion may be inaccurate. Consider using '#align polynomial.nat_degree_multiset_prod Polynomial.natDegree_multiset_prodₓ'. -/
theorem natDegree_multiset_prod (h : (0 : R[X]) ∉ t) : natDegree t.Prod = (t.map natDegree).Sum :=
by
nontriviality R
@@ -340,6 +464,12 @@ theorem natDegree_multiset_prod (h : (0 : R[X]) ∉ t) : natDegree t.Prod = (t.m
contradiction
#align polynomial.nat_degree_multiset_prod Polynomial.natDegree_multiset_prod
+/- warning: polynomial.degree_multiset_prod -> Polynomial.degree_multiset_prod is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) [_inst_3 : Nontrivial.{u1} R], Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} (WithBot.{0} Nat) (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (WithBot.{0} Nat) (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) [_inst_3 : Nontrivial.{u1} R], Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.sum.{0} (WithBot.{0} Nat) (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) (Multiset.map.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (WithBot.{0} Nat) (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_multiset_prod Polynomial.degree_multiset_prodₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees, where the degree of the zero polynomial is ⊥.
-/
@@ -347,6 +477,12 @@ theorem degree_multiset_prod [Nontrivial R] : t.Prod.degree = (t.map fun f => de
map_multiset_prod (@degreeMonoidHom R _ _ _) _
#align polynomial.degree_multiset_prod Polynomial.degree_multiset_prod
+/- warning: polynomial.degree_prod -> Polynomial.degree_prod is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) [_inst_3 : Nontrivial.{u1} R], Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} (WithBot.{0} Nat) ι (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) s (fun (i : ι) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
+but is expected to have type
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))) [_inst_3 : Nontrivial.{u1} R], Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.sum.{0, u2} (WithBot.{0} Nat) ι (WithBot.addCommMonoid.{0} Nat Nat.addCommMonoid) s (fun (i : ι) => Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_prod Polynomial.degree_prodₓ'. -/
/-- The degree of a product of polynomials is equal to
the sum of the degrees, where the degree of the zero polynomial is ⊥.
-/
@@ -354,6 +490,12 @@ theorem degree_prod [Nontrivial R] : (∏ i in s, f i).degree = ∑ i in s, (f i
map_prod (@degreeMonoidHom R _ _ _) _ _
#align polynomial.degree_prod Polynomial.degree_prod
+/- warning: polynomial.leading_coeff_multiset_prod -> Polynomial.leadingCoeff_multiset_prod is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t))
+but is expected to have type
+ forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (t : Multiset.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Multiset.prod.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) t)) (Multiset.prod.{u1} R (CommSemiring.toCommMonoid.{u1} R _inst_1) (Multiset.map.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) R (fun (f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f) t))
+Case conversion may be inaccurate. Consider using '#align polynomial.leading_coeff_multiset_prod Polynomial.leadingCoeff_multiset_prodₓ'. -/
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients.
@@ -366,6 +508,12 @@ theorem leadingCoeff_multiset_prod : t.Prod.leadingCoeff = (t.map fun f => leadi
rfl
#align polynomial.leading_coeff_multiset_prod Polynomial.leadingCoeff_multiset_prod
+/- warning: polynomial.leading_coeff_prod -> Polynomial.leadingCoeff_prod is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
+but is expected to have type
+ forall {R : Type.{u1}} {ι : Type.{u2}} (s : Finset.{u2} ι) [_inst_1 : CommSemiring.{u1} R] [_inst_2 : NoZeroDivisors.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))] (f : ι -> (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))), Eq.{succ u1} R (Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (Finset.prod.{u1, u2} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) ι (CommSemiring.toCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)) s (fun (i : ι) => f i))) (Finset.prod.{u1, u2} R ι (CommSemiring.toCommMonoid.{u1} R _inst_1) s (fun (i : ι) => Polynomial.leadingCoeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) (f i)))
+Case conversion may be inaccurate. Consider using '#align polynomial.leading_coeff_prod Polynomial.leadingCoeff_prodₓ'. -/
/-- The leading coefficient of a product of polynomials is equal to
the product of the leading coefficients.
mathlib commit https://github.com/leanprover-community/mathlib/commit/38f16f960f5006c6c0c2bac7b0aba5273188f4e5
@@ -258,7 +258,7 @@ open Monic
-- Eventually this can be generalized with Vieta's formulas
-- plus the connection between roots and factorization.
theorem multiset_prod_x_sub_c_nextCoeff (t : Multiset R) :
- nextCoeff (t.map fun x => x - c x).Prod = -t.Sum :=
+ nextCoeff (t.map fun x => X - C x).Prod = -t.Sum :=
by
rw [next_coeff_multiset_prod]
· simp only [next_coeff_X_sub_C]
@@ -268,12 +268,12 @@ theorem multiset_prod_x_sub_c_nextCoeff (t : Multiset R) :
#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_x_sub_c_nextCoeff
theorem prod_x_sub_c_nextCoeff {s : Finset ι} (f : ι → R) :
- nextCoeff (∏ i in s, x - c (f i)) = -∑ i in s, f i := by
+ nextCoeff (∏ i in s, X - C (f i)) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_next_coeff (s.1.map f)
#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_x_sub_c_nextCoeff
theorem multiset_prod_x_sub_c_coeff_card_pred (t : Multiset R) (ht : 0 < t.card) :
- (t.map fun x => x - c x).Prod.coeff (t.card - 1) = -t.Sum :=
+ (t.map fun x => X - C x).Prod.coeff (t.card - 1) = -t.Sum :=
by
nontriviality R
convert multiset_prod_X_sub_C_next_coeff (by assumption)
@@ -290,7 +290,7 @@ theorem multiset_prod_x_sub_c_coeff_card_pred (t : Multiset R) (ht : 0 < t.card)
#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_x_sub_c_coeff_card_pred
theorem prod_x_sub_c_coeff_card_pred (s : Finset ι) (f : ι → R) (hs : 0 < s.card) :
- (∏ i in s, x - c (f i)).coeff (s.card - 1) = -∑ i in s, f i := by
+ (∏ i in s, X - C (f i)).coeff (s.card - 1) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_coeff_card_pred (s.1.map f) (by simpa using hs)
#align polynomial.prod_X_sub_C_coeff_card_pred Polynomial.prod_x_sub_c_coeff_card_pred
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -150,7 +150,7 @@ theorem leadingCoeff_multiset_prod' (h : (t.map leadingCoeff).prod ≠ 0) :
simp only [ne_eq]
apply right_ne_zero_of_mul h
· rw [ih]
- exact h
+ · exact h
simp only [ne_eq, not_false_eq_true]
apply right_ne_zero_of_mul h
#align polynomial.leading_coeff_multiset_prod' Polynomial.leadingCoeff_multiset_prod'
Data
(#11751)
Polynomial
and MvPolynomial
are algebraic objects, hence should be under Algebra
(or at least not under Data
)
@@ -3,7 +3,7 @@ Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jalex Stark
-/
-import Mathlib.Data.Polynomial.Monic
+import Mathlib.Algebra.Polynomial.Monic
#align_import algebra.polynomial.big_operators from "leanprover-community/mathlib"@"47adfab39a11a072db552f47594bf8ed2cf8a722"
@@ -329,7 +329,7 @@ theorem natDegree_multiset_prod (h : (0 : R[X]) ∉ t) :
natDegree t.prod = (t.map natDegree).sum := by
nontriviality R
rw [natDegree_multiset_prod']
- simp_rw [Ne.def, Multiset.prod_eq_zero_iff, Multiset.mem_map, leadingCoeff_eq_zero]
+ simp_rw [Ne, Multiset.prod_eq_zero_iff, Multiset.mem_map, leadingCoeff_eq_zero]
rintro ⟨_, h, rfl⟩
contradiction
#align polynomial.nat_degree_multiset_prod Polynomial.natDegree_multiset_prod
LinearOrderedCommGroupWithZero
(#11716)
Reconstitute the file Algebra.Order.Monoid.WithZero
from three files:
Algebra.Order.Monoid.WithZero.Defs
Algebra.Order.Monoid.WithZero.Basic
Algebra.Order.WithZero
Avoid importing it in many files. Most uses were just to get le_zero_iff
to work on Nat
.
Before
After
@@ -3,7 +3,6 @@ Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jalex Stark
-/
-import Mathlib.Algebra.Order.WithZero
import Mathlib.Data.Polynomial.Monic
#align_import algebra.polynomial.big_operators from "leanprover-community/mathlib"@"47adfab39a11a072db552f47594bf8ed2cf8a722"
These will be caught by the linter in a future lean version.
@@ -270,16 +270,16 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < Multise
(t.map fun x => X - C x).prod.coeff ((Multiset.card t) - 1) = -t.sum := by
nontriviality R
convert multiset_prod_X_sub_C_nextCoeff (by assumption)
- rw [nextCoeff]; split_ifs with h
- · rw [natDegree_multiset_prod_of_monic] at h
+ rw [nextCoeff, if_neg]
+ swap
+ · rw [natDegree_multiset_prod_of_monic]
swap
· simp only [Multiset.mem_map]
rintro _ ⟨_, _, rfl⟩
apply monic_X_sub_C
- simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map] at h
- contrapose! h
+ simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map]
obtain ⟨x, hx⟩ := card_pos_iff_exists_mem.mp ht
- exact ⟨_, ⟨_, ⟨x, hx, rfl⟩, natDegree_X_sub_C _⟩, one_ne_zero⟩
+ exact fun h => one_ne_zero <| h 1 ⟨_, ⟨x, hx, rfl⟩, natDegree_X_sub_C _⟩
congr; rw [natDegree_multiset_prod_of_monic] <;> · simp [natDegree_X_sub_C, monic_X_sub_C]
set_option linter.uppercaseLean3 false in
#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_pred
Polynomial.natDegree_sum_le_of_forall_le
(#11381)
Also add two missing simp
attributes
@@ -59,6 +59,10 @@ theorem natDegree_sum_le (f : ι → S[X]) :
simpa using natDegree_multiset_sum_le (s.val.map f)
#align polynomial.nat_degree_sum_le Polynomial.natDegree_sum_le
+lemma natDegree_sum_le_of_forall_le {n : ℕ} (f : ι → S[X]) (h : ∀ i ∈ s, natDegree (f i) ≤ n) :
+ natDegree (∑ i in s, f i) ≤ n :=
+ le_trans (natDegree_sum_le s f) <| (Finset.fold_max_le n).mpr <| by simpa
+
theorem degree_list_sum_le (l : List S[X]) : degree l.sum ≤ (l.map natDegree).maximum := by
by_cases h : l.sum = 0
· simp [h]
cases'
(#9171)
I literally went through and regex'd some uses of cases'
, replacing them with rcases
; this is meant to be a low effort PR as I hope that tools can do this in the future.
rcases
is an easier replacement than cases
, though with better tools we could in future do a second pass converting simple rcases
added here (and existing ones) to cases
.
@@ -99,7 +99,7 @@ theorem coeff_list_prod_of_natDegree_le (l : List S[X]) (n : ℕ) (hl : ∀ p
simpa using hl'
have hdn : natDegree hd ≤ n := hl _ (List.mem_cons_self _ _)
rcases hdn.eq_or_lt with (rfl | hdn')
- · cases' h.eq_or_lt with h' h'
+ · rcases h.eq_or_lt with h' | h'
· rw [← h', coeff_mul_degree_add_degree, leadingCoeff, leadingCoeff]
· rw [coeff_eq_zero_of_natDegree_lt, coeff_eq_zero_of_natDegree_lt h', mul_zero]
exact natDegree_mul_le.trans_lt (add_lt_add_left h' _)
@@ -267,9 +267,10 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < Multise
nontriviality R
convert multiset_prod_X_sub_C_nextCoeff (by assumption)
rw [nextCoeff]; split_ifs with h
- · rw [natDegree_multiset_prod_of_monic] at h <;> simp only [Multiset.mem_map] at *
+ · rw [natDegree_multiset_prod_of_monic] at h
swap
- · rintro _ ⟨_, _, rfl⟩
+ · simp only [Multiset.mem_map]
+ rintro _ ⟨_, _, rfl⟩
apply monic_X_sub_C
simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map] at h
contrapose! h
Removes nonterminal simps on lines looking like simp [...]
@@ -142,10 +142,14 @@ theorem leadingCoeff_multiset_prod' (h : (t.map leadingCoeff).prod ≠ 0) :
t.prod.leadingCoeff = (t.map leadingCoeff).prod := by
induction' t using Multiset.induction_on with a t ih; · simp
simp only [Multiset.map_cons, Multiset.prod_cons] at h ⊢
- rw [Polynomial.leadingCoeff_mul'] <;>
- · rw [ih]
- simp [*]
- apply right_ne_zero_of_mul h
+ rw [Polynomial.leadingCoeff_mul']
+ · rw [ih]
+ simp only [ne_eq]
+ apply right_ne_zero_of_mul h
+ · rw [ih]
+ exact h
+ simp only [ne_eq, not_false_eq_true]
+ apply right_ne_zero_of_mul h
#align polynomial.leading_coeff_multiset_prod' Polynomial.leadingCoeff_multiset_prod'
/-- The leading coefficient of a product of polynomials is equal to
@@ -65,7 +65,7 @@ theorem degree_list_sum_le (l : List S[X]) : degree l.sum ≤ (l.map natDegree).
· rw [degree_eq_natDegree h]
suffices (l.map natDegree).maximum = ((l.map natDegree).foldr max 0 : ℕ) by
rw [this]
- simpa [this, Nat.cast_withBot] using natDegree_list_sum_le l
+ simpa using natDegree_list_sum_le l
rw [← List.foldr_max_of_ne_nil]
· congr
contrapose! h
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -43,7 +43,7 @@ variable (s : Finset ι)
section Semiring
-variable {S : Type _} [Semiring S]
+variable {S : Type*} [Semiring S]
theorem natDegree_list_sum_le (l : List S[X]) : natDegree l.sum ≤ (l.map natDegree).foldr max 0 :=
List.sum_le_foldr_max natDegree (by simp) natDegree_add_le _
@@ -2,15 +2,12 @@
Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jalex Stark
-
-! This file was ported from Lean 3 source module algebra.polynomial.big_operators
-! leanprover-community/mathlib commit 47adfab39a11a072db552f47594bf8ed2cf8a722
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Algebra.Order.WithZero
import Mathlib.Data.Polynomial.Monic
+#align_import algebra.polynomial.big_operators from "leanprover-community/mathlib"@"47adfab39a11a072db552f47594bf8ed2cf8a722"
+
/-!
# Lemmas for the interaction between polynomials and `∑` and `∏`.
This is the second half of the changes originally in #5699, removing all occurrences of ;
after a space and implementing a linter rule to enforce it.
In most cases this 2-character substring has a space after it, so the following command was run first:
find . -type f -name "*.lean" -exec sed -i -E 's/ ; /; /g' {} \;
The remaining cases were few enough in number that they were done manually.
@@ -274,7 +274,7 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < Multise
contrapose! h
obtain ⟨x, hx⟩ := card_pos_iff_exists_mem.mp ht
exact ⟨_, ⟨_, ⟨x, hx, rfl⟩, natDegree_X_sub_C _⟩, one_ne_zero⟩
- congr ; rw [natDegree_multiset_prod_of_monic] <;> · simp [natDegree_X_sub_C, monic_X_sub_C]
+ congr; rw [natDegree_multiset_prod_of_monic] <;> · simp [natDegree_X_sub_C, monic_X_sub_C]
set_option linter.uppercaseLean3 false in
#align polynomial.multiset_prod_X_sub_C_coeff_card_pred Polynomial.multiset_prod_X_sub_C_coeff_card_pred
at
and goals (#5387)
Changes are of the form
some_tactic at h⊢
-> some_tactic at h ⊢
some_tactic at h
-> some_tactic at h
@@ -172,7 +172,7 @@ theorem natDegree_multiset_prod' (h : (t.map fun f => leadingCoeff f).prod ≠ 0
t.prod.natDegree = (t.map fun f => natDegree f).sum := by
revert h
refine' Multiset.induction_on t _ fun a t ih ht => _; · simp
- rw [Multiset.map_cons, Multiset.prod_cons] at ht⊢
+ rw [Multiset.map_cons, Multiset.prod_cons] at ht ⊢
rw [Multiset.sum_cons, Polynomial.natDegree_mul', ih]
· apply right_ne_zero_of_mul ht
· rwa [Polynomial.leadingCoeff_multiset_prod']
by
s! (#3825)
This PR puts, with one exception, every single remaining by
that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh
. The exception is when the by
begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.
Essentially this is s/\n *by$/ by/g
, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated by
s".
@@ -66,8 +66,7 @@ theorem degree_list_sum_le (l : List S[X]) : degree l.sum ≤ (l.map natDegree).
by_cases h : l.sum = 0
· simp [h]
· rw [degree_eq_natDegree h]
- suffices (l.map natDegree).maximum = ((l.map natDegree).foldr max 0 : ℕ)
- by
+ suffices (l.map natDegree).maximum = ((l.map natDegree).foldr max 0 : ℕ) by
rw [this]
simpa [this, Nat.cast_withBot] using natDegree_list_sum_le l
rw [← List.foldr_max_of_ne_nil]
@@ -96,8 +95,7 @@ theorem coeff_list_prod_of_natDegree_le (l : List S[X]) (n : ℕ) (hl : ∀ p
· have hl' : ∀ p ∈ tl, natDegree p ≤ n := fun p hp => hl p (List.mem_cons_of_mem _ hp)
simp only [List.prod_cons, List.map, List.length]
rw [add_mul, one_mul, add_comm, ← IH hl', mul_comm tl.length]
- have h : natDegree tl.prod ≤ n * tl.length :=
- by
+ have h : natDegree tl.prod ≤ n * tl.length := by
refine' (natDegree_list_prod_le _).trans _
rw [← tl.length_map natDegree, mul_comm]
refine' List.sum_le_card_nsmul _ _ _
@@ -196,8 +194,7 @@ theorem natDegree_multiset_prod_of_monic (h : ∀ f ∈ t, Monic f) :
t.prod.natDegree = (t.map natDegree).sum := by
nontriviality R
apply natDegree_multiset_prod'
- suffices (t.map fun f => leadingCoeff f).prod = 1
- by
+ suffices (t.map fun f => leadingCoeff f).prod = 1 by
rw [this]
simp
convert prod_replicate (Multiset.card t) (1 : R)
@@ -323,8 +320,8 @@ theorem natDegree_prod (h : ∀ i ∈ s, f i ≠ 0) :
intro x hx; simp [h x hx]
#align polynomial.nat_degree_prod Polynomial.natDegree_prod
-theorem natDegree_multiset_prod (h : (0 : R[X]) ∉ t) : natDegree t.prod = (t.map natDegree).sum :=
- by
+theorem natDegree_multiset_prod (h : (0 : R[X]) ∉ t) :
+ natDegree t.prod = (t.map natDegree).sum := by
nontriviality R
rw [natDegree_multiset_prod']
simp_rw [Ne.def, Multiset.prod_eq_zero_iff, Multiset.mem_map, leadingCoeff_eq_zero]
@@ -352,8 +349,8 @@ the product of the leading coefficients.
See `Polynomial.leadingCoeff_multiset_prod'` (with a `'`) for a version for commutative semirings,
where additionally, the product of the leading coefficients must be nonzero.
-/
-theorem leadingCoeff_multiset_prod : t.prod.leadingCoeff = (t.map fun f => leadingCoeff f).prod :=
- by
+theorem leadingCoeff_multiset_prod :
+ t.prod.leadingCoeff = (t.map fun f => leadingCoeff f).prod := by
rw [← leadingCoeffHom_apply, MonoidHom.map_multiset_prod]
rfl
#align polynomial.leading_coeff_multiset_prod Polynomial.leadingCoeff_multiset_prod
This PR fixes two things:
align
statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align
). This is often seen in the mathport output after ending calc
blocks.#align
statements. (This was needed for a script I wrote for #3630.)@@ -151,7 +151,6 @@ theorem leadingCoeff_multiset_prod' (h : (t.map leadingCoeff).prod ≠ 0) :
· rw [ih]
simp [*]
apply right_ne_zero_of_mul h
-
#align polynomial.leading_coeff_multiset_prod' Polynomial.leadingCoeff_multiset_prod'
/-- The leading coefficient of a product of polynomials is equal to
@@ -259,11 +259,11 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
set_option linter.uppercaseLean3 false in
#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeff
-theorem prod_x_sub_c_nextCoeff {s : Finset ι} (f : ι → R) :
+theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
nextCoeff (∏ i in s, (X - C (f i))) = -∑ i in s, f i := by
simpa using multiset_prod_X_sub_C_nextCoeff (s.1.map f)
set_option linter.uppercaseLean3 false in
-#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_x_sub_c_nextCoeff
+#align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeff
theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < Multiset.card t) :
(t.map fun x => X - C x).prod.coeff ((Multiset.card t) - 1) = -t.sum := by
The unported dependencies are