algebraic_geometry.morphisms.basicMathlib.AlgebraicGeometry.Morphisms.Basic

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -5,7 +5,7 @@ Authors: Andrew Yang
 -/
 import AlgebraicGeometry.AffineScheme
 import AlgebraicGeometry.Pullbacks
-import CategoryTheory.MorphismProperty
+import CategoryTheory.MorphismProperty.Basic
 
 #align_import algebraic_geometry.morphisms.basic from "leanprover-community/mathlib"@"728ef9dbb281241906f25cbeb30f90d83e0bb451"
 
Diff
@@ -209,8 +209,8 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
   · intro U s hs H
     haveI : is_affine _ := U.2
     apply hP.3 (f ∣_ U.1) (s.image (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op))
-    · apply_fun Ideal.comap (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top.symm).op) at hs 
-      rw [Ideal.comap_top] at hs 
+    · apply_fun Ideal.comap (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top.symm).op) at hs
+      rw [Ideal.comap_top] at hs
       rw [← hs]
       simp only [eq_to_hom_op, eq_to_hom_map, Finset.coe_image]
       have :
@@ -266,7 +266,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE
     intro i
     specialize H i
     rw [← P.to_property_apply, ← hP.1.arrow_mk_iso_iff (morphism_restrict_opens_range f _)]
-    rw [← P.to_property_apply] at H 
+    rw [← P.to_property_apply] at H
     convert H
     all_goals ext1; exact Subtype.range_coe
   tfae_have 1 → 5
@@ -305,13 +305,13 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
     replace hs := ((top_is_affine_open Y).basicOpen_union_eq_self_iff _).mpr hs
     have := H f ⟨Y.open_cover_of_supr_eq_top _ hs, _, _⟩ (𝟙 _)
     rwa [← category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_is_iso hP] at
-      this 
+      this
     · intro i; exact (top_is_affine_open Y).basicOpenIsAffine _
     · rintro (i : s)
       specialize hs' i
       haveI : is_affine _ := (top_is_affine_open Y).basicOpenIsAffine i.1
-      delta morphism_restrict at hs' 
-      rwa [affine_cancel_left_is_iso hP] at hs' 
+      delta morphism_restrict at hs'
+      rwa [affine_cancel_left_is_iso hP] at hs'
 #align algebraic_geometry.affine_target_morphism_property.is_local_of_open_cover_imply AlgebraicGeometry.AffineTargetMorphismProperty.isLocalOfOpenCoverImply
 -/
 
@@ -375,7 +375,7 @@ theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
     · intro i; dsimp [Scheme.open_cover.bind]; infer_instance
     · intro i
       specialize h𝒰 i.1
-      rw [(hP.affine_open_cover_tfae (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _)).out 0 2] at h𝒰 
+      rw [(hP.affine_open_cover_tfae (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _)).out 0 2] at h𝒰
       specialize h𝒰 (Scheme.affine_cover _) i.2
       let e :
         pullback f ((𝒰.obj i.fst).affineCover.map i.snd ≫ 𝒰.map i.fst) ⟶
@@ -387,7 +387,7 @@ theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
         refine' (pullback_symmetry _ _).Hom ≫ _
         refine' pullback.map _ _ _ _ (pullback_symmetry _ _).Hom (𝟙 _) (𝟙 _) _ _ <;>
           simp only [category.comp_id, category.id_comp, pullback_symmetry_hom_comp_snd]
-      rw [← affine_cancel_left_is_iso hP.1 e] at h𝒰 
+      rw [← affine_cancel_left_is_iso hP.1 e] at h𝒰
       convert h𝒰
       simp
 #align algebraic_geometry.affine_target_morphism_property.is_local.target_affine_locally_is_local AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
@@ -488,7 +488,7 @@ theorem IsLocal.stableUnderBaseChange {P : AffineTargetMorphismProperty} (hP : P
           0 1]
       use S.affine_cover.pullback_cover f
       intro i
-      rw [(hP.affine_open_cover_tfae g).out 0 3] at H 
+      rw [(hP.affine_open_cover_tfae g).out 0 3] at H
       let e :
         pullback (pullback.fst : pullback f g ⟶ _) ((S.affine_cover.pullback_cover f).map i) ≅ _ :=
         by
Diff
@@ -192,7 +192,43 @@ structure AffineTargetMorphismProperty.IsLocal (P : AffineTargetMorphismProperty
 theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP : P.IsLocal)
     {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Y.OpenCover) [∀ i, IsAffine (𝒰.obj i)]
     (h𝒰 : ∀ i, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) : targetAffineLocally P f :=
-  by classical
+  by
+  classical
+  let S i :=
+    (⟨⟨Set.range (𝒰.map i).1.base, (𝒰.is_open i).base_open.open_range⟩,
+        range_is_affine_open_of_open_immersion (𝒰.map i)⟩ :
+      Y.affine_opens)
+  intro U
+  apply of_affine_open_cover U (Set.range S)
+  · intro U r h
+    haveI : is_affine _ := U.2
+    have := hP.2 (f ∣_ U.1)
+    replace this := this (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op r) h
+    rw [← P.to_property_apply] at this ⊢
+    exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mp this
+  · intro U s hs H
+    haveI : is_affine _ := U.2
+    apply hP.3 (f ∣_ U.1) (s.image (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op))
+    · apply_fun Ideal.comap (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top.symm).op) at hs 
+      rw [Ideal.comap_top] at hs 
+      rw [← hs]
+      simp only [eq_to_hom_op, eq_to_hom_map, Finset.coe_image]
+      have :
+        ∀ {R S : CommRingCat} (e : S = R) (s : Set S),
+          Ideal.span (eq_to_hom e '' s) = Ideal.comap (eq_to_hom e.symm) (Ideal.span s) :=
+        by intros; subst e; simpa
+      apply this
+    · rintro ⟨r, hr⟩
+      obtain ⟨r, hr', rfl⟩ := finset.mem_image.mp hr
+      simp_rw [← P.to_property_apply] at H ⊢
+      exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mpr (H ⟨r, hr'⟩)
+  · rw [Set.eq_univ_iff_forall]
+    simp only [Set.mem_iUnion]
+    intro x
+    exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.covers x⟩
+  · rintro ⟨_, i, rfl⟩
+    simp_rw [← P.to_property_apply] at h𝒰 ⊢
+    exact (hP.1.arrow_mk_iso_iff (morphism_restrict_opens_range f _)).mpr (h𝒰 i)
 #align algebraic_geometry.target_affine_locally_of_open_cover AlgebraicGeometry.targetAffineLocallyOfOpenCover
 -/
 
Diff
@@ -192,43 +192,7 @@ structure AffineTargetMorphismProperty.IsLocal (P : AffineTargetMorphismProperty
 theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP : P.IsLocal)
     {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Y.OpenCover) [∀ i, IsAffine (𝒰.obj i)]
     (h𝒰 : ∀ i, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) : targetAffineLocally P f :=
-  by
-  classical
-  let S i :=
-    (⟨⟨Set.range (𝒰.map i).1.base, (𝒰.is_open i).base_open.open_range⟩,
-        range_is_affine_open_of_open_immersion (𝒰.map i)⟩ :
-      Y.affine_opens)
-  intro U
-  apply of_affine_open_cover U (Set.range S)
-  · intro U r h
-    haveI : is_affine _ := U.2
-    have := hP.2 (f ∣_ U.1)
-    replace this := this (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op r) h
-    rw [← P.to_property_apply] at this ⊢
-    exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mp this
-  · intro U s hs H
-    haveI : is_affine _ := U.2
-    apply hP.3 (f ∣_ U.1) (s.image (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op))
-    · apply_fun Ideal.comap (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top.symm).op) at hs 
-      rw [Ideal.comap_top] at hs 
-      rw [← hs]
-      simp only [eq_to_hom_op, eq_to_hom_map, Finset.coe_image]
-      have :
-        ∀ {R S : CommRingCat} (e : S = R) (s : Set S),
-          Ideal.span (eq_to_hom e '' s) = Ideal.comap (eq_to_hom e.symm) (Ideal.span s) :=
-        by intros; subst e; simpa
-      apply this
-    · rintro ⟨r, hr⟩
-      obtain ⟨r, hr', rfl⟩ := finset.mem_image.mp hr
-      simp_rw [← P.to_property_apply] at H ⊢
-      exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mpr (H ⟨r, hr'⟩)
-  · rw [Set.eq_univ_iff_forall]
-    simp only [Set.mem_iUnion]
-    intro x
-    exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.covers x⟩
-  · rintro ⟨_, i, rfl⟩
-    simp_rw [← P.to_property_apply] at h𝒰 ⊢
-    exact (hP.1.arrow_mk_iso_iff (morphism_restrict_opens_range f _)).mpr (h𝒰 i)
+  by classical
 #align algebraic_geometry.target_affine_locally_of_open_cover AlgebraicGeometry.targetAffineLocallyOfOpenCover
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2022 Andrew Yang. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Andrew Yang
 -/
-import Mathbin.AlgebraicGeometry.AffineScheme
-import Mathbin.AlgebraicGeometry.Pullbacks
-import Mathbin.CategoryTheory.MorphismProperty
+import AlgebraicGeometry.AffineScheme
+import AlgebraicGeometry.Pullbacks
+import CategoryTheory.MorphismProperty
 
 #align_import algebraic_geometry.morphisms.basic from "leanprover-community/mathlib"@"728ef9dbb281241906f25cbeb30f90d83e0bb451"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2022 Andrew Yang. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Andrew Yang
-
-! This file was ported from Lean 3 source module algebraic_geometry.morphisms.basic
-! leanprover-community/mathlib commit 728ef9dbb281241906f25cbeb30f90d83e0bb451
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.AlgebraicGeometry.AffineScheme
 import Mathbin.AlgebraicGeometry.Pullbacks
 import Mathbin.CategoryTheory.MorphismProperty
 
+#align_import algebraic_geometry.morphisms.basic from "leanprover-community/mathlib"@"728ef9dbb281241906f25cbeb30f90d83e0bb451"
+
 /-!
 # Properties of morphisms between Schemes
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Andrew Yang
 
 ! This file was ported from Lean 3 source module algebraic_geometry.morphisms.basic
-! leanprover-community/mathlib commit 434e2fd21c1900747afc6d13d8be7f4eedba7218
+! leanprover-community/mathlib commit 728ef9dbb281241906f25cbeb30f90d83e0bb451
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.CategoryTheory.MorphismProperty
 /-!
 # Properties of morphisms between Schemes
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 We provide the basic framework for talking about properties of morphisms between Schemes.
 
 A `morphism_property Scheme` is a predicate on morphisms between schemes, and an
Diff
@@ -69,45 +69,60 @@ noncomputable section
 
 namespace AlgebraicGeometry
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty /-
 /-- An `affine_target_morphism_property` is a class of morphisms from an arbitrary scheme into an
 affine scheme. -/
 def AffineTargetMorphismProperty :=
   ∀ ⦃X Y : Scheme⦄ (f : X ⟶ Y) [IsAffine Y], Prop
 #align algebraic_geometry.affine_target_morphism_property AlgebraicGeometry.AffineTargetMorphismProperty
+-/
 
+#print AlgebraicGeometry.Scheme.isIso /-
 /-- `is_iso` as a `morphism_property`. -/
 protected def Scheme.isIso : MorphismProperty Scheme :=
   @IsIso Scheme _
 #align algebraic_geometry.Scheme.is_iso AlgebraicGeometry.Scheme.isIso
+-/
 
+#print AlgebraicGeometry.Scheme.affineTargetIsIso /-
 /-- `is_iso` as an `affine_morphism_property`. -/
 protected def Scheme.affineTargetIsIso : AffineTargetMorphismProperty := fun X Y f H => IsIso f
 #align algebraic_geometry.Scheme.affine_target_is_iso AlgebraicGeometry.Scheme.affineTargetIsIso
+-/
 
 instance : Inhabited AffineTargetMorphismProperty :=
   ⟨Scheme.affineTargetIsIso⟩
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.toProperty /-
 /-- A `affine_target_morphism_property` can be extended to a `morphism_property` such that it
 *never* holds when the target is not affine -/
 def AffineTargetMorphismProperty.toProperty (P : AffineTargetMorphismProperty) :
     MorphismProperty Scheme := fun X Y f => ∃ h, @P f h
 #align algebraic_geometry.affine_target_morphism_property.to_property AlgebraicGeometry.AffineTargetMorphismProperty.toProperty
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.toProperty_apply /-
 theorem AffineTargetMorphismProperty.toProperty_apply (P : AffineTargetMorphismProperty)
     {X Y : Scheme} (f : X ⟶ Y) [IsAffine Y] : P.toProperty f ↔ P f := by
   delta affine_target_morphism_property.to_property; simp [*]
 #align algebraic_geometry.affine_target_morphism_property.to_property_apply AlgebraicGeometry.AffineTargetMorphismProperty.toProperty_apply
+-/
 
+#print AlgebraicGeometry.affine_cancel_left_isIso /-
 theorem affine_cancel_left_isIso {P : AffineTargetMorphismProperty} (hP : P.toProperty.RespectsIso)
     {X Y Z : Scheme} (f : X ⟶ Y) (g : Y ⟶ Z) [IsIso f] [IsAffine Z] : P (f ≫ g) ↔ P g := by
   rw [← P.to_property_apply, ← P.to_property_apply, hP.cancel_left_is_iso]
 #align algebraic_geometry.affine_cancel_left_is_iso AlgebraicGeometry.affine_cancel_left_isIso
+-/
 
+#print AlgebraicGeometry.affine_cancel_right_isIso /-
 theorem affine_cancel_right_isIso {P : AffineTargetMorphismProperty} (hP : P.toProperty.RespectsIso)
     {X Y Z : Scheme} (f : X ⟶ Y) (g : Y ⟶ Z) [IsIso g] [IsAffine Z] [IsAffine Y] :
     P (f ≫ g) ↔ P f := by rw [← P.to_property_apply, ← P.to_property_apply, hP.cancel_right_is_iso]
 #align algebraic_geometry.affine_cancel_right_is_iso AlgebraicGeometry.affine_cancel_right_isIso
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.respectsIso_mk /-
 theorem AffineTargetMorphismProperty.respectsIso_mk {P : AffineTargetMorphismProperty}
     (h₁ : ∀ {X Y Z} (e : X ≅ Y) (f : Y ⟶ Z) [IsAffine Z], P f → P (e.hom ≫ f))
     (h₂ :
@@ -118,19 +133,25 @@ theorem AffineTargetMorphismProperty.respectsIso_mk {P : AffineTargetMorphismPro
   · rintro X Y Z e f ⟨a, h⟩; exact ⟨a, h₁ e f h⟩
   · rintro X Y Z e f ⟨a, h⟩; exact ⟨is_affine_of_iso e.inv, h₂ e f h⟩
 #align algebraic_geometry.affine_target_morphism_property.respects_iso_mk AlgebraicGeometry.AffineTargetMorphismProperty.respectsIso_mk
+-/
 
+#print AlgebraicGeometry.targetAffineLocally /-
 /-- For a `P : affine_target_morphism_property`, `target_affine_locally P` holds for
 `f : X ⟶ Y` whenever `P` holds for the restriction of `f` on every affine open subset of `Y`. -/
 def targetAffineLocally (P : AffineTargetMorphismProperty) : MorphismProperty Scheme :=
   fun {X Y : Scheme} (f : X ⟶ Y) => ∀ U : Y.affineOpens, @P (f ∣_ U) U.Prop
 #align algebraic_geometry.target_affine_locally AlgebraicGeometry.targetAffineLocally
+-/
 
+#print AlgebraicGeometry.IsAffineOpen.map_isIso /-
 theorem IsAffineOpen.map_isIso {X Y : Scheme} {U : Opens Y.carrier} (hU : IsAffineOpen U)
     (f : X ⟶ Y) [IsIso f] : IsAffineOpen ((Opens.map f.1.base).obj U) :=
   haveI : is_affine _ := hU
   is_affine_of_iso (f ∣_ U)
 #align algebraic_geometry.is_affine_open.map_is_iso AlgebraicGeometry.IsAffineOpen.map_isIso
+-/
 
+#print AlgebraicGeometry.targetAffineLocally_respectsIso /-
 theorem targetAffineLocally_respectsIso {P : AffineTargetMorphismProperty}
     (hP : P.toProperty.RespectsIso) : (targetAffineLocally P).RespectsIso :=
   by
@@ -145,7 +166,9 @@ theorem targetAffineLocally_respectsIso {P : AffineTargetMorphismProperty}
     rw [morphism_restrict_comp, affine_cancel_right_is_iso hP]
     exact H ⟨(opens.map e.hom.val.base).obj U, hU.map_is_iso e.hom⟩
 #align algebraic_geometry.target_affine_locally_respects_iso AlgebraicGeometry.targetAffineLocally_respectsIso
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal /-
 /-- We say that `P : affine_target_morphism_property` is a local property if
 1. `P` respects isomorphisms.
 2. If `P` holds for `f : X ⟶ Y`, then `P` holds for `f ∣_ Y.basic_open r` for any
@@ -158,12 +181,14 @@ structure AffineTargetMorphismProperty.IsLocal (P : AffineTargetMorphismProperty
   toBasicOpen :
     ∀ {X Y : Scheme} [IsAffine Y] (f : X ⟶ Y) (r : Y.Presheaf.obj <| op ⊤),
       P f → @P (f ∣_ Y.basic_open r) ((top_is_affine_open Y).basicOpenIsAffine _)
-  ofBasicOpenCover :
+  of_basicOpen_cover :
     ∀ {X Y : Scheme} [IsAffine Y] (f : X ⟶ Y) (s : Finset (Y.Presheaf.obj <| op ⊤))
       (hs : Ideal.span (s : Set (Y.Presheaf.obj <| op ⊤)) = ⊤),
       (∀ r : s, @P (f ∣_ Y.basic_open r.1) ((top_is_affine_open Y).basicOpenIsAffine _)) → P f
 #align algebraic_geometry.affine_target_morphism_property.is_local AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal
+-/
 
+#print AlgebraicGeometry.targetAffineLocallyOfOpenCover /-
 theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP : P.IsLocal)
     {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Y.OpenCover) [∀ i, IsAffine (𝒰.obj i)]
     (h𝒰 : ∀ i, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) : targetAffineLocally P f :=
@@ -205,8 +230,10 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
     simp_rw [← P.to_property_apply] at h𝒰 ⊢
     exact (hP.1.arrow_mk_iso_iff (morphism_restrict_opens_range f _)).mpr (h𝒰 i)
 #align algebraic_geometry.target_affine_locally_of_open_cover AlgebraicGeometry.targetAffineLocallyOfOpenCover
+-/
 
-theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
+#print AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE /-
+theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE
     {P : AffineTargetMorphismProperty} (hP : P.IsLocal) {X Y : Scheme.{u}} (f : X ⟶ Y) :
     TFAE
       [targetAffineLocally P f,
@@ -250,8 +277,10 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
     · rw [eq_top_iff]; intro x _; erw [opens.mem_supr]; exact ⟨x, Y.affine_cover.covers x⟩
     · intro i; exact H ⟨_, range_is_affine_open_of_open_immersion _⟩
   tfae_finish
-#align algebraic_geometry.affine_target_morphism_property.is_local.affine_open_cover_tfae AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
+#align algebraic_geometry.affine_target_morphism_property.is_local.affine_open_cover_tfae AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.isLocalOfOpenCoverImply /-
 theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMorphismProperty)
     (hP : P.toProperty.RespectsIso)
     (H :
@@ -284,19 +313,23 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
       delta morphism_restrict at hs' 
       rwa [affine_cancel_left_is_iso hP] at hs' 
 #align algebraic_geometry.affine_target_morphism_property.is_local_of_open_cover_imply AlgebraicGeometry.AffineTargetMorphismProperty.isLocalOfOpenCoverImply
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_openCover_iff /-
 theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_iff {P : AffineTargetMorphismProperty}
     (hP : P.IsLocal) {X Y : Scheme.{u}} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover.{u} Y)
     [h𝒰 : ∀ i, IsAffine (𝒰.obj i)] :
     targetAffineLocally P f ↔ ∀ i, @P (pullback.snd : pullback f (𝒰.map i) ⟶ _) (h𝒰 i) :=
   ⟨fun H =>
-    let h := ((hP.affine_openCover_tFAE f).out 0 2).mp H
+    let h := ((hP.affine_openCover_TFAE f).out 0 2).mp H
     h 𝒰,
     fun H =>
-    let h := ((hP.affine_openCover_tFAE f).out 1 0).mp
+    let h := ((hP.affine_openCover_TFAE f).out 1 0).mp
     h ⟨𝒰, inferInstance, H⟩⟩
 #align algebraic_geometry.affine_target_morphism_property.is_local.affine_open_cover_iff AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_openCover_iff
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_target_iff /-
 theorem AffineTargetMorphismProperty.IsLocal.affine_target_iff {P : AffineTargetMorphismProperty}
     (hP : P.IsLocal) {X Y : Scheme.{u}} (f : X ⟶ Y) [IsAffine Y] : targetAffineLocally P f ↔ P f :=
   by
@@ -307,7 +340,9 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_target_iff {P : AffineTarget
   · exact ⟨fun H => H PUnit.unit, fun H _ => H⟩
   rw [← category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_is_iso hP.1]
 #align algebraic_geometry.affine_target_morphism_property.is_local.affine_target_iff AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_target_iff
+-/
 
+#print AlgebraicGeometry.PropertyIsLocalAtTarget /-
 /-- We say that `P : morphism_property Scheme` is local at the target if
 1. `P` respects isomorphisms.
 2. If `P` holds for `f : X ⟶ Y`, then `P` holds for `f ∣_ U` for any `U`.
@@ -320,7 +355,9 @@ structure PropertyIsLocalAtTarget (P : MorphismProperty Scheme) : Prop where
     ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover.{u} Y),
       (∀ i : 𝒰.J, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) → P f
 #align algebraic_geometry.property_is_local_at_target AlgebraicGeometry.PropertyIsLocalAtTarget
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal /-
 theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
     {P : AffineTargetMorphismProperty} (hP : P.IsLocal) :
     PropertyIsLocalAtTarget (targetAffineLocally P) :=
@@ -354,8 +391,10 @@ theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
       convert h𝒰
       simp
 #align algebraic_geometry.affine_target_morphism_property.is_local.target_affine_locally_is_local AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
+-/
 
-theorem PropertyIsLocalAtTarget.openCover_tFAE {P : MorphismProperty Scheme}
+#print AlgebraicGeometry.PropertyIsLocalAtTarget.openCover_TFAE /-
+theorem PropertyIsLocalAtTarget.openCover_TFAE {P : MorphismProperty Scheme}
     (hP : PropertyIsLocalAtTarget P) {X Y : Scheme.{u}} (f : X ⟶ Y) :
     TFAE
       [P f,
@@ -396,28 +435,34 @@ theorem PropertyIsLocalAtTarget.openCover_tFAE {P : MorphismProperty Scheme}
     convert H i
     all_goals ext1; exact Subtype.range_coe
   tfae_finish
-#align algebraic_geometry.property_is_local_at_target.open_cover_tfae AlgebraicGeometry.PropertyIsLocalAtTarget.openCover_tFAE
+#align algebraic_geometry.property_is_local_at_target.open_cover_tfae AlgebraicGeometry.PropertyIsLocalAtTarget.openCover_TFAE
+-/
 
+#print AlgebraicGeometry.PropertyIsLocalAtTarget.openCover_iff /-
 theorem PropertyIsLocalAtTarget.openCover_iff {P : MorphismProperty Scheme}
     (hP : PropertyIsLocalAtTarget P) {X Y : Scheme.{u}} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover.{u} Y) :
     P f ↔ ∀ i, P (pullback.snd : pullback f (𝒰.map i) ⟶ _) :=
   ⟨fun H =>
-    let h := ((hP.openCover_tFAE f).out 0 2).mp H
+    let h := ((hP.openCover_TFAE f).out 0 2).mp H
     h 𝒰,
     fun H =>
-    let h := ((hP.openCover_tFAE f).out 1 0).mp
+    let h := ((hP.openCover_TFAE f).out 1 0).mp
     h ⟨𝒰, H⟩⟩
 #align algebraic_geometry.property_is_local_at_target.open_cover_iff AlgebraicGeometry.PropertyIsLocalAtTarget.openCover_iff
+-/
 
 namespace AffineTargetMorphismProperty
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.StableUnderBaseChange /-
 /-- A `P : affine_target_morphism_property` is stable under base change if `P` holds for `Y ⟶ S`
 implies that `P` holds for `X ×ₛ Y ⟶ X` with `X` and `S` affine schemes. -/
 def StableUnderBaseChange (P : AffineTargetMorphismProperty) : Prop :=
   ∀ ⦃X Y S : Scheme⦄ [IsAffine S] [IsAffine X] (f : X ⟶ S) (g : Y ⟶ S),
     P g → P (pullback.fst : pullback f g ⟶ X)
 #align algebraic_geometry.affine_target_morphism_property.stable_under_base_change AlgebraicGeometry.AffineTargetMorphismProperty.StableUnderBaseChange
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange /-
 theorem IsLocal.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange
     {P : AffineTargetMorphismProperty} (hP : P.IsLocal) (hP' : P.StableUnderBaseChange)
     {X Y S : Scheme} (f : X ⟶ S) (g : Y ⟶ S) [IsAffine S] (H : P g) :
@@ -431,7 +476,9 @@ theorem IsLocal.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange
   rw [← this, affine_cancel_left_is_iso hP.1]
   apply hP' <;> assumption
 #align algebraic_geometry.affine_target_morphism_property.is_local.target_affine_locally_pullback_fst_of_right_of_stable_under_base_change AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.stableUnderBaseChange /-
 theorem IsLocal.stableUnderBaseChange {P : AffineTargetMorphismProperty} (hP : P.IsLocal)
     (hP' : P.StableUnderBaseChange) : (targetAffineLocally P).StableUnderBaseChange :=
   MorphismProperty.StableUnderBaseChange.mk (targetAffineLocally_respectsIso hP.RespectsIso)
@@ -460,9 +507,11 @@ theorem IsLocal.stableUnderBaseChange {P : AffineTargetMorphismProperty} (hP : P
       rw [← pullback_symmetry_hom_comp_snd, affine_cancel_left_is_iso hP.1]
       apply H)
 #align algebraic_geometry.affine_target_morphism_property.is_local.stable_under_base_change AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.stableUnderBaseChange
+-/
 
 end AffineTargetMorphismProperty
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.diagonal /-
 /-- The `affine_target_morphism_property` associated to `(target_affine_locally P).diagonal`.
 See `diagonal_target_affine_locally_eq_target_affine_locally`.
 -/
@@ -471,7 +520,9 @@ def AffineTargetMorphismProperty.diagonal (P : AffineTargetMorphismProperty) :
   ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [IsAffine U₁] [IsAffine U₂] [IsOpenImmersionCat f₁]
     [IsOpenImmersionCat f₂], P (pullback.map_desc f₁ f₂ f)
 #align algebraic_geometry.affine_target_morphism_property.diagonal AlgebraicGeometry.AffineTargetMorphismProperty.diagonal
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.diagonal_respectsIso /-
 theorem AffineTargetMorphismProperty.diagonal_respectsIso (P : AffineTargetMorphismProperty)
     (hP : P.toProperty.RespectsIso) : P.diagonal.toProperty.RespectsIso :=
   by
@@ -486,7 +537,9 @@ theorem AffineTargetMorphismProperty.diagonal_respectsIso (P : AffineTargetMorph
     rw [pullback.map_desc_comp, affine_cancel_right_is_iso hP]
     apply H
 #align algebraic_geometry.affine_target_morphism_property.diagonal_respects_iso AlgebraicGeometry.AffineTargetMorphismProperty.diagonal_respectsIso
+-/
 
+#print AlgebraicGeometry.diagonalTargetAffineLocallyOfOpenCover /-
 theorem diagonalTargetAffineLocallyOfOpenCover (P : AffineTargetMorphismProperty) (hP : P.IsLocal)
     {X Y : Scheme.{u}} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover.{u} Y) [∀ i, IsAffine (𝒰.obj i)]
     (𝒰' : ∀ i, Scheme.OpenCover.{u} (pullback f (𝒰.map i))) [∀ i j, IsAffine ((𝒰' i).obj j)]
@@ -514,7 +567,9 @@ theorem diagonalTargetAffineLocallyOfOpenCover (P : AffineTargetMorphismProperty
         simp only [category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc,
           pullback.lift_snd_assoc]
 #align algebraic_geometry.diagonal_target_affine_locally_of_open_cover AlgebraicGeometry.diagonalTargetAffineLocallyOfOpenCover
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.diagonalOfTargetAffineLocally /-
 theorem AffineTargetMorphismProperty.diagonalOfTargetAffineLocally
     (P : AffineTargetMorphismProperty) (hP : P.IsLocal) {X Y U : Scheme.{u}} (f : X ⟶ Y) (g : U ⟶ Y)
     [IsAffine U] [IsOpenImmersionCat g] (H : (targetAffineLocally P).diagonal f) :
@@ -537,8 +592,10 @@ theorem AffineTargetMorphismProperty.diagonalOfTargetAffineLocally
         pullback.lift_snd_assoc, category.comp_id, pullback_diagonal_map_iso_hom_fst,
         pullback_diagonal_map_iso_hom_snd]
 #align algebraic_geometry.affine_target_morphism_property.diagonal_of_target_affine_locally AlgebraicGeometry.AffineTargetMorphismProperty.diagonalOfTargetAffineLocally
+-/
 
-theorem AffineTargetMorphismProperty.IsLocal.diagonal_affine_openCover_tFAE
+#print AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.diagonal_affine_openCover_TFAE /-
+theorem AffineTargetMorphismProperty.IsLocal.diagonal_affine_openCover_TFAE
     {P : AffineTargetMorphismProperty} (hP : P.IsLocal) {X Y : Scheme.{u}} (f : X ⟶ Y) :
     TFAE
       [(targetAffineLocally P).diagonal f,
@@ -568,14 +625,18 @@ theorem AffineTargetMorphismProperty.IsLocal.diagonal_affine_openCover_tFAE
   · rintro ⟨𝒰, _, 𝒰', _, H⟩
     exact diagonal_target_affine_locally_of_open_cover P hP f 𝒰 𝒰' H
   tfae_finish
-#align algebraic_geometry.affine_target_morphism_property.is_local.diagonal_affine_open_cover_tfae AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.diagonal_affine_openCover_tFAE
+#align algebraic_geometry.affine_target_morphism_property.is_local.diagonal_affine_open_cover_tfae AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.diagonal_affine_openCover_TFAE
+-/
 
+#print AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.diagonal /-
 theorem AffineTargetMorphismProperty.IsLocal.diagonal {P : AffineTargetMorphismProperty}
     (hP : P.IsLocal) : P.diagonal.IsLocal :=
   AffineTargetMorphismProperty.isLocalOfOpenCoverImply P.diagonal (P.diagonal_respectsIso hP.1)
-    fun _ _ f => ((hP.diagonal_affine_openCover_tFAE f).out 1 3).mp
+    fun _ _ f => ((hP.diagonal_affine_openCover_TFAE f).out 1 3).mp
 #align algebraic_geometry.affine_target_morphism_property.is_local.diagonal AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.diagonal
+-/
 
+#print AlgebraicGeometry.diagonal_targetAffineLocally_eq_targetAffineLocally /-
 theorem diagonal_targetAffineLocally_eq_targetAffineLocally (P : AffineTargetMorphismProperty)
     (hP : P.IsLocal) : (targetAffineLocally P).diagonal = targetAffineLocally P.diagonal :=
   by
@@ -584,7 +645,9 @@ theorem diagonal_targetAffineLocally_eq_targetAffineLocally (P : AffineTargetMor
     ((hP.diagonal_affine_open_cover_tfae f).out 0 1).trans
       ((hP.diagonal.affine_open_cover_tfae f).out 1 0)
 #align algebraic_geometry.diagonal_target_affine_locally_eq_target_affine_locally AlgebraicGeometry.diagonal_targetAffineLocally_eq_targetAffineLocally
+-/
 
+#print AlgebraicGeometry.universallyIsLocalAtTarget /-
 theorem universallyIsLocalAtTarget (P : MorphismProperty Scheme)
     (hP :
       ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover.{u} Y),
@@ -605,7 +668,9 @@ theorem universallyIsLocalAtTarget (P : MorphismProperty Scheme)
   rw [pullback.lift_fst, ← pullback.condition]
   exact (is_pullback.of_has_pullback _ _).paste_horiz H.flip
 #align algebraic_geometry.universally_is_local_at_target AlgebraicGeometry.universallyIsLocalAtTarget
+-/
 
+#print AlgebraicGeometry.universallyIsLocalAtTargetOfMorphismRestrict /-
 theorem universallyIsLocalAtTargetOfMorphismRestrict (P : MorphismProperty Scheme)
     (hP₁ : P.RespectsIso)
     (hP₂ :
@@ -619,12 +684,15 @@ theorem universallyIsLocalAtTargetOfMorphismRestrict (P : MorphismProperty Schem
       simp_rw [hP₁.arrow_mk_iso_iff (morphism_restrict_opens_range f _)]
       exact h𝒰)
 #align algebraic_geometry.universally_is_local_at_target_of_morphism_restrict AlgebraicGeometry.universallyIsLocalAtTargetOfMorphismRestrict
+-/
 
+#print AlgebraicGeometry.MorphismProperty.topologically /-
 /-- `topologically P` holds for a morphism if the underlying topological map satisfies `P`. -/
 def MorphismProperty.topologically
     (P : ∀ {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] (f : α → β), Prop) :
     MorphismProperty Scheme.{u} := fun X Y f => P f.1.base
 #align algebraic_geometry.morphism_property.topologically AlgebraicGeometry.MorphismProperty.topologically
+-/
 
 end AlgebraicGeometry
 
Diff
@@ -125,11 +125,11 @@ def targetAffineLocally (P : AffineTargetMorphismProperty) : MorphismProperty Sc
   fun {X Y : Scheme} (f : X ⟶ Y) => ∀ U : Y.affineOpens, @P (f ∣_ U) U.Prop
 #align algebraic_geometry.target_affine_locally AlgebraicGeometry.targetAffineLocally
 
-theorem IsAffineOpen.mapIsIso {X Y : Scheme} {U : Opens Y.carrier} (hU : IsAffineOpen U) (f : X ⟶ Y)
-    [IsIso f] : IsAffineOpen ((Opens.map f.1.base).obj U) :=
+theorem IsAffineOpen.map_isIso {X Y : Scheme} {U : Opens Y.carrier} (hU : IsAffineOpen U)
+    (f : X ⟶ Y) [IsIso f] : IsAffineOpen ((Opens.map f.1.base).obj U) :=
   haveI : is_affine _ := hU
   is_affine_of_iso (f ∣_ U)
-#align algebraic_geometry.is_affine_open.map_is_iso AlgebraicGeometry.IsAffineOpen.mapIsIso
+#align algebraic_geometry.is_affine_open.map_is_iso AlgebraicGeometry.IsAffineOpen.map_isIso
 
 theorem targetAffineLocally_respectsIso {P : AffineTargetMorphismProperty}
     (hP : P.toProperty.RespectsIso) : (targetAffineLocally P).RespectsIso :=
Diff
@@ -214,7 +214,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
           ∀ i : 𝒰.J, P (pullback.snd : (𝒰.pullback_cover f).obj i ⟶ 𝒰.obj i),
         ∀ (𝒰 : Scheme.OpenCover.{u} Y) [∀ i, IsAffine (𝒰.obj i)] (i : 𝒰.J),
           P (pullback.snd : (𝒰.pullback_cover f).obj i ⟶ 𝒰.obj i),
-        ∀ {U : Scheme} (g : U ⟶ Y) [IsAffine U] [IsOpenImmersion g],
+        ∀ {U : Scheme} (g : U ⟶ Y) [IsAffine U] [IsOpenImmersionCat g],
           P (pullback.snd : pullback f g ⟶ U),
         ∃ (ι : Type u) (U : ι → Opens Y.carrier) (hU : iSup U = ⊤) (hU' : ∀ i, IsAffineOpen (U i)),
           ∀ i, @P (f ∣_ U i) (hU' i)] :=
@@ -258,7 +258,7 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
       ∀ {X Y : Scheme.{u}} (f : X ⟶ Y),
         (∃ (𝒰 : Scheme.OpenCover.{u} Y) (_ : ∀ i, IsAffine (𝒰.obj i)),
             ∀ i : 𝒰.J, P (pullback.snd : (𝒰.pullback_cover f).obj i ⟶ 𝒰.obj i)) →
-          ∀ {U : Scheme} (g : U ⟶ Y) [IsAffine U] [IsOpenImmersion g],
+          ∀ {U : Scheme} (g : U ⟶ Y) [IsAffine U] [IsOpenImmersionCat g],
             P (pullback.snd : pullback f g ⟶ U)) :
     P.IsLocal := by
   refine' ⟨hP, _, _⟩
@@ -364,7 +364,7 @@ theorem PropertyIsLocalAtTarget.openCover_tFAE {P : MorphismProperty Scheme}
         ∀ (𝒰 : Scheme.OpenCover.{u} Y) (i : 𝒰.J),
           P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i),
         ∀ U : Opens Y.carrier, P (f ∣_ U),
-        ∀ {U : Scheme} (g : U ⟶ Y) [IsOpenImmersion g], P (pullback.snd : pullback f g ⟶ U),
+        ∀ {U : Scheme} (g : U ⟶ Y) [IsOpenImmersionCat g], P (pullback.snd : pullback f g ⟶ U),
         ∃ (ι : Type u) (U : ι → Opens Y.carrier) (hU : iSup U = ⊤), ∀ i, P (f ∣_ U i)] :=
   by
   tfae_have 2 → 1
@@ -468,8 +468,8 @@ See `diagonal_target_affine_locally_eq_target_affine_locally`.
 -/
 def AffineTargetMorphismProperty.diagonal (P : AffineTargetMorphismProperty) :
     AffineTargetMorphismProperty := fun X Y f hf =>
-  ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [IsAffine U₁] [IsAffine U₂] [IsOpenImmersion f₁]
-    [IsOpenImmersion f₂], P (pullback.map_desc f₁ f₂ f)
+  ∀ {U₁ U₂ : Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [IsAffine U₁] [IsAffine U₂] [IsOpenImmersionCat f₁]
+    [IsOpenImmersionCat f₂], P (pullback.map_desc f₁ f₂ f)
 #align algebraic_geometry.affine_target_morphism_property.diagonal AlgebraicGeometry.AffineTargetMorphismProperty.diagonal
 
 theorem AffineTargetMorphismProperty.diagonal_respectsIso (P : AffineTargetMorphismProperty)
@@ -517,7 +517,7 @@ theorem diagonalTargetAffineLocallyOfOpenCover (P : AffineTargetMorphismProperty
 
 theorem AffineTargetMorphismProperty.diagonalOfTargetAffineLocally
     (P : AffineTargetMorphismProperty) (hP : P.IsLocal) {X Y U : Scheme.{u}} (f : X ⟶ Y) (g : U ⟶ Y)
-    [IsAffine U] [IsOpenImmersion g] (H : (targetAffineLocally P).diagonal f) :
+    [IsAffine U] [IsOpenImmersionCat g] (H : (targetAffineLocally P).diagonal f) :
     P.diagonal (pullback.snd : pullback f g ⟶ _) :=
   by
   rintro U V f₁ f₂ _ _ _ _
@@ -546,7 +546,7 @@ theorem AffineTargetMorphismProperty.IsLocal.diagonal_affine_openCover_tFAE
           ∀ i : 𝒰.J, P.diagonal (pullback.snd : pullback f (𝒰.map i) ⟶ _),
         ∀ (𝒰 : Scheme.OpenCover.{u} Y) [∀ i, IsAffine (𝒰.obj i)] (i : 𝒰.J),
           P.diagonal (pullback.snd : pullback f (𝒰.map i) ⟶ _),
-        ∀ {U : Scheme} (g : U ⟶ Y) [IsAffine U] [IsOpenImmersion g],
+        ∀ {U : Scheme} (g : U ⟶ Y) [IsAffine U] [IsOpenImmersionCat g],
           P.diagonal (pullback.snd : pullback f g ⟶ _),
         ∃ (𝒰 : Scheme.OpenCover.{u} Y) (_ : ∀ i, IsAffine (𝒰.obj i)) (𝒰' :
           ∀ i, Scheme.OpenCover.{u} (pullback f (𝒰.map i))) (_ : ∀ i j, IsAffine ((𝒰' i).obj j)),
Diff
@@ -579,7 +579,7 @@ theorem AffineTargetMorphismProperty.IsLocal.diagonal {P : AffineTargetMorphismP
 theorem diagonal_targetAffineLocally_eq_targetAffineLocally (P : AffineTargetMorphismProperty)
     (hP : P.IsLocal) : (targetAffineLocally P).diagonal = targetAffineLocally P.diagonal :=
   by
-  ext (_ _ f)
+  ext _ _ f
   exact
     ((hP.diagonal_affine_open_cover_tfae f).out 0 1).trans
       ((hP.diagonal.affine_open_cover_tfae f).out 1 0)
Diff
@@ -169,41 +169,41 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
     (h𝒰 : ∀ i, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) : targetAffineLocally P f :=
   by
   classical
-    let S i :=
-      (⟨⟨Set.range (𝒰.map i).1.base, (𝒰.is_open i).base_open.open_range⟩,
-          range_is_affine_open_of_open_immersion (𝒰.map i)⟩ :
-        Y.affine_opens)
-    intro U
-    apply of_affine_open_cover U (Set.range S)
-    · intro U r h
-      haveI : is_affine _ := U.2
-      have := hP.2 (f ∣_ U.1)
-      replace this := this (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op r) h
-      rw [← P.to_property_apply] at this ⊢
-      exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mp this
-    · intro U s hs H
-      haveI : is_affine _ := U.2
-      apply hP.3 (f ∣_ U.1) (s.image (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op))
-      · apply_fun Ideal.comap (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top.symm).op)  at hs 
-        rw [Ideal.comap_top] at hs 
-        rw [← hs]
-        simp only [eq_to_hom_op, eq_to_hom_map, Finset.coe_image]
-        have :
-          ∀ {R S : CommRingCat} (e : S = R) (s : Set S),
-            Ideal.span (eq_to_hom e '' s) = Ideal.comap (eq_to_hom e.symm) (Ideal.span s) :=
-          by intros; subst e; simpa
-        apply this
-      · rintro ⟨r, hr⟩
-        obtain ⟨r, hr', rfl⟩ := finset.mem_image.mp hr
-        simp_rw [← P.to_property_apply] at H ⊢
-        exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mpr (H ⟨r, hr'⟩)
-    · rw [Set.eq_univ_iff_forall]
-      simp only [Set.mem_iUnion]
-      intro x
-      exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.covers x⟩
-    · rintro ⟨_, i, rfl⟩
-      simp_rw [← P.to_property_apply] at h𝒰 ⊢
-      exact (hP.1.arrow_mk_iso_iff (morphism_restrict_opens_range f _)).mpr (h𝒰 i)
+  let S i :=
+    (⟨⟨Set.range (𝒰.map i).1.base, (𝒰.is_open i).base_open.open_range⟩,
+        range_is_affine_open_of_open_immersion (𝒰.map i)⟩ :
+      Y.affine_opens)
+  intro U
+  apply of_affine_open_cover U (Set.range S)
+  · intro U r h
+    haveI : is_affine _ := U.2
+    have := hP.2 (f ∣_ U.1)
+    replace this := this (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op r) h
+    rw [← P.to_property_apply] at this ⊢
+    exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mp this
+  · intro U s hs H
+    haveI : is_affine _ := U.2
+    apply hP.3 (f ∣_ U.1) (s.image (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op))
+    · apply_fun Ideal.comap (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top.symm).op) at hs 
+      rw [Ideal.comap_top] at hs 
+      rw [← hs]
+      simp only [eq_to_hom_op, eq_to_hom_map, Finset.coe_image]
+      have :
+        ∀ {R S : CommRingCat} (e : S = R) (s : Set S),
+          Ideal.span (eq_to_hom e '' s) = Ideal.comap (eq_to_hom e.symm) (Ideal.span s) :=
+        by intros; subst e; simpa
+      apply this
+    · rintro ⟨r, hr⟩
+      obtain ⟨r, hr', rfl⟩ := finset.mem_image.mp hr
+      simp_rw [← P.to_property_apply] at H ⊢
+      exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mpr (H ⟨r, hr'⟩)
+  · rw [Set.eq_univ_iff_forall]
+    simp only [Set.mem_iUnion]
+    intro x
+    exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.covers x⟩
+  · rintro ⟨_, i, rfl⟩
+    simp_rw [← P.to_property_apply] at h𝒰 ⊢
+    exact (hP.1.arrow_mk_iso_iff (morphism_restrict_opens_range f _)).mpr (h𝒰 i)
 #align algebraic_geometry.target_affine_locally_of_open_cover AlgebraicGeometry.targetAffineLocallyOfOpenCover
 
 theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
@@ -503,7 +503,8 @@ theorem diagonalTargetAffineLocallyOfOpenCover (P : AffineTargetMorphismProperty
     infer_instance
   · rintro ⟨i, j, k⟩
     dsimp
-    convert(affine_cancel_left_is_iso hP.1
+    convert
+      (affine_cancel_left_is_iso hP.1
             (pullback_diagonal_map_iso _ _ ((𝒰' i).map j) ((𝒰' i).map k)).inv pullback.snd).mp
         _
     pick_goal 3
Diff
@@ -179,30 +179,30 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
       haveI : is_affine _ := U.2
       have := hP.2 (f ∣_ U.1)
       replace this := this (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op r) h
-      rw [← P.to_property_apply] at this⊢
+      rw [← P.to_property_apply] at this ⊢
       exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mp this
     · intro U s hs H
       haveI : is_affine _ := U.2
       apply hP.3 (f ∣_ U.1) (s.image (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top).op))
-      · apply_fun Ideal.comap (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top.symm).op)  at hs
-        rw [Ideal.comap_top] at hs
+      · apply_fun Ideal.comap (Y.presheaf.map (eq_to_hom U.1.openEmbedding_obj_top.symm).op)  at hs 
+        rw [Ideal.comap_top] at hs 
         rw [← hs]
         simp only [eq_to_hom_op, eq_to_hom_map, Finset.coe_image]
         have :
           ∀ {R S : CommRingCat} (e : S = R) (s : Set S),
             Ideal.span (eq_to_hom e '' s) = Ideal.comap (eq_to_hom e.symm) (Ideal.span s) :=
-          by intros ; subst e; simpa
+          by intros; subst e; simpa
         apply this
       · rintro ⟨r, hr⟩
         obtain ⟨r, hr', rfl⟩ := finset.mem_image.mp hr
-        simp_rw [← P.to_property_apply] at H⊢
+        simp_rw [← P.to_property_apply] at H ⊢
         exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mpr (H ⟨r, hr'⟩)
     · rw [Set.eq_univ_iff_forall]
       simp only [Set.mem_iUnion]
       intro x
       exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.covers x⟩
     · rintro ⟨_, i, rfl⟩
-      simp_rw [← P.to_property_apply] at h𝒰⊢
+      simp_rw [← P.to_property_apply] at h𝒰 ⊢
       exact (hP.1.arrow_mk_iso_iff (morphism_restrict_opens_range f _)).mpr (h𝒰 i)
 #align algebraic_geometry.target_affine_locally_of_open_cover AlgebraicGeometry.targetAffineLocallyOfOpenCover
 
@@ -210,20 +210,20 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
     {P : AffineTargetMorphismProperty} (hP : P.IsLocal) {X Y : Scheme.{u}} (f : X ⟶ Y) :
     TFAE
       [targetAffineLocally P f,
-        ∃ (𝒰 : Scheme.OpenCover.{u} Y)(_ : ∀ i, IsAffine (𝒰.obj i)),
+        ∃ (𝒰 : Scheme.OpenCover.{u} Y) (_ : ∀ i, IsAffine (𝒰.obj i)),
           ∀ i : 𝒰.J, P (pullback.snd : (𝒰.pullback_cover f).obj i ⟶ 𝒰.obj i),
         ∀ (𝒰 : Scheme.OpenCover.{u} Y) [∀ i, IsAffine (𝒰.obj i)] (i : 𝒰.J),
           P (pullback.snd : (𝒰.pullback_cover f).obj i ⟶ 𝒰.obj i),
         ∀ {U : Scheme} (g : U ⟶ Y) [IsAffine U] [IsOpenImmersion g],
           P (pullback.snd : pullback f g ⟶ U),
-        ∃ (ι : Type u)(U : ι → Opens Y.carrier)(hU : iSup U = ⊤)(hU' : ∀ i, IsAffineOpen (U i)),
+        ∃ (ι : Type u) (U : ι → Opens Y.carrier) (hU : iSup U = ⊤) (hU' : ∀ i, IsAffineOpen (U i)),
           ∀ i, @P (f ∣_ U i) (hU' i)] :=
   by
   tfae_have 1 → 4
   · intro H U g h₁ h₂
     skip
     replace H := H ⟨⟨_, h₂.base_open.open_range⟩, range_is_affine_open_of_open_immersion g⟩
-    rw [← P.to_property_apply] at H⊢
+    rw [← P.to_property_apply] at H ⊢
     rwa [← hP.1.arrow_mk_iso_iff (morphism_restrict_opens_range f _)]
   tfae_have 4 → 3
   · intro H 𝒰 h𝒰 i
@@ -239,7 +239,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
     intro i
     specialize H i
     rw [← P.to_property_apply, ← hP.1.arrow_mk_iso_iff (morphism_restrict_opens_range f _)]
-    rw [← P.to_property_apply] at H
+    rw [← P.to_property_apply] at H 
     convert H
     all_goals ext1; exact Subtype.range_coe
   tfae_have 1 → 5
@@ -256,7 +256,7 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
     (hP : P.toProperty.RespectsIso)
     (H :
       ∀ {X Y : Scheme.{u}} (f : X ⟶ Y),
-        (∃ (𝒰 : Scheme.OpenCover.{u} Y)(_ : ∀ i, IsAffine (𝒰.obj i)),
+        (∃ (𝒰 : Scheme.OpenCover.{u} Y) (_ : ∀ i, IsAffine (𝒰.obj i)),
             ∀ i : 𝒰.J, P (pullback.snd : (𝒰.pullback_cover f).obj i ⟶ 𝒰.obj i)) →
           ∀ {U : Scheme} (g : U ⟶ Y) [IsAffine U] [IsOpenImmersion g],
             P (pullback.snd : pullback f g ⟶ U)) :
@@ -276,13 +276,13 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
     replace hs := ((top_is_affine_open Y).basicOpen_union_eq_self_iff _).mpr hs
     have := H f ⟨Y.open_cover_of_supr_eq_top _ hs, _, _⟩ (𝟙 _)
     rwa [← category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_is_iso hP] at
-      this
+      this 
     · intro i; exact (top_is_affine_open Y).basicOpenIsAffine _
     · rintro (i : s)
       specialize hs' i
       haveI : is_affine _ := (top_is_affine_open Y).basicOpenIsAffine i.1
-      delta morphism_restrict at hs'
-      rwa [affine_cancel_left_is_iso hP] at hs'
+      delta morphism_restrict at hs' 
+      rwa [affine_cancel_left_is_iso hP] at hs' 
 #align algebraic_geometry.affine_target_morphism_property.is_local_of_open_cover_imply AlgebraicGeometry.AffineTargetMorphismProperty.isLocalOfOpenCoverImply
 
 theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_iff {P : AffineTargetMorphismProperty}
@@ -302,7 +302,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_target_iff {P : AffineTarget
   by
   rw [hP.affine_open_cover_iff f _]
   swap; · exact Scheme.open_cover_of_is_iso (𝟙 Y)
-  swap; · intro ; dsimp; infer_instance
+  swap; · intro; dsimp; infer_instance
   trans P (pullback.snd : pullback f (𝟙 _) ⟶ _)
   · exact ⟨fun H => H PUnit.unit, fun H _ => H⟩
   rw [← category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_is_iso hP.1]
@@ -338,7 +338,7 @@ theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
     · intro i; dsimp [Scheme.open_cover.bind]; infer_instance
     · intro i
       specialize h𝒰 i.1
-      rw [(hP.affine_open_cover_tfae (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _)).out 0 2] at h𝒰
+      rw [(hP.affine_open_cover_tfae (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _)).out 0 2] at h𝒰 
       specialize h𝒰 (Scheme.affine_cover _) i.2
       let e :
         pullback f ((𝒰.obj i.fst).affineCover.map i.snd ≫ 𝒰.map i.fst) ⟶
@@ -350,7 +350,7 @@ theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
         refine' (pullback_symmetry _ _).Hom ≫ _
         refine' pullback.map _ _ _ _ (pullback_symmetry _ _).Hom (𝟙 _) (𝟙 _) _ _ <;>
           simp only [category.comp_id, category.id_comp, pullback_symmetry_hom_comp_snd]
-      rw [← affine_cancel_left_is_iso hP.1 e] at h𝒰
+      rw [← affine_cancel_left_is_iso hP.1 e] at h𝒰 
       convert h𝒰
       simp
 #align algebraic_geometry.affine_target_morphism_property.is_local.target_affine_locally_is_local AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
@@ -365,7 +365,7 @@ theorem PropertyIsLocalAtTarget.openCover_tFAE {P : MorphismProperty Scheme}
           P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i),
         ∀ U : Opens Y.carrier, P (f ∣_ U),
         ∀ {U : Scheme} (g : U ⟶ Y) [IsOpenImmersion g], P (pullback.snd : pullback f g ⟶ U),
-        ∃ (ι : Type u)(U : ι → Opens Y.carrier)(hU : iSup U = ⊤), ∀ i, P (f ∣_ U i)] :=
+        ∃ (ι : Type u) (U : ι → Opens Y.carrier) (hU : iSup U = ⊤), ∀ i, P (f ∣_ U i)] :=
   by
   tfae_have 2 → 1
   · rintro ⟨𝒰, H⟩; exact hP.3 f 𝒰 H
@@ -441,7 +441,7 @@ theorem IsLocal.stableUnderBaseChange {P : AffineTargetMorphismProperty} (hP : P
           0 1]
       use S.affine_cover.pullback_cover f
       intro i
-      rw [(hP.affine_open_cover_tfae g).out 0 3] at H
+      rw [(hP.affine_open_cover_tfae g).out 0 3] at H 
       let e :
         pullback (pullback.fst : pullback f g ⟶ _) ((S.affine_cover.pullback_cover f).map i) ≅ _ :=
         by
@@ -541,14 +541,14 @@ theorem AffineTargetMorphismProperty.IsLocal.diagonal_affine_openCover_tFAE
     {P : AffineTargetMorphismProperty} (hP : P.IsLocal) {X Y : Scheme.{u}} (f : X ⟶ Y) :
     TFAE
       [(targetAffineLocally P).diagonal f,
-        ∃ (𝒰 : Scheme.OpenCover.{u} Y)(_ : ∀ i, IsAffine (𝒰.obj i)),
+        ∃ (𝒰 : Scheme.OpenCover.{u} Y) (_ : ∀ i, IsAffine (𝒰.obj i)),
           ∀ i : 𝒰.J, P.diagonal (pullback.snd : pullback f (𝒰.map i) ⟶ _),
         ∀ (𝒰 : Scheme.OpenCover.{u} Y) [∀ i, IsAffine (𝒰.obj i)] (i : 𝒰.J),
           P.diagonal (pullback.snd : pullback f (𝒰.map i) ⟶ _),
         ∀ {U : Scheme} (g : U ⟶ Y) [IsAffine U] [IsOpenImmersion g],
           P.diagonal (pullback.snd : pullback f g ⟶ _),
-        ∃ (𝒰 : Scheme.OpenCover.{u} Y)(_ : ∀ i, IsAffine (𝒰.obj i))(𝒰' :
-          ∀ i, Scheme.OpenCover.{u} (pullback f (𝒰.map i)))(_ : ∀ i j, IsAffine ((𝒰' i).obj j)),
+        ∃ (𝒰 : Scheme.OpenCover.{u} Y) (_ : ∀ i, IsAffine (𝒰.obj i)) (𝒰' :
+          ∀ i, Scheme.OpenCover.{u} (pullback f (𝒰.map i))) (_ : ∀ i j, IsAffine ((𝒰' i).obj j)),
           ∀ i j k, P (pullback.map_desc ((𝒰' i).map j) ((𝒰' i).map k) pullback.snd)] :=
   by
   tfae_have 1 → 4
Diff
@@ -94,10 +94,8 @@ def AffineTargetMorphismProperty.toProperty (P : AffineTargetMorphismProperty) :
 #align algebraic_geometry.affine_target_morphism_property.to_property AlgebraicGeometry.AffineTargetMorphismProperty.toProperty
 
 theorem AffineTargetMorphismProperty.toProperty_apply (P : AffineTargetMorphismProperty)
-    {X Y : Scheme} (f : X ⟶ Y) [IsAffine Y] : P.toProperty f ↔ P f :=
-  by
-  delta affine_target_morphism_property.to_property
-  simp [*]
+    {X Y : Scheme} (f : X ⟶ Y) [IsAffine Y] : P.toProperty f ↔ P f := by
+  delta affine_target_morphism_property.to_property; simp [*]
 #align algebraic_geometry.affine_target_morphism_property.to_property_apply AlgebraicGeometry.AffineTargetMorphismProperty.toProperty_apply
 
 theorem affine_cancel_left_isIso {P : AffineTargetMorphismProperty} (hP : P.toProperty.RespectsIso)
@@ -117,10 +115,8 @@ theorem AffineTargetMorphismProperty.respectsIso_mk {P : AffineTargetMorphismPro
         P f → @P (f ≫ e.hom) (is_affine_of_iso e.inv)) :
     P.toProperty.RespectsIso := by
   constructor
-  · rintro X Y Z e f ⟨a, h⟩
-    exact ⟨a, h₁ e f h⟩
-  · rintro X Y Z e f ⟨a, h⟩
-    exact ⟨is_affine_of_iso e.inv, h₂ e f h⟩
+  · rintro X Y Z e f ⟨a, h⟩; exact ⟨a, h₁ e f h⟩
+  · rintro X Y Z e f ⟨a, h⟩; exact ⟨is_affine_of_iso e.inv, h₂ e f h⟩
 #align algebraic_geometry.affine_target_morphism_property.respects_iso_mk AlgebraicGeometry.AffineTargetMorphismProperty.respectsIso_mk
 
 /-- For a `P : affine_target_morphism_property`, `target_affine_locally P` holds for
@@ -143,8 +139,7 @@ theorem targetAffineLocally_respectsIso {P : AffineTargetMorphismProperty}
     rw [morphism_restrict_comp, affine_cancel_left_is_iso hP]
     exact H U
   · introv H
-    rintro ⟨U, hU : is_affine_open U⟩
-    dsimp
+    rintro ⟨U, hU : is_affine_open U⟩; dsimp
     haveI : is_affine _ := hU
     haveI : is_affine _ := hU.map_is_iso e.hom
     rw [morphism_restrict_comp, affine_cancel_right_is_iso hP]
@@ -196,10 +191,7 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
         have :
           ∀ {R S : CommRingCat} (e : S = R) (s : Set S),
             Ideal.span (eq_to_hom e '' s) = Ideal.comap (eq_to_hom e.symm) (Ideal.span s) :=
-          by
-          intros
-          subst e
-          simpa
+          by intros ; subst e; simpa
         apply this
       · rintro ⟨r, hr⟩
         obtain ⟨r, hr', rfl⟩ := finset.mem_image.mp hr
@@ -240,8 +232,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
   tfae_have 3 → 2
   · exact fun H => ⟨Y.affine_cover, inferInstance, H Y.affine_cover⟩
   tfae_have 2 → 1
-  · rintro ⟨𝒰, h𝒰, H⟩
-    exact target_affine_locally_of_open_cover hP f 𝒰 H
+  · rintro ⟨𝒰, h𝒰, H⟩; exact target_affine_locally_of_open_cover hP f 𝒰 H
   tfae_have 5 → 2
   · rintro ⟨ι, U, hU, hU', H⟩
     refine' ⟨Y.open_cover_of_supr_eq_top U hU, hU', _⟩
@@ -256,12 +247,8 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
     refine'
       ⟨Y.carrier, fun x => (Y.affine_cover.map x).opensRange, _, fun i =>
         range_is_affine_open_of_open_immersion _, _⟩
-    · rw [eq_top_iff]
-      intro x _
-      erw [opens.mem_supr]
-      exact ⟨x, Y.affine_cover.covers x⟩
-    · intro i
-      exact H ⟨_, range_is_affine_open_of_open_immersion _⟩
+    · rw [eq_top_iff]; intro x _; erw [opens.mem_supr]; exact ⟨x, Y.affine_cover.covers x⟩
+    · intro i; exact H ⟨_, range_is_affine_open_of_open_immersion _⟩
   tfae_finish
 #align algebraic_geometry.affine_target_morphism_property.is_local.affine_open_cover_tfae AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
 
@@ -281,11 +268,8 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
     delta morphism_restrict
     rw [affine_cancel_left_is_iso hP]
     refine' @H f ⟨Scheme.open_cover_of_is_iso (𝟙 Y), _, _⟩ (Y.of_restrict _) _inst _
-    · intro i
-      dsimp
-      infer_instance
-    · intro i
-      dsimp
+    · intro i; dsimp; infer_instance
+    · intro i; dsimp
       rwa [← category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_is_iso hP]
   · introv hs hs'
     skip
@@ -293,8 +277,7 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
     have := H f ⟨Y.open_cover_of_supr_eq_top _ hs, _, _⟩ (𝟙 _)
     rwa [← category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_is_iso hP] at
       this
-    · intro i
-      exact (top_is_affine_open Y).basicOpenIsAffine _
+    · intro i; exact (top_is_affine_open Y).basicOpenIsAffine _
     · rintro (i : s)
       specialize hs' i
       haveI : is_affine _ := (top_is_affine_open Y).basicOpenIsAffine i.1
@@ -319,10 +302,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_target_iff {P : AffineTarget
   by
   rw [hP.affine_open_cover_iff f _]
   swap; · exact Scheme.open_cover_of_is_iso (𝟙 Y)
-  swap;
-  · intro
-    dsimp
-    infer_instance
+  swap; · intro ; dsimp; infer_instance
   trans P (pullback.snd : pullback f (𝟙 _) ⟶ _)
   · exact ⟨fun H => H PUnit.unit, fun H _ => H⟩
   rw [← category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_is_iso hP.1]
@@ -355,9 +335,7 @@ theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
   · rintro X Y f 𝒰 h𝒰
     rw [(hP.affine_open_cover_tfae f).out 0 1]
     refine' ⟨𝒰.bind fun _ => Scheme.affine_cover _, _, _⟩
-    · intro i
-      dsimp [Scheme.open_cover.bind]
-      infer_instance
+    · intro i; dsimp [Scheme.open_cover.bind]; infer_instance
     · intro i
       specialize h𝒰 i.1
       rw [(hP.affine_open_cover_tfae (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _)).out 0 2] at h𝒰
@@ -390,11 +368,9 @@ theorem PropertyIsLocalAtTarget.openCover_tFAE {P : MorphismProperty Scheme}
         ∃ (ι : Type u)(U : ι → Opens Y.carrier)(hU : iSup U = ⊤), ∀ i, P (f ∣_ U i)] :=
   by
   tfae_have 2 → 1
-  · rintro ⟨𝒰, H⟩
-    exact hP.3 f 𝒰 H
+  · rintro ⟨𝒰, H⟩; exact hP.3 f 𝒰 H
   tfae_have 1 → 4
-  · intro H U
-    exact hP.2 f U H
+  · intro H U; exact hP.2 f U H
   tfae_have 4 → 3
   · intro H 𝒰 i
     rw [← hP.1.arrow_mk_iso_iff (morphism_restrict_opens_range f _)]
@@ -411,8 +387,7 @@ theorem PropertyIsLocalAtTarget.openCover_tFAE {P : MorphismProperty Scheme}
     erw [hP.1.cancel_left_isIso]
     apply H
   tfae_have 4 → 6
-  · intro H
-    exact ⟨PUnit, fun _ => ⊤, ciSup_const, fun _ => H _⟩
+  · intro H; exact ⟨PUnit, fun _ => ⊤, ciSup_const, fun _ => H _⟩
   tfae_have 6 → 2
   · rintro ⟨ι, U, hU, H⟩
     refine' ⟨Y.open_cover_of_supr_eq_top U hU, _⟩
@@ -532,8 +507,7 @@ theorem diagonalTargetAffineLocallyOfOpenCover (P : AffineTargetMorphismProperty
             (pullback_diagonal_map_iso _ _ ((𝒰' i).map j) ((𝒰' i).map k)).inv pullback.snd).mp
         _
     pick_goal 3
-    · convert h𝒰' i j k
-      apply pullback.hom_ext <;> simp
+    · convert h𝒰' i j k; apply pullback.hom_ext <;> simp
     all_goals
       apply pullback.hom_ext <;>
         simp only [category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc,
@@ -578,13 +552,9 @@ theorem AffineTargetMorphismProperty.IsLocal.diagonal_affine_openCover_tFAE
           ∀ i j k, P (pullback.map_desc ((𝒰' i).map j) ((𝒰' i).map k) pullback.snd)] :=
   by
   tfae_have 1 → 4
-  · introv H hU hg _ _
-    skip
-    apply P.diagonal_of_target_affine_locally <;> assumption
+  · introv H hU hg _ _; skip; apply P.diagonal_of_target_affine_locally <;> assumption
   tfae_have 4 → 3
-  · introv H h𝒰
-    skip
-    apply H
+  · introv H h𝒰; skip; apply H
   tfae_have 3 → 2
   · exact fun H => ⟨Y.affine_cover, inferInstance, H Y.affine_cover⟩
   tfae_have 2 → 5
Diff
@@ -129,11 +129,11 @@ def targetAffineLocally (P : AffineTargetMorphismProperty) : MorphismProperty Sc
   fun {X Y : Scheme} (f : X ⟶ Y) => ∀ U : Y.affineOpens, @P (f ∣_ U) U.Prop
 #align algebraic_geometry.target_affine_locally AlgebraicGeometry.targetAffineLocally
 
-theorem IsAffineOpen.map_isIso {X Y : Scheme} {U : Opens Y.carrier} (hU : IsAffineOpen U)
-    (f : X ⟶ Y) [IsIso f] : IsAffineOpen ((Opens.map f.1.base).obj U) :=
+theorem IsAffineOpen.mapIsIso {X Y : Scheme} {U : Opens Y.carrier} (hU : IsAffineOpen U) (f : X ⟶ Y)
+    [IsIso f] : IsAffineOpen ((Opens.map f.1.base).obj U) :=
   haveI : is_affine _ := hU
   is_affine_of_iso (f ∣_ U)
-#align algebraic_geometry.is_affine_open.map_is_iso AlgebraicGeometry.IsAffineOpen.map_isIso
+#align algebraic_geometry.is_affine_open.map_is_iso AlgebraicGeometry.IsAffineOpen.mapIsIso
 
 theorem targetAffineLocally_respectsIso {P : AffineTargetMorphismProperty}
     (hP : P.toProperty.RespectsIso) : (targetAffineLocally P).RespectsIso :=
@@ -162,11 +162,11 @@ structure AffineTargetMorphismProperty.IsLocal (P : AffineTargetMorphismProperty
   RespectsIso : P.toProperty.RespectsIso
   toBasicOpen :
     ∀ {X Y : Scheme} [IsAffine Y] (f : X ⟶ Y) (r : Y.Presheaf.obj <| op ⊤),
-      P f → @P (f ∣_ Y.basic_open r) ((top_is_affine_open Y).basicOpen_is_affine _)
+      P f → @P (f ∣_ Y.basic_open r) ((top_is_affine_open Y).basicOpenIsAffine _)
   ofBasicOpenCover :
     ∀ {X Y : Scheme} [IsAffine Y] (f : X ⟶ Y) (s : Finset (Y.Presheaf.obj <| op ⊤))
       (hs : Ideal.span (s : Set (Y.Presheaf.obj <| op ⊤)) = ⊤),
-      (∀ r : s, @P (f ∣_ Y.basic_open r.1) ((top_is_affine_open Y).basicOpen_is_affine _)) → P f
+      (∀ r : s, @P (f ∣_ Y.basic_open r.1) ((top_is_affine_open Y).basicOpenIsAffine _)) → P f
 #align algebraic_geometry.affine_target_morphism_property.is_local AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal
 
 theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP : P.IsLocal)
@@ -277,7 +277,7 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
   refine' ⟨hP, _, _⟩
   · introv h
     skip
-    haveI : is_affine _ := (top_is_affine_open Y).basicOpen_is_affine r
+    haveI : is_affine _ := (top_is_affine_open Y).basicOpenIsAffine r
     delta morphism_restrict
     rw [affine_cancel_left_is_iso hP]
     refine' @H f ⟨Scheme.open_cover_of_is_iso (𝟙 Y), _, _⟩ (Y.of_restrict _) _inst _
@@ -294,10 +294,10 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
     rwa [← category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_is_iso hP] at
       this
     · intro i
-      exact (top_is_affine_open Y).basicOpen_is_affine _
+      exact (top_is_affine_open Y).basicOpenIsAffine _
     · rintro (i : s)
       specialize hs' i
-      haveI : is_affine _ := (top_is_affine_open Y).basicOpen_is_affine i.1
+      haveI : is_affine _ := (top_is_affine_open Y).basicOpenIsAffine i.1
       delta morphism_restrict at hs'
       rwa [affine_cancel_left_is_iso hP] at hs'
 #align algebraic_geometry.affine_target_morphism_property.is_local_of_open_cover_imply AlgebraicGeometry.AffineTargetMorphismProperty.isLocalOfOpenCoverImply
Diff
@@ -206,7 +206,7 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
         simp_rw [← P.to_property_apply] at H⊢
         exact (hP.1.arrow_mk_iso_iff (morphism_restrict_restrict_basic_open f _ r)).mpr (H ⟨r, hr'⟩)
     · rw [Set.eq_univ_iff_forall]
-      simp only [Set.mem_unionᵢ]
+      simp only [Set.mem_iUnion]
       intro x
       exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.covers x⟩
     · rintro ⟨_, i, rfl⟩
@@ -224,7 +224,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_tFAE
           P (pullback.snd : (𝒰.pullback_cover f).obj i ⟶ 𝒰.obj i),
         ∀ {U : Scheme} (g : U ⟶ Y) [IsAffine U] [IsOpenImmersion g],
           P (pullback.snd : pullback f g ⟶ U),
-        ∃ (ι : Type u)(U : ι → Opens Y.carrier)(hU : supᵢ U = ⊤)(hU' : ∀ i, IsAffineOpen (U i)),
+        ∃ (ι : Type u)(U : ι → Opens Y.carrier)(hU : iSup U = ⊤)(hU' : ∀ i, IsAffineOpen (U i)),
           ∀ i, @P (f ∣_ U i) (hU' i)] :=
   by
   tfae_have 1 → 4
@@ -387,7 +387,7 @@ theorem PropertyIsLocalAtTarget.openCover_tFAE {P : MorphismProperty Scheme}
           P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i),
         ∀ U : Opens Y.carrier, P (f ∣_ U),
         ∀ {U : Scheme} (g : U ⟶ Y) [IsOpenImmersion g], P (pullback.snd : pullback f g ⟶ U),
-        ∃ (ι : Type u)(U : ι → Opens Y.carrier)(hU : supᵢ U = ⊤), ∀ i, P (f ∣_ U i)] :=
+        ∃ (ι : Type u)(U : ι → Opens Y.carrier)(hU : iSup U = ⊤), ∀ i, P (f ∣_ U i)] :=
   by
   tfae_have 2 → 1
   · rintro ⟨𝒰, H⟩
@@ -412,7 +412,7 @@ theorem PropertyIsLocalAtTarget.openCover_tFAE {P : MorphismProperty Scheme}
     apply H
   tfae_have 4 → 6
   · intro H
-    exact ⟨PUnit, fun _ => ⊤, csupᵢ_const, fun _ => H _⟩
+    exact ⟨PUnit, fun _ => ⊤, ciSup_const, fun _ => H _⟩
   tfae_have 6 → 2
   · rintro ⟨ι, U, hU, H⟩
     refine' ⟨Y.open_cover_of_supr_eq_top U hU, _⟩
@@ -638,7 +638,7 @@ theorem universallyIsLocalAtTarget (P : MorphismProperty Scheme)
 theorem universallyIsLocalAtTargetOfMorphismRestrict (P : MorphismProperty Scheme)
     (hP₁ : P.RespectsIso)
     (hP₂ :
-      ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens Y.carrier) (hU : supᵢ U = ⊤),
+      ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens Y.carrier) (hU : iSup U = ⊤),
         (∀ i, P (f ∣_ U i)) → P f) :
     PropertyIsLocalAtTarget P.universally :=
   universallyIsLocalAtTarget P
Diff
@@ -528,8 +528,7 @@ theorem diagonalTargetAffineLocallyOfOpenCover (P : AffineTargetMorphismProperty
     infer_instance
   · rintro ⟨i, j, k⟩
     dsimp
-    convert
-      (affine_cancel_left_is_iso hP.1
+    convert(affine_cancel_left_is_iso hP.1
             (pullback_diagonal_map_iso _ _ ((𝒰' i).map j) ((𝒰' i).map k)).inv pullback.snd).mp
         _
     pick_goal 3
Diff
@@ -633,7 +633,7 @@ theorem universallyIsLocalAtTarget (P : MorphismProperty Scheme)
   · rw [category.assoc, category.assoc, ← pullback.condition, ← pullback.condition_assoc, H.w]
   refine' (is_pullback.of_right _ (pullback.lift_snd _ _ _) (is_pullback.of_has_pullback _ _)).flip
   rw [pullback.lift_fst, ← pullback.condition]
-  exact (is_pullback.of_has_pullback _ _).pasteHoriz H.flip
+  exact (is_pullback.of_has_pullback _ _).paste_horiz H.flip
 #align algebraic_geometry.universally_is_local_at_target AlgebraicGeometry.universallyIsLocalAtTarget
 
 theorem universallyIsLocalAtTargetOfMorphismRestrict (P : MorphismProperty Scheme)

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 2 (#12361)

A PR analogous to #12338: reformatting proofs following the multiple goals linter of #12339.

Diff
@@ -301,8 +301,8 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
   · introv hs hs'
     replace hs := ((topIsAffineOpen Y).basicOpen_union_eq_self_iff _).mpr hs
     have := H f ⟨Y.openCoverOfSuprEqTop _ hs, ?_, ?_⟩ (𝟙 _)
-    rwa [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP]
-      at this
+    · rwa [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP]
+        at this
     · intro i; exact (topIsAffineOpen Y).basicOpenIsAffine _
     · rintro (i : s)
       specialize hs' i
chore: split CategoryTheory.MorphismProperty (#12393)

The file CategoryTheory.MorphismProperty is split into five files Basic, Composition, Limits, Concrete, IsInvertedBy.

Diff
@@ -5,7 +5,7 @@ Authors: Andrew Yang
 -/
 import Mathlib.AlgebraicGeometry.AffineScheme
 import Mathlib.AlgebraicGeometry.Pullbacks
-import Mathlib.CategoryTheory.MorphismProperty
+import Mathlib.CategoryTheory.MorphismProperty.Limits
 import Mathlib.Data.List.TFAE
 
 #align_import algebraic_geometry.morphisms.basic from "leanprover-community/mathlib"@"434e2fd21c1900747afc6d13d8be7f4eedba7218"
chore: rename open_range to isOpen_range, closed_range to isClosed_range (#11438)

All these lemmas refer to the range of some function being open/range (i.e. isOpen or isClosed).

Diff
@@ -174,7 +174,7 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
     (h𝒰 : ∀ i, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) :
     targetAffineLocally P f := by
   classical
-  let S i := (⟨⟨Set.range (𝒰.map i).1.base, (𝒰.IsOpen i).base_open.open_range⟩,
+  let S i := (⟨⟨Set.range (𝒰.map i).1.base, (𝒰.IsOpen i).base_open.isOpen_range⟩,
     rangeIsAffineOpenOfOpenImmersion (𝒰.map i)⟩ : Y.affineOpens)
   intro U
   apply of_affine_open_cover (P := _) U (Set.range S)
@@ -248,7 +248,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE
   tfae_have 1 → 4
   · intro H U g h₁ h₂
     -- Porting note: I need to add `i1` manually, so to save some typing, named this variable
-    set U' : Opens _ := ⟨_, h₂.base_open.open_range⟩
+    set U' : Opens _ := ⟨_, h₂.base_open.isOpen_range⟩
     replace H := H ⟨U', rangeIsAffineOpenOfOpenImmersion g⟩
     haveI i1 : IsAffine (Y.restrict U'.openEmbedding) := rangeIsAffineOpenOfOpenImmersion g
     rw [← P.toProperty_apply] at H ⊢
chore: prepare Lean version bump with explicit simp (#10999)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -381,7 +381,7 @@ theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
         simp only [Category.comp_id, Category.id_comp, pullbackSymmetry_hom_comp_snd]
       rw [← affine_cancel_left_isIso hP.1 e] at h𝒰
       convert h𝒰 using 1
-      simp
+      simp [e]
 #align algebraic_geometry.affine_target_morphism_property.is_local.target_affine_locally_is_local AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
 
 open List in
@@ -455,7 +455,7 @@ theorem IsLocal.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange
   use X.affineCover, inferInstance
   intro i
   let e := pullbackSymmetry _ _ ≪≫ pullbackRightPullbackFstIso f g (X.affineCover.map i)
-  have : e.hom ≫ pullback.fst = pullback.snd := by simp
+  have : e.hom ≫ pullback.fst = pullback.snd := by simp [e]
   rw [← this, affine_cancel_left_isIso hP.1]
   apply hP'; assumption
 #align algebraic_geometry.affine_target_morphism_property.is_local.target_affine_locally_pullback_fst_of_right_of_stable_under_base_change AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange
@@ -482,7 +482,7 @@ theorem IsLocal.stableUnderBaseChange {P : AffineTargetMorphismProperty} (hP : P
             (pullback.snd : pullback f (S.affineCover.map i) ⟶ _)).symm
         exact asIso
           (pullback.map _ _ _ _ (𝟙 _) (𝟙 _) (𝟙 _) (by simpa using pullback.condition) (by simp))
-      have : e.hom ≫ pullback.fst = pullback.snd := by simp
+      have : e.hom ≫ pullback.fst = pullback.snd := by simp [e]
       rw [← this, (targetAffineLocally_respectsIso hP.1).cancel_left_isIso]
       apply hP.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange hP'
       rw [← pullbackSymmetry_hom_comp_snd, affine_cancel_left_isIso hP.1]
@@ -525,10 +525,10 @@ theorem diagonalTargetAffineLocallyOfOpenCover (P : AffineTargetMorphismProperty
     (targetAffineLocally P).diagonal f := by
   let 𝒱 := (Scheme.Pullback.openCoverOfBase 𝒰 f f).bind fun i =>
     Scheme.Pullback.openCoverOfLeftRight.{u} (𝒰' i) (𝒰' i) pullback.snd pullback.snd
-  have i1 : ∀ i, IsAffine (𝒱.obj i) := fun i => by dsimp; infer_instance
+  have i1 : ∀ i, IsAffine (𝒱.obj i) := fun i => by dsimp [𝒱]; infer_instance
   refine' (hP.affine_openCover_iff _ _).mpr _
   rintro ⟨i, j, k⟩
-  dsimp
+  dsimp [𝒱]
   convert (affine_cancel_left_isIso hP.1
     (pullbackDiagonalMapIso _ _ ((𝒰' i).map j) ((𝒰' i).map k)).inv pullback.snd).mp _
   pick_goal 3
chore: classify added instance porting notes (#10925)

Classifies by adding issue number (#10754) to porting notes claiming added instance.

Diff
@@ -132,7 +132,7 @@ theorem targetAffineLocally_respectsIso {P : AffineTargetMorphismProperty}
     (hP : P.toProperty.RespectsIso) : (targetAffineLocally P).RespectsIso := by
   constructor
   · introv H U
-    -- Porting note: added this instance
+    -- Porting note (#10754): added this instance
     haveI : IsAffine _ := U.prop
     rw [morphismRestrict_comp, affine_cancel_left_isIso hP]
     exact H U
@@ -265,7 +265,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE
     refine' ⟨Y.openCoverOfSuprEqTop U hU, hU', _⟩
     intro i
     specialize H i
-    -- Porting note: added these two instances manually
+    -- Porting note (#10754): added these two instances manually
     haveI i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) := hU' i
     haveI i3 : IsAffine (Y.restrict (U i).openEmbedding) := hU' i
     rw [← P.toProperty_apply, ← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
style: reduce spacing variation in "porting note" comments (#10886)

In this pull request, I have systematically eliminated the leading whitespace preceding the colon (:) within all unlabelled or unclassified porting notes. This adjustment facilitates a more efficient review process for the remaining notes by ensuring no entries are overlooked due to formatting inconsistencies.

Diff
@@ -132,7 +132,7 @@ theorem targetAffineLocally_respectsIso {P : AffineTargetMorphismProperty}
     (hP : P.toProperty.RespectsIso) : (targetAffineLocally P).RespectsIso := by
   constructor
   · introv H U
-    -- Porting note : added this instance
+    -- Porting note: added this instance
     haveI : IsAffine _ := U.prop
     rw [morphismRestrict_comp, affine_cancel_left_isIso hP]
     exact H U
@@ -204,7 +204,7 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
         intro _ S e _
         subst e
         simp only [eqToHom_refl, CommRingCat.id_apply, Set.image_id']
-        -- Porting note : Lean didn't see `𝟙 _` is just ring hom id
+        -- Porting note: Lean didn't see `𝟙 _` is just ring hom id
         exact (Ideal.comap_id _).symm
       apply this
     · rintro ⟨r, hr⟩
@@ -247,7 +247,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE
           ∀ i, @P _ _ (f ∣_ U i) (hU' i)] := by
   tfae_have 1 → 4
   · intro H U g h₁ h₂
-    -- Porting note : I need to add `i1` manually, so to save some typing, named this variable
+    -- Porting note: I need to add `i1` manually, so to save some typing, named this variable
     set U' : Opens _ := ⟨_, h₂.base_open.open_range⟩
     replace H := H ⟨U', rangeIsAffineOpenOfOpenImmersion g⟩
     haveI i1 : IsAffine (Y.restrict U'.openEmbedding) := rangeIsAffineOpenOfOpenImmersion g
@@ -265,7 +265,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE
     refine' ⟨Y.openCoverOfSuprEqTop U hU, hU', _⟩
     intro i
     specialize H i
-    -- Porting note : added these two instances manually
+    -- Porting note: added these two instances manually
     haveI i2 : IsAffine (Scheme.OpenCover.obj (Scheme.openCoverOfSuprEqTop Y U hU) i) := hU' i
     haveI i3 : IsAffine (Y.restrict (U i).openEmbedding) := hU' i
     rw [← P.toProperty_apply, ← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
@@ -358,7 +358,7 @@ theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
     convert H ⟨_, IsAffineOpen.imageIsOpenImmersion V.2 (Y.ofRestrict _)⟩
     rw [← P.toProperty_apply (i := IsAffineOpen.imageIsOpenImmersion V.2 (Y.ofRestrict _))]
   · rintro X Y f 𝒰 h𝒰
-    -- Porting note : rewrite `[(hP.affine_openCover_TFAE f).out 0 1` directly complains about
+    -- Porting note: rewrite `[(hP.affine_openCover_TFAE f).out 0 1` directly complains about
     -- metavariables
     have h01 := (hP.affine_openCover_TFAE f).out 0 1
     rw [h01]
@@ -366,7 +366,7 @@ theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
     · intro i; dsimp [Scheme.OpenCover.bind]; infer_instance
     · intro i
       specialize h𝒰 i.1
-      -- Porting note : rewrite `[(hP.affine_openCover_TFAE pullback.snd).out 0 1` directly
+      -- Porting note: rewrite `[(hP.affine_openCover_TFAE pullback.snd).out 0 1` directly
       -- complains about metavariables
       have h02 := (hP.affine_openCover_TFAE (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _)).out 0 2
       rw [h02] at h𝒰
@@ -429,7 +429,7 @@ theorem PropertyIsLocalAtTarget.openCover_TFAE {P : MorphismProperty Scheme}
 theorem PropertyIsLocalAtTarget.openCover_iff {P : MorphismProperty Scheme}
     (hP : PropertyIsLocalAtTarget P) {X Y : Scheme.{u}} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover.{u} Y) :
     P f ↔ ∀ i, P (pullback.snd : pullback f (𝒰.map i) ⟶ _) := by
-  -- Porting note : couldn't get the term mode proof work
+  -- Porting note: couldn't get the term mode proof work
   refine ⟨fun H => let h := ((hP.openCover_TFAE f).out 0 2).mp H; fun i => ?_,
     fun H => let h := ((hP.openCover_TFAE f).out 1 0).mp; ?_⟩
   · exact h 𝒰 i
@@ -449,7 +449,7 @@ theorem IsLocal.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange
     {P : AffineTargetMorphismProperty} (hP : P.IsLocal) (hP' : P.StableUnderBaseChange)
     {X Y S : Scheme} (f : X ⟶ S) (g : Y ⟶ S) [IsAffine S] (H : P g) :
     targetAffineLocally P (pullback.fst : pullback f g ⟶ X) := by
-  -- Porting note : rewrite `(hP.affine_openCover_TFAE ...).out 0 1` doesn't work
+  -- Porting note: rewrite `(hP.affine_openCover_TFAE ...).out 0 1` doesn't work
   have h01 := (hP.affine_openCover_TFAE (pullback.fst : pullback f g ⟶ X)).out 0 1
   rw [h01]
   use X.affineCover, inferInstance
@@ -464,14 +464,14 @@ theorem IsLocal.stableUnderBaseChange {P : AffineTargetMorphismProperty} (hP : P
     (hP' : P.StableUnderBaseChange) : (targetAffineLocally P).StableUnderBaseChange :=
   MorphismProperty.StableUnderBaseChange.mk (targetAffineLocally_respectsIso hP.RespectsIso)
     (fun X Y S f g H => by
-      -- Porting note : rewrite `(...openCover_TFAE).out 0 1` directly doesn't work, complains about
+      -- Porting note: rewrite `(...openCover_TFAE).out 0 1` directly doesn't work, complains about
       -- metavariable
       have h01 := (hP.targetAffineLocallyIsLocal.openCover_TFAE
         (pullback.fst : pullback f g ⟶ X)).out 0 1
       rw [h01]
       use S.affineCover.pullbackCover f
       intro i
-      -- Porting note : rewrite `(hP.affine_openCover_TFAE g).out 0 3` directly doesn't work
+      -- Porting note: rewrite `(hP.affine_openCover_TFAE g).out 0 3` directly doesn't work
       -- complains about metavariable
       have h03 := (hP.affine_openCover_TFAE g).out 0 3
       rw [h03] at H
@@ -507,12 +507,12 @@ theorem AffineTargetMorphismProperty.diagonal_respectsIso (P : AffineTargetMorph
   apply AffineTargetMorphismProperty.respectsIso_mk
   · introv H _ _
     rw [pullback.mapDesc_comp, affine_cancel_left_isIso hP, affine_cancel_right_isIso hP]
-    -- Porting note : add the following two instances
+    -- Porting note: add the following two instances
     have i1 : IsOpenImmersion (f₁ ≫ e.hom) := PresheafedSpace.IsOpenImmersion.comp _ _
     have i2 : IsOpenImmersion (f₂ ≫ e.hom) := PresheafedSpace.IsOpenImmersion.comp _ _
     apply H
   · introv H _ _
-    -- Porting note : add the following two instances
+    -- Porting note: add the following two instances
     have _ : IsAffine Z := isAffineOfIso e.inv
     rw [pullback.mapDesc_comp, affine_cancel_right_isIso hP]
     apply H
@@ -596,7 +596,7 @@ theorem AffineTargetMorphismProperty.IsLocal.diagonal {P : AffineTargetMorphismP
 
 theorem diagonal_targetAffineLocally_eq_targetAffineLocally (P : AffineTargetMorphismProperty)
     (hP : P.IsLocal) : (targetAffineLocally P).diagonal = targetAffineLocally P.diagonal := by
-  -- Porting note : `ext _ _ f` fails at first one
+  -- Porting note: `ext _ _ f` fails at first one
   -- see https://github.com/leanprover-community/mathlib4/issues/5229
   refine funext fun _ => funext fun _ => funext fun f => propext ?_
   exact ((hP.diagonal_affine_openCover_TFAE f).out 0 1).trans
chore: add issue number to instance was not necessary porting notes (#10671)

Adds issue number (#10670) to porting notes claiming instance was not necessary.

Diff
@@ -182,7 +182,7 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
     haveI : IsAffine _ := U.2
     have := hP.2 (f ∣_ U.1)
     replace this := this (Y.presheaf.map (eqToHom U.1.openEmbedding_obj_top).op r) h
-    -- Porting note : the following 2 instances was not necessary
+    -- Porting note (#10670): the following 2 instances was not necessary
     haveI i1 : IsAffine (Y.restrict (Scheme.affineBasicOpen Y r).1.openEmbedding) :=
       (Scheme.affineBasicOpen Y r).2
     haveI i2 : IsAffine
@@ -210,7 +210,7 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
     · rintro ⟨r, hr⟩
       obtain ⟨r, hr', rfl⟩ := Finset.mem_image.mp hr
       specialize H ⟨r, hr'⟩
-      -- Porting note : the following 2 instances was not necessary
+      -- Porting note (#10670): the following 2 instances was not necessary
       haveI i1 : IsAffine (Y.restrict (Scheme.affineBasicOpen Y r).1.openEmbedding) :=
         (Scheme.affineBasicOpen Y r).2
       haveI i2 : IsAffine
@@ -226,7 +226,7 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
     exact ⟨⟨_, ⟨𝒰.f x, rfl⟩⟩, 𝒰.Covers x⟩
   · rintro ⟨_, i, rfl⟩
     specialize h𝒰 i
-    -- Porting note : the next instance was not necessary
+    -- Porting note (#10670): the next instance was not necessary
     haveI i1 : IsAffine (Y.restrict (S i).1.openEmbedding) := (S i).2
     rw [← P.toProperty_apply] at h𝒰 ⊢
     exact (hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)).mpr h𝒰
refactor(Data/FunLike): use unbundled inheritance from FunLike (#8386)

The FunLike hierarchy is very big and gets scanned through each time we need a coercion (via the CoeFun instance). It looks like unbundled inheritance suits Lean 4 better here. The only class that still extends FunLike is EquivLike, since that has a custom coe_injective' field that is easier to implement. All other classes should take FunLike or EquivLike as a parameter.

Zulip thread

Important changes

Previously, morphism classes would be Type-valued and extend FunLike:

/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
  extends FunLike F A B :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))

After this PR, they should be Prop-valued and take FunLike as a parameter:

/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
  [FunLike F A B] : Prop :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))

(Note that A B stay marked as outParam even though they are not purely required to be so due to the FunLike parameter already filling them in. This is required to see through type synonyms, which is important in the category theory library. Also, I think keeping them as outParam is slightly faster.)

Similarly, MyEquivClass should take EquivLike as a parameter.

As a result, every mention of [MyHomClass F A B] should become [FunLike F A B] [MyHomClass F A B].

Remaining issues

Slower (failing) search

While overall this gives some great speedups, there are some cases that are noticeably slower. In particular, a failing application of a lemma such as map_mul is more expensive. This is due to suboptimal processing of arguments. For example:

variable [FunLike F M N] [Mul M] [Mul N] (f : F) (x : M) (y : M)

theorem map_mul [MulHomClass F M N] : f (x * y) = f x * f y

example [AddHomClass F A B] : f (x * y) = f x * f y := map_mul f _ _

Before this PR, applying map_mul f gives the goals [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]. Since M and N are out_params, [MulHomClass F ?M ?N] is synthesized first, supplies values for ?M and ?N and then the Mul M and Mul N instances can be found.

After this PR, the goals become [FunLike F ?M ?N] [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]. Now [FunLike F ?M ?N] is synthesized first, supplies values for ?M and ?N and then the Mul M and Mul N instances can be found, before trying MulHomClass F M N which fails. Since the Mul hierarchy is very big, this can be slow to fail, especially when there is no such Mul instance.

A long-term but harder to achieve solution would be to specify the order in which instance goals get solved. For example, we'd like to change the arguments to map_mul to look like [FunLike F M N] [Mul M] [Mul N] [highPriority <| MulHomClass F M N] because MulHomClass fails or succeeds much faster than the others.

As a consequence, the simpNF linter is much slower since by design it tries and fails to apply many map_ lemmas. The same issue occurs a few times in existing calls to simp [map_mul], where map_mul is tried "too soon" and fails. Thanks to the speedup of leanprover/lean4#2478 the impact is very limited, only in files that already were close to the timeout.

simp not firing sometimes

This affects map_smulₛₗ and related definitions. For simp lemmas Lean apparently uses a slightly different mechanism to find instances, so that rw can find every argument to map_smulₛₗ successfully but simp can't: leanprover/lean4#3701.

Missing instances due to unification failing

Especially in the category theory library, we might sometimes have a type A which is also accessible as a synonym (Bundled A hA).1. Instance synthesis doesn't always work if we have f : A →* B but x * y : (Bundled A hA).1 or vice versa. This seems to be mostly fixed by keeping A B as outParams in MulHomClass F A B. (Presumably because Lean will do a definitional check A =?= (Bundled A hA).1 instead of using the syntax in the discrimination tree.)

Workaround for issues

The timeouts can be worked around for now by specifying which map_mul we mean, either as map_mul f for some explicit f, or as e.g. MonoidHomClass.map_mul.

map_smulₛₗ not firing as simp lemma can be worked around by going back to the pre-FunLike situation and making LinearMap.map_smulₛₗ a simp lemma instead of the generic map_smulₛₗ. Writing simp [map_smulₛₗ _] also works.

Co-authored-by: Matthew Ballard <matt@mrb.email> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott@tqft.net> Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>

Diff
@@ -166,6 +166,9 @@ structure AffineTargetMorphismProperty.IsLocal (P : AffineTargetMorphismProperty
       (∀ r : s, @P _ _ (f ∣_ Y.basicOpen r.1) ((topIsAffineOpen Y).basicOpenIsAffine _)) → P f
 #align algebraic_geometry.affine_target_morphism_property.is_local AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal
 
+/-- Specialization of `ConcreteCategory.id_apply` because `simp` can't see through the defeq. -/
+@[simp] lemma CommRingCat.id_apply (R : CommRingCat) (x : R) : 𝟙 R x = x := rfl
+
 theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP : P.IsLocal)
     {X Y : Scheme} (f : X ⟶ Y) (𝒰 : Y.OpenCover) [∀ i, IsAffine (𝒰.obj i)]
     (h𝒰 : ∀ i, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) :
@@ -198,9 +201,9 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
       simp only [eqToHom_op, eqToHom_map, Finset.coe_image]
       have : ∀ {R S : CommRingCat} (e : S = R) (s : Set S),
           Ideal.span (eqToHom e '' s) = Ideal.comap (eqToHom e.symm) (Ideal.span s) := by
-        intro _ _ e _
+        intro _ S e _
         subst e
-        simp only [eqToHom_refl, id_apply, Set.image_id']
+        simp only [eqToHom_refl, CommRingCat.id_apply, Set.image_id']
         -- Porting note : Lean didn't see `𝟙 _` is just ring hom id
         exact (Ideal.comap_id _).symm
       apply this
feat(Mathlib/AlgebraicGeometry): Move material on restriction to new file (#7749)

Also provides new notations and fixed slow proofs

Co-authored-by: Andrew Yang <36414270+erdOne@users.noreply.github.com>

Diff
@@ -545,11 +545,6 @@ theorem AffineTargetMorphismProperty.diagonalOfTargetAffineLocally
     (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
     (by rw [Category.assoc, Category.assoc, pullback.condition])
     (by rw [Category.assoc, Category.assoc, pullback.condition])
-  -- Porting note : added this instance
-  haveI hg₁ : IsOpenImmersion g₁ := by
-    apply (config := { allowSynthFailures := true }) Scheme.pullback_map_isOpenImmersion
-    · exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₁) _
-    · exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₂) _
   specialize H g₁
   rw [← affine_cancel_left_isIso hP.1 (pullbackDiagonalMapIso f _ f₁ f₂).hom]
   convert H
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2022 Andrew Yang. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Andrew Yang
-
-! This file was ported from Lean 3 source module algebraic_geometry.morphisms.basic
-! leanprover-community/mathlib commit 434e2fd21c1900747afc6d13d8be7f4eedba7218
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.AlgebraicGeometry.AffineScheme
 import Mathlib.AlgebraicGeometry.Pullbacks
 import Mathlib.CategoryTheory.MorphismProperty
 import Mathlib.Data.List.TFAE
 
+#align_import algebraic_geometry.morphisms.basic from "leanprover-community/mathlib"@"434e2fd21c1900747afc6d13d8be7f4eedba7218"
+
 /-!
 # Properties of morphisms between Schemes
 
chore: fix names and skips in AlgebraicGeometry.Morphisms.Basic (#5765)
Diff
@@ -18,43 +18,43 @@ import Mathlib.Data.List.TFAE
 
 We provide the basic framework for talking about properties of morphisms between Schemes.
 
-A `morphism_property Scheme` is a predicate on morphisms between schemes, and an
-`affine_target_morphism_property` is a predicate on morphisms into affine schemes. Given a
-`P : affine_target_morphism_property`, we may construct a `morphism_property` called
-`target_affine_locally P` that holds for `f : X ⟶ Y` whenever `P` holds for the
+A `MorphismProperty Scheme` is a predicate on morphisms between schemes, and an
+`AffineTargetMorphismProperty` is a predicate on morphisms into affine schemes. Given a
+`P : AffineTargetMorphismProperty`, we may construct a `MorphismProperty` called
+`targetAffineLocally P` that holds for `f : X ⟶ Y` whenever `P` holds for the
 restriction of `f` on every affine open subset of `Y`.
 
 ## Main definitions
 
-- `algebraic_geometry.affine_target_morphism_property.is_local`: We say that `P.is_local` if `P`
+- `AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal`: We say that `P.IsLocal` if `P`
 satisfies the assumptions of the affine communication lemma
-(`algebraic_geometry.of_affine_open_cover`). That is,
+(`AlgebraicGeometry.of_affine_open_cover`). That is,
 1. `P` respects isomorphisms.
-2. If `P` holds for `f : X ⟶ Y`, then `P` holds for `f ∣_ Y.basic_open r` for any
+2. If `P` holds for `f : X ⟶ Y`, then `P` holds for `f ∣_ Y.basicOpen r` for any
   global section `r`.
-3. If `P` holds for `f ∣_ Y.basic_open r` for all `r` in a spanning set of the global sections,
+3. If `P` holds for `f ∣_ Y.basicOpen r` for all `r` in a spanning set of the global sections,
   then `P` holds for `f`.
 
-- `algebraic_geometry.property_is_local_at_target`: We say that `property_is_local_at_target P` for
-`P : morphism_property Scheme` if
+- `AlgebraicGeometry.PropertyIsLocalAtTarget`: We say that `PropertyIsLocalAtTarget P` for
+`P : MorphismProperty Scheme` if
 1. `P` respects isomorphisms.
 2. If `P` holds for `f : X ⟶ Y`, then `P` holds for `f ∣_ U` for any `U`.
 3. If `P` holds for `f ∣_ U` for an open cover `U` of `Y`, then `P` holds for `f`.
 
 ## Main results
 
-- `algebraic_geometry.affine_target_morphism_property.is_local.affine_open_cover_tfae`:
-  If `P.is_local`, then `target_affine_locally P f` iff there exists an affine cover `{ Uᵢ }` of `Y`
+- `AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE`:
+  If `P.IsLocal`, then `targetAffineLocally P f` iff there exists an affine cover `{ Uᵢ }` of `Y`
   such that `P` holds for `f ∣_ Uᵢ`.
-- `algebraic_geometry.affine_target_morphism_property.is_local_of_open_cover_imply`:
+- `AlgebraicGeometry.AffineTargetMorphismProperty.isLocalOfOpenCoverImply`:
   If the existence of an affine cover `{ Uᵢ }` of `Y` such that `P` holds for `f ∣_ Uᵢ` implies
-  `target_affine_locally P f`, then `P.is_local`.
-- `algebraic_geometry.affine_target_morphism_property.is_local.affine_target_iff`:
-  If `Y` is affine and `f : X ⟶ Y`, then `target_affine_locally P f ↔ P f` provided `P.is_local`.
-- `algebraic_geometry.affine_target_morphism_property.is_local.target_affine_locally_is_local` :
-  If `P.is_local`, then `property_is_local_at_target (target_affine_locally P)`.
-- `algebraic_geometry.property_is_local_at_target.open_cover_tfae`:
-  If `property_is_local_at_target P`, then `P f` iff there exists an open cover `{ Uᵢ }` of `Y`
+  `targetAffineLocally P f`, then `P.IsLocal`.
+- `AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_target_iff`:
+  If `Y` is affine and `f : X ⟶ Y`, then `targetAffineLocally P f ↔ P f` provided `P.IsLocal`.
+- `AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal` :
+  If `P.IsLocal`, then `PropertyIsLocalAtTarget (targetAffineLocally P)`.
+- `AlgebraicGeometry.PropertyIsLocalAtTarget.openCover_TFAE`:
+  If `PropertyIsLocalAtTarget P`, then `P f` iff there exists an open cover `{ Uᵢ }` of `Y`
   such that `P` holds for `f ∣_ Uᵢ`.
 
 These results should not be used directly, and should be ported to each property that is local.
@@ -71,25 +71,24 @@ noncomputable section
 
 namespace AlgebraicGeometry
 
-/-- An `affine_target_morphism_property` is a class of morphisms from an arbitrary scheme into an
+/-- An `AffineTargetMorphismProperty` is a class of morphisms from an arbitrary scheme into an
 affine scheme. -/
 def AffineTargetMorphismProperty :=
   ∀ ⦃X Y : Scheme⦄ (_ : X ⟶ Y) [IsAffine Y], Prop
 #align algebraic_geometry.affine_target_morphism_property AlgebraicGeometry.AffineTargetMorphismProperty
 
-/-- `is_iso` as a `morphism_property`. -/
+/-- `IsIso` as a `MorphismProperty`. -/
 protected def Scheme.isIso : MorphismProperty Scheme :=
   @IsIso Scheme _
 #align algebraic_geometry.Scheme.is_iso AlgebraicGeometry.Scheme.isIso
 
-/-- `is_iso` as an `affine_morphism_property`. -/
+/-- `IsIso` as an `AffineTargetMorphismProperty`. -/
 protected def Scheme.affineTargetIsIso : AffineTargetMorphismProperty := fun _ _ f _ => IsIso f
 #align algebraic_geometry.Scheme.affine_target_is_iso AlgebraicGeometry.Scheme.affineTargetIsIso
 
-instance : Inhabited AffineTargetMorphismProperty :=
-  ⟨Scheme.affineTargetIsIso⟩
+instance : Inhabited AffineTargetMorphismProperty := ⟨Scheme.affineTargetIsIso⟩
 
-/-- An `affine_target_morphism_property` can be extended to a `morphism_property` such that it
+/-- An `AffineTargetMorphismProperty` can be extended to a `MorphismProperty` such that it
 *never* holds when the target is not affine -/
 def AffineTargetMorphismProperty.toProperty (P : AffineTargetMorphismProperty) :
     MorphismProperty Scheme := fun _ _ f => ∃ h, @P _ _ f h
@@ -112,16 +111,15 @@ theorem affine_cancel_right_isIso {P : AffineTargetMorphismProperty} (hP : P.toP
 
 theorem AffineTargetMorphismProperty.respectsIso_mk {P : AffineTargetMorphismProperty}
     (h₁ : ∀ {X Y Z} (e : X ≅ Y) (f : Y ⟶ Z) [IsAffine Z], P f → P (e.hom ≫ f))
-    (h₂ :
-      ∀ {X Y Z} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y],
-        P f → @P _ _ (f ≫ e.hom) (isAffineOfIso e.inv)) :
+    (h₂ : ∀ {X Y Z} (e : Y ≅ Z) (f : X ⟶ Y) [h : IsAffine Y],
+      P f → @P _ _ (f ≫ e.hom) (isAffineOfIso e.inv)) :
     P.toProperty.RespectsIso := by
   constructor
   · rintro X Y Z e f ⟨a, h⟩; exact ⟨a, h₁ e f h⟩
   · rintro X Y Z e f ⟨a, h⟩; exact ⟨isAffineOfIso e.inv, h₂ e f h⟩
 #align algebraic_geometry.affine_target_morphism_property.respects_iso_mk AlgebraicGeometry.AffineTargetMorphismProperty.respectsIso_mk
 
-/-- For a `P : affine_target_morphism_property`, `target_affine_locally P` holds for
+/-- For a `P : AffineTargetMorphismProperty`, `targetAffineLocally P` holds for
 `f : X ⟶ Y` whenever `P` holds for the restriction of `f` on every affine open subset of `Y`. -/
 def targetAffineLocally (P : AffineTargetMorphismProperty) : MorphismProperty Scheme :=
   fun {X Y : Scheme} (f : X ⟶ Y) => ∀ U : Y.affineOpens, @P _ _ (f ∣_ U) U.prop
@@ -149,11 +147,11 @@ theorem targetAffineLocally_respectsIso {P : AffineTargetMorphismProperty}
     exact H ⟨(Opens.map e.hom.val.base).obj U, hU.map_isIso e.hom⟩
 #align algebraic_geometry.target_affine_locally_respects_iso AlgebraicGeometry.targetAffineLocally_respectsIso
 
-/-- We say that `P : affine_target_morphism_property` is a local property if
+/-- We say that `P : AffineTargetMorphismProperty` is a local property if
 1. `P` respects isomorphisms.
-2. If `P` holds for `f : X ⟶ Y`, then `P` holds for `f ∣_ Y.basic_open r` for any
+2. If `P` holds for `f : X ⟶ Y`, then `P` holds for `f ∣_ Y.basicOpen r` for any
   global section `r`.
-3. If `P` holds for `f ∣_ Y.basic_open r` for all `r` in a spanning set of the global sections,
+3. If `P` holds for `f ∣_ Y.basicOpen r` for all `r` in a spanning set of the global sections,
   then `P` holds for `f`.
 -/
 structure AffineTargetMorphismProperty.IsLocal (P : AffineTargetMorphismProperty) : Prop where
@@ -176,10 +174,8 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
     (h𝒰 : ∀ i, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) :
     targetAffineLocally P f := by
   classical
-  let S i :=
-    (⟨⟨Set.range (𝒰.map i).1.base, (𝒰.IsOpen i).base_open.open_range⟩,
-        rangeIsAffineOpenOfOpenImmersion (𝒰.map i)⟩ :
-      Y.affineOpens)
+  let S i := (⟨⟨Set.range (𝒰.map i).1.base, (𝒰.IsOpen i).base_open.open_range⟩,
+    rangeIsAffineOpenOfOpenImmersion (𝒰.map i)⟩ : Y.affineOpens)
   intro U
   apply of_affine_open_cover (P := _) U (Set.range S)
   · intro U r h
@@ -236,7 +232,6 @@ theorem targetAffineLocallyOfOpenCover {P : AffineTargetMorphismProperty} (hP :
     exact (hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)).mpr h𝒰
 #align algebraic_geometry.target_affine_locally_of_open_cover AlgebraicGeometry.targetAffineLocallyOfOpenCover
 
--- set_option maxHeartbeats 1000000 in
 open List in
 theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE
     {P : AffineTargetMorphismProperty} (hP : P.IsLocal) {X Y : Scheme.{u}} (f : X ⟶ Y) :
@@ -260,7 +255,6 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_TFAE
     rwa [← hP.1.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
   tfae_have 4 → 3
   · intro H 𝒰 h𝒰 i
-    skip
     apply H
   tfae_have 3 → 2
   · exact fun H => ⟨Y.affineCover, inferInstance, H Y.affineCover⟩
@@ -305,7 +299,6 @@ theorem AffineTargetMorphismProperty.isLocalOfOpenCoverImply (P : AffineTargetMo
     · intro i; dsimp
       rwa [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP]
   · introv hs hs'
-    skip
     replace hs := ((topIsAffineOpen Y).basicOpen_union_eq_self_iff _).mpr hs
     have := H f ⟨Y.openCoverOfSuprEqTop _ hs, ?_, ?_⟩ (𝟙 _)
     rwa [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP]
@@ -339,7 +332,7 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_target_iff {P : AffineTarget
   rw [← Category.comp_id pullback.snd, ← pullback.condition, affine_cancel_left_isIso hP.1]
 #align algebraic_geometry.affine_target_morphism_property.is_local.affine_target_iff AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_target_iff
 
-/-- We say that `P : morphism_property Scheme` is local at the target if
+/-- We say that `P : MorphismProperty Scheme` is local at the target if
 1. `P` respects isomorphisms.
 2. If `P` holds for `f : X ⟶ Y`, then `P` holds for `f ∣_ U` for any `U`.
 3. If `P` holds for `f ∣_ U` for an open cover `U` of `Y`, then `P` holds for `f`.
@@ -378,15 +371,14 @@ theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
       have h02 := (hP.affine_openCover_TFAE (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _)).out 0 2
       rw [h02] at h𝒰
       specialize h𝒰 (Scheme.affineCover _) i.2
-      let e :
-        pullback f ((𝒰.obj i.fst).affineCover.map i.snd ≫ 𝒰.map i.fst) ⟶
+      let e : pullback f ((𝒰.obj i.fst).affineCover.map i.snd ≫ 𝒰.map i.fst) ⟶
           pullback (pullback.snd : pullback f (𝒰.map i.fst) ⟶ _)
             ((𝒰.obj i.fst).affineCover.map i.snd) := by
         refine' (pullbackSymmetry _ _).hom ≫ _
         refine' (pullbackRightPullbackFstIso _ _ _).inv ≫ _
         refine' (pullbackSymmetry _ _).hom ≫ _
         refine' pullback.map _ _ _ _ (pullbackSymmetry _ _).hom (𝟙 _) (𝟙 _) _ _ <;>
-          simp only [Category.comp_id, Category.id_comp, pullbackSymmetry_hom_comp_snd]
+        simp only [Category.comp_id, Category.id_comp, pullbackSymmetry_hom_comp_snd]
       rw [← affine_cancel_left_isIso hP.1 e] at h𝒰
       convert h𝒰 using 1
       simp
@@ -446,7 +438,7 @@ theorem PropertyIsLocalAtTarget.openCover_iff {P : MorphismProperty Scheme}
 
 namespace AffineTargetMorphismProperty
 
-/-- A `P : affine_target_morphism_property` is stable under base change if `P` holds for `Y ⟶ S`
+/-- A `P : AffineTargetMorphismProperty` is stable under base change if `P` holds for `Y ⟶ S`
 implies that `P` holds for `X ×ₛ Y ⟶ X` with `X` and `S` affine schemes. -/
 def StableUnderBaseChange (P : AffineTargetMorphismProperty) : Prop :=
   ∀ ⦃X Y S : Scheme⦄ [IsAffine S] [IsAffine X] (f : X ⟶ S) (g : Y ⟶ S),
@@ -471,8 +463,7 @@ theorem IsLocal.targetAffineLocallyPullbackFstOfRightOfStableUnderBaseChange
 theorem IsLocal.stableUnderBaseChange {P : AffineTargetMorphismProperty} (hP : P.IsLocal)
     (hP' : P.StableUnderBaseChange) : (targetAffineLocally P).StableUnderBaseChange :=
   MorphismProperty.StableUnderBaseChange.mk (targetAffineLocally_respectsIso hP.RespectsIso)
-    (by
-      intro X Y S f g H
+    (fun X Y S f g H => by
       -- Porting note : rewrite `(...openCover_TFAE).out 0 1` directly doesn't work, complains about
       -- metavariable
       have h01 := (hP.targetAffineLocallyIsLocal.openCover_TFAE
@@ -500,8 +491,8 @@ theorem IsLocal.stableUnderBaseChange {P : AffineTargetMorphismProperty} (hP : P
 
 end AffineTargetMorphismProperty
 
-/-- The `affine_target_morphism_property` associated to `(target_affine_locally P).diagonal`.
-See `diagonal_target_affine_locally_eq_target_affine_locally`.
+/-- The `AffineTargetMorphismProperty` associated to `(targetAffineLocally P).diagonal`.
+See `diagonal_targetAffineLocally_eq_targetAffineLocally`.
 -/
 def AffineTargetMorphismProperty.diagonal (P : AffineTargetMorphismProperty) :
     AffineTargetMorphismProperty :=
@@ -533,9 +524,8 @@ theorem diagonalTargetAffineLocallyOfOpenCover (P : AffineTargetMorphismProperty
     (h𝒰' : ∀ i j k, P (pullback.mapDesc ((𝒰' i).map j) ((𝒰' i).map k) pullback.snd)) :
     (targetAffineLocally P).diagonal f := by
   let 𝒱 := (Scheme.Pullback.openCoverOfBase 𝒰 f f).bind fun i =>
-        Scheme.Pullback.openCoverOfLeftRight.{u} (𝒰' i) (𝒰' i) pullback.snd pullback.snd
-  have i1 : ∀ i, IsAffine (𝒱.obj i) := fun i => by
-    dsimp; infer_instance
+    Scheme.Pullback.openCoverOfLeftRight.{u} (𝒰' i) (𝒰' i) pullback.snd pullback.snd
+  have i1 : ∀ i, IsAffine (𝒱.obj i) := fun i => by dsimp; infer_instance
   refine' (hP.affine_openCover_iff _ _).mpr _
   rintro ⟨i, j, k⟩
   dsimp
@@ -543,10 +533,9 @@ theorem diagonalTargetAffineLocallyOfOpenCover (P : AffineTargetMorphismProperty
     (pullbackDiagonalMapIso _ _ ((𝒰' i).map j) ((𝒰' i).map k)).inv pullback.snd).mp _
   pick_goal 3
   · convert h𝒰' i j k; apply pullback.hom_ext <;> simp
-  all_goals
-    apply pullback.hom_ext <;>
-      simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc,
-        pullback.lift_snd_assoc]
+  all_goals apply pullback.hom_ext <;>
+  simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc,
+    pullback.lift_snd_assoc]
 #align algebraic_geometry.diagonal_target_affine_locally_of_open_cover AlgebraicGeometry.diagonalTargetAffineLocallyOfOpenCover
 
 theorem AffineTargetMorphismProperty.diagonalOfTargetAffineLocally
@@ -554,12 +543,11 @@ theorem AffineTargetMorphismProperty.diagonalOfTargetAffineLocally
     [IsAffine U] [IsOpenImmersion g] (H : (targetAffineLocally P).diagonal f) :
     P.diagonal (pullback.snd : pullback f g ⟶ _) := by
   rintro U V f₁ f₂ hU hV hf₁ hf₂
-  skip
   replace H := ((hP.affine_openCover_TFAE (pullback.diagonal f)).out 0 3).mp H
-  let g₁ :=
-    pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst)
-      g (by rw [Category.assoc, Category.assoc, pullback.condition])
-      (by rw [Category.assoc, Category.assoc, pullback.condition])
+  let g₁ := pullback.map (f₁ ≫ pullback.snd) (f₂ ≫ pullback.snd) f f
+    (f₁ ≫ pullback.fst) (f₂ ≫ pullback.fst) g
+    (by rw [Category.assoc, Category.assoc, pullback.condition])
+    (by rw [Category.assoc, Category.assoc, pullback.condition])
   -- Porting note : added this instance
   haveI hg₁ : IsOpenImmersion g₁ := by
     apply (config := { allowSynthFailures := true }) Scheme.pullback_map_isOpenImmersion
@@ -569,9 +557,9 @@ theorem AffineTargetMorphismProperty.diagonalOfTargetAffineLocally
   rw [← affine_cancel_left_isIso hP.1 (pullbackDiagonalMapIso f _ f₁ f₂).hom]
   convert H
   · apply pullback.hom_ext <;>
-      simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc,
-        pullback.lift_snd_assoc, Category.comp_id, pullbackDiagonalMapIso_hom_fst,
-        pullbackDiagonalMapIso_hom_snd]
+    simp only [Category.assoc, pullback.lift_fst, pullback.lift_snd, pullback.lift_fst_assoc,
+      pullback.lift_snd_assoc, Category.comp_id, pullbackDiagonalMapIso_hom_fst,
+      pullbackDiagonalMapIso_hom_snd]
 #align algebraic_geometry.affine_target_morphism_property.diagonal_of_target_affine_locally AlgebraicGeometry.AffineTargetMorphismProperty.diagonalOfTargetAffineLocally
 
 open List in
@@ -591,12 +579,11 @@ theorem AffineTargetMorphismProperty.IsLocal.diagonal_affine_openCover_TFAE
   tfae_have 1 → 4
   · introv H hU hg _ _; apply P.diagonalOfTargetAffineLocally <;> assumption
   tfae_have 4 → 3
-  · introv H h𝒰; skip; apply H
+  · introv H h𝒰; apply H
   tfae_have 3 → 2
   · exact fun H => ⟨Y.affineCover, inferInstance, H Y.affineCover⟩
   tfae_have 2 → 5
   · rintro ⟨𝒰, h𝒰, H⟩
-    skip
     refine' ⟨𝒰, inferInstance, fun _ => Scheme.affineCover _, inferInstance, _⟩
     intro i j k
     apply H
@@ -622,13 +609,11 @@ theorem diagonal_targetAffineLocally_eq_targetAffineLocally (P : AffineTargetMor
 #align algebraic_geometry.diagonal_target_affine_locally_eq_target_affine_locally AlgebraicGeometry.diagonal_targetAffineLocally_eq_targetAffineLocally
 
 theorem universallyIsLocalAtTarget (P : MorphismProperty Scheme)
-    (hP :
-      ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover.{u} Y),
-        (∀ i : 𝒰.J, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) → P f) :
+    (hP : ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) (𝒰 : Scheme.OpenCover.{u} Y),
+      (∀ i : 𝒰.J, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) → P f) :
     PropertyIsLocalAtTarget P.universally := by
-  refine'
-    ⟨P.universally_respectsIso, fun {X Y} f U =>
-      P.universally_stableUnderBaseChange (isPullback_morphismRestrict f U).flip, _⟩
+  refine' ⟨P.universally_respectsIso, fun {X Y} f U =>
+    P.universally_stableUnderBaseChange (isPullback_morphismRestrict f U).flip, _⟩
   intro X Y f 𝒰 h X' Y' i₁ i₂ f' H
   apply hP _ (𝒰.pullbackCover i₂)
   intro i
@@ -643,16 +628,12 @@ theorem universallyIsLocalAtTarget (P : MorphismProperty Scheme)
 
 theorem universallyIsLocalAtTargetOfMorphismRestrict (P : MorphismProperty Scheme)
     (hP₁ : P.RespectsIso)
-    (hP₂ :
-      ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens Y.carrier) (_ : iSup U = ⊤),
-        (∀ i, P (f ∣_ U i)) → P f) :
-    PropertyIsLocalAtTarget P.universally :=
-  universallyIsLocalAtTarget P
-    (by
-      intro X Y f 𝒰 h𝒰
-      apply hP₂ f (fun i : 𝒰.J => Scheme.Hom.opensRange (𝒰.map i)) 𝒰.iSup_opensRange
-      simp_rw [hP₁.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
-      exact h𝒰)
+    (hP₂ : ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens Y.carrier)
+      (_ : iSup U = ⊤), (∀ i, P (f ∣_ U i)) → P f) : PropertyIsLocalAtTarget P.universally :=
+  universallyIsLocalAtTarget P (fun f 𝒰 h𝒰 => by
+    apply hP₂ f (fun i : 𝒰.J => Scheme.Hom.opensRange (𝒰.map i)) 𝒰.iSup_opensRange
+    simp_rw [hP₁.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
+    exact h𝒰)
 #align algebraic_geometry.universally_is_local_at_target_of_morphism_restrict AlgebraicGeometry.universallyIsLocalAtTargetOfMorphismRestrict
 
 /-- `topologically P` holds for a morphism if the underlying topological map satisfies `P`. -/
chore: fix focusing dots (#5708)

This PR is the result of running

find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;

which firstly replaces . focusing dots with · and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.

Diff
@@ -324,8 +324,8 @@ theorem AffineTargetMorphismProperty.IsLocal.affine_openCover_iff {P : AffineTar
     targetAffineLocally P f ↔ ∀ i, @P _ _ (pullback.snd : pullback f (𝒰.map i) ⟶ _) (h𝒰 i) := by
   refine' ⟨fun H => let h := ((hP.affine_openCover_TFAE f).out 0 2).mp H; _,
     fun H => let h := ((hP.affine_openCover_TFAE f).out 1 0).mp; _⟩
-  . exact fun i => h 𝒰 i
-  . exact h ⟨𝒰, inferInstance, H⟩
+  · exact fun i => h 𝒰 i
+  · exact h ⟨𝒰, inferInstance, H⟩
 #align algebraic_geometry.affine_target_morphism_property.is_local.affine_open_cover_iff AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.affine_openCover_iff
 
 theorem AffineTargetMorphismProperty.IsLocal.affine_target_iff {P : AffineTargetMorphismProperty}
@@ -440,8 +440,8 @@ theorem PropertyIsLocalAtTarget.openCover_iff {P : MorphismProperty Scheme}
   -- Porting note : couldn't get the term mode proof work
   refine ⟨fun H => let h := ((hP.openCover_TFAE f).out 0 2).mp H; fun i => ?_,
     fun H => let h := ((hP.openCover_TFAE f).out 1 0).mp; ?_⟩
-  . exact h 𝒰 i
-  . exact h ⟨𝒰, H⟩
+  · exact h 𝒰 i
+  · exact h ⟨𝒰, H⟩
 #align algebraic_geometry.property_is_local_at_target.open_cover_iff AlgebraicGeometry.PropertyIsLocalAtTarget.openCover_iff
 
 namespace AffineTargetMorphismProperty
@@ -563,8 +563,8 @@ theorem AffineTargetMorphismProperty.diagonalOfTargetAffineLocally
   -- Porting note : added this instance
   haveI hg₁ : IsOpenImmersion g₁ := by
     apply (config := { allowSynthFailures := true }) Scheme.pullback_map_isOpenImmersion
-    . exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₁) _
-    . exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₂) _
+    · exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₁) _
+    · exact PresheafedSpace.IsOpenImmersion.comp (hf := hf₂) _
   specialize H g₁
   rw [← affine_cancel_left_isIso hP.1 (pullbackDiagonalMapIso f _ f₁ f₂).hom]
   convert H
chore: fix grammar in docs (#5668)
Diff
@@ -89,7 +89,7 @@ protected def Scheme.affineTargetIsIso : AffineTargetMorphismProperty := fun _ _
 instance : Inhabited AffineTargetMorphismProperty :=
   ⟨Scheme.affineTargetIsIso⟩
 
-/-- A `affine_target_morphism_property` can be extended to a `morphism_property` such that it
+/-- An `affine_target_morphism_property` can be extended to a `morphism_property` such that it
 *never* holds when the target is not affine -/
 def AffineTargetMorphismProperty.toProperty (P : AffineTargetMorphismProperty) :
     MorphismProperty Scheme := fun _ _ f => ∃ h, @P _ _ f h
feat: port AlgebraicGeometry.Morphisms.Basic (#5599)

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Dependencies 11 + 933

934 files ported (98.8%)
386982 lines ported (98.6%)
Show graph

The unported dependencies are