algebraic_topology.alternating_face_map_complexMathlib.AlgebraicTopology.AlternatingFaceMapComplex

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -122,7 +122,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
   · -- φ : S → Sᶜ is surjective
     rintro ⟨i', j'⟩ hij'
     simp only [true_and_iff, Finset.mem_univ, Finset.compl_filter, not_le, Finset.mem_filter] at
-      hij' 
+      hij'
     refine' ⟨(j'.pred _, Fin.castSuccEmb i'), _, _⟩
     · intro H
       simpa only [H, Nat.not_lt_zero, Fin.val_zero] using hij'
@@ -323,8 +323,8 @@ def inclusionOfMooreComplexMap (X : SimplicialObject A) :
     simp only [add_zero]
     -- finally, we study the remaining term which is induced by X.δ 0
     let eq := def_t 0
-    rw [show (-1 : ℤ) ^ ((0 : Fin (n + 2)) : ℕ) = 1 by ring] at eq 
-    rw [one_smul] at eq 
+    rw [show (-1 : ℤ) ^ ((0 : Fin (n + 2)) : ℕ) = 1 by ring] at eq
+    rw [one_smul] at eq
     rw [Eq]
     cases n <;> dsimp <;> simp
 #align algebraic_topology.inclusion_of_Moore_complex_map AlgebraicTopology.inclusionOfMooreComplexMap
Diff
@@ -3,12 +3,12 @@ Copyright (c) 2021 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou, Adam Topaz, Johan Commelin
 -/
-import Mathbin.Algebra.Homology.Additive
-import Mathbin.AlgebraicTopology.MooreComplex
-import Mathbin.Algebra.BigOperators.Fin
-import Mathbin.CategoryTheory.Preadditive.Opposite
-import Mathbin.CategoryTheory.Idempotents.FunctorCategories
-import Mathbin.Tactic.EquivRw
+import Algebra.Homology.Additive
+import AlgebraicTopology.MooreComplex
+import Algebra.BigOperators.Fin
+import CategoryTheory.Preadditive.Opposite
+import CategoryTheory.Idempotents.FunctorCategories
+import Tactic.EquivRw
 
 #align_import algebraic_topology.alternating_face_map_complex from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
 
Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2021 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou, Adam Topaz, Johan Commelin
-
-! This file was ported from Lean 3 source module algebraic_topology.alternating_face_map_complex
-! leanprover-community/mathlib commit 86d1873c01a723aba6788f0b9051ae3d23b4c1c3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.Homology.Additive
 import Mathbin.AlgebraicTopology.MooreComplex
@@ -15,6 +10,8 @@ import Mathbin.CategoryTheory.Preadditive.Opposite
 import Mathbin.CategoryTheory.Idempotents.FunctorCategories
 import Mathbin.Tactic.EquivRw
 
+#align_import algebraic_topology.alternating_face_map_complex from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
+
 /-!
 
 # The alternating face map complex of a simplicial object in a preadditive category
Diff
@@ -115,13 +115,13 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
       mul_one, Fin.coe_castLT, Fin.val_succ, pow_one, mul_neg, neg_neg]
     let jj : Fin (n + 2) := (φ (i, j) hij).1
     have ineq : jj ≤ i := by rw [← Fin.val_fin_le]; simpa using hij
-    rw [CategoryTheory.SimplicialObject.δ_comp_δ X ineq, Fin.castSuccEmb_castLT, mul_comm]
+    rw [CategoryTheory.SimplicialObject.δ_comp_δ X ineq, Fin.castSucc_castLT, mul_comm]
   · -- φ : S → Sᶜ is injective
     rintro ⟨i, j⟩ ⟨i', j'⟩ hij hij' h
     rw [Prod.mk.inj_iff]
     refine' ⟨by simpa using congr_arg Prod.snd h, _⟩
     have h1 := congr_arg Fin.castSuccEmb (congr_arg Prod.fst h)
-    simpa [Fin.castSuccEmb_castLT] using h1
+    simpa [Fin.castSucc_castLT] using h1
   · -- φ : S → Sᶜ is surjective
     rintro ⟨i', j'⟩ hij'
     simp only [true_and_iff, Finset.mem_univ, Finset.compl_filter, not_le, Finset.mem_filter] at
@@ -130,9 +130,9 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
     · intro H
       simpa only [H, Nat.not_lt_zero, Fin.val_zero] using hij'
     ·
-      simpa only [true_and_iff, Finset.mem_univ, Fin.coe_castSuccEmb, Fin.coe_pred,
+      simpa only [true_and_iff, Finset.mem_univ, Fin.coe_castSucc, Fin.coe_pred,
         Finset.mem_filter] using Nat.le_pred_of_lt hij'
-    · simp only [Prod.mk.inj_iff, Fin.succ_pred, Fin.castLT_castSuccEmb]
+    · simp only [Prod.mk.inj_iff, Fin.succ_pred, Fin.castLT_castSucc]
       constructor <;> rfl
 #align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squared
 -/
Diff
@@ -115,24 +115,24 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
       mul_one, Fin.coe_castLT, Fin.val_succ, pow_one, mul_neg, neg_neg]
     let jj : Fin (n + 2) := (φ (i, j) hij).1
     have ineq : jj ≤ i := by rw [← Fin.val_fin_le]; simpa using hij
-    rw [CategoryTheory.SimplicialObject.δ_comp_δ X ineq, Fin.castSucc_castLT, mul_comm]
+    rw [CategoryTheory.SimplicialObject.δ_comp_δ X ineq, Fin.castSuccEmb_castLT, mul_comm]
   · -- φ : S → Sᶜ is injective
     rintro ⟨i, j⟩ ⟨i', j'⟩ hij hij' h
     rw [Prod.mk.inj_iff]
     refine' ⟨by simpa using congr_arg Prod.snd h, _⟩
-    have h1 := congr_arg Fin.castSucc (congr_arg Prod.fst h)
-    simpa [Fin.castSucc_castLT] using h1
+    have h1 := congr_arg Fin.castSuccEmb (congr_arg Prod.fst h)
+    simpa [Fin.castSuccEmb_castLT] using h1
   · -- φ : S → Sᶜ is surjective
     rintro ⟨i', j'⟩ hij'
     simp only [true_and_iff, Finset.mem_univ, Finset.compl_filter, not_le, Finset.mem_filter] at
       hij' 
-    refine' ⟨(j'.pred _, Fin.castSucc i'), _, _⟩
+    refine' ⟨(j'.pred _, Fin.castSuccEmb i'), _, _⟩
     · intro H
       simpa only [H, Nat.not_lt_zero, Fin.val_zero] using hij'
     ·
-      simpa only [true_and_iff, Finset.mem_univ, Fin.coe_castSucc, Fin.coe_pred,
+      simpa only [true_and_iff, Finset.mem_univ, Fin.coe_castSuccEmb, Fin.coe_pred,
         Finset.mem_filter] using Nat.le_pred_of_lt hij'
-    · simp only [Prod.mk.inj_iff, Fin.succ_pred, Fin.castLT_castSucc]
+    · simp only [Prod.mk.inj_iff, Fin.succ_pred, Fin.castLT_castSuccEmb]
       constructor <;> rfl
 #align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squared
 -/
Diff
@@ -69,13 +69,16 @@ variable (X : SimplicialObject C)
 
 variable (Y : SimplicialObject C)
 
+#print AlgebraicTopology.AlternatingFaceMapComplex.objD /-
 /-- The differential on the alternating face map complex is the alternate
 sum of the face maps -/
 @[simp]
 def objD (n : ℕ) : X _[n + 1] ⟶ X _[n] :=
   ∑ i : Fin (n + 2), (-1 : ℤ) ^ (i : ℕ) • X.δ i
 #align algebraic_topology.alternating_face_map_complex.obj_d AlgebraicTopology.AlternatingFaceMapComplex.objD
+-/
 
+#print AlgebraicTopology.AlternatingFaceMapComplex.d_squared /-
 /-- ## The chain complex relation `d ≫ d`
 -/
 theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
@@ -132,6 +135,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
     · simp only [Prod.mk.inj_iff, Fin.succ_pred, Fin.castLT_castSucc]
       constructor <;> rfl
 #align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squared
+-/
 
 /-!
 ## Construction of the alternating face map complex functor
@@ -145,16 +149,20 @@ def obj : ChainComplex C ℕ :=
 #align algebraic_topology.alternating_face_map_complex.obj AlgebraicTopology.AlternatingFaceMapComplex.obj
 -/
 
+#print AlgebraicTopology.AlternatingFaceMapComplex.obj_X /-
 @[simp]
 theorem obj_X (X : SimplicialObject C) (n : ℕ) : (AlternatingFaceMapComplex.obj X).pt n = X _[n] :=
   rfl
 #align algebraic_topology.alternating_face_map_complex.obj_X AlgebraicTopology.AlternatingFaceMapComplex.obj_X
+-/
 
+#print AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq /-
 @[simp]
 theorem obj_d_eq (X : SimplicialObject C) (n : ℕ) :
     (AlternatingFaceMapComplex.obj X).d (n + 1) n = ∑ i : Fin (n + 2), (-1 : ℤ) ^ (i : ℕ) • X.δ i :=
   by apply ChainComplex.of_d
 #align algebraic_topology.alternating_face_map_complex.obj_d_eq AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq
+-/
 
 variable {X} {Y}
 
@@ -195,24 +203,31 @@ def alternatingFaceMapComplex : SimplicialObject C ⥤ ChainComplex C ℕ
 
 variable {C}
 
+#print AlgebraicTopology.alternatingFaceMapComplex_obj_X /-
 @[simp]
 theorem alternatingFaceMapComplex_obj_X (X : SimplicialObject C) (n : ℕ) :
     ((alternatingFaceMapComplex C).obj X).pt n = X _[n] :=
   rfl
 #align algebraic_topology.alternating_face_map_complex_obj_X AlgebraicTopology.alternatingFaceMapComplex_obj_X
+-/
 
+#print AlgebraicTopology.alternatingFaceMapComplex_obj_d /-
 @[simp]
 theorem alternatingFaceMapComplex_obj_d (X : SimplicialObject C) (n : ℕ) :
     ((alternatingFaceMapComplex C).obj X).d (n + 1) n = AlternatingFaceMapComplex.objD X n := by
   apply ChainComplex.of_d
 #align algebraic_topology.alternating_face_map_complex_obj_d AlgebraicTopology.alternatingFaceMapComplex_obj_d
+-/
 
+#print AlgebraicTopology.alternatingFaceMapComplex_map_f /-
 @[simp]
 theorem alternatingFaceMapComplex_map_f {X Y : SimplicialObject C} (f : X ⟶ Y) (n : ℕ) :
     ((alternatingFaceMapComplex C).map f).f n = f.app (op [n]) :=
   rfl
 #align algebraic_topology.alternating_face_map_complex_map_f AlgebraicTopology.alternatingFaceMapComplex_map_f
+-/
 
+#print AlgebraicTopology.map_alternatingFaceMapComplex /-
 theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D] (F : C ⥤ D)
     [F.Additive] :
     alternatingFaceMapComplex C ⋙ F.mapHomologicalComplex _ =
@@ -234,7 +249,9 @@ theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D]
     · ext n
       rfl
 #align algebraic_topology.map_alternating_face_map_complex AlgebraicTopology.map_alternatingFaceMapComplex
+-/
 
+#print AlgebraicTopology.karoubi_alternatingFaceMapComplex_d /-
 theorem karoubi_alternatingFaceMapComplex_d (P : Karoubi (SimplicialObject C)) (n : ℕ) :
     ((AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)).d (n + 1) n).f =
       P.p.app (op [n + 1]) ≫ (AlternatingFaceMapComplex.obj P.pt).d (n + 1) n :=
@@ -243,6 +260,7 @@ theorem karoubi_alternatingFaceMapComplex_d (P : Karoubi (SimplicialObject C)) (
   simpa only [alternating_face_map_complex.obj_d_eq, karoubi.sum_hom, preadditive.comp_sum,
     karoubi.zsmul_hom, preadditive.comp_zsmul]
 #align algebraic_topology.karoubi_alternating_face_map_complex_d AlgebraicTopology.karoubi_alternatingFaceMapComplex_d
+-/
 
 namespace AlternatingFaceMapComplex
 
@@ -274,6 +292,7 @@ end AlternatingFaceMapComplex
 
 variable {A : Type _} [Category A] [Abelian A]
 
+#print AlgebraicTopology.inclusionOfMooreComplexMap /-
 /-- The inclusion map of the Moore complex in the alternating face map complex -/
 def inclusionOfMooreComplexMap (X : SimplicialObject A) :
     (normalizedMooreComplex A).obj X ⟶ (alternatingFaceMapComplex A).obj X :=
@@ -312,12 +331,15 @@ def inclusionOfMooreComplexMap (X : SimplicialObject A) :
     rw [Eq]
     cases n <;> dsimp <;> simp
 #align algebraic_topology.inclusion_of_Moore_complex_map AlgebraicTopology.inclusionOfMooreComplexMap
+-/
 
+#print AlgebraicTopology.inclusionOfMooreComplexMap_f /-
 @[simp]
 theorem inclusionOfMooreComplexMap_f (X : SimplicialObject A) (n : ℕ) :
     (inclusionOfMooreComplexMap X).f n = (NormalizedMooreComplex.objX X n).arrow :=
   ChainComplex.ofHom_f _ _ _ _ _ _ _ _ n
 #align algebraic_topology.inclusion_of_Moore_complex_map_f AlgebraicTopology.inclusionOfMooreComplexMap_f
+-/
 
 variable (A)
 
@@ -334,23 +356,29 @@ namespace AlternatingCofaceMapComplex
 
 variable (X Y : CosimplicialObject C)
 
+#print AlgebraicTopology.AlternatingCofaceMapComplex.objD /-
 /-- The differential on the alternating coface map complex is the alternate
 sum of the coface maps -/
 @[simp]
 def objD (n : ℕ) : X.obj [n] ⟶ X.obj [n + 1] :=
   ∑ i : Fin (n + 2), (-1 : ℤ) ^ (i : ℕ) • X.δ i
 #align algebraic_topology.alternating_coface_map_complex.obj_d AlgebraicTopology.AlternatingCofaceMapComplex.objD
+-/
 
+#print AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d /-
 theorem d_eq_unop_d (n : ℕ) :
     objD X n =
       (AlternatingFaceMapComplex.objD ((cosimplicialSimplicialEquiv C).Functor.obj (op X))
           n).unop :=
   by simpa only [obj_d, alternating_face_map_complex.obj_d, unop_sum, unop_zsmul]
 #align algebraic_topology.alternating_coface_map_complex.d_eq_unop_d AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d
+-/
 
+#print AlgebraicTopology.AlternatingCofaceMapComplex.d_squared /-
 theorem d_squared (n : ℕ) : objD X n ≫ objD X (n + 1) = 0 := by
   simp only [d_eq_unop_d, ← unop_comp, alternating_face_map_complex.d_squared, unop_zero]
 #align algebraic_topology.alternating_coface_map_complex.d_squared AlgebraicTopology.AlternatingCofaceMapComplex.d_squared
+-/
 
 #print AlgebraicTopology.AlternatingCofaceMapComplex.obj /-
 /-- The alternating coface map complex, on objects -/
Diff
@@ -92,7 +92,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
   let P := Fin (n + 2) × Fin (n + 3)
   let S := finset.univ.filter fun ij : P => (ij.2 : ℕ) ≤ (ij.1 : ℕ)
   let term := fun ij : P => d_l ij.2 ≫ d_r ij.1
-  erw [show (∑ ij : P, term ij) = (∑ ij in S, term ij) + ∑ ij in Sᶜ, term ij by
+  erw [show ∑ ij : P, term ij = ∑ ij in S, term ij + ∑ ij in Sᶜ, term ij by
       rw [Finset.sum_add_sum_compl]]
   rw [← eq_neg_iff_add_eq_zero, ← Finset.sum_neg_distrib]
   /- we are reduced to showing that two sums are equal, and this is obtained
Diff
@@ -104,7 +104,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
   · -- φ(S) is contained in Sᶜ
     intro ij hij
     simp only [Finset.mem_univ, Finset.compl_filter, Finset.mem_filter, true_and_iff, Fin.val_succ,
-      Fin.coe_castLT] at hij⊢
+      Fin.coe_castLT] at hij ⊢
     linarith
   · -- identification of corresponding terms in both sums
     rintro ⟨i, j⟩ hij
@@ -122,7 +122,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
   · -- φ : S → Sᶜ is surjective
     rintro ⟨i', j'⟩ hij'
     simp only [true_and_iff, Finset.mem_univ, Finset.compl_filter, not_le, Finset.mem_filter] at
-      hij'
+      hij' 
     refine' ⟨(j'.pred _, Fin.castSucc i'), _, _⟩
     · intro H
       simpa only [H, Nat.not_lt_zero, Fin.val_zero] using hij'
@@ -307,8 +307,8 @@ def inclusionOfMooreComplexMap (X : SimplicialObject A) :
     simp only [add_zero]
     -- finally, we study the remaining term which is induced by X.δ 0
     let eq := def_t 0
-    rw [show (-1 : ℤ) ^ ((0 : Fin (n + 2)) : ℕ) = 1 by ring] at eq
-    rw [one_smul] at eq
+    rw [show (-1 : ℤ) ^ ((0 : Fin (n + 2)) : ℕ) = 1 by ring] at eq 
+    rw [one_smul] at eq 
     rw [Eq]
     cases n <;> dsimp <;> simp
 #align algebraic_topology.inclusion_of_Moore_complex_map AlgebraicTopology.inclusionOfMooreComplexMap
Diff
@@ -48,9 +48,9 @@ open CategoryTheory.Preadditive CategoryTheory.Category CategoryTheory.Idempoten
 
 open Opposite
 
-open BigOperators
+open scoped BigOperators
 
-open Simplicial
+open scoped Simplicial
 
 noncomputable section
 
Diff
@@ -69,12 +69,6 @@ variable (X : SimplicialObject C)
 
 variable (Y : SimplicialObject C)
 
-/- warning: algebraic_topology.alternating_face_map_complex.obj_d -> AlgebraicTopology.AlternatingFaceMapComplex.objD is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex.obj_d AlgebraicTopology.AlternatingFaceMapComplex.objDₓ'. -/
 /-- The differential on the alternating face map complex is the alternate
 sum of the face maps -/
 @[simp]
@@ -82,9 +76,6 @@ def objD (n : ℕ) : X _[n + 1] ⟶ X _[n] :=
   ∑ i : Fin (n + 2), (-1 : ℤ) ^ (i : ℕ) • X.δ i
 #align algebraic_topology.alternating_face_map_complex.obj_d AlgebraicTopology.AlternatingFaceMapComplex.objD
 
-/- warning: algebraic_topology.alternating_face_map_complex.d_squared -> AlgebraicTopology.AlternatingFaceMapComplex.d_squared is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squaredₓ'. -/
 /-- ## The chain complex relation `d ≫ d`
 -/
 theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
@@ -154,20 +145,11 @@ def obj : ChainComplex C ℕ :=
 #align algebraic_topology.alternating_face_map_complex.obj AlgebraicTopology.AlternatingFaceMapComplex.obj
 -/
 
-/- warning: algebraic_topology.alternating_face_map_complex.obj_X -> AlgebraicTopology.AlternatingFaceMapComplex.obj_X is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u1} C (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u1} C (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex.obj_X AlgebraicTopology.AlternatingFaceMapComplex.obj_Xₓ'. -/
 @[simp]
 theorem obj_X (X : SimplicialObject C) (n : ℕ) : (AlternatingFaceMapComplex.obj X).pt n = X _[n] :=
   rfl
 #align algebraic_topology.alternating_face_map_complex.obj_X AlgebraicTopology.AlternatingFaceMapComplex.obj_X
 
-/- warning: algebraic_topology.alternating_face_map_complex.obj_d_eq -> AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex.obj_d_eq AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eqₓ'. -/
 @[simp]
 theorem obj_d_eq (X : SimplicialObject C) (n : ℕ) :
     (AlternatingFaceMapComplex.obj X).d (n + 1) n = ∑ i : Fin (n + 2), (-1 : ℤ) ^ (i : ℕ) • X.δ i :=
@@ -213,39 +195,24 @@ def alternatingFaceMapComplex : SimplicialObject C ⥤ ChainComplex C ℕ
 
 variable {C}
 
-/- warning: algebraic_topology.alternating_face_map_complex_obj_X -> AlgebraicTopology.alternatingFaceMapComplex_obj_X is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u1} C (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u1} C (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex_obj_X AlgebraicTopology.alternatingFaceMapComplex_obj_Xₓ'. -/
 @[simp]
 theorem alternatingFaceMapComplex_obj_X (X : SimplicialObject C) (n : ℕ) :
     ((alternatingFaceMapComplex C).obj X).pt n = X _[n] :=
   rfl
 #align algebraic_topology.alternating_face_map_complex_obj_X AlgebraicTopology.alternatingFaceMapComplex_obj_X
 
-/- warning: algebraic_topology.alternating_face_map_complex_obj_d -> AlgebraicTopology.alternatingFaceMapComplex_obj_d is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex_obj_d AlgebraicTopology.alternatingFaceMapComplex_obj_dₓ'. -/
 @[simp]
 theorem alternatingFaceMapComplex_obj_d (X : SimplicialObject C) (n : ℕ) :
     ((alternatingFaceMapComplex C).obj X).d (n + 1) n = AlternatingFaceMapComplex.objD X n := by
   apply ChainComplex.of_d
 #align algebraic_topology.alternating_face_map_complex_obj_d AlgebraicTopology.alternatingFaceMapComplex_obj_d
 
-/- warning: algebraic_topology.alternating_face_map_complex_map_f -> AlgebraicTopology.alternatingFaceMapComplex_map_f is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex_map_f AlgebraicTopology.alternatingFaceMapComplex_map_fₓ'. -/
 @[simp]
 theorem alternatingFaceMapComplex_map_f {X Y : SimplicialObject C} (f : X ⟶ Y) (n : ℕ) :
     ((alternatingFaceMapComplex C).map f).f n = f.app (op [n]) :=
   rfl
 #align algebraic_topology.alternating_face_map_complex_map_f AlgebraicTopology.alternatingFaceMapComplex_map_f
 
-/- warning: algebraic_topology.map_alternating_face_map_complex -> AlgebraicTopology.map_alternatingFaceMapComplex is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.map_alternating_face_map_complex AlgebraicTopology.map_alternatingFaceMapComplexₓ'. -/
 theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D] (F : C ⥤ D)
     [F.Additive] :
     alternatingFaceMapComplex C ⋙ F.mapHomologicalComplex _ =
@@ -268,9 +235,6 @@ theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D]
       rfl
 #align algebraic_topology.map_alternating_face_map_complex AlgebraicTopology.map_alternatingFaceMapComplex
 
-/- warning: algebraic_topology.karoubi_alternating_face_map_complex_d -> AlgebraicTopology.karoubi_alternatingFaceMapComplex_d is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.karoubi_alternating_face_map_complex_d AlgebraicTopology.karoubi_alternatingFaceMapComplex_dₓ'. -/
 theorem karoubi_alternatingFaceMapComplex_d (P : Karoubi (SimplicialObject C)) (n : ℕ) :
     ((AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)).d (n + 1) n).f =
       P.p.app (op [n + 1]) ≫ (AlternatingFaceMapComplex.obj P.pt).d (n + 1) n :=
@@ -310,9 +274,6 @@ end AlternatingFaceMapComplex
 
 variable {A : Type _} [Category A] [Abelian A]
 
-/- warning: algebraic_topology.inclusion_of_Moore_complex_map -> AlgebraicTopology.inclusionOfMooreComplexMap is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.inclusion_of_Moore_complex_map AlgebraicTopology.inclusionOfMooreComplexMapₓ'. -/
 /-- The inclusion map of the Moore complex in the alternating face map complex -/
 def inclusionOfMooreComplexMap (X : SimplicialObject A) :
     (normalizedMooreComplex A).obj X ⟶ (alternatingFaceMapComplex A).obj X :=
@@ -352,9 +313,6 @@ def inclusionOfMooreComplexMap (X : SimplicialObject A) :
     cases n <;> dsimp <;> simp
 #align algebraic_topology.inclusion_of_Moore_complex_map AlgebraicTopology.inclusionOfMooreComplexMap
 
-/- warning: algebraic_topology.inclusion_of_Moore_complex_map_f -> AlgebraicTopology.inclusionOfMooreComplexMap_f is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.inclusion_of_Moore_complex_map_f AlgebraicTopology.inclusionOfMooreComplexMap_fₓ'. -/
 @[simp]
 theorem inclusionOfMooreComplexMap_f (X : SimplicialObject A) (n : ℕ) :
     (inclusionOfMooreComplexMap X).f n = (NormalizedMooreComplex.objX X n).arrow :=
@@ -376,12 +334,6 @@ namespace AlternatingCofaceMapComplex
 
 variable (X Y : CosimplicialObject C)
 
-/- warning: algebraic_topology.alternating_coface_map_complex.obj_d -> AlgebraicTopology.AlternatingCofaceMapComplex.objD is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_coface_map_complex.obj_d AlgebraicTopology.AlternatingCofaceMapComplex.objDₓ'. -/
 /-- The differential on the alternating coface map complex is the alternate
 sum of the coface maps -/
 @[simp]
@@ -389,9 +341,6 @@ def objD (n : ℕ) : X.obj [n] ⟶ X.obj [n + 1] :=
   ∑ i : Fin (n + 2), (-1 : ℤ) ^ (i : ℕ) • X.δ i
 #align algebraic_topology.alternating_coface_map_complex.obj_d AlgebraicTopology.AlternatingCofaceMapComplex.objD
 
-/- warning: algebraic_topology.alternating_coface_map_complex.d_eq_unop_d -> AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_coface_map_complex.d_eq_unop_d AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_dₓ'. -/
 theorem d_eq_unop_d (n : ℕ) :
     objD X n =
       (AlternatingFaceMapComplex.objD ((cosimplicialSimplicialEquiv C).Functor.obj (op X))
@@ -399,9 +348,6 @@ theorem d_eq_unop_d (n : ℕ) :
   by simpa only [obj_d, alternating_face_map_complex.obj_d, unop_sum, unop_zsmul]
 #align algebraic_topology.alternating_coface_map_complex.d_eq_unop_d AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d
 
-/- warning: algebraic_topology.alternating_coface_map_complex.d_squared -> AlgebraicTopology.AlternatingCofaceMapComplex.d_squared is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_coface_map_complex.d_squared AlgebraicTopology.AlternatingCofaceMapComplex.d_squaredₓ'. -/
 theorem d_squared (n : ℕ) : objD X n ≫ objD X (n + 1) = 0 := by
   simp only [d_eq_unop_d, ← unop_comp, alternating_face_map_complex.d_squared, unop_zero]
 #align algebraic_topology.alternating_coface_map_complex.d_squared AlgebraicTopology.AlternatingCofaceMapComplex.d_squared
Diff
@@ -95,9 +95,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
   let d_l := fun j : Fin (n + 3) => (-1 : ℤ) ^ (j : ℕ) • X.δ j
   let d_r := fun i : Fin (n + 2) => (-1 : ℤ) ^ (i : ℕ) • X.δ i
   rw [show (fun i => (∑ j : Fin (n + 3), d_l j) ≫ d_r i) = fun i => ∑ j : Fin (n + 3), d_l j ≫ d_r i
-      by
-      ext i
-      rw [sum_comp]]
+      by ext i; rw [sum_comp]]
   rw [← Finset.sum_product']
   -- then, we decompose the index set P into a subet S and its complement Sᶜ
   let P := Fin (n + 2) × Fin (n + 3)
@@ -122,9 +120,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
     simp only [term, d_l, d_r, φ, comp_zsmul, zsmul_comp, ← neg_smul, ← mul_smul, pow_add, neg_mul,
       mul_one, Fin.coe_castLT, Fin.val_succ, pow_one, mul_neg, neg_neg]
     let jj : Fin (n + 2) := (φ (i, j) hij).1
-    have ineq : jj ≤ i := by
-      rw [← Fin.val_fin_le]
-      simpa using hij
+    have ineq : jj ≤ i := by rw [← Fin.val_fin_le]; simpa using hij
     rw [CategoryTheory.SimplicialObject.δ_comp_δ X ineq, Fin.castSucc_castLT, mul_comm]
   · -- φ : S → Sᶜ is injective
     rintro ⟨i, j⟩ ⟨i', j'⟩ hij hij' h
@@ -301,9 +297,7 @@ def ε [Limits.HasZeroObject C] :
     simp only [alternating_face_map_complex_obj_d, obj_d, Fin.sum_univ_two, Fin.val_zero, pow_zero,
       one_zsmul, Fin.val_one, pow_one, neg_smul, add_comp, simplicial_object.δ_naturality, neg_comp]
     apply add_right_neg
-  naturality' X Y f := by
-    ext
-    exact congr_app f.w _
+  naturality' X Y f := by ext; exact congr_app f.w _
 #align algebraic_topology.alternating_face_map_complex.ε AlgebraicTopology.AlternatingFaceMapComplex.ε
 -/
 
@@ -335,9 +329,7 @@ def inclusionOfMooreComplexMap (X : SimplicialObject A) :
     have def_t :
       ∀ j : Fin (n + 2),
         t j = (normalized_Moore_complex.obj_X X (n + 1)).arrow ≫ ((-1 : ℤ) ^ (j : ℕ) • X.δ j) :=
-      by
-      intro j
-      rfl
+      by intro j; rfl
     rw [Fin.sum_univ_succ t]
     have null : ∀ j : Fin (n + 1), t j.succ = 0 :=
       by
Diff
@@ -83,10 +83,7 @@ def objD (n : ℕ) : X _[n + 1] ⟶ X _[n] :=
 #align algebraic_topology.alternating_face_map_complex.obj_d AlgebraicTopology.AlternatingFaceMapComplex.objD
 
 /- warning: algebraic_topology.alternating_face_map_complex.d_squared -> AlgebraicTopology.AlternatingFaceMapComplex.d_squared is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squaredₓ'. -/
 /-- ## The chain complex relation `d ≫ d`
 -/
@@ -173,10 +170,7 @@ theorem obj_X (X : SimplicialObject C) (n : ℕ) : (AlternatingFaceMapComplex.ob
 #align algebraic_topology.alternating_face_map_complex.obj_X AlgebraicTopology.AlternatingFaceMapComplex.obj_X
 
 /- warning: algebraic_topology.alternating_face_map_complex.obj_d_eq -> AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n))) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) => SMul.smul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))) i)) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n i)))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) => HSMul.hSMul.{0, u2, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (instHSMul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))))))) (HPow.hPow.{0, 0, 0} Int Nat Int Int.instHPowIntNat (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) i)) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n i)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex.obj_d_eq AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eqₓ'. -/
 @[simp]
 theorem obj_d_eq (X : SimplicialObject C) (n : ℕ) :
@@ -236,10 +230,7 @@ theorem alternatingFaceMapComplex_obj_X (X : SimplicialObject C) (n : ℕ) :
 #align algebraic_topology.alternating_face_map_complex_obj_X AlgebraicTopology.alternatingFaceMapComplex_obj_X
 
 /- warning: algebraic_topology.alternating_face_map_complex_obj_d -> AlgebraicTopology.alternatingFaceMapComplex_obj_d is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) n)) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n)
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) n)) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n)
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex_obj_d AlgebraicTopology.alternatingFaceMapComplex_obj_dₓ'. -/
 @[simp]
 theorem alternatingFaceMapComplex_obj_d (X : SimplicialObject C) (n : ℕ) :
@@ -248,10 +239,7 @@ theorem alternatingFaceMapComplex_obj_d (X : SimplicialObject C) (n : ℕ) :
 #align algebraic_topology.alternating_face_map_complex_obj_d AlgebraicTopology.alternatingFaceMapComplex_obj_d
 
 /- warning: algebraic_topology.alternating_face_map_complex_map_f -> AlgebraicTopology.alternatingFaceMapComplex_map_f is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) X Y) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) Y) n)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) Y) (CategoryTheory.Functor.map.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X Y f) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X Y) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) Y) n)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) Y) (Prefunctor.map.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X Y f) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex_map_f AlgebraicTopology.alternatingFaceMapComplex_map_fₓ'. -/
 @[simp]
 theorem alternatingFaceMapComplex_map_f {X Y : SimplicialObject C} (f : X ⟶ Y) (n : ℕ) :
@@ -260,10 +248,7 @@ theorem alternatingFaceMapComplex_map_f {X Y : SimplicialObject C} (f : X ⟶ Y)
 #align algebraic_topology.alternating_face_map_complex_map_f AlgebraicTopology.alternatingFaceMapComplex_map_f
 
 /- warning: algebraic_topology.map_alternating_face_map_complex -> AlgebraicTopology.map_alternatingFaceMapComplex is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u3}} [_inst_3 : CategoryTheory.Category.{u4, u3} D] [_inst_4 : CategoryTheory.Preadditive.{u4, u3} D _inst_3] (F : CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u3, u2, u4} C D _inst_1 _inst_3 _inst_2 _inst_4 F], Eq.{succ (max u2 u4 (max u2 u1) u3 u4)} (CategoryTheory.Functor.{u2, u4, max u2 u1, max u3 u4} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (HomologicalComplex.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u2, u4, max u2 u1, max u1 u2, max u3 u4} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.mapHomologicalComplex.{u2, u1, 0, u3, u4} Nat C _inst_1 _inst_2 D _inst_3 _inst_4 F _inst_5 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u4, u4, max u2 u1, max u4 u3, max u3 u4} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (HomologicalComplex.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) F) (AlgebraicTopology.alternatingFaceMapComplex.{u3, u4} D _inst_3 _inst_4))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u4}} [_inst_3 : CategoryTheory.Category.{u3, u4} D] [_inst_4 : CategoryTheory.Preadditive.{u3, u4} D _inst_3] (F : CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u4, u2, u3} C D _inst_1 _inst_3 _inst_2 _inst_4 F], Eq.{max (max (max (succ u1) (succ u2)) (succ u4)) (succ u3)} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (HomologicalComplex.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u2, u2, u3, max u1 u2, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.mapHomologicalComplex.{u2, u1, 0, u4, u3} Nat C _inst_1 _inst_2 D _inst_3 _inst_4 F _inst_5 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u2, u3, u3, max u1 u2, max u4 u3, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (ChainComplex.{u3, u4, 0} D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) F) (AlgebraicTopology.alternatingFaceMapComplex.{u4, u3} D _inst_3 _inst_4))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.map_alternating_face_map_complex AlgebraicTopology.map_alternatingFaceMapComplexₓ'. -/
 theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D] (F : C ⥤ D)
     [F.Additive] :
@@ -288,10 +273,7 @@ theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D]
 #align algebraic_topology.map_alternating_face_map_complex AlgebraicTopology.map_alternatingFaceMapComplex
 
 /- warning: algebraic_topology.karoubi_alternating_face_map_complex_d -> AlgebraicTopology.karoubi_alternatingFaceMapComplex_d is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n))) (CategoryTheory.Idempotents.Karoubi.Hom.f.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n) (HomologicalComplex.d.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n)) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.p.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.Idempotents.Karoubi.X.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n))) (CategoryTheory.Idempotents.Karoubi.Hom.f.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n) (HomologicalComplex.d.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) n) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.p.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.d.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.karoubi_alternating_face_map_complex_d AlgebraicTopology.karoubi_alternatingFaceMapComplex_dₓ'. -/
 theorem karoubi_alternatingFaceMapComplex_d (P : Karoubi (SimplicialObject C)) (n : ℕ) :
     ((AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)).d (n + 1) n).f =
@@ -335,10 +317,7 @@ end AlternatingFaceMapComplex
 variable {A : Type _} [Category A] [Abelian A]
 
 /- warning: algebraic_topology.inclusion_of_Moore_complex_map -> AlgebraicTopology.inclusionOfMooreComplexMap is a dubious translation:
-lean 3 declaration is
-  forall {A : Type.{u1}} [_inst_3 : CategoryTheory.Category.{u2, u1} A] [_inst_4 : CategoryTheory.Abelian.{u2, u1} A _inst_3] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_3), Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) X)
-but is expected to have type
-  forall {A : Type.{u1}} [_inst_3 : CategoryTheory.Category.{u2, u1} A] [_inst_4 : CategoryTheory.Abelian.{u2, u1} A _inst_3] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_3), Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4))) X)
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.inclusion_of_Moore_complex_map AlgebraicTopology.inclusionOfMooreComplexMapₓ'. -/
 /-- The inclusion map of the Moore complex in the alternating face map complex -/
 def inclusionOfMooreComplexMap (X : SimplicialObject A) :
@@ -382,10 +361,7 @@ def inclusionOfMooreComplexMap (X : SimplicialObject A) :
 #align algebraic_topology.inclusion_of_Moore_complex_map AlgebraicTopology.inclusionOfMooreComplexMap
 
 /- warning: algebraic_topology.inclusion_of_Moore_complex_map_f -> AlgebraicTopology.inclusionOfMooreComplexMap_f is a dubious translation:
-lean 3 declaration is
-  forall {A : Type.{u1}} [_inst_3 : CategoryTheory.Category.{u2, u1} A] [_inst_4 : CategoryTheory.Abelian.{u2, u1} A _inst_3] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} A (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} A (CategoryTheory.Category.toCategoryStruct.{u2, u1} A _inst_3)) (HomologicalComplex.x.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4) X) n) (HomologicalComplex.x.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) X) n)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_3 _inst_4 X) n) (CategoryTheory.Subobject.arrow.{u2, u1} A _inst_3 (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) A _inst_3 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.NormalizedMooreComplex.objX.{u1, u2} A _inst_3 _inst_4 X n))
-but is expected to have type
-  forall {A : Type.{u1}} [_inst_3 : CategoryTheory.Category.{u2, u1} A] [_inst_4 : CategoryTheory.Abelian.{u2, u1} A _inst_3] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} A (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} A (CategoryTheory.Category.toCategoryStruct.{u2, u1} A _inst_3)) (HomologicalComplex.X.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4)) X) n) (HomologicalComplex.X.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4))) X) n)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4))) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_3 _inst_4 X) n) (CategoryTheory.Subobject.arrow.{u2, u1} A _inst_3 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) A (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} A (CategoryTheory.Category.toCategoryStruct.{u2, u1} A _inst_3)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) A _inst_3 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.NormalizedMooreComplex.objX.{u1, u2} A _inst_3 _inst_4 X n))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.inclusion_of_Moore_complex_map_f AlgebraicTopology.inclusionOfMooreComplexMap_fₓ'. -/
 @[simp]
 theorem inclusionOfMooreComplexMap_f (X : SimplicialObject A) (n : ℕ) :
@@ -422,10 +398,7 @@ def objD (n : ℕ) : X.obj [n] ⟶ X.obj [n + 1] :=
 #align algebraic_topology.alternating_coface_map_complex.obj_d AlgebraicTopology.AlternatingCofaceMapComplex.objD
 
 /- warning: algebraic_topology.alternating_coface_map_complex.d_eq_unop_d -> AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n) (Quiver.Hom.unop.{u1, succ u2} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1)) (Opposite.op.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1)) (Opposite.op.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (CategoryTheory.Opposite.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1)) (Opposite.op.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X)) n))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n) (Quiver.Hom.unop.{u1, succ u2} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) (Opposite.{succ u1} C) (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.toCategoryStruct.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1))) (Opposite.op.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) (Opposite.{succ u1} C) (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.toCategoryStruct.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1))) (Opposite.op.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (CategoryTheory.instPreadditiveOppositeOpposite.{u1, u2} C _inst_1 _inst_2) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1))) (Opposite.op.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X)) n))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_coface_map_complex.d_eq_unop_d AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_dₓ'. -/
 theorem d_eq_unop_d (n : ℕ) :
     objD X n =
@@ -435,10 +408,7 @@ theorem d_eq_unop_d (n : ℕ) :
 #align algebraic_topology.alternating_coface_map_complex.d_eq_unop_d AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d
 
 /- warning: algebraic_topology.alternating_coface_map_complex.d_squared -> AlgebraicTopology.AlternatingCofaceMapComplex.d_squared is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_coface_map_complex.d_squared AlgebraicTopology.AlternatingCofaceMapComplex.d_squaredₓ'. -/
 theorem d_squared (n : ℕ) : objD X n ≫ objD X (n + 1) = 0 := by
   simp only [d_eq_unop_d, ← unop_comp, alternating_face_map_complex.d_squared, unop_zero]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou, Adam Topaz, Johan Commelin
 
 ! This file was ported from Lean 3 source module algebraic_topology.alternating_face_map_complex
-! leanprover-community/mathlib commit 88bca0ce5d22ebfd9e73e682e51d60ea13b48347
+! leanprover-community/mathlib commit 86d1873c01a723aba6788f0b9051ae3d23b4c1c3
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -19,6 +19,9 @@ import Mathbin.Tactic.EquivRw
 
 # The alternating face map complex of a simplicial object in a preadditive category
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 We construct the alternating face map complex, as a
 functor `alternating_face_map_complex : simplicial_object C ⥤ chain_complex C ℕ`
 for any preadditive category `C`. For any simplicial object `X` in `C`,
Diff
@@ -284,20 +284,20 @@ theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D]
       rfl
 #align algebraic_topology.map_alternating_face_map_complex AlgebraicTopology.map_alternatingFaceMapComplex
 
-/- warning: algebraic_topology.karoubi_alternating_face_map_complex_d -> AlgebraicTopology.karoubi_alternating_face_map_complex_d is a dubious translation:
+/- warning: algebraic_topology.karoubi_alternating_face_map_complex_d -> AlgebraicTopology.karoubi_alternatingFaceMapComplex_d is a dubious translation:
 lean 3 declaration is
   forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n))) (CategoryTheory.Idempotents.Karoubi.Hom.f.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n) (HomologicalComplex.d.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n)) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.p.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n))
 but is expected to have type
   forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.Idempotents.Karoubi.X.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n))) (CategoryTheory.Idempotents.Karoubi.Hom.f.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n) (HomologicalComplex.d.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) n) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.p.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.d.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.karoubi_alternating_face_map_complex_d AlgebraicTopology.karoubi_alternating_face_map_complex_dₓ'. -/
-theorem karoubi_alternating_face_map_complex_d (P : Karoubi (SimplicialObject C)) (n : ℕ) :
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.karoubi_alternating_face_map_complex_d AlgebraicTopology.karoubi_alternatingFaceMapComplex_dₓ'. -/
+theorem karoubi_alternatingFaceMapComplex_d (P : Karoubi (SimplicialObject C)) (n : ℕ) :
     ((AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)).d (n + 1) n).f =
       P.p.app (op [n + 1]) ≫ (AlternatingFaceMapComplex.obj P.pt).d (n + 1) n :=
   by
   dsimp
   simpa only [alternating_face_map_complex.obj_d_eq, karoubi.sum_hom, preadditive.comp_sum,
     karoubi.zsmul_hom, preadditive.comp_zsmul]
-#align algebraic_topology.karoubi_alternating_face_map_complex_d AlgebraicTopology.karoubi_alternating_face_map_complex_d
+#align algebraic_topology.karoubi_alternating_face_map_complex_d AlgebraicTopology.karoubi_alternatingFaceMapComplex_d
 
 namespace AlternatingFaceMapComplex
 
Diff
@@ -66,6 +66,12 @@ variable (X : SimplicialObject C)
 
 variable (Y : SimplicialObject C)
 
+/- warning: algebraic_topology.alternating_face_map_complex.obj_d -> AlgebraicTopology.AlternatingFaceMapComplex.objD is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex.obj_d AlgebraicTopology.AlternatingFaceMapComplex.objDₓ'. -/
 /-- The differential on the alternating face map complex is the alternate
 sum of the face maps -/
 @[simp]
@@ -73,6 +79,12 @@ def objD (n : ℕ) : X _[n + 1] ⟶ X _[n] :=
   ∑ i : Fin (n + 2), (-1 : ℤ) ^ (i : ℕ) • X.δ i
 #align algebraic_topology.alternating_face_map_complex.obj_d AlgebraicTopology.AlternatingFaceMapComplex.objD
 
+/- warning: algebraic_topology.alternating_face_map_complex.d_squared -> AlgebraicTopology.AlternatingFaceMapComplex.d_squared is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squaredₓ'. -/
 /-- ## The chain complex relation `d ≫ d`
 -/
 theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
@@ -139,16 +151,30 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
 -/
 
 
+#print AlgebraicTopology.AlternatingFaceMapComplex.obj /-
 /-- The alternating face map complex, on objects -/
 def obj : ChainComplex C ℕ :=
   ChainComplex.of (fun n => X _[n]) (objD X) (d_squared X)
 #align algebraic_topology.alternating_face_map_complex.obj AlgebraicTopology.AlternatingFaceMapComplex.obj
+-/
 
+/- warning: algebraic_topology.alternating_face_map_complex.obj_X -> AlgebraicTopology.AlternatingFaceMapComplex.obj_X is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u1} C (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u1} C (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex.obj_X AlgebraicTopology.AlternatingFaceMapComplex.obj_Xₓ'. -/
 @[simp]
-theorem obj_x (X : SimplicialObject C) (n : ℕ) : (AlternatingFaceMapComplex.obj X).pt n = X _[n] :=
+theorem obj_X (X : SimplicialObject C) (n : ℕ) : (AlternatingFaceMapComplex.obj X).pt n = X _[n] :=
   rfl
-#align algebraic_topology.alternating_face_map_complex.obj_X AlgebraicTopology.AlternatingFaceMapComplex.obj_x
-
+#align algebraic_topology.alternating_face_map_complex.obj_X AlgebraicTopology.AlternatingFaceMapComplex.obj_X
+
+/- warning: algebraic_topology.alternating_face_map_complex.obj_d_eq -> AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n))) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) => SMul.smul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))) i)) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n i)))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) => HSMul.hSMul.{0, u2, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (instHSMul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))))))) (HPow.hPow.{0, 0, 0} Int Nat Int Int.instHPowIntNat (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) i)) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n i)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex.obj_d_eq AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eqₓ'. -/
 @[simp]
 theorem obj_d_eq (X : SimplicialObject C) (n : ℕ) :
     (AlternatingFaceMapComplex.obj X).d (n + 1) n = ∑ i : Fin (n + 2), (-1 : ℤ) ^ (i : ℕ) • X.δ i :=
@@ -157,6 +183,7 @@ theorem obj_d_eq (X : SimplicialObject C) (n : ℕ) :
 
 variable {X} {Y}
 
+#print AlgebraicTopology.AlternatingFaceMapComplex.map /-
 /-- The alternating face map complex, on morphisms -/
 def map (f : X ⟶ Y) : obj X ⟶ obj Y :=
   ChainComplex.ofHom _ _ _ _ _ _ (fun n => f.app (op [n])) fun n =>
@@ -169,43 +196,72 @@ def map (f : X ⟶ Y) : obj X ⟶ obj Y :=
     symm
     apply f.naturality
 #align algebraic_topology.alternating_face_map_complex.map AlgebraicTopology.AlternatingFaceMapComplex.map
+-/
 
+#print AlgebraicTopology.AlternatingFaceMapComplex.map_f /-
 @[simp]
 theorem map_f (f : X ⟶ Y) (n : ℕ) : (map f).f n = f.app (op [n]) :=
   rfl
 #align algebraic_topology.alternating_face_map_complex.map_f AlgebraicTopology.AlternatingFaceMapComplex.map_f
+-/
 
 end AlternatingFaceMapComplex
 
 variable (C : Type _) [Category C] [Preadditive C]
 
+#print AlgebraicTopology.alternatingFaceMapComplex /-
 /-- The alternating face map complex, as a functor -/
 def alternatingFaceMapComplex : SimplicialObject C ⥤ ChainComplex C ℕ
     where
   obj := AlternatingFaceMapComplex.obj
   map X Y f := AlternatingFaceMapComplex.map f
 #align algebraic_topology.alternating_face_map_complex AlgebraicTopology.alternatingFaceMapComplex
+-/
 
 variable {C}
 
+/- warning: algebraic_topology.alternating_face_map_complex_obj_X -> AlgebraicTopology.alternatingFaceMapComplex_obj_X is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u1} C (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u1} C (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex_obj_X AlgebraicTopology.alternatingFaceMapComplex_obj_Xₓ'. -/
 @[simp]
-theorem alternatingFaceMapComplex_obj_x (X : SimplicialObject C) (n : ℕ) :
+theorem alternatingFaceMapComplex_obj_X (X : SimplicialObject C) (n : ℕ) :
     ((alternatingFaceMapComplex C).obj X).pt n = X _[n] :=
   rfl
-#align algebraic_topology.alternating_face_map_complex_obj_X AlgebraicTopology.alternatingFaceMapComplex_obj_x
-
+#align algebraic_topology.alternating_face_map_complex_obj_X AlgebraicTopology.alternatingFaceMapComplex_obj_X
+
+/- warning: algebraic_topology.alternating_face_map_complex_obj_d -> AlgebraicTopology.alternatingFaceMapComplex_obj_d is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) n)) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n)
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) n)) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n)
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex_obj_d AlgebraicTopology.alternatingFaceMapComplex_obj_dₓ'. -/
 @[simp]
-theorem alternatingFaceMapComplex_objD (X : SimplicialObject C) (n : ℕ) :
+theorem alternatingFaceMapComplex_obj_d (X : SimplicialObject C) (n : ℕ) :
     ((alternatingFaceMapComplex C).obj X).d (n + 1) n = AlternatingFaceMapComplex.objD X n := by
   apply ChainComplex.of_d
-#align algebraic_topology.alternating_face_map_complex_obj_d AlgebraicTopology.alternatingFaceMapComplex_objD
-
+#align algebraic_topology.alternating_face_map_complex_obj_d AlgebraicTopology.alternatingFaceMapComplex_obj_d
+
+/- warning: algebraic_topology.alternating_face_map_complex_map_f -> AlgebraicTopology.alternatingFaceMapComplex_map_f is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) X Y) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) Y) n)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) Y) (CategoryTheory.Functor.map.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) X Y f) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X Y) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) Y) n)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) Y) (Prefunctor.map.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2)) X Y f) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_face_map_complex_map_f AlgebraicTopology.alternatingFaceMapComplex_map_fₓ'. -/
 @[simp]
 theorem alternatingFaceMapComplex_map_f {X Y : SimplicialObject C} (f : X ⟶ Y) (n : ℕ) :
     ((alternatingFaceMapComplex C).map f).f n = f.app (op [n]) :=
   rfl
 #align algebraic_topology.alternating_face_map_complex_map_f AlgebraicTopology.alternatingFaceMapComplex_map_f
 
+/- warning: algebraic_topology.map_alternating_face_map_complex -> AlgebraicTopology.map_alternatingFaceMapComplex is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u3}} [_inst_3 : CategoryTheory.Category.{u4, u3} D] [_inst_4 : CategoryTheory.Preadditive.{u4, u3} D _inst_3] (F : CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u3, u2, u4} C D _inst_1 _inst_3 _inst_2 _inst_4 F], Eq.{succ (max u2 u4 (max u2 u1) u3 u4)} (CategoryTheory.Functor.{u2, u4, max u2 u1, max u3 u4} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (HomologicalComplex.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u2, u4, max u2 u1, max u1 u2, max u3 u4} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.mapHomologicalComplex.{u2, u1, 0, u3, u4} Nat C _inst_1 _inst_2 D _inst_3 _inst_4 F _inst_5 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u4, u4, max u2 u1, max u4 u3, max u3 u4} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (HomologicalComplex.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) F) (AlgebraicTopology.alternatingFaceMapComplex.{u3, u4} D _inst_3 _inst_4))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u4}} [_inst_3 : CategoryTheory.Category.{u3, u4} D] [_inst_4 : CategoryTheory.Preadditive.{u3, u4} D _inst_3] (F : CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u4, u2, u3} C D _inst_1 _inst_3 _inst_2 _inst_4 F], Eq.{max (max (max (succ u1) (succ u2)) (succ u4)) (succ u3)} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (HomologicalComplex.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u2, u2, u3, max u1 u2, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.mapHomologicalComplex.{u2, u1, 0, u4, u3} Nat C _inst_1 _inst_2 D _inst_3 _inst_4 F _inst_5 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u2, u3, u3, max u1 u2, max u4 u3, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (ChainComplex.{u3, u4, 0} D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) F) (AlgebraicTopology.alternatingFaceMapComplex.{u4, u3} D _inst_3 _inst_4))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.map_alternating_face_map_complex AlgebraicTopology.map_alternatingFaceMapComplexₓ'. -/
 theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D] (F : C ⥤ D)
     [F.Additive] :
     alternatingFaceMapComplex C ⋙ F.mapHomologicalComplex _ =
@@ -228,6 +284,12 @@ theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D]
       rfl
 #align algebraic_topology.map_alternating_face_map_complex AlgebraicTopology.map_alternatingFaceMapComplex
 
+/- warning: algebraic_topology.karoubi_alternating_face_map_complex_d -> AlgebraicTopology.karoubi_alternating_face_map_complex_d is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n))) (CategoryTheory.Idempotents.Karoubi.Hom.f.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n) (HomologicalComplex.d.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n)) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.p.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.Idempotents.Karoubi.X.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n))) (CategoryTheory.Idempotents.Karoubi.Hom.f.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) n) (HomologicalComplex.d.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1 P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) n) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.Idempotents.Karoubi.p.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.d.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.karoubi_alternating_face_map_complex_d AlgebraicTopology.karoubi_alternating_face_map_complex_dₓ'. -/
 theorem karoubi_alternating_face_map_complex_d (P : Karoubi (SimplicialObject C)) (n : ℕ) :
     ((AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)).d (n + 1) n).f =
       P.p.app (op [n + 1]) ≫ (AlternatingFaceMapComplex.obj P.pt).d (n + 1) n :=
@@ -239,6 +301,7 @@ theorem karoubi_alternating_face_map_complex_d (P : Karoubi (SimplicialObject C)
 
 namespace AlternatingFaceMapComplex
 
+#print AlgebraicTopology.AlternatingFaceMapComplex.ε /-
 /-- The natural transformation which gives the augmentation of the alternating face map
 complex attached to an augmented simplicial object. -/
 @[simps]
@@ -256,7 +319,8 @@ def ε [Limits.HasZeroObject C] :
   naturality' X Y f := by
     ext
     exact congr_app f.w _
-#align algebraic_topology.alternating_face_map_complex.ε AlgebraicTopology.alternatingFaceMapComplex.ε
+#align algebraic_topology.alternating_face_map_complex.ε AlgebraicTopology.AlternatingFaceMapComplex.ε
+-/
 
 end AlternatingFaceMapComplex
 
@@ -267,6 +331,12 @@ end AlternatingFaceMapComplex
 
 variable {A : Type _} [Category A] [Abelian A]
 
+/- warning: algebraic_topology.inclusion_of_Moore_complex_map -> AlgebraicTopology.inclusionOfMooreComplexMap is a dubious translation:
+lean 3 declaration is
+  forall {A : Type.{u1}} [_inst_3 : CategoryTheory.Category.{u2, u1} A] [_inst_4 : CategoryTheory.Abelian.{u2, u1} A _inst_3] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_3), Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) X)
+but is expected to have type
+  forall {A : Type.{u1}} [_inst_3 : CategoryTheory.Category.{u2, u1} A] [_inst_4 : CategoryTheory.Abelian.{u2, u1} A _inst_3] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_3), Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4))) X)
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.inclusion_of_Moore_complex_map AlgebraicTopology.inclusionOfMooreComplexMapₓ'. -/
 /-- The inclusion map of the Moore complex in the alternating face map complex -/
 def inclusionOfMooreComplexMap (X : SimplicialObject A) :
     (normalizedMooreComplex A).obj X ⟶ (alternatingFaceMapComplex A).obj X :=
@@ -308,6 +378,12 @@ def inclusionOfMooreComplexMap (X : SimplicialObject A) :
     cases n <;> dsimp <;> simp
 #align algebraic_topology.inclusion_of_Moore_complex_map AlgebraicTopology.inclusionOfMooreComplexMap
 
+/- warning: algebraic_topology.inclusion_of_Moore_complex_map_f -> AlgebraicTopology.inclusionOfMooreComplexMap_f is a dubious translation:
+lean 3 declaration is
+  forall {A : Type.{u1}} [_inst_3 : CategoryTheory.Category.{u2, u1} A] [_inst_4 : CategoryTheory.Abelian.{u2, u1} A _inst_3] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} A (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} A (CategoryTheory.Category.toCategoryStruct.{u2, u1} A _inst_3)) (HomologicalComplex.x.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4) X) n) (HomologicalComplex.x.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) X) n)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_3 _inst_4 X) n) (CategoryTheory.Subobject.arrow.{u2, u1} A _inst_3 (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) A _inst_3 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.NormalizedMooreComplex.objX.{u1, u2} A _inst_3 _inst_4 X n))
+but is expected to have type
+  forall {A : Type.{u1}} [_inst_3 : CategoryTheory.Category.{u2, u1} A] [_inst_4 : CategoryTheory.Abelian.{u2, u1} A _inst_3] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} A (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} A (CategoryTheory.Category.toCategoryStruct.{u2, u1} A _inst_3)) (HomologicalComplex.X.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4)) X) n) (HomologicalComplex.X.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4))) X) n)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_3 _inst_4)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3))) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_3) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_3) (ChainComplex.{u2, u1, 0} A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_3 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_3 _inst_4))) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_3 _inst_4 X) n) (CategoryTheory.Subobject.arrow.{u2, u1} A _inst_3 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) A (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} A (CategoryTheory.Category.toCategoryStruct.{u2, u1} A _inst_3)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) A _inst_3 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.NormalizedMooreComplex.objX.{u1, u2} A _inst_3 _inst_4 X n))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.inclusion_of_Moore_complex_map_f AlgebraicTopology.inclusionOfMooreComplexMap_fₓ'. -/
 @[simp]
 theorem inclusionOfMooreComplexMap_f (X : SimplicialObject A) (n : ℕ) :
     (inclusionOfMooreComplexMap X).f n = (NormalizedMooreComplex.objX X n).arrow :=
@@ -316,17 +392,25 @@ theorem inclusionOfMooreComplexMap_f (X : SimplicialObject A) (n : ℕ) :
 
 variable (A)
 
+#print AlgebraicTopology.inclusionOfMooreComplex /-
 /-- The inclusion map of the Moore complex in the alternating face map complex,
 as a natural transformation -/
 @[simps]
 def inclusionOfMooreComplex : normalizedMooreComplex A ⟶ alternatingFaceMapComplex A
     where app := inclusionOfMooreComplexMap
 #align algebraic_topology.inclusion_of_Moore_complex AlgebraicTopology.inclusionOfMooreComplex
+-/
 
 namespace AlternatingCofaceMapComplex
 
 variable (X Y : CosimplicialObject C)
 
+/- warning: algebraic_topology.alternating_coface_map_complex.obj_d -> AlgebraicTopology.AlternatingCofaceMapComplex.objD is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_coface_map_complex.obj_d AlgebraicTopology.AlternatingCofaceMapComplex.objDₓ'. -/
 /-- The differential on the alternating coface map complex is the alternate
 sum of the coface maps -/
 @[simp]
@@ -334,6 +418,12 @@ def objD (n : ℕ) : X.obj [n] ⟶ X.obj [n + 1] :=
   ∑ i : Fin (n + 2), (-1 : ℤ) ^ (i : ℕ) • X.δ i
 #align algebraic_topology.alternating_coface_map_complex.obj_d AlgebraicTopology.AlternatingCofaceMapComplex.objD
 
+/- warning: algebraic_topology.alternating_coface_map_complex.d_eq_unop_d -> AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n) (Quiver.Hom.unop.{u1, succ u2} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1)) (Opposite.op.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1)) (Opposite.op.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (CategoryTheory.Opposite.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u2 u1, max u2 u1} (Opposite.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u2 u1} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CosimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.category.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1)) (Opposite.op.{succ (max u2 u1)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X)) n))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n) (Quiver.Hom.unop.{u1, succ u2} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) (Opposite.{succ u1} C) (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.toCategoryStruct.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1))) (Opposite.op.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) (Opposite.{succ u1} C) (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.toCategoryStruct.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1))) (Opposite.op.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.AlternatingFaceMapComplex.objD.{u1, u2} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1) (CategoryTheory.instPreadditiveOppositeOpposite.{u1, u2} C _inst_1 _inst_2) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Equivalence.functor.{u2, u2, max u1 u2, max u1 u2} (Opposite.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.SimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.Category.opposite.{u2, max u1 u2} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategoryCosimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.instCategorySimplicialObject.{u2, u1} (Opposite.{succ u1} C) (CategoryTheory.Category.opposite.{u2, u1} C _inst_1)) (CategoryTheory.cosimplicialSimplicialEquiv.{u2, u1} C _inst_1))) (Opposite.op.{max (succ u1) (succ u2)} (CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) X)) n))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_coface_map_complex.d_eq_unop_d AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_dₓ'. -/
 theorem d_eq_unop_d (n : ℕ) :
     objD X n =
       (AlternatingFaceMapComplex.objD ((cosimplicialSimplicialEquiv C).Functor.obj (op X))
@@ -341,17 +431,26 @@ theorem d_eq_unop_d (n : ℕ) :
   by simpa only [obj_d, alternating_face_map_complex.obj_d, unop_sum, unop_zsmul]
 #align algebraic_topology.alternating_coface_map_complex.d_eq_unop_d AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d
 
+/- warning: algebraic_topology.alternating_coface_map_complex.d_squared -> AlgebraicTopology.AlternatingCofaceMapComplex.d_squared is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)) (One.one.{0} Nat Nat.hasOne))))))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.CosimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X n) (AlgebraicTopology.AlternatingCofaceMapComplex.objD.{u1, u2} C _inst_1 _inst_2 X (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk n)) (Prefunctor.obj.{1, succ u2, 0, u1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} SimplexCategory SimplexCategory.smallCategory C _inst_1 X) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.alternating_coface_map_complex.d_squared AlgebraicTopology.AlternatingCofaceMapComplex.d_squaredₓ'. -/
 theorem d_squared (n : ℕ) : objD X n ≫ objD X (n + 1) = 0 := by
   simp only [d_eq_unop_d, ← unop_comp, alternating_face_map_complex.d_squared, unop_zero]
 #align algebraic_topology.alternating_coface_map_complex.d_squared AlgebraicTopology.AlternatingCofaceMapComplex.d_squared
 
+#print AlgebraicTopology.AlternatingCofaceMapComplex.obj /-
 /-- The alternating coface map complex, on objects -/
 def obj : CochainComplex C ℕ :=
   CochainComplex.of (fun n => X.obj [n]) (objD X) (d_squared X)
 #align algebraic_topology.alternating_coface_map_complex.obj AlgebraicTopology.AlternatingCofaceMapComplex.obj
+-/
 
 variable {X} {Y}
 
+#print AlgebraicTopology.AlternatingCofaceMapComplex.map /-
 /-- The alternating face map complex, on morphisms -/
 @[simp]
 def map (f : X ⟶ Y) : obj X ⟶ obj Y :=
@@ -365,11 +464,13 @@ def map (f : X ⟶ Y) : obj X ⟶ obj Y :=
     symm
     apply f.naturality
 #align algebraic_topology.alternating_coface_map_complex.map AlgebraicTopology.AlternatingCofaceMapComplex.map
+-/
 
 end AlternatingCofaceMapComplex
 
 variable (C)
 
+#print AlgebraicTopology.alternatingCofaceMapComplex /-
 /-- The alternating coface map complex, as a functor -/
 @[simps]
 def alternatingCofaceMapComplex : CosimplicialObject C ⥤ CochainComplex C ℕ
@@ -377,6 +478,7 @@ def alternatingCofaceMapComplex : CosimplicialObject C ⥤ CochainComplex C ℕ
   obj := AlternatingCofaceMapComplex.obj
   map X Y f := AlternatingCofaceMapComplex.map f
 #align algebraic_topology.alternating_coface_map_complex AlgebraicTopology.alternatingCofaceMapComplex
+-/
 
 end AlgebraicTopology
 
Diff
@@ -98,28 +98,28 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
     by constructing a bijection φ : S -> Sᶜ, which maps (i,j) to (j,i+1),
     and by comparing the terms -/
   let φ : ∀ ij : P, ij ∈ S → P := fun ij hij =>
-    (Fin.castLt ij.2 (lt_of_le_of_lt (finset.mem_filter.mp hij).right (Fin.is_lt ij.1)), ij.1.succ)
+    (Fin.castLT ij.2 (lt_of_le_of_lt (finset.mem_filter.mp hij).right (Fin.is_lt ij.1)), ij.1.succ)
   apply Finset.sum_bij φ
   · -- φ(S) is contained in Sᶜ
     intro ij hij
     simp only [Finset.mem_univ, Finset.compl_filter, Finset.mem_filter, true_and_iff, Fin.val_succ,
-      Fin.coe_castLt] at hij⊢
+      Fin.coe_castLT] at hij⊢
     linarith
   · -- identification of corresponding terms in both sums
     rintro ⟨i, j⟩ hij
     simp only [term, d_l, d_r, φ, comp_zsmul, zsmul_comp, ← neg_smul, ← mul_smul, pow_add, neg_mul,
-      mul_one, Fin.coe_castLt, Fin.val_succ, pow_one, mul_neg, neg_neg]
+      mul_one, Fin.coe_castLT, Fin.val_succ, pow_one, mul_neg, neg_neg]
     let jj : Fin (n + 2) := (φ (i, j) hij).1
     have ineq : jj ≤ i := by
       rw [← Fin.val_fin_le]
       simpa using hij
-    rw [CategoryTheory.SimplicialObject.δ_comp_δ X ineq, Fin.castSucc_cast_lt, mul_comm]
+    rw [CategoryTheory.SimplicialObject.δ_comp_δ X ineq, Fin.castSucc_castLT, mul_comm]
   · -- φ : S → Sᶜ is injective
     rintro ⟨i, j⟩ ⟨i', j'⟩ hij hij' h
     rw [Prod.mk.inj_iff]
     refine' ⟨by simpa using congr_arg Prod.snd h, _⟩
     have h1 := congr_arg Fin.castSucc (congr_arg Prod.fst h)
-    simpa [Fin.castSucc_cast_lt] using h1
+    simpa [Fin.castSucc_castLT] using h1
   · -- φ : S → Sᶜ is surjective
     rintro ⟨i', j'⟩ hij'
     simp only [true_and_iff, Finset.mem_univ, Finset.compl_filter, not_le, Finset.mem_filter] at
@@ -130,7 +130,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 :=
     ·
       simpa only [true_and_iff, Finset.mem_univ, Fin.coe_castSucc, Fin.coe_pred,
         Finset.mem_filter] using Nat.le_pred_of_lt hij'
-    · simp only [Prod.mk.inj_iff, Fin.succ_pred, Fin.cast_lt_castSucc]
+    · simp only [Prod.mk.inj_iff, Fin.succ_pred, Fin.castLT_castSucc]
       constructor <;> rfl
 #align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squared
 
Diff
@@ -145,7 +145,7 @@ def obj : ChainComplex C ℕ :=
 #align algebraic_topology.alternating_face_map_complex.obj AlgebraicTopology.AlternatingFaceMapComplex.obj
 
 @[simp]
-theorem obj_x (X : SimplicialObject C) (n : ℕ) : (AlternatingFaceMapComplex.obj X).x n = X _[n] :=
+theorem obj_x (X : SimplicialObject C) (n : ℕ) : (AlternatingFaceMapComplex.obj X).pt n = X _[n] :=
   rfl
 #align algebraic_topology.alternating_face_map_complex.obj_X AlgebraicTopology.AlternatingFaceMapComplex.obj_x
 
@@ -190,7 +190,7 @@ variable {C}
 
 @[simp]
 theorem alternatingFaceMapComplex_obj_x (X : SimplicialObject C) (n : ℕ) :
-    ((alternatingFaceMapComplex C).obj X).x n = X _[n] :=
+    ((alternatingFaceMapComplex C).obj X).pt n = X _[n] :=
   rfl
 #align algebraic_topology.alternating_face_map_complex_obj_X AlgebraicTopology.alternatingFaceMapComplex_obj_x
 
@@ -230,7 +230,7 @@ theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D]
 
 theorem karoubi_alternating_face_map_complex_d (P : Karoubi (SimplicialObject C)) (n : ℕ) :
     ((AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)).d (n + 1) n).f =
-      P.p.app (op [n + 1]) ≫ (AlternatingFaceMapComplex.obj P.x).d (n + 1) n :=
+      P.p.app (op [n + 1]) ≫ (AlternatingFaceMapComplex.obj P.pt).d (n + 1) n :=
   by
   dsimp
   simpa only [alternating_face_map_complex.obj_d_eq, karoubi.sum_hom, preadditive.comp_sum,

Changes in mathlib4

mathlib3
mathlib4
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -57,9 +57,7 @@ namespace AlternatingFaceMapComplex
 
 
 variable {C : Type*} [Category C] [Preadditive C]
-
 variable (X : SimplicialObject C)
-
 variable (Y : SimplicialObject C)
 
 /-- The differential on the alternating face map complex is the alternate
chore: prepare Lean version bump with explicit simp (#10999)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -87,8 +87,8 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
   apply Finset.sum_bij φ
   · -- φ(S) is contained in Sᶜ
     intro ij hij
-    simp only [Finset.mem_univ, Finset.compl_filter, Finset.mem_filter, true_and_iff, Fin.val_succ,
-      Fin.coe_castLT] at hij ⊢
+    simp only [S, Finset.mem_univ, Finset.compl_filter, Finset.mem_filter, true_and_iff,
+      Fin.val_succ, Fin.coe_castLT] at hij ⊢
     linarith
   · -- φ : S → Sᶜ is injective
     rintro ⟨i, j⟩ hij ⟨i', j'⟩ hij' h
@@ -97,14 +97,14 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
       by simpa [Fin.castSucc_castLT] using congr_arg Fin.castSucc (congr_arg Prod.fst h)⟩
   · -- φ : S → Sᶜ is surjective
     rintro ⟨i', j'⟩ hij'
-    simp only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.compl_filter,
+    simp only [S, Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.compl_filter,
       not_le, Finset.mem_filter, true_and] at hij'
     refine' ⟨(j'.pred <| _, Fin.castSucc i'), _, _⟩
     · rintro rfl
       simp only [Fin.val_zero, not_lt_zero'] at hij'
-    · simpa only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.mem_filter,
+    · simpa only [S, Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.mem_filter,
         Fin.coe_castSucc, Fin.coe_pred, true_and] using Nat.le_sub_one_of_lt hij'
-    · simp only [Fin.castLT_castSucc, Fin.succ_pred]
+    · simp only [φ, Fin.castLT_castSucc, Fin.succ_pred]
   · -- identification of corresponding terms in both sums
     rintro ⟨i, j⟩ hij
     dsimp
@@ -113,7 +113,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
     · simp only [Fin.val_succ, pow_add, pow_one, mul_neg, neg_neg, mul_one]
       apply mul_comm
     · rw [CategoryTheory.SimplicialObject.δ_comp_δ'']
-      simpa using hij
+      simpa [S] using hij
 #align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squared
 
 /-!
feat: Better lemmas for transferring finite sums along equivalences (#9237)

Lemmas around this were a mess, throth in terms of names, statement and location. This PR standardises everything to be in Algebra.BigOperators.Basic and changes the lemmas to take in InjOn and SurjOn assumptions where possible (and where impossible make sure the hypotheses are taken in the correct order) and moves the equality of functions hypothesis last.

Also add a few lemmas that help fix downstream uses by golfing.

From LeanAPAP and LeanCamCombi

Diff
@@ -90,17 +90,8 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
     simp only [Finset.mem_univ, Finset.compl_filter, Finset.mem_filter, true_and_iff, Fin.val_succ,
       Fin.coe_castLT] at hij ⊢
     linarith
-  · -- identification of corresponding terms in both sums
-    rintro ⟨i, j⟩ hij
-    dsimp
-    simp only [zsmul_comp, comp_zsmul, smul_smul, ← neg_smul]
-    congr 1
-    · simp only [Fin.val_succ, pow_add, pow_one, mul_neg, neg_neg, mul_one]
-      apply mul_comm
-    · rw [CategoryTheory.SimplicialObject.δ_comp_δ'']
-      simpa using hij
   · -- φ : S → Sᶜ is injective
-    rintro ⟨i, j⟩ ⟨i', j'⟩ hij hij' h
+    rintro ⟨i, j⟩ hij ⟨i', j'⟩ hij' h
     rw [Prod.mk.inj_iff]
     exact ⟨by simpa using congr_arg Prod.snd h,
       by simpa [Fin.castSucc_castLT] using congr_arg Fin.castSucc (congr_arg Prod.fst h)⟩
@@ -114,6 +105,15 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
     · simpa only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.mem_filter,
         Fin.coe_castSucc, Fin.coe_pred, true_and] using Nat.le_sub_one_of_lt hij'
     · simp only [Fin.castLT_castSucc, Fin.succ_pred]
+  · -- identification of corresponding terms in both sums
+    rintro ⟨i, j⟩ hij
+    dsimp
+    simp only [zsmul_comp, comp_zsmul, smul_smul, ← neg_smul]
+    congr 1
+    · simp only [Fin.val_succ, pow_add, pow_one, mul_neg, neg_neg, mul_one]
+      apply mul_comm
+    · rw [CategoryTheory.SimplicialObject.δ_comp_δ'']
+      simpa using hij
 #align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squared
 
 /-!
refactor(Algebra/Homology): remove single₀ (#8208)

This PR removes the special definitions of single₀ for chain and cochain complexes, so as to avoid duplication of code with HomologicalComplex.single which is the functor constructing the complex that is supported by a single arbitrary degree. single₀ was supposed to have better definitional properties, but it turns out that in Lean4, it is no longer true (at least for the action of this functor on objects). The computation of the homology of these single complexes is generalized for HomologicalComplex.single using the new homology API: this result is moved to a separate file Algebra.Homology.SingleHomology.

Diff
@@ -224,7 +224,6 @@ namespace AlternatingFaceMapComplex
 
 /-- The natural transformation which gives the augmentation of the alternating face map
 complex attached to an augmented simplicial object. -/
---@[simps]
 def ε [Limits.HasZeroObject C] :
     SimplicialObject.Augmented.drop ⋙ AlgebraicTopology.alternatingFaceMapComplex C ⟶
       SimplicialObject.Augmented.point ⋙ ChainComplex.single₀ C where
@@ -236,9 +235,24 @@ def ε [Limits.HasZeroObject C] :
       pow_zero, one_smul, Fin.val_one, pow_one, neg_smul, one_smul, add_comp,
       neg_comp, SimplicialObject.δ_naturality, SimplicialObject.δ_naturality]
     apply add_right_neg
-  naturality _ _ f := ChainComplex.to_single₀_ext _ _ (by exact congr_app f.w _)
+  naturality X Y f := by
+    apply HomologicalComplex.to_single_hom_ext
+    dsimp
+    erw [ChainComplex.toSingle₀Equiv_symm_apply_f_zero,
+      ChainComplex.toSingle₀Equiv_symm_apply_f_zero]
+    simp only [ChainComplex.single₀_map_f_zero]
+    exact congr_app f.w _
 #align algebraic_topology.alternating_face_map_complex.ε AlgebraicTopology.AlternatingFaceMapComplex.ε
 
+@[simp]
+lemma ε_app_f_zero [Limits.HasZeroObject C] (X : SimplicialObject.Augmented C) :
+    (ε.app X).f 0 = X.hom.app (op [0]) :=
+  ChainComplex.toSingle₀Equiv_symm_apply_f_zero _ _
+
+@[simp]
+lemma ε_app_f_succ [Limits.HasZeroObject C] (X : SimplicialObject.Augmented C) (n : ℕ) :
+    (ε.app X).f (n + 1) = 0 := rfl
+
 end AlternatingFaceMapComplex
 
 /-!
fix: patch for std4#195 (more succ/pred lemmas for Nat) (#6203)
Diff
@@ -112,7 +112,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
     · rintro rfl
       simp only [Fin.val_zero, not_lt_zero'] at hij'
     · simpa only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.mem_filter,
-        Fin.coe_castSucc, Fin.coe_pred, true_and] using Nat.le_pred_of_lt hij'
+        Fin.coe_castSucc, Fin.coe_pred, true_and] using Nat.le_sub_one_of_lt hij'
     · simp only [Fin.castLT_castSucc, Fin.succ_pred]
 #align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squared
 
style: fix wrapping of where (#7149)
Diff
@@ -285,8 +285,8 @@ variable (A)
 /-- The inclusion map of the Moore complex in the alternating face map complex,
 as a natural transformation -/
 @[simps]
-def inclusionOfMooreComplex : normalizedMooreComplex A ⟶ alternatingFaceMapComplex A
-    where app := inclusionOfMooreComplexMap
+def inclusionOfMooreComplex : normalizedMooreComplex A ⟶ alternatingFaceMapComplex A where
+  app := inclusionOfMooreComplexMap
 set_option linter.uppercaseLean3 false in
 #align algebraic_topology.inclusion_of_Moore_complex AlgebraicTopology.inclusionOfMooreComplex
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -56,7 +56,7 @@ namespace AlternatingFaceMapComplex
 -/
 
 
-variable {C : Type _} [Category C] [Preadditive C]
+variable {C : Type*} [Category C] [Preadditive C]
 
 variable (X : SimplicialObject C)
 
@@ -159,7 +159,7 @@ theorem map_f (f : X ⟶ Y) (n : ℕ) : (map f).f n = f.app (op [n]) :=
 
 end AlternatingFaceMapComplex
 
-variable (C : Type _) [Category C] [Preadditive C]
+variable (C : Type*) [Category C] [Preadditive C]
 
 /-- The alternating face map complex, as a functor -/
 def alternatingFaceMapComplex : SimplicialObject C ⥤ ChainComplex C ℕ where
@@ -189,7 +189,7 @@ theorem alternatingFaceMapComplex_map_f {X Y : SimplicialObject C} (f : X ⟶ Y)
   rfl
 #align algebraic_topology.alternating_face_map_complex_map_f AlgebraicTopology.alternatingFaceMapComplex_map_f
 
-theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D] (F : C ⥤ D)
+theorem map_alternatingFaceMapComplex {D : Type*} [Category D] [Preadditive D] (F : C ⥤ D)
     [F.Additive] :
     alternatingFaceMapComplex C ⋙ F.mapHomologicalComplex _ =
       (SimplicialObject.whiskering C D).obj F ⋙ alternatingFaceMapComplex D := by
@@ -245,7 +245,7 @@ end AlternatingFaceMapComplex
 ## Construction of the natural inclusion of the normalized Moore complex
 -/
 
-variable {A : Type _} [Category A] [Abelian A]
+variable {A : Type*} [Category A] [Abelian A]
 
 /-- The inclusion map of the Moore complex in the alternating face map complex -/
 def inclusionOfMooreComplexMap (X : SimplicialObject A) :
chore: bump to nightly-2023-07-15 (#5992)

Various adaptations to changes when Fin API was moved to Std. One notable change is that many lemmas are now stated in terms of i ≠ 0 (for i : Fin n) rather then i.1 ≠ 0, and as a consequence many Fin.vne_of_ne applications have been added or removed, mostly removed.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Wojciech Nawrocki <wjnawrocki@protonmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -108,7 +108,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
     rintro ⟨i', j'⟩ hij'
     simp only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.compl_filter,
       not_le, Finset.mem_filter, true_and] at hij'
-    refine' ⟨(j'.pred <| Fin.vne_of_ne (j := 0) _, Fin.castSucc i'), _, _⟩
+    refine' ⟨(j'.pred <| _, Fin.castSucc i'), _, _⟩
     · rintro rfl
       simp only [Fin.val_zero, not_lt_zero'] at hij'
     · simpa only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.mem_filter,
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2021 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou, Adam Topaz, Johan Commelin
-
-! This file was ported from Lean 3 source module algebraic_topology.alternating_face_map_complex
-! leanprover-community/mathlib commit 88bca0ce5d22ebfd9e73e682e51d60ea13b48347
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Homology.Additive
 import Mathlib.AlgebraicTopology.MooreComplex
@@ -14,6 +9,8 @@ import Mathlib.Algebra.BigOperators.Fin
 import Mathlib.CategoryTheory.Preadditive.Opposite
 import Mathlib.CategoryTheory.Idempotents.FunctorCategories
 
+#align_import algebraic_topology.alternating_face_map_complex from "leanprover-community/mathlib"@"88bca0ce5d22ebfd9e73e682e51d60ea13b48347"
+
 /-!
 
 # The alternating face map complex of a simplicial object in a preadditive category
chore: bump to nightly-2023-07-01 (#5409)

Open in Gitpod

Co-authored-by: Komyyy <pol_tta@outlook.jp> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -106,17 +106,17 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
     rintro ⟨i, j⟩ ⟨i', j'⟩ hij hij' h
     rw [Prod.mk.inj_iff]
     exact ⟨by simpa using congr_arg Prod.snd h,
-      by simpa [Fin.castSuccEmb_castLT] using congr_arg Fin.castSuccEmb (congr_arg Prod.fst h)⟩
+      by simpa [Fin.castSucc_castLT] using congr_arg Fin.castSucc (congr_arg Prod.fst h)⟩
   · -- φ : S → Sᶜ is surjective
     rintro ⟨i', j'⟩ hij'
     simp only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.compl_filter,
       not_le, Finset.mem_filter, true_and] at hij'
-    refine' ⟨(j'.pred _, Fin.castSuccEmb i'), _, _⟩
+    refine' ⟨(j'.pred <| Fin.vne_of_ne (j := 0) _, Fin.castSucc i'), _, _⟩
     · rintro rfl
       simp only [Fin.val_zero, not_lt_zero'] at hij'
     · simpa only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.mem_filter,
-        Fin.coe_castSuccEmb, Fin.coe_pred, true_and] using Nat.le_pred_of_lt hij'
-    · simp only [Fin.castLT_castSuccEmb, Fin.succ_pred]
+        Fin.coe_castSucc, Fin.coe_pred, true_and] using Nat.le_pred_of_lt hij'
+    · simp only [Fin.castLT_castSucc, Fin.succ_pred]
 #align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squared
 
 /-!
chore: rename Fin.castSucc to Fin.castSuccEmb (#5729)

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -106,17 +106,17 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
     rintro ⟨i, j⟩ ⟨i', j'⟩ hij hij' h
     rw [Prod.mk.inj_iff]
     exact ⟨by simpa using congr_arg Prod.snd h,
-      by simpa [Fin.castSucc_castLT] using congr_arg Fin.castSucc (congr_arg Prod.fst h)⟩
+      by simpa [Fin.castSuccEmb_castLT] using congr_arg Fin.castSuccEmb (congr_arg Prod.fst h)⟩
   · -- φ : S → Sᶜ is surjective
     rintro ⟨i', j'⟩ hij'
     simp only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.compl_filter,
       not_le, Finset.mem_filter, true_and] at hij'
-    refine' ⟨(j'.pred _, Fin.castSucc i'), _, _⟩
+    refine' ⟨(j'.pred _, Fin.castSuccEmb i'), _, _⟩
     · rintro rfl
       simp only [Fin.val_zero, not_lt_zero'] at hij'
     · simpa only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.mem_filter,
-        Fin.coe_castSucc, Fin.coe_pred, true_and] using Nat.le_pred_of_lt hij'
-    · simp only [Fin.castLT_castSucc, Fin.succ_pred]
+        Fin.coe_castSuccEmb, Fin.coe_pred, true_and] using Nat.le_pred_of_lt hij'
+    · simp only [Fin.castLT_castSuccEmb, Fin.succ_pred]
 #align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squared
 
 /-!
chore: fix focusing dots (#5708)

This PR is the result of running

find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;

which firstly replaces . focusing dots with · and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.

Diff
@@ -98,9 +98,9 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
     dsimp
     simp only [zsmul_comp, comp_zsmul, smul_smul, ← neg_smul]
     congr 1
-    . simp only [Fin.val_succ, pow_add, pow_one, mul_neg, neg_neg, mul_one]
+    · simp only [Fin.val_succ, pow_add, pow_one, mul_neg, neg_neg, mul_one]
       apply mul_comm
-    . rw [CategoryTheory.SimplicialObject.δ_comp_δ'']
+    · rw [CategoryTheory.SimplicialObject.δ_comp_δ'']
       simpa using hij
   · -- φ : S → Sᶜ is injective
     rintro ⟨i, j⟩ ⟨i', j'⟩ hij hij' h
@@ -112,11 +112,11 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
     simp only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.compl_filter,
       not_le, Finset.mem_filter, true_and] at hij'
     refine' ⟨(j'.pred _, Fin.castSucc i'), _, _⟩
-    . rintro rfl
+    · rintro rfl
       simp only [Fin.val_zero, not_lt_zero'] at hij'
-    . simpa only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.mem_filter,
+    · simpa only [Finset.mem_univ, forall_true_left, Prod.forall, ge_iff_le, Finset.mem_filter,
         Fin.coe_castSucc, Fin.coe_pred, true_and] using Nat.le_pred_of_lt hij'
-    . simp only [Fin.castLT_castSucc, Fin.succ_pred]
+    · simp only [Fin.castLT_castSucc, Fin.succ_pred]
 #align algebraic_topology.alternating_face_map_complex.d_squared AlgebraicTopology.AlternatingFaceMapComplex.d_squared
 
 /-!
@@ -264,7 +264,7 @@ def inclusionOfMooreComplexMap (X : SimplicialObject A) :
   simp only [AlternatingFaceMapComplex.objD, comp_sum]
   rw [Fin.sum_univ_succ, Fintype.sum_eq_zero]
   swap
-  . intro j
+  · intro j
     rw [NormalizedMooreComplex.objX, comp_zsmul,
       ← factorThru_arrow _ _ (finset_inf_arrow_factors Finset.univ _ _ (Finset.mem_univ j)),
       Category.assoc, kernelSubobject_arrow_comp, comp_zero, smul_zero]
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -78,7 +78,7 @@ theorem d_squared (n : ℕ) : objD X (n + 1) ≫ objD X n = 0 := by
   -- we start by expanding d ≫ d as a double sum
   dsimp
   simp only [comp_sum, sum_comp, ← Finset.sum_product']
-  -- then, we decompose the index set P into a subet S and its complement Sᶜ
+  -- then, we decompose the index set P into a subset S and its complement Sᶜ
   let P := Fin (n + 2) × Fin (n + 3)
   let S := Finset.univ.filter fun ij : P => (ij.2 : ℕ) ≤ (ij.1 : ℕ)
   erw [← Finset.sum_add_sum_compl S, ← eq_neg_iff_add_eq_zero, ← Finset.sum_neg_distrib]
feat: port AlgebraicTopology.DoldKan.PInfty (#3539)

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -214,14 +214,14 @@ theorem map_alternatingFaceMapComplex {D : Type _} [Category D] [Preadditive D]
       rfl
 #align algebraic_topology.map_alternating_face_map_complex AlgebraicTopology.map_alternatingFaceMapComplex
 
-theorem karoubi_alternating_face_map_complex_d (P : Karoubi (SimplicialObject C)) (n : ℕ) :
+theorem karoubi_alternatingFaceMapComplex_d (P : Karoubi (SimplicialObject C)) (n : ℕ) :
     ((AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)).d (n + 1) n).f =
       P.p.app (op [n + 1]) ≫ (AlternatingFaceMapComplex.obj P.X).d (n + 1) n := by
   dsimp
   simp only [AlternatingFaceMapComplex.obj_d_eq, Karoubi.sum_hom, Preadditive.comp_sum,
     Karoubi.zsmul_hom, Preadditive.comp_zsmul]
   rfl
-#align algebraic_topology.karoubi_alternating_face_map_complex_d AlgebraicTopology.karoubi_alternating_face_map_complex_d
+#align algebraic_topology.karoubi_alternating_face_map_complex_d AlgebraicTopology.karoubi_alternatingFaceMapComplex_d
 
 namespace AlternatingFaceMapComplex
 
feat: port AlgebraicTopology.AlternatingFaceMapComplex (#3519)

Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr>

Dependencies 8 + 515

516 files ported (98.5%)
198268 lines ported (98.5%)
Show graph

The unported dependencies are