algebraic_topology.cech_nerveMathlib.AlgebraicTopology.CechNerve

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -6,7 +6,7 @@ Authors: Adam Topaz
 import AlgebraicTopology.SimplicialObject
 import CategoryTheory.Limits.Shapes.WidePullbacks
 import CategoryTheory.Limits.Shapes.FiniteProducts
-import CategoryTheory.Arrow
+import CategoryTheory.Comma.Arrow
 
 #align_import algebraic_topology.cech_nerve from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
 
Diff
@@ -149,7 +149,7 @@ def equivalenceRightToLeft (X : SimplicialObject.Augmented C) (F : Arrow C)
   right := G.right
   w' := by
     have := G.w
-    apply_fun fun e => e.app (Opposite.op <| SimplexCategory.mk 0) at this 
+    apply_fun fun e => e.app (Opposite.op <| SimplexCategory.mk 0) at this
     simpa using this
 #align category_theory.simplicial_object.equivalence_right_to_left CategoryTheory.SimplicialObject.equivalenceRightToLeft
 -/
@@ -202,7 +202,7 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
       rw [← op_id]
       congr 1
       ext ⟨a, ha⟩
-      change a < 1 at ha 
+      change a < 1 at ha
       change 0 = a
       linarith
     · rfl
@@ -215,8 +215,8 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
       rfl
     · erw [wide_pullback.lift_base]
       have := A.w
-      apply_fun fun e => e.app x at this 
-      rw [nat_trans.comp_app] at this 
+      apply_fun fun e => e.app x at this
+      rw [nat_trans.comp_app] at this
       erw [this]
       rfl
     · rfl
@@ -343,7 +343,7 @@ def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
   right := (WidePushout.ι (fun i => F.Hom) 0 ≫ G.right.app (SimplexCategory.mk 0) : _)
   w' := by
     have := G.w
-    apply_fun fun e => e.app (SimplexCategory.mk 0) at this 
+    apply_fun fun e => e.app (SimplexCategory.mk 0) at this
     simpa only [CategoryTheory.Functor.id_map, augmented.to_arrow_obj_hom,
       wide_pushout.arrow_ι_assoc fun i => F.hom]
 #align category_theory.cosimplicial_object.equivalence_left_to_right CategoryTheory.CosimplicialObject.equivalenceLeftToRight
@@ -365,7 +365,7 @@ def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
             rw [← arrow.w_assoc G]
             have t := X.hom.naturality (x.const j)
             dsimp at t ⊢
-            simp only [category.id_comp] at t 
+            simp only [category.id_comp] at t
             rw [← t])
       naturality' := by
         intro x y f
@@ -401,8 +401,8 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
       rfl
     · erw [wide_pushout.head_desc]
       have := A.w
-      apply_fun fun e => e.app x at this 
-      rw [nat_trans.comp_app] at this 
+      apply_fun fun e => e.app x at this
+      rw [nat_trans.comp_app] at this
       erw [this]
       rfl
   right_inv := by
@@ -415,7 +415,7 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
       congr 1
       convert X.right.map_id _
       ext ⟨a, ha⟩
-      change a < 1 at ha 
+      change a < 1 at ha
       change 0 = a
       linarith
 #align category_theory.cosimplicial_object.cech_conerve_equiv CategoryTheory.CosimplicialObject.cechConerveEquiv
Diff
@@ -3,10 +3,10 @@ Copyright (c) 2021 Adam Topaz. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz
 -/
-import Mathbin.AlgebraicTopology.SimplicialObject
-import Mathbin.CategoryTheory.Limits.Shapes.WidePullbacks
-import Mathbin.CategoryTheory.Limits.Shapes.FiniteProducts
-import Mathbin.CategoryTheory.Arrow
+import AlgebraicTopology.SimplicialObject
+import CategoryTheory.Limits.Shapes.WidePullbacks
+import CategoryTheory.Limits.Shapes.FiniteProducts
+import CategoryTheory.Arrow
 
 #align_import algebraic_topology.cech_nerve from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
 
Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2021 Adam Topaz. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz
-
-! This file was ported from Lean 3 source module algebraic_topology.cech_nerve
-! leanprover-community/mathlib commit 86d1873c01a723aba6788f0b9051ae3d23b4c1c3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.AlgebraicTopology.SimplicialObject
 import Mathbin.CategoryTheory.Limits.Shapes.WidePullbacks
 import Mathbin.CategoryTheory.Limits.Shapes.FiniteProducts
 import Mathbin.CategoryTheory.Arrow
 
+#align_import algebraic_topology.cech_nerve from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
+
 /-!
 
 # The Čech Nerve
Diff
@@ -211,7 +211,7 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
     · rfl
   right_inv := by
     intro A
-    ext (_⟨j⟩)
+    ext _ ⟨j⟩
     · dsimp
       simp only [arrow.cech_nerve_map, wide_pullback.lift_π, nat_trans.naturality_assoc]
       erw [wide_pullback.lift_π]
@@ -396,7 +396,7 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
   left_inv := by
     intro A
     dsimp
-    ext _; · rfl; ext (_⟨⟩)
+    ext _; · rfl; ext _ ⟨⟩
     -- A bug in the `ext` tactic?
     · dsimp
       simp only [arrow.cech_conerve_map, wide_pushout.ι_desc, category.assoc, ←
Diff
@@ -142,6 +142,7 @@ def augmentedCechNerve : Arrow C ⥤ SimplicialObject.Augmented C
 #align category_theory.simplicial_object.augmented_cech_nerve CategoryTheory.SimplicialObject.augmentedCechNerve
 -/
 
+#print CategoryTheory.SimplicialObject.equivalenceRightToLeft /-
 /-- A helper function used in defining the Čech adjunction. -/
 @[simps]
 def equivalenceRightToLeft (X : SimplicialObject.Augmented C) (F : Arrow C)
@@ -154,7 +155,9 @@ def equivalenceRightToLeft (X : SimplicialObject.Augmented C) (F : Arrow C)
     apply_fun fun e => e.app (Opposite.op <| SimplexCategory.mk 0) at this 
     simpa using this
 #align category_theory.simplicial_object.equivalence_right_to_left CategoryTheory.SimplicialObject.equivalenceRightToLeft
+-/
 
+#print CategoryTheory.SimplicialObject.equivalenceLeftToRight /-
 /-- A helper function used in defining the Čech adjunction. -/
 @[simps]
 def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
@@ -180,7 +183,9 @@ def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
   right := G.right
   w' := by ext; dsimp; simp
 #align category_theory.simplicial_object.equivalence_left_to_right CategoryTheory.SimplicialObject.equivalenceLeftToRight
+-/
 
+#print CategoryTheory.SimplicialObject.cechNerveEquiv /-
 /-- A helper function used in defining the Čech adjunction. -/
 @[simps]
 def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
@@ -219,6 +224,7 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
       rfl
     · rfl
 #align category_theory.simplicial_object.cech_nerve_equiv CategoryTheory.SimplicialObject.cechNerveEquiv
+-/
 
 #print CategoryTheory.SimplicialObject.cechNerveAdjunction /-
 /-- The augmented Čech nerve construction is right adjoint to the `to_arrow` functor. -/
@@ -330,6 +336,7 @@ def augmentedCechConerve : Arrow C ⥤ CosimplicialObject.Augmented C
 #align category_theory.cosimplicial_object.augmented_cech_conerve CategoryTheory.CosimplicialObject.augmentedCechConerve
 -/
 
+#print CategoryTheory.CosimplicialObject.equivalenceLeftToRight /-
 /-- A helper function used in defining the Čech conerve adjunction. -/
 @[simps]
 def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
@@ -343,7 +350,9 @@ def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
     simpa only [CategoryTheory.Functor.id_map, augmented.to_arrow_obj_hom,
       wide_pushout.arrow_ι_assoc fun i => F.hom]
 #align category_theory.cosimplicial_object.equivalence_left_to_right CategoryTheory.CosimplicialObject.equivalenceLeftToRight
+-/
 
+#print CategoryTheory.CosimplicialObject.equivalenceRightToLeft /-
 /-- A helper function used in defining the Čech conerve adjunction. -/
 @[simps]
 def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
@@ -374,7 +383,9 @@ def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
           erw [category.id_comp] }
   w' := by ext; simp
 #align category_theory.cosimplicial_object.equivalence_right_to_left CategoryTheory.CosimplicialObject.equivalenceRightToLeft
+-/
 
+#print CategoryTheory.CosimplicialObject.cechConerveEquiv /-
 /-- A helper function used in defining the Čech conerve adjunction. -/
 @[simps]
 def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
@@ -411,6 +422,7 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
       change 0 = a
       linarith
 #align category_theory.cosimplicial_object.cech_conerve_equiv CategoryTheory.CosimplicialObject.cechConerveEquiv
+-/
 
 #print CategoryTheory.CosimplicialObject.cechConerveAdjunction /-
 /-- The augmented Čech conerve construction is left adjoint to the `to_arrow` functor. -/
@@ -456,12 +468,15 @@ def wideCospan (X : C) : WidePullbackShape ι ⥤ C :=
 #align category_theory.cech_nerve_terminal_from.wide_cospan CategoryTheory.CechNerveTerminalFrom.wideCospan
 -/
 
+#print CategoryTheory.CechNerveTerminalFrom.uniqueToWideCospanNone /-
 instance uniqueToWideCospanNone (X Y : C) : Unique (Y ⟶ (wideCospan ι X).obj none) := by
   unfold wide_cospan <;> dsimp <;> infer_instance
 #align category_theory.cech_nerve_terminal_from.unique_to_wide_cospan_none CategoryTheory.CechNerveTerminalFrom.uniqueToWideCospanNone
+-/
 
 variable [HasFiniteProducts C]
 
+#print CategoryTheory.CechNerveTerminalFrom.wideCospan.limitCone /-
 /-- The product `Xᶥ` is the vertex of a limit cone on `wide_cospan ι X`. -/
 def wideCospan.limitCone [Fintype ι] (X : C) : LimitCone (wideCospan ι X)
     where
@@ -489,6 +504,7 @@ def wideCospan.limitCone [Fintype ι] (X : C) : LimitCone (wideCospan ι X)
         ext
         rfl }
 #align category_theory.cech_nerve_terminal_from.wide_cospan.limit_cone CategoryTheory.CechNerveTerminalFrom.wideCospan.limitCone
+-/
 
 #print CategoryTheory.CechNerveTerminalFrom.hasWidePullback /-
 instance hasWidePullback [Finite ι] (X : C) :
Diff
@@ -151,7 +151,7 @@ def equivalenceRightToLeft (X : SimplicialObject.Augmented C) (F : Arrow C)
   right := G.right
   w' := by
     have := G.w
-    apply_fun fun e => e.app (Opposite.op <| SimplexCategory.mk 0)  at this 
+    apply_fun fun e => e.app (Opposite.op <| SimplexCategory.mk 0) at this 
     simpa using this
 #align category_theory.simplicial_object.equivalence_right_to_left CategoryTheory.SimplicialObject.equivalenceRightToLeft
 
@@ -213,7 +213,7 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
       rfl
     · erw [wide_pullback.lift_base]
       have := A.w
-      apply_fun fun e => e.app x  at this 
+      apply_fun fun e => e.app x at this 
       rw [nat_trans.comp_app] at this 
       erw [this]
       rfl
@@ -339,7 +339,7 @@ def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
   right := (WidePushout.ι (fun i => F.Hom) 0 ≫ G.right.app (SimplexCategory.mk 0) : _)
   w' := by
     have := G.w
-    apply_fun fun e => e.app (SimplexCategory.mk 0)  at this 
+    apply_fun fun e => e.app (SimplexCategory.mk 0) at this 
     simpa only [CategoryTheory.Functor.id_map, augmented.to_arrow_obj_hom,
       wide_pushout.arrow_ι_assoc fun i => F.hom]
 #align category_theory.cosimplicial_object.equivalence_left_to_right CategoryTheory.CosimplicialObject.equivalenceLeftToRight
@@ -393,7 +393,7 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
       rfl
     · erw [wide_pushout.head_desc]
       have := A.w
-      apply_fun fun e => e.app x  at this 
+      apply_fun fun e => e.app x at this 
       rw [nat_trans.comp_app] at this 
       erw [this]
       rfl
Diff
@@ -151,7 +151,7 @@ def equivalenceRightToLeft (X : SimplicialObject.Augmented C) (F : Arrow C)
   right := G.right
   w' := by
     have := G.w
-    apply_fun fun e => e.app (Opposite.op <| SimplexCategory.mk 0)  at this
+    apply_fun fun e => e.app (Opposite.op <| SimplexCategory.mk 0)  at this 
     simpa using this
 #align category_theory.simplicial_object.equivalence_right_to_left CategoryTheory.SimplicialObject.equivalenceRightToLeft
 
@@ -200,7 +200,7 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
       rw [← op_id]
       congr 1
       ext ⟨a, ha⟩
-      change a < 1 at ha
+      change a < 1 at ha 
       change 0 = a
       linarith
     · rfl
@@ -213,8 +213,8 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
       rfl
     · erw [wide_pullback.lift_base]
       have := A.w
-      apply_fun fun e => e.app x  at this
-      rw [nat_trans.comp_app] at this
+      apply_fun fun e => e.app x  at this 
+      rw [nat_trans.comp_app] at this 
       erw [this]
       rfl
     · rfl
@@ -339,7 +339,7 @@ def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
   right := (WidePushout.ι (fun i => F.Hom) 0 ≫ G.right.app (SimplexCategory.mk 0) : _)
   w' := by
     have := G.w
-    apply_fun fun e => e.app (SimplexCategory.mk 0)  at this
+    apply_fun fun e => e.app (SimplexCategory.mk 0)  at this 
     simpa only [CategoryTheory.Functor.id_map, augmented.to_arrow_obj_hom,
       wide_pushout.arrow_ι_assoc fun i => F.hom]
 #align category_theory.cosimplicial_object.equivalence_left_to_right CategoryTheory.CosimplicialObject.equivalenceLeftToRight
@@ -358,8 +358,8 @@ def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
             rintro j
             rw [← arrow.w_assoc G]
             have t := X.hom.naturality (x.const j)
-            dsimp at t⊢
-            simp only [category.id_comp] at t
+            dsimp at t ⊢
+            simp only [category.id_comp] at t 
             rw [← t])
       naturality' := by
         intro x y f
@@ -393,8 +393,8 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
       rfl
     · erw [wide_pushout.head_desc]
       have := A.w
-      apply_fun fun e => e.app x  at this
-      rw [nat_trans.comp_app] at this
+      apply_fun fun e => e.app x  at this 
+      rw [nat_trans.comp_app] at this 
       erw [this]
       rfl
   right_inv := by
@@ -407,7 +407,7 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
       congr 1
       convert X.right.map_id _
       ext ⟨a, ha⟩
-      change a < 1 at ha
+      change a < 1 at ha 
       change 0 = a
       linarith
 #align category_theory.cosimplicial_object.cech_conerve_equiv CategoryTheory.CosimplicialObject.cechConerveEquiv
Diff
@@ -142,12 +142,6 @@ def augmentedCechNerve : Arrow C ⥤ SimplicialObject.Augmented C
 #align category_theory.simplicial_object.augmented_cech_nerve CategoryTheory.SimplicialObject.augmentedCechNerve
 -/
 
-/- warning: category_theory.simplicial_object.equivalence_right_to_left -> CategoryTheory.SimplicialObject.equivalenceRightToLeft is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (CategoryTheory.SimplicialObject.equivalenceRightToLeft._proof_1.{u2, u1} C _inst_1 _inst_2 F))) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) (CategoryTheory.Functor.obj.{u1, u1, max (max u1 u2) u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X) F)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F))) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X) F)
-Case conversion may be inaccurate. Consider using '#align category_theory.simplicial_object.equivalence_right_to_left CategoryTheory.SimplicialObject.equivalenceRightToLeftₓ'. -/
 /-- A helper function used in defining the Čech adjunction. -/
 @[simps]
 def equivalenceRightToLeft (X : SimplicialObject.Augmented C) (F : Arrow C)
@@ -161,12 +155,6 @@ def equivalenceRightToLeft (X : SimplicialObject.Augmented C) (F : Arrow C)
     simpa using this
 #align category_theory.simplicial_object.equivalence_right_to_left CategoryTheory.SimplicialObject.equivalenceRightToLeft
 
-/- warning: category_theory.simplicial_object.equivalence_left_to_right -> CategoryTheory.SimplicialObject.equivalenceLeftToRight is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) (CategoryTheory.Functor.obj.{u1, u1, max (max u1 u2) u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X) F) -> (Quiver.Hom.{succ u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (CategoryTheory.SimplicialObject.equivalenceLeftToRight._proof_1.{u2, u1} C _inst_1 _inst_2 F)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X) F) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F)))
-Case conversion may be inaccurate. Consider using '#align category_theory.simplicial_object.equivalence_left_to_right CategoryTheory.SimplicialObject.equivalenceLeftToRightₓ'. -/
 /-- A helper function used in defining the Čech adjunction. -/
 @[simps]
 def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
@@ -193,12 +181,6 @@ def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
   w' := by ext; dsimp; simp
 #align category_theory.simplicial_object.equivalence_left_to_right CategoryTheory.SimplicialObject.equivalenceLeftToRight
 
-/- warning: category_theory.simplicial_object.cech_nerve_equiv -> CategoryTheory.SimplicialObject.cechNerveEquiv is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) (CategoryTheory.Functor.obj.{u1, u1, max (max u1 u2) u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X) F) (Quiver.Hom.{succ u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (CategoryTheory.SimplicialObject.cechNerveEquiv._proof_1.{u2, u1} C _inst_1 _inst_2 F)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X) F) (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F)))
-Case conversion may be inaccurate. Consider using '#align category_theory.simplicial_object.cech_nerve_equiv CategoryTheory.SimplicialObject.cechNerveEquivₓ'. -/
 /-- A helper function used in defining the Čech adjunction. -/
 @[simps]
 def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
@@ -348,12 +330,6 @@ def augmentedCechConerve : Arrow C ⥤ CosimplicialObject.Augmented C
 #align category_theory.cosimplicial_object.augmented_cech_conerve CategoryTheory.CosimplicialObject.augmentedCechConerve
 -/
 
-/- warning: category_theory.cosimplicial_object.equivalence_left_to_right -> CategoryTheory.CosimplicialObject.equivalenceLeftToRight is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (CategoryTheory.CosimplicialObject.equivalenceLeftToRight._proof_1.{u2, u1} C _inst_1 _inst_2 F)) X) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) F (CategoryTheory.Functor.obj.{u1, u1, max u1 u2, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F)) X) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) F (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X))
-Case conversion may be inaccurate. Consider using '#align category_theory.cosimplicial_object.equivalence_left_to_right CategoryTheory.CosimplicialObject.equivalenceLeftToRightₓ'. -/
 /-- A helper function used in defining the Čech conerve adjunction. -/
 @[simps]
 def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
@@ -368,12 +344,6 @@ def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
       wide_pushout.arrow_ι_assoc fun i => F.hom]
 #align category_theory.cosimplicial_object.equivalence_left_to_right CategoryTheory.CosimplicialObject.equivalenceLeftToRight
 
-/- warning: category_theory.cosimplicial_object.equivalence_right_to_left -> CategoryTheory.CosimplicialObject.equivalenceRightToLeft is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) F (CategoryTheory.Functor.obj.{u1, u1, max u1 u2, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X)) -> (Quiver.Hom.{succ u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (CategoryTheory.CosimplicialObject.equivalenceRightToLeft._proof_1.{u2, u1} C _inst_1 _inst_2 F)) X)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) F (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X)) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F)) X)
-Case conversion may be inaccurate. Consider using '#align category_theory.cosimplicial_object.equivalence_right_to_left CategoryTheory.CosimplicialObject.equivalenceRightToLeftₓ'. -/
 /-- A helper function used in defining the Čech conerve adjunction. -/
 @[simps]
 def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
@@ -405,12 +375,6 @@ def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
   w' := by ext; simp
 #align category_theory.cosimplicial_object.equivalence_right_to_left CategoryTheory.CosimplicialObject.equivalenceRightToLeft
 
-/- warning: category_theory.cosimplicial_object.cech_conerve_equiv -> CategoryTheory.CosimplicialObject.cechConerveEquiv is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (CategoryTheory.CosimplicialObject.cechConerveEquiv._proof_1.{u2, u1} C _inst_1 _inst_2 F)) X) (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) F (CategoryTheory.Functor.obj.{u1, u1, max u1 u2, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F)) X) (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) F (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X))
-Case conversion may be inaccurate. Consider using '#align category_theory.cosimplicial_object.cech_conerve_equiv CategoryTheory.CosimplicialObject.cechConerveEquivₓ'. -/
 /-- A helper function used in defining the Čech conerve adjunction. -/
 @[simps]
 def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
@@ -492,24 +456,12 @@ def wideCospan (X : C) : WidePullbackShape ι ⥤ C :=
 #align category_theory.cech_nerve_terminal_from.wide_cospan CategoryTheory.CechNerveTerminalFrom.wideCospan
 -/
 
-/- warning: category_theory.cech_nerve_terminal_from.unique_to_wide_cospan_none -> CategoryTheory.CechNerveTerminalFrom.uniqueToWideCospanNone is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Limits.HasTerminal.{u1, u2} C _inst_1] (ι : Type.{u3}) (X : C) (Y : C), Unique.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y (CategoryTheory.Functor.obj.{u3, u1, u3, u2} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Limits.WidePullbackShape.category.{u3} ι) C _inst_1 (CategoryTheory.CechNerveTerminalFrom.wideCospan.{u1, u2, u3} C _inst_1 _inst_2 ι X) (Option.none.{u3} ι)))
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Limits.HasTerminal.{u1, u2} C _inst_1] (ι : Type.{u3}) (X : C) (Y : C), Unique.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y (Prefunctor.obj.{succ u3, succ u1, u3, u2} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.CategoryStruct.toQuiver.{u3, u3} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Category.toCategoryStruct.{u3, u3} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Limits.WidePullbackShape.category.{u3} ι))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u3, u1, u3, u2} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Limits.WidePullbackShape.category.{u3} ι) C _inst_1 (CategoryTheory.CechNerveTerminalFrom.wideCospan.{u1, u2, u3} C _inst_1 _inst_2 ι X)) (Option.none.{u3} ι)))
-Case conversion may be inaccurate. Consider using '#align category_theory.cech_nerve_terminal_from.unique_to_wide_cospan_none CategoryTheory.CechNerveTerminalFrom.uniqueToWideCospanNoneₓ'. -/
 instance uniqueToWideCospanNone (X Y : C) : Unique (Y ⟶ (wideCospan ι X).obj none) := by
   unfold wide_cospan <;> dsimp <;> infer_instance
 #align category_theory.cech_nerve_terminal_from.unique_to_wide_cospan_none CategoryTheory.CechNerveTerminalFrom.uniqueToWideCospanNone
 
 variable [HasFiniteProducts C]
 
-/- warning: category_theory.cech_nerve_terminal_from.wide_cospan.limit_cone -> CategoryTheory.CechNerveTerminalFrom.wideCospan.limitCone is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Limits.HasTerminal.{u1, u2} C _inst_1] (ι : Type.{u3}) [_inst_3 : CategoryTheory.Limits.HasFiniteProducts.{u1, u2} C _inst_1] [_inst_4 : Fintype.{u3} ι] (X : C), CategoryTheory.Limits.LimitCone.{u3, u3, u1, u2} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Limits.WidePullbackShape.category.{u3} ι) C _inst_1 (CategoryTheory.CechNerveTerminalFrom.wideCospan.{u1, u2, u3} C _inst_1 _inst_2 ι X)
-but is expected to have type
-  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Limits.HasTerminal.{u1, u2} C _inst_1] (ι : Type.{u3}) [_inst_3 : CategoryTheory.Limits.HasFiniteProducts.{u1, u2} C _inst_1] [_inst_4 : Finite.{succ u3} ι] (X : C), CategoryTheory.Limits.LimitCone.{u3, u3, u1, u2} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Limits.WidePullbackShape.category.{u3} ι) C _inst_1 (CategoryTheory.CechNerveTerminalFrom.wideCospan.{u1, u2, u3} C _inst_1 _inst_2 ι X)
-Case conversion may be inaccurate. Consider using '#align category_theory.cech_nerve_terminal_from.wide_cospan.limit_cone CategoryTheory.CechNerveTerminalFrom.wideCospan.limitConeₓ'. -/
 /-- The product `Xᶥ` is the vertex of a limit cone on `wide_cospan ι X`. -/
 def wideCospan.limitCone [Fintype ι] (X : C) : LimitCone (wideCospan ι X)
     where
Diff
@@ -62,14 +62,8 @@ def cechNerve : SimplicialObject C
   map m n g :=
     WidePullback.lift (WidePullback.base _)
       (fun i => (WidePullback.π fun i => f.Hom) <| g.unop.toOrderHom i) fun j => by simp
-  map_id' x := by
-    ext ⟨⟩
-    · simpa
-    · simp
-  map_comp' x y z f g := by
-    ext ⟨⟩
-    · simpa
-    · simp
+  map_id' x := by ext ⟨⟩; · simpa; · simp
+  map_comp' x y z f g := by ext ⟨⟩; · simpa; · simp
 #align category_theory.arrow.cech_nerve CategoryTheory.Arrow.cechNerve
 -/
 
@@ -84,10 +78,7 @@ def mapCechNerve {f g : Arrow C}
   app n :=
     WidePullback.lift (WidePullback.base _ ≫ F.right) (fun i => WidePullback.π _ i ≫ F.left)
       fun j => by simp
-  naturality' x y f := by
-    ext ⟨⟩
-    · simp
-    · simp
+  naturality' x y f := by ext ⟨⟩; · simp; · simp
 #align category_theory.arrow.map_cech_nerve CategoryTheory.Arrow.mapCechNerve
 -/
 
@@ -100,9 +91,7 @@ def augmentedCechNerve : SimplicialObject.Augmented C
   right := f.right
   Hom :=
     { app := fun i => WidePullback.base _
-      naturality' := fun x y f => by
-        dsimp
-        simp }
+      naturality' := fun x y f => by dsimp; simp }
 #align category_theory.arrow.augmented_cech_nerve CategoryTheory.Arrow.augmentedCechNerve
 -/
 
@@ -116,9 +105,7 @@ def mapAugmentedCechNerve {f g : Arrow C}
     where
   left := mapCechNerve F
   right := F.right
-  w' := by
-    ext
-    simp
+  w' := by ext; simp
 #align category_theory.arrow.map_augmented_cech_nerve CategoryTheory.Arrow.mapAugmentedCechNerve
 -/
 
@@ -138,14 +125,8 @@ def cechNerve : Arrow C ⥤ SimplicialObject C
     where
   obj f := f.cechNerve
   map f g F := Arrow.mapCechNerve F
-  map_id' i := by
-    ext
-    · simp
-    · simp
-  map_comp' x y z f g := by
-    ext
-    · simp
-    · simp
+  map_id' i := by ext; · simp; · simp
+  map_comp' x y z f g := by ext; · simp; · simp
 #align category_theory.simplicial_object.cech_nerve CategoryTheory.SimplicialObject.cechNerve
 -/
 
@@ -156,16 +137,8 @@ def augmentedCechNerve : Arrow C ⥤ SimplicialObject.Augmented C
     where
   obj f := f.augmentedCechNerve
   map f g F := Arrow.mapAugmentedCechNerve F
-  map_id' x := by
-    ext
-    · simp
-    · simp
-    · rfl
-  map_comp' x y z f g := by
-    ext
-    · simp
-    · simp
-    · rfl
+  map_id' x := by ext; · simp; · simp; · rfl
+  map_comp' x y z f g := by ext; · simp; · simp; · rfl
 #align category_theory.simplicial_object.augmented_cech_nerve CategoryTheory.SimplicialObject.augmentedCechNerve
 -/
 
@@ -202,9 +175,7 @@ def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
   left :=
     { app := fun x =>
         Limits.WidePullback.lift (X.Hom.app _ ≫ G.right)
-          (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) fun i =>
-          by
-          dsimp
+          (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) fun i => by dsimp;
           erw [category.assoc, arrow.w, augmented.to_arrow_obj_hom, nat_trans.naturality_assoc,
             functor.const_obj_map, category.id_comp]
       naturality' := by
@@ -219,10 +190,7 @@ def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
             category.assoc]
           erw [category.id_comp] }
   right := G.right
-  w' := by
-    ext
-    dsimp
-    simp
+  w' := by ext; dsimp; simp
 #align category_theory.simplicial_object.equivalence_left_to_right CategoryTheory.SimplicialObject.equivalenceLeftToRight
 
 /- warning: category_theory.simplicial_object.cech_nerve_equiv -> CategoryTheory.SimplicialObject.cechNerveEquiv is a dubious translation:
@@ -275,17 +243,8 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
 abbrev cechNerveAdjunction : (Augmented.toArrow : _ ⥤ Arrow C) ⊣ augmentedCechNerve :=
   Adjunction.mkOfHomEquiv
     { homEquiv := cechNerveEquiv
-      homEquiv_naturality_left_symm := fun x y f g h =>
-        by
-        ext
-        · simp
-        · simp
-      homEquiv_naturality_right := fun x y f g h =>
-        by
-        ext
-        · simp
-        · simp
-        · rfl }
+      homEquiv_naturality_left_symm := fun x y f g h => by ext; · simp; · simp
+      homEquiv_naturality_right := fun x y f g h => by ext; · simp; · simp; · rfl }
 #align category_theory.simplicial_object.cech_nerve_adjunction CategoryTheory.SimplicialObject.cechNerveAdjunction
 -/
 
@@ -309,14 +268,8 @@ def cechConerve : CosimplicialObject C
     WidePushout.desc (WidePushout.head _)
       (fun i => (WidePushout.ι fun i => f.Hom) <| g.toOrderHom i) fun i => by
       rw [wide_pushout.arrow_ι fun i => f.hom]
-  map_id' x := by
-    ext ⟨⟩
-    · simpa
-    · simp
-  map_comp' x y z f g := by
-    ext ⟨⟩
-    · simpa
-    · simp
+  map_id' x := by ext ⟨⟩; · simpa; · simp
+  map_comp' x y z f g := by ext ⟨⟩; · simpa; · simp
 #align category_theory.arrow.cech_conerve CategoryTheory.Arrow.cechConerve
 -/
 
@@ -331,10 +284,7 @@ def mapCechConerve {f g : Arrow C}
   app n :=
     WidePushout.desc (F.left ≫ WidePushout.head _) (fun i => F.right ≫ WidePushout.ι _ i) fun i =>
       by rw [← arrow.w_assoc F, wide_pushout.arrow_ι fun i => g.hom]
-  naturality' x y f := by
-    ext
-    · simp
-    · simp
+  naturality' x y f := by ext; · simp; · simp
 #align category_theory.arrow.map_cech_conerve CategoryTheory.Arrow.mapCechConerve
 -/
 
@@ -347,9 +297,7 @@ def augmentedCechConerve : CosimplicialObject.Augmented C
   right := f.cechConerve
   Hom :=
     { app := fun i => WidePushout.head _
-      naturality' := fun x y f => by
-        dsimp
-        simp }
+      naturality' := fun x y f => by dsimp; simp }
 #align category_theory.arrow.augmented_cech_conerve CategoryTheory.Arrow.augmentedCechConerve
 -/
 
@@ -363,9 +311,7 @@ def mapAugmentedCechConerve {f g : Arrow C}
     where
   left := F.left
   right := mapCechConerve F
-  w' := by
-    ext
-    simp
+  w' := by ext; simp
 #align category_theory.arrow.map_augmented_cech_conerve CategoryTheory.Arrow.mapAugmentedCechConerve
 -/
 
@@ -385,16 +331,8 @@ def cechConerve : Arrow C ⥤ CosimplicialObject C
     where
   obj f := f.cechConerve
   map f g F := Arrow.mapCechConerve F
-  map_id' i := by
-    ext
-    · dsimp
-      simp
-    · dsimp
-      simp
-  map_comp' f g h F G := by
-    ext
-    · simp
-    · simp
+  map_id' i := by ext; · dsimp; simp; · dsimp; simp
+  map_comp' f g h F G := by ext; · simp; · simp
 #align category_theory.cosimplicial_object.cech_conerve CategoryTheory.CosimplicialObject.cechConerve
 -/
 
@@ -405,18 +343,8 @@ def augmentedCechConerve : Arrow C ⥤ CosimplicialObject.Augmented C
     where
   obj f := f.augmentedCechConerve
   map f g F := Arrow.mapAugmentedCechConerve F
-  map_id' f := by
-    ext
-    · rfl
-    · dsimp
-      simp
-    · dsimp
-      simp
-  map_comp' f g h F G := by
-    ext
-    · rfl
-    · simp
-    · simp
+  map_id' f := by ext; · rfl; · dsimp; simp; · dsimp; simp
+  map_comp' f g h F G := by ext; · rfl; · simp; · simp
 #align category_theory.cosimplicial_object.augmented_cech_conerve CategoryTheory.CosimplicialObject.augmentedCechConerve
 -/
 
@@ -474,9 +402,7 @@ def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
           simp only [functor.const_obj_map, ← nat_trans.naturality, wide_pushout.head_desc_assoc,
             wide_pushout.head_desc, category.assoc]
           erw [category.id_comp] }
-  w' := by
-    ext
-    simp
+  w' := by ext; simp
 #align category_theory.cosimplicial_object.equivalence_right_to_left CategoryTheory.CosimplicialObject.equivalenceRightToLeft
 
 /- warning: category_theory.cosimplicial_object.cech_conerve_equiv -> CategoryTheory.CosimplicialObject.cechConerveEquiv is a dubious translation:
@@ -527,17 +453,8 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
 abbrev cechConerveAdjunction : augmentedCechConerve ⊣ (Augmented.toArrow : _ ⥤ Arrow C) :=
   Adjunction.mkOfHomEquiv
     { homEquiv := cechConerveEquiv
-      homEquiv_naturality_left_symm := fun x y f g h =>
-        by
-        ext
-        · rfl
-        · simp
-        · simp
-      homEquiv_naturality_right := fun x y f g h =>
-        by
-        ext
-        · simp
-        · simp }
+      homEquiv_naturality_left_symm := fun x y f g h => by ext; · rfl; · simp; · simp
+      homEquiv_naturality_right := fun x y f g h => by ext; · simp; · simp }
 #align category_theory.cosimplicial_object.cech_conerve_adjunction CategoryTheory.CosimplicialObject.cechConerveAdjunction
 -/
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz
 
 ! This file was ported from Lean 3 source module algebraic_topology.cech_nerve
-! leanprover-community/mathlib commit 618ea3d5c99240cd7000d8376924906a148bf9ff
+! leanprover-community/mathlib commit 86d1873c01a723aba6788f0b9051ae3d23b4c1c3
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -17,6 +17,9 @@ import Mathbin.CategoryTheory.Arrow
 
 # The Čech Nerve
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 This file provides a definition of the Čech nerve associated to an arrow, provided
 the base category has the correct wide pullbacks.
 
Diff
@@ -50,6 +50,7 @@ variable (f : Arrow C)
 
 variable [∀ n : ℕ, HasWidePullback.{0} f.right (fun i : Fin (n + 1) => f.left) fun i => f.Hom]
 
+#print CategoryTheory.Arrow.cechNerve /-
 /-- The Čech nerve associated to an arrow. -/
 @[simps]
 def cechNerve : SimplicialObject C
@@ -67,7 +68,9 @@ def cechNerve : SimplicialObject C
     · simpa
     · simp
 #align category_theory.arrow.cech_nerve CategoryTheory.Arrow.cechNerve
+-/
 
+#print CategoryTheory.Arrow.mapCechNerve /-
 /-- The morphism between Čech nerves associated to a morphism of arrows. -/
 @[simps]
 def mapCechNerve {f g : Arrow C}
@@ -83,7 +86,9 @@ def mapCechNerve {f g : Arrow C}
     · simp
     · simp
 #align category_theory.arrow.map_cech_nerve CategoryTheory.Arrow.mapCechNerve
+-/
 
+#print CategoryTheory.Arrow.augmentedCechNerve /-
 /-- The augmented Čech nerve associated to an arrow. -/
 @[simps]
 def augmentedCechNerve : SimplicialObject.Augmented C
@@ -96,7 +101,9 @@ def augmentedCechNerve : SimplicialObject.Augmented C
         dsimp
         simp }
 #align category_theory.arrow.augmented_cech_nerve CategoryTheory.Arrow.augmentedCechNerve
+-/
 
+#print CategoryTheory.Arrow.mapAugmentedCechNerve /-
 /-- The morphism between augmented Čech nerve associated to a morphism of arrows. -/
 @[simps]
 def mapAugmentedCechNerve {f g : Arrow C}
@@ -110,6 +117,7 @@ def mapAugmentedCechNerve {f g : Arrow C}
     ext
     simp
 #align category_theory.arrow.map_augmented_cech_nerve CategoryTheory.Arrow.mapAugmentedCechNerve
+-/
 
 end CategoryTheory.Arrow
 
@@ -120,6 +128,7 @@ namespace SimplicialObject
 variable
   [∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun i : Fin (n + 1) => f.left) fun i => f.Hom]
 
+#print CategoryTheory.SimplicialObject.cechNerve /-
 /-- The Čech nerve construction, as a functor from `arrow C`. -/
 @[simps]
 def cechNerve : Arrow C ⥤ SimplicialObject C
@@ -135,7 +144,9 @@ def cechNerve : Arrow C ⥤ SimplicialObject C
     · simp
     · simp
 #align category_theory.simplicial_object.cech_nerve CategoryTheory.SimplicialObject.cechNerve
+-/
 
+#print CategoryTheory.SimplicialObject.augmentedCechNerve /-
 /-- The augmented Čech nerve construction, as a functor from `arrow C`. -/
 @[simps]
 def augmentedCechNerve : Arrow C ⥤ SimplicialObject.Augmented C
@@ -153,7 +164,14 @@ def augmentedCechNerve : Arrow C ⥤ SimplicialObject.Augmented C
     · simp
     · rfl
 #align category_theory.simplicial_object.augmented_cech_nerve CategoryTheory.SimplicialObject.augmentedCechNerve
+-/
 
+/- warning: category_theory.simplicial_object.equivalence_right_to_left -> CategoryTheory.SimplicialObject.equivalenceRightToLeft is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (CategoryTheory.SimplicialObject.equivalenceRightToLeft._proof_1.{u2, u1} C _inst_1 _inst_2 F))) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) (CategoryTheory.Functor.obj.{u1, u1, max (max u1 u2) u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X) F)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F))) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X) F)
+Case conversion may be inaccurate. Consider using '#align category_theory.simplicial_object.equivalence_right_to_left CategoryTheory.SimplicialObject.equivalenceRightToLeftₓ'. -/
 /-- A helper function used in defining the Čech adjunction. -/
 @[simps]
 def equivalenceRightToLeft (X : SimplicialObject.Augmented C) (F : Arrow C)
@@ -167,6 +185,12 @@ def equivalenceRightToLeft (X : SimplicialObject.Augmented C) (F : Arrow C)
     simpa using this
 #align category_theory.simplicial_object.equivalence_right_to_left CategoryTheory.SimplicialObject.equivalenceRightToLeft
 
+/- warning: category_theory.simplicial_object.equivalence_left_to_right -> CategoryTheory.SimplicialObject.equivalenceLeftToRight is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) (CategoryTheory.Functor.obj.{u1, u1, max (max u1 u2) u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X) F) -> (Quiver.Hom.{succ u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (CategoryTheory.SimplicialObject.equivalenceLeftToRight._proof_1.{u2, u1} C _inst_1 _inst_2 F)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X) F) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F)))
+Case conversion may be inaccurate. Consider using '#align category_theory.simplicial_object.equivalence_left_to_right CategoryTheory.SimplicialObject.equivalenceLeftToRightₓ'. -/
 /-- A helper function used in defining the Čech adjunction. -/
 @[simps]
 def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
@@ -198,6 +222,12 @@ def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
     simp
 #align category_theory.simplicial_object.equivalence_left_to_right CategoryTheory.SimplicialObject.equivalenceLeftToRight
 
+/- warning: category_theory.simplicial_object.cech_nerve_equiv -> CategoryTheory.SimplicialObject.cechNerveEquiv is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) (CategoryTheory.Functor.obj.{u1, u1, max (max u1 u2) u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X) F) (Quiver.Hom.{succ u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max (max u1 u2) u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.category.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (CategoryTheory.SimplicialObject.cechNerveEquiv._proof_1.{u2, u1} C _inst_1 _inst_2 F)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePullback.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (X : CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (F : CategoryTheory.Arrow.{u1, u2} C _inst_1), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X) F) (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.SimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) X (CategoryTheory.Arrow.augmentedCechNerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F)))
+Case conversion may be inaccurate. Consider using '#align category_theory.simplicial_object.cech_nerve_equiv CategoryTheory.SimplicialObject.cechNerveEquivₓ'. -/
 /-- A helper function used in defining the Čech adjunction. -/
 @[simps]
 def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
@@ -237,6 +267,7 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
     · rfl
 #align category_theory.simplicial_object.cech_nerve_equiv CategoryTheory.SimplicialObject.cechNerveEquiv
 
+#print CategoryTheory.SimplicialObject.cechNerveAdjunction /-
 /-- The augmented Čech nerve construction is right adjoint to the `to_arrow` functor. -/
 abbrev cechNerveAdjunction : (Augmented.toArrow : _ ⥤ Arrow C) ⊣ augmentedCechNerve :=
   Adjunction.mkOfHomEquiv
@@ -253,6 +284,7 @@ abbrev cechNerveAdjunction : (Augmented.toArrow : _ ⥤ Arrow C) ⊣ augmentedCe
         · simp
         · rfl }
 #align category_theory.simplicial_object.cech_nerve_adjunction CategoryTheory.SimplicialObject.cechNerveAdjunction
+-/
 
 end SimplicialObject
 
@@ -264,6 +296,7 @@ variable (f : Arrow C)
 
 variable [∀ n : ℕ, HasWidePushout f.left (fun i : Fin (n + 1) => f.right) fun i => f.Hom]
 
+#print CategoryTheory.Arrow.cechConerve /-
 /-- The Čech conerve associated to an arrow. -/
 @[simps]
 def cechConerve : CosimplicialObject C
@@ -282,7 +315,9 @@ def cechConerve : CosimplicialObject C
     · simpa
     · simp
 #align category_theory.arrow.cech_conerve CategoryTheory.Arrow.cechConerve
+-/
 
+#print CategoryTheory.Arrow.mapCechConerve /-
 /-- The morphism between Čech conerves associated to a morphism of arrows. -/
 @[simps]
 def mapCechConerve {f g : Arrow C}
@@ -298,7 +333,9 @@ def mapCechConerve {f g : Arrow C}
     · simp
     · simp
 #align category_theory.arrow.map_cech_conerve CategoryTheory.Arrow.mapCechConerve
+-/
 
+#print CategoryTheory.Arrow.augmentedCechConerve /-
 /-- The augmented Čech conerve associated to an arrow. -/
 @[simps]
 def augmentedCechConerve : CosimplicialObject.Augmented C
@@ -311,7 +348,9 @@ def augmentedCechConerve : CosimplicialObject.Augmented C
         dsimp
         simp }
 #align category_theory.arrow.augmented_cech_conerve CategoryTheory.Arrow.augmentedCechConerve
+-/
 
+#print CategoryTheory.Arrow.mapAugmentedCechConerve /-
 /-- The morphism between augmented Čech conerves associated to a morphism of arrows. -/
 @[simps]
 def mapAugmentedCechConerve {f g : Arrow C}
@@ -325,6 +364,7 @@ def mapAugmentedCechConerve {f g : Arrow C}
     ext
     simp
 #align category_theory.arrow.map_augmented_cech_conerve CategoryTheory.Arrow.mapAugmentedCechConerve
+-/
 
 end CategoryTheory.Arrow
 
@@ -335,6 +375,7 @@ namespace CosimplicialObject
 variable
   [∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun i : Fin (n + 1) => f.right) fun i => f.Hom]
 
+#print CategoryTheory.CosimplicialObject.cechConerve /-
 /-- The Čech conerve construction, as a functor from `arrow C`. -/
 @[simps]
 def cechConerve : Arrow C ⥤ CosimplicialObject C
@@ -352,7 +393,9 @@ def cechConerve : Arrow C ⥤ CosimplicialObject C
     · simp
     · simp
 #align category_theory.cosimplicial_object.cech_conerve CategoryTheory.CosimplicialObject.cechConerve
+-/
 
+#print CategoryTheory.CosimplicialObject.augmentedCechConerve /-
 /-- The augmented Čech conerve construction, as a functor from `arrow C`. -/
 @[simps]
 def augmentedCechConerve : Arrow C ⥤ CosimplicialObject.Augmented C
@@ -372,7 +415,14 @@ def augmentedCechConerve : Arrow C ⥤ CosimplicialObject.Augmented C
     · simp
     · simp
 #align category_theory.cosimplicial_object.augmented_cech_conerve CategoryTheory.CosimplicialObject.augmentedCechConerve
+-/
 
+/- warning: category_theory.cosimplicial_object.equivalence_left_to_right -> CategoryTheory.CosimplicialObject.equivalenceLeftToRight is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (CategoryTheory.CosimplicialObject.equivalenceLeftToRight._proof_1.{u2, u1} C _inst_1 _inst_2 F)) X) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) F (CategoryTheory.Functor.obj.{u1, u1, max u1 u2, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F)) X) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) F (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X))
+Case conversion may be inaccurate. Consider using '#align category_theory.cosimplicial_object.equivalence_left_to_right CategoryTheory.CosimplicialObject.equivalenceLeftToRightₓ'. -/
 /-- A helper function used in defining the Čech conerve adjunction. -/
 @[simps]
 def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
@@ -387,6 +437,12 @@ def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
       wide_pushout.arrow_ι_assoc fun i => F.hom]
 #align category_theory.cosimplicial_object.equivalence_left_to_right CategoryTheory.CosimplicialObject.equivalenceLeftToRight
 
+/- warning: category_theory.cosimplicial_object.equivalence_right_to_left -> CategoryTheory.CosimplicialObject.equivalenceRightToLeft is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) F (CategoryTheory.Functor.obj.{u1, u1, max u1 u2, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X)) -> (Quiver.Hom.{succ u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (CategoryTheory.CosimplicialObject.equivalenceRightToLeft._proof_1.{u2, u1} C _inst_1 _inst_2 F)) X)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) F (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X)) -> (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F)) X)
+Case conversion may be inaccurate. Consider using '#align category_theory.cosimplicial_object.equivalence_right_to_left CategoryTheory.CosimplicialObject.equivalenceRightToLeftₓ'. -/
 /-- A helper function used in defining the Čech conerve adjunction. -/
 @[simps]
 def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
@@ -420,6 +476,12 @@ def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
     simp
 #align category_theory.cosimplicial_object.equivalence_right_to_left CategoryTheory.CosimplicialObject.equivalenceRightToLeft
 
+/- warning: category_theory.cosimplicial_object.cech_conerve_equiv -> CategoryTheory.CosimplicialObject.cechConerveEquiv is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (CategoryTheory.CosimplicialObject.cechConerveEquiv._proof_1.{u2, u1} C _inst_1 _inst_2 F)) X) (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1))) F (CategoryTheory.Functor.obj.{u1, u1, max u1 u2, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.category.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Arrow.category.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1) X))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : forall (n : Nat) (f : CategoryTheory.Arrow.{u1, u2} C _inst_1), CategoryTheory.Limits.HasWidePushout.{0, u1, u2} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) C _inst_1 (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.Comma.hom.{u1, u1, u1, u2, u2, u2} C _inst_1 C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u2} C _inst_1) (CategoryTheory.Functor.id.{u1, u2} C _inst_1) f)] (F : CategoryTheory.Arrow.{u1, u2} C _inst_1) (X : CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.augmentedCechConerve.{u1, u2} C _inst_1 F (fun (n : Nat) => _inst_2 n F)) X) (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) F (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1))) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.CosimplicialObject.Augmented.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.instCategoryAugmented.{u1, u2} C _inst_1) (CategoryTheory.Arrow.{u1, u2} C _inst_1) (CategoryTheory.instCategoryArrow.{u1, u2} C _inst_1) (CategoryTheory.CosimplicialObject.Augmented.toArrow.{u1, u2} C _inst_1)) X))
+Case conversion may be inaccurate. Consider using '#align category_theory.cosimplicial_object.cech_conerve_equiv CategoryTheory.CosimplicialObject.cechConerveEquivₓ'. -/
 /-- A helper function used in defining the Čech conerve adjunction. -/
 @[simps]
 def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
@@ -457,6 +519,7 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
       linarith
 #align category_theory.cosimplicial_object.cech_conerve_equiv CategoryTheory.CosimplicialObject.cechConerveEquiv
 
+#print CategoryTheory.CosimplicialObject.cechConerveAdjunction /-
 /-- The augmented Čech conerve construction is left adjoint to the `to_arrow` functor. -/
 abbrev cechConerveAdjunction : augmentedCechConerve ⊣ (Augmented.toArrow : _ ⥤ Arrow C) :=
   Adjunction.mkOfHomEquiv
@@ -473,11 +536,13 @@ abbrev cechConerveAdjunction : augmentedCechConerve ⊣ (Augmented.toArrow : _ 
         · simp
         · simp }
 #align category_theory.cosimplicial_object.cech_conerve_adjunction CategoryTheory.CosimplicialObject.cechConerveAdjunction
+-/
 
 end CosimplicialObject
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[] -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[] -/
+#print CategoryTheory.cechNerveTerminalFrom /-
 /-- Given an object `X : C`, the natural simplicial object sending `[n]` to `Xⁿ⁺¹`. -/
 def cechNerveTerminalFrom {C : Type u} [Category.{v} C] [HasFiniteProducts C] (X : C) :
     SimplicialObject C where
@@ -494,22 +559,37 @@ def cechNerveTerminalFrom {C : Type u} [Category.{v} C] [HasFiniteProducts C] (X
           "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[]" <;>
         simpa only [category.assoc, limit.lift_π, fan.mk_π_app]
 #align category_theory.cech_nerve_terminal_from CategoryTheory.cechNerveTerminalFrom
+-/
 
 namespace CechNerveTerminalFrom
 
 variable [HasTerminal C] (ι : Type w)
 
+#print CategoryTheory.CechNerveTerminalFrom.wideCospan /-
 /-- The diagram `option ι ⥤ C` sending `none` to the terminal object and `some j` to `X`. -/
 def wideCospan (X : C) : WidePullbackShape ι ⥤ C :=
   WidePullbackShape.wideCospan (terminal C) (fun i : ι => X) fun i => terminal.from X
-#align category_theory.cech_nerve_terminal_from.wide_cospan CategoryTheory.cechNerveTerminalFrom.wideCospan
+#align category_theory.cech_nerve_terminal_from.wide_cospan CategoryTheory.CechNerveTerminalFrom.wideCospan
+-/
 
+/- warning: category_theory.cech_nerve_terminal_from.unique_to_wide_cospan_none -> CategoryTheory.CechNerveTerminalFrom.uniqueToWideCospanNone is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Limits.HasTerminal.{u1, u2} C _inst_1] (ι : Type.{u3}) (X : C) (Y : C), Unique.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y (CategoryTheory.Functor.obj.{u3, u1, u3, u2} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Limits.WidePullbackShape.category.{u3} ι) C _inst_1 (CategoryTheory.CechNerveTerminalFrom.wideCospan.{u1, u2, u3} C _inst_1 _inst_2 ι X) (Option.none.{u3} ι)))
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Limits.HasTerminal.{u1, u2} C _inst_1] (ι : Type.{u3}) (X : C) (Y : C), Unique.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) Y (Prefunctor.obj.{succ u3, succ u1, u3, u2} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.CategoryStruct.toQuiver.{u3, u3} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Category.toCategoryStruct.{u3, u3} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Limits.WidePullbackShape.category.{u3} ι))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u3, u1, u3, u2} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Limits.WidePullbackShape.category.{u3} ι) C _inst_1 (CategoryTheory.CechNerveTerminalFrom.wideCospan.{u1, u2, u3} C _inst_1 _inst_2 ι X)) (Option.none.{u3} ι)))
+Case conversion may be inaccurate. Consider using '#align category_theory.cech_nerve_terminal_from.unique_to_wide_cospan_none CategoryTheory.CechNerveTerminalFrom.uniqueToWideCospanNoneₓ'. -/
 instance uniqueToWideCospanNone (X Y : C) : Unique (Y ⟶ (wideCospan ι X).obj none) := by
   unfold wide_cospan <;> dsimp <;> infer_instance
-#align category_theory.cech_nerve_terminal_from.unique_to_wide_cospan_none CategoryTheory.cechNerveTerminalFrom.uniqueToWideCospanNone
+#align category_theory.cech_nerve_terminal_from.unique_to_wide_cospan_none CategoryTheory.CechNerveTerminalFrom.uniqueToWideCospanNone
 
 variable [HasFiniteProducts C]
 
+/- warning: category_theory.cech_nerve_terminal_from.wide_cospan.limit_cone -> CategoryTheory.CechNerveTerminalFrom.wideCospan.limitCone is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Limits.HasTerminal.{u1, u2} C _inst_1] (ι : Type.{u3}) [_inst_3 : CategoryTheory.Limits.HasFiniteProducts.{u1, u2} C _inst_1] [_inst_4 : Fintype.{u3} ι] (X : C), CategoryTheory.Limits.LimitCone.{u3, u3, u1, u2} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Limits.WidePullbackShape.category.{u3} ι) C _inst_1 (CategoryTheory.CechNerveTerminalFrom.wideCospan.{u1, u2, u3} C _inst_1 _inst_2 ι X)
+but is expected to have type
+  forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Limits.HasTerminal.{u1, u2} C _inst_1] (ι : Type.{u3}) [_inst_3 : CategoryTheory.Limits.HasFiniteProducts.{u1, u2} C _inst_1] [_inst_4 : Finite.{succ u3} ι] (X : C), CategoryTheory.Limits.LimitCone.{u3, u3, u1, u2} (CategoryTheory.Limits.WidePullbackShape.{u3} ι) (CategoryTheory.Limits.WidePullbackShape.category.{u3} ι) C _inst_1 (CategoryTheory.CechNerveTerminalFrom.wideCospan.{u1, u2, u3} C _inst_1 _inst_2 ι X)
+Case conversion may be inaccurate. Consider using '#align category_theory.cech_nerve_terminal_from.wide_cospan.limit_cone CategoryTheory.CechNerveTerminalFrom.wideCospan.limitConeₓ'. -/
 /-- The product `Xᶥ` is the vertex of a limit cone on `wide_cospan ι X`. -/
 def wideCospan.limitCone [Fintype ι] (X : C) : LimitCone (wideCospan ι X)
     where
@@ -536,16 +616,19 @@ def wideCospan.limitCone [Fintype ι] (X : C) : LimitCone (wideCospan ι X)
         congr
         ext
         rfl }
-#align category_theory.cech_nerve_terminal_from.wide_cospan.limit_cone CategoryTheory.cechNerveTerminalFrom.wideCospan.limitCone
+#align category_theory.cech_nerve_terminal_from.wide_cospan.limit_cone CategoryTheory.CechNerveTerminalFrom.wideCospan.limitCone
 
+#print CategoryTheory.CechNerveTerminalFrom.hasWidePullback /-
 instance hasWidePullback [Finite ι] (X : C) :
     HasWidePullback (Arrow.mk (terminal.from X)).right
       (fun i : ι => (Arrow.mk (terminal.from X)).left) fun i => (Arrow.mk (terminal.from X)).Hom :=
   by
   cases nonempty_fintype ι
   exact ⟨⟨wide_cospan.limit_cone ι X⟩⟩
-#align category_theory.cech_nerve_terminal_from.has_wide_pullback CategoryTheory.cechNerveTerminalFrom.hasWidePullback
+#align category_theory.cech_nerve_terminal_from.has_wide_pullback CategoryTheory.CechNerveTerminalFrom.hasWidePullback
+-/
 
+#print CategoryTheory.CechNerveTerminalFrom.iso /-
 /-- Given an object `X : C`, the Čech nerve of the hom to the terminal object `X ⟶ ⊤_ C` is
 naturally isomorphic to a simplicial object sending `[n]` to `Xⁿ⁺¹` (when `C` is `G-Set`, this is
 `EG`, the universal cover of the classifying space of `G`. -/
@@ -567,7 +650,8 @@ def iso (X : C) : (Arrow.mk (terminal.from X)).cechNerve ≅ cechNerveTerminalFr
             limit.lift_π]
           rfl)
         (@Subsingleton.elim _ (@Unique.subsingleton _ (Limits.uniqueToTerminal _)) _ _))
-#align category_theory.cech_nerve_terminal_from.iso CategoryTheory.cechNerveTerminalFrom.iso
+#align category_theory.cech_nerve_terminal_from.iso CategoryTheory.CechNerveTerminalFrom.iso
+-/
 
 end CechNerveTerminalFrom
 
Diff
@@ -56,8 +56,8 @@ def cechNerve : SimplicialObject C
     where
   obj n := widePullback.{0} f.right (fun i : Fin (n.unop.len + 1) => f.left) fun i => f.Hom
   map m n g :=
-    widePullback.lift (widePullback.base _)
-      (fun i => (widePullback.π fun i => f.Hom) <| g.unop.toOrderHom i) fun j => by simp
+    WidePullback.lift (WidePullback.base _)
+      (fun i => (WidePullback.π fun i => f.Hom) <| g.unop.toOrderHom i) fun j => by simp
   map_id' x := by
     ext ⟨⟩
     · simpa
@@ -76,7 +76,7 @@ def mapCechNerve {f g : Arrow C}
     f.cechNerve ⟶ g.cechNerve
     where
   app n :=
-    widePullback.lift (widePullback.base _ ≫ F.right) (fun i => widePullback.π _ i ≫ F.left)
+    WidePullback.lift (WidePullback.base _ ≫ F.right) (fun i => WidePullback.π _ i ≫ F.left)
       fun j => by simp
   naturality' x y f := by
     ext ⟨⟩
@@ -91,7 +91,7 @@ def augmentedCechNerve : SimplicialObject.Augmented C
   left := f.cechNerve
   right := f.right
   Hom :=
-    { app := fun i => widePullback.base _
+    { app := fun i => WidePullback.base _
       naturality' := fun x y f => by
         dsimp
         simp }
@@ -159,7 +159,7 @@ def augmentedCechNerve : Arrow C ⥤ SimplicialObject.Augmented C
 def equivalenceRightToLeft (X : SimplicialObject.Augmented C) (F : Arrow C)
     (G : X ⟶ F.augmentedCechNerve) : Augmented.toArrow.obj X ⟶ F
     where
-  left := G.left.app _ ≫ widePullback.π (fun i => F.Hom) 0
+  left := G.left.app _ ≫ WidePullback.π (fun i => F.Hom) 0
   right := G.right
   w' := by
     have := G.w
@@ -174,7 +174,7 @@ def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
     where
   left :=
     { app := fun x =>
-        Limits.widePullback.lift (X.Hom.app _ ≫ G.right)
+        Limits.WidePullback.lift (X.Hom.app _ ≫ G.right)
           (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) fun i =>
           by
           dsimp
@@ -270,8 +270,8 @@ def cechConerve : CosimplicialObject C
     where
   obj n := widePushout f.left (fun i : Fin (n.len + 1) => f.right) fun i => f.Hom
   map m n g :=
-    widePushout.desc (widePushout.head _)
-      (fun i => (widePushout.ι fun i => f.Hom) <| g.toOrderHom i) fun i => by
+    WidePushout.desc (WidePushout.head _)
+      (fun i => (WidePushout.ι fun i => f.Hom) <| g.toOrderHom i) fun i => by
       rw [wide_pushout.arrow_ι fun i => f.hom]
   map_id' x := by
     ext ⟨⟩
@@ -291,7 +291,7 @@ def mapCechConerve {f g : Arrow C}
     f.cechConerve ⟶ g.cechConerve
     where
   app n :=
-    widePushout.desc (F.left ≫ widePushout.head _) (fun i => F.right ≫ widePushout.ι _ i) fun i =>
+    WidePushout.desc (F.left ≫ WidePushout.head _) (fun i => F.right ≫ WidePushout.ι _ i) fun i =>
       by rw [← arrow.w_assoc F, wide_pushout.arrow_ι fun i => g.hom]
   naturality' x y f := by
     ext
@@ -306,7 +306,7 @@ def augmentedCechConerve : CosimplicialObject.Augmented C
   left := f.left
   right := f.cechConerve
   Hom :=
-    { app := fun i => widePushout.head _
+    { app := fun i => WidePushout.head _
       naturality' := fun x y f => by
         dsimp
         simp }
@@ -379,7 +379,7 @@ def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
     (G : F.augmentedCechConerve ⟶ X) : F ⟶ Augmented.toArrow.obj X
     where
   left := G.left
-  right := (widePushout.ι (fun i => F.Hom) 0 ≫ G.right.app (SimplexCategory.mk 0) : _)
+  right := (WidePushout.ι (fun i => F.Hom) 0 ≫ G.right.app (SimplexCategory.mk 0) : _)
   w' := by
     have := G.w
     apply_fun fun e => e.app (SimplexCategory.mk 0)  at this
@@ -395,7 +395,7 @@ def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
   left := G.left
   right :=
     { app := fun x =>
-        Limits.widePushout.desc (G.left ≫ X.Hom.app _)
+        Limits.WidePushout.desc (G.left ≫ X.Hom.app _)
           (fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
           (by
             rintro j
@@ -476,8 +476,8 @@ abbrev cechConerveAdjunction : augmentedCechConerve ⊣ (Augmented.toArrow : _ 
 
 end CosimplicialObject
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `discrete_cases #[] -/
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `discrete_cases #[] -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[] -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[] -/
 /-- Given an object `X : C`, the natural simplicial object sending `[n]` to `Xⁿ⁺¹`. -/
 def cechNerveTerminalFrom {C : Type u} [Category.{v} C] [HasFiniteProducts C] (X : C) :
     SimplicialObject C where
@@ -486,12 +486,12 @@ def cechNerveTerminalFrom {C : Type u} [Category.{v} C] [HasFiniteProducts C] (X
   map_id' f :=
     limit.hom_ext fun j => by
       trace
-          "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `discrete_cases #[]" <;>
+          "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[]" <;>
         simpa only [limit.lift_π, category.id_comp]
   map_comp' m n o f g :=
     limit.hom_ext fun j => by
       trace
-          "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `discrete_cases #[]" <;>
+          "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[]" <;>
         simpa only [category.assoc, limit.lift_π, fan.mk_π_app]
 #align category_theory.cech_nerve_terminal_from CategoryTheory.cechNerveTerminalFrom
 
@@ -556,7 +556,7 @@ def iso (X : C) : (Arrow.mk (terminal.from X)).cechNerve ≅ cechNerveTerminalFr
         ((limit.isLimit _).conePointUniqueUpToIso
             (wideCospan.limitCone (Fin (m.unop.len + 1)) X).2).symm)
       fun m n f =>
-      widePullback.hom_ext _ _ _
+      WidePullback.hom_ext _ _ _
         (by
           intro j
           simp only [category.assoc]
Diff
@@ -514,7 +514,7 @@ variable [HasFiniteProducts C]
 def wideCospan.limitCone [Fintype ι] (X : C) : LimitCone (wideCospan ι X)
     where
   Cone :=
-    { x := ∏ fun i : ι => X
+    { pt := ∏ fun i : ι => X
       π :=
         { app := fun X => Option.casesOn X (terminal.from _) fun i => limit.π _ ⟨i⟩
           naturality' := fun i j f => by
Diff
@@ -526,8 +526,8 @@ def wideCospan.limitCone [Fintype ι] (X : C) : LimitCone (wideCospan ι X)
               exact Subsingleton.elim _ _ } }
   IsLimit :=
     { lift := fun s => Limits.Pi.lift fun j => s.π.app (some j)
-      fac' := fun s j => Option.casesOn j (Subsingleton.elim _ _) fun j => limit.lift_π _ _
-      uniq' := fun s f h => by
+      fac := fun s j => Option.casesOn j (Subsingleton.elim _ _) fun j => limit.lift_π _ _
+      uniq := fun s f h => by
         ext j
         dsimp only [limits.pi.lift]
         rw [limit.lift_π]

Changes in mathlib4

mathlib3
mathlib4
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -45,7 +45,6 @@ variable {C : Type u} [Category.{v} C]
 namespace CategoryTheory.Arrow
 
 variable (f : Arrow C)
-
 variable [∀ n : ℕ, HasWidePullback.{0} f.right (fun _ : Fin (n + 1) => f.left) fun _ => f.hom]
 
 /-- The Čech nerve associated to an arrow. -/
@@ -197,7 +196,6 @@ end CategoryTheory
 namespace CategoryTheory.Arrow
 
 variable (f : Arrow C)
-
 variable [∀ n : ℕ, HasWidePushout f.left (fun _ : Fin (n + 1) => f.right) fun _ => f.hom]
 
 /-- The Čech conerve associated to an arrow. -/
chore: prevent API leakage on SimplexCategory (#11395)

This PR removes the simps attribute in the definition of the category structure on SimplexCategory so as to prevent API leakage. Better suited simp lemmas are added. The definition of SimplexCategory.const is also generalized in order to describe any constant map in SimplexCategory.

Diff
@@ -127,7 +127,7 @@ def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
   left :=
     { app := fun x =>
         Limits.WidePullback.lift (X.hom.app _ ≫ G.right)
-          (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) fun i => by
+          (fun i => X.left.map (SimplexCategory.const _ x.unop i).op ≫ G.left) fun i => by
           dsimp
           erw [Category.assoc, Arrow.w, Augmented.toArrow_obj_hom, NatTrans.naturality_assoc,
             Functor.const_obj_map, Category.id_comp]
@@ -284,11 +284,11 @@ def equivalenceRightToLeft (F : Arrow C) (X : CosimplicialObject.Augmented C)
   right :=
     { app := fun x =>
         Limits.WidePushout.desc (G.left ≫ X.hom.app _)
-          (fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
+          (fun i => G.right ≫ X.right.map (SimplexCategory.const _ x i))
           (by
             rintro j
             rw [← Arrow.w_assoc G]
-            have t := X.hom.naturality (x.const j)
+            have t := X.hom.naturality (SimplexCategory.const (SimplexCategory.mk 0) x j)
             dsimp at t ⊢
             simp only [Category.id_comp] at t
             rw [← t])
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -403,24 +403,24 @@ instance hasWidePullback [Finite ι] (X : C) :
   exact ⟨⟨wideCospan.limitCone ι X⟩⟩
 #align category_theory.cech_nerve_terminal_from.has_wide_pullback CategoryTheory.CechNerveTerminalFrom.hasWidePullback
 
--- porting note: added to make the following definitions work
+-- Porting note: added to make the following definitions work
 instance hasWidePullback' [Finite ι] (X : C) :
     HasWidePullback (⊤_ C)
       (fun _ : ι => X)
       (fun _ => terminal.from X) :=
   hasWidePullback _ _
 
--- porting note: added to make the following definitions work
+-- Porting note: added to make the following definitions work
 instance hasLimit_wideCospan [Finite ι] (X : C) : HasLimit (wideCospan ι X) := hasWidePullback _ _
 
--- porting note: added to ease the definition of `iso`
+-- Porting note: added to ease the definition of `iso`
 /-- the isomorphism to the product induced by the limit cone `wideCospan ι X` -/
 def wideCospan.limitIsoPi [Finite ι] (X : C) :
     limit (wideCospan ι X) ≅ ∏ fun _ : ι => X :=
   (IsLimit.conePointUniqueUpToIso (limit.isLimit _)
     (wideCospan.limitCone ι X).2)
 
--- porting note: added to ease the definition of `iso`
+-- Porting note: added to ease the definition of `iso`
 @[reassoc (attr := simp)]
 lemma wideCospan.limitIsoPi_inv_comp_pi [Finite ι] (X : C) (j : ι) :
     (wideCospan.limitIsoPi ι X).inv ≫ WidePullback.π _ j = Pi.π _ j :=
refactor: optimize proofs with omega (#11093)

I ran tryAtEachStep on all files under Mathlib to find all locations where omega succeeds. For each that was a linarith without an only, I tried replacing it with omega, and I verified that elaboration time got smaller. (In almost all cases, there was a noticeable speedup.) I also replaced some slow aesops along the way.

Diff
@@ -162,7 +162,7 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
       ext ⟨a, ha⟩
       change a < 1 at ha
       change 0 = a
-      linarith
+      omega
     · rfl
   right_inv := by
     intro A
@@ -337,7 +337,7 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
       ext ⟨a, ha⟩
       change a < 1 at ha
       change 0 = a
-      linarith
+      omega
 #align category_theory.cosimplicial_object.cech_conerve_equiv CategoryTheory.CosimplicialObject.cechConerveEquiv
 
 /-- The augmented Čech conerve construction is left adjoint to the `toArrow` functor. -/
refactor: create folder CategoryTheory/Comma (#10108)
Diff
@@ -4,9 +4,9 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz
 -/
 import Mathlib.AlgebraicTopology.SimplicialObject
+import Mathlib.CategoryTheory.Comma.Arrow
 import Mathlib.CategoryTheory.Limits.Shapes.WidePullbacks
 import Mathlib.CategoryTheory.Limits.Shapes.FiniteProducts
-import Mathlib.CategoryTheory.Arrow
 
 #align_import algebraic_topology.cech_nerve from "leanprover-community/mathlib"@"618ea3d5c99240cd7000d8376924906a148bf9ff"
 
Revert "chore: revert #7703 (#7710)"

This reverts commit f3695eb2.

Diff
@@ -180,7 +180,14 @@ abbrev cechNerveAdjunction : (Augmented.toArrow : _ ⥤ Arrow C) ⊣ augmentedCe
   Adjunction.mkOfHomEquiv
     { homEquiv := cechNerveEquiv
       homEquiv_naturality_left_symm := by dsimp [cechNerveEquiv]; aesop_cat
-      homEquiv_naturality_right := by dsimp [cechNerveEquiv]; aesop_cat }
+      homEquiv_naturality_right := by
+        dsimp [cechNerveEquiv]
+        -- The next three lines were not needed before leanprover/lean4#2644
+        intro X Y Y' f g
+        change equivalenceLeftToRight X Y' (f ≫ g) =
+          equivalenceLeftToRight X Y f ≫ augmentedCechNerve.map g
+        aesop_cat
+    }
 #align category_theory.simplicial_object.cech_nerve_adjunction CategoryTheory.SimplicialObject.cechNerveAdjunction
 
 end SimplicialObject
chore: revert #7703 (#7710)

This reverts commit 26eb2b0a.

Diff
@@ -180,14 +180,7 @@ abbrev cechNerveAdjunction : (Augmented.toArrow : _ ⥤ Arrow C) ⊣ augmentedCe
   Adjunction.mkOfHomEquiv
     { homEquiv := cechNerveEquiv
       homEquiv_naturality_left_symm := by dsimp [cechNerveEquiv]; aesop_cat
-      homEquiv_naturality_right := by
-        dsimp [cechNerveEquiv]
-        -- The next three lines were not needed before leanprover/lean4#2644
-        intro X Y Y' f g
-        change equivalenceLeftToRight X Y' (f ≫ g) =
-          equivalenceLeftToRight X Y f ≫ augmentedCechNerve.map g
-        aesop_cat
-    }
+      homEquiv_naturality_right := by dsimp [cechNerveEquiv]; aesop_cat }
 #align category_theory.simplicial_object.cech_nerve_adjunction CategoryTheory.SimplicialObject.cechNerveAdjunction
 
 end SimplicialObject
chore: bump toolchain to v4.2.0-rc2 (#7703)

This includes all the changes from #7606.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -180,7 +180,14 @@ abbrev cechNerveAdjunction : (Augmented.toArrow : _ ⥤ Arrow C) ⊣ augmentedCe
   Adjunction.mkOfHomEquiv
     { homEquiv := cechNerveEquiv
       homEquiv_naturality_left_symm := by dsimp [cechNerveEquiv]; aesop_cat
-      homEquiv_naturality_right := by dsimp [cechNerveEquiv]; aesop_cat }
+      homEquiv_naturality_right := by
+        dsimp [cechNerveEquiv]
+        -- The next three lines were not needed before leanprover/lean4#2644
+        intro X Y Y' f g
+        change equivalenceLeftToRight X Y' (f ≫ g) =
+          equivalenceLeftToRight X Y f ≫ augmentedCechNerve.map g
+        aesop_cat
+    }
 #align category_theory.simplicial_object.cech_nerve_adjunction CategoryTheory.SimplicialObject.cechNerveAdjunction
 
 end SimplicialObject
chore: remove unused simps (#6632)

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -151,7 +151,6 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
   invFun := equivalenceRightToLeft _ _
   left_inv := by
     intro A
-    dsimp
     ext
     · dsimp
       erw [WidePullback.lift_π]
@@ -167,7 +166,6 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
     · rfl
   right_inv := by
     intro A
-    dsimp
     ext x : 2
     · refine' WidePullback.hom_ext _ _ _ (fun j => _) _
       · dsimp
@@ -309,7 +307,6 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
   invFun := equivalenceRightToLeft _ _
   left_inv := by
     intro A
-    dsimp
     ext x : 2
     · rfl
     · refine' WidePushout.hom_ext _ _ _ (fun j => _) _
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2021 Adam Topaz. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Adam Topaz
-
-! This file was ported from Lean 3 source module algebraic_topology.cech_nerve
-! leanprover-community/mathlib commit 618ea3d5c99240cd7000d8376924906a148bf9ff
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.AlgebraicTopology.SimplicialObject
 import Mathlib.CategoryTheory.Limits.Shapes.WidePullbacks
 import Mathlib.CategoryTheory.Limits.Shapes.FiniteProducts
 import Mathlib.CategoryTheory.Arrow
 
+#align_import algebraic_topology.cech_nerve from "leanprover-community/mathlib"@"618ea3d5c99240cd7000d8376924906a148bf9ff"
+
 /-!
 
 # The Čech Nerve
chore: remove occurrences of semicolon after space (#5713)

This is the second half of the changes originally in #5699, removing all occurrences of ; after a space and implementing a linter rule to enforce it.

In most cases this 2-character substring has a space after it, so the following command was run first:

find . -type f -name "*.lean" -exec sed -i -E 's/ ; /; /g' {} \;

The remaining cases were few enough in number that they were done manually.

Diff
@@ -184,8 +184,8 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
 abbrev cechNerveAdjunction : (Augmented.toArrow : _ ⥤ Arrow C) ⊣ augmentedCechNerve :=
   Adjunction.mkOfHomEquiv
     { homEquiv := cechNerveEquiv
-      homEquiv_naturality_left_symm := by dsimp [cechNerveEquiv] ; aesop_cat
-      homEquiv_naturality_right := by dsimp [cechNerveEquiv] ; aesop_cat }
+      homEquiv_naturality_left_symm := by dsimp [cechNerveEquiv]; aesop_cat
+      homEquiv_naturality_right := by dsimp [cechNerveEquiv]; aesop_cat }
 #align category_theory.simplicial_object.cech_nerve_adjunction CategoryTheory.SimplicialObject.cechNerveAdjunction
 
 end SimplicialObject
@@ -270,7 +270,7 @@ def equivalenceLeftToRight (F : Arrow C) (X : CosimplicialObject.Augmented C)
   w := by
     dsimp
     rw [@WidePushout.arrow_ι_assoc _ _ _ _ _ (fun (_ : Fin 1) => F.hom)
-      (by dsimp ; infer_instance)]
+      (by dsimp; infer_instance)]
     exact congr_app G.w (SimplexCategory.mk 0)
 #align category_theory.cosimplicial_object.equivalence_left_to_right CategoryTheory.CosimplicialObject.equivalenceLeftToRight
 
chore: fix focusing dots (#5708)

This PR is the result of running

find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;

which firstly replaces . focusing dots with · and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.

Diff
@@ -138,10 +138,10 @@ def equivalenceLeftToRight (X : SimplicialObject.Augmented C) (F : Arrow C)
         intro x y f
         dsimp
         ext
-        . dsimp
+        · dsimp
           simp only [WidePullback.lift_π, Category.assoc, ← X.left.map_comp_assoc]
           rfl
-        . dsimp
+        · dsimp
           simp }
   right := G.right
 #align category_theory.simplicial_object.equivalence_left_to_right CategoryTheory.SimplicialObject.equivalenceLeftToRight
@@ -173,11 +173,11 @@ def cechNerveEquiv (X : SimplicialObject.Augmented C) (F : Arrow C) :
     dsimp
     ext x : 2
     · refine' WidePullback.hom_ext _ _ _ (fun j => _) _
-      . dsimp
+      · dsimp
         simp
         rfl
-      . simpa using congr_app A.w.symm x
-    . rfl
+      · simpa using congr_app A.w.symm x
+    · rfl
 #align category_theory.simplicial_object.cech_nerve_equiv CategoryTheory.SimplicialObject.cechNerveEquiv
 
 /-- The augmented Čech nerve construction is right adjoint to the `toArrow` functor. -/
@@ -314,14 +314,14 @@ def cechConerveEquiv (F : Arrow C) (X : CosimplicialObject.Augmented C) :
     intro A
     dsimp
     ext x : 2
-    . rfl
-    . refine' WidePushout.hom_ext _ _ _ (fun j => _) _
-      . dsimp
+    · rfl
+    · refine' WidePushout.hom_ext _ _ _ (fun j => _) _
+      · dsimp
         simp only [Category.assoc, ← NatTrans.naturality A.right, Arrow.augmentedCechConerve_right,
           SimplexCategory.len_mk, Arrow.cechConerve_map, colimit.ι_desc,
           WidePushoutShape.mkCocone_ι_app, colimit.ι_desc_assoc]
         rfl
-      . dsimp
+      · dsimp
         rw [colimit.ι_desc]
         exact congr_app A.w x
   right_inv := by
feat: port CategoryTheory.Preadditive.Projective (#3615)

Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -387,7 +387,7 @@ def wideCospan.limitCone [Finite ι] (X : C) : LimitCone (wideCospan ι X) where
       fac := fun s j => Option.casesOn j (Subsingleton.elim _ _) fun j => limit.lift_π _ _
       uniq := fun s f h => by
         dsimp
-        ext ⟨j⟩
+        ext j
         dsimp only [Limits.Pi.lift]
         rw [limit.lift_π]
         dsimp
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -441,7 +441,6 @@ def iso (X : C) : (Arrow.mk (terminal.from X)).cechNerve ≅ cechNerveTerminalFr
     erw [wideCospan.limitIsoPi_hom_comp_pi,
       wideCospan.limitIsoPi_hom_comp_pi, limit.lift_π]
     rfl)
-
 #align category_theory.cech_nerve_terminal_from.iso CategoryTheory.CechNerveTerminalFrom.iso
 
 end CechNerveTerminalFrom
feat: port AlgebraicTopology.CechNerve (#3500)

Dependencies 6 + 307

308 files ported (98.1%)
121213 lines ported (98.3%)
Show graph

The unported dependencies are