algebraic_topology.dold_kan.decompositionMathlib.AlgebraicTopology.DoldKan.Decomposition

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(algebraic_topology/dold_kan): The Dold-Kan equivalence for abelian categories (#17926)

Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr>

Diff
@@ -29,6 +29,8 @@ role in the proof that the functor
 `N₁ : simplicial_object C ⥤ karoubi (chain_complex C ℕ))`
 reflects isomorphisms.
 
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
 -/
 
 open category_theory category_theory.category category_theory.preadditive opposite

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 -/
-import Mathbin.AlgebraicTopology.DoldKan.PInfty
+import AlgebraicTopology.DoldKan.PInfty
 
 #align_import algebraic_topology.dold_kan.decomposition from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
Diff
@@ -5,7 +5,7 @@ Authors: Joël Riou
 -/
 import Mathbin.AlgebraicTopology.DoldKan.PInfty
 
-#align_import algebraic_topology.dold_kan.decomposition from "leanprover-community/mathlib"@"4f81bc21e32048db7344b7867946e992cf5f68cc"
+#align_import algebraic_topology.dold_kan.decomposition from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
 /-!
 
@@ -30,6 +30,8 @@ role in the proof that the functor
 `N₁ : simplicial_object C ⥤ karoubi (chain_complex C ℕ))`
 reflects isomorphisms.
 
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
 -/
 
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.decomposition
-! leanprover-community/mathlib commit 4f81bc21e32048db7344b7867946e992cf5f68cc
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.AlgebraicTopology.DoldKan.PInfty
 
+#align_import algebraic_topology.dold_kan.decomposition from "leanprover-community/mathlib"@"4f81bc21e32048db7344b7867946e992cf5f68cc"
+
 /-!
 
 # Decomposition of the Q endomorphisms
Diff
@@ -58,7 +58,7 @@ the $y_i$ are in degree $n$. -/
 theorem decomposition_Q (n q : ℕ) :
     ((Q q).f (n + 1) : X _[n + 1] ⟶ X _[n + 1]) =
       ∑ i : Fin (n + 1) in Finset.filter (fun i : Fin (n + 1) => (i : ℕ) < q) Finset.univ,
-        (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ X.σ i.rev :=
+        (P i).f (n + 1) ≫ X.δ i.revPerm.succ ≫ X.σ i.revPerm :=
   by
   induction' q with q hq
   ·
@@ -110,7 +110,7 @@ variable {X} {n : ℕ} {Z Z' : C} (f : MorphComponents X n Z) (g : X' ⟶ X) (h
 #print AlgebraicTopology.DoldKan.MorphComponents.φ /-
 /-- The morphism `X _[n+1] ⟶ Z ` associated to `f : morph_components X n Z`. -/
 def φ {Z : C} (f : MorphComponents X n Z) : X _[n + 1] ⟶ Z :=
-  PInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ f.b i.rev
+  PInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.revPerm.succ ≫ f.b i.revPerm
 #align algebraic_topology.dold_kan.morph_components.φ AlgebraicTopology.DoldKan.MorphComponents.φ
 -/
 
Diff
@@ -48,6 +48,7 @@ namespace DoldKan
 
 variable {C : Type _} [Category C] [Preadditive C] {X X' : SimplicialObject C}
 
+#print AlgebraicTopology.DoldKan.decomposition_Q /-
 /-- In each positive degree, this lemma decomposes the idempotent endomorphism
 `Q q` as a sum of morphisms which are postcompositions with suitable degeneracies.
 As `Q q` is the complement projection to `P q`, this implies that in the case of
@@ -85,9 +86,11 @@ theorem decomposition_Q (n q : ℕ) :
           neg_neg]
       · simp only [Finset.mem_filter, Fin.val_mk, lt_self_iff_false, and_false_iff, not_false_iff]
 #align algebraic_topology.dold_kan.decomposition_Q AlgebraicTopology.DoldKan.decomposition_Q
+-/
 
 variable (X)
 
+#print AlgebraicTopology.DoldKan.MorphComponents /-
 /-- The structure `morph_components` is an ad hoc structure that is used in
 the proof that `N₁ : simplicial_object C ⥤ karoubi (chain_complex C ℕ))`
 reflects isomorphisms. The fields are the data that are needed in order to
@@ -98,6 +101,7 @@ structure MorphComponents (n : ℕ) (Z : C) where
   a : X _[n + 1] ⟶ Z
   b : Fin (n + 1) → (X _[n] ⟶ Z)
 #align algebraic_topology.dold_kan.morph_components AlgebraicTopology.DoldKan.MorphComponents
+-/
 
 namespace MorphComponents
 
@@ -123,6 +127,7 @@ def id : MorphComponents X n (X _[n + 1])
 #align algebraic_topology.dold_kan.morph_components.id AlgebraicTopology.DoldKan.MorphComponents.id
 -/
 
+#print AlgebraicTopology.DoldKan.MorphComponents.id_φ /-
 @[simp]
 theorem id_φ : (id X n).φ = 𝟙 _ :=
   by
@@ -133,15 +138,18 @@ theorem id_φ : (id X n).φ = 𝟙 _ :=
     ext i
     simpa only [Finset.mem_univ, Finset.mem_filter, true_and_iff, true_iff_iff] using Fin.is_lt i
 #align algebraic_topology.dold_kan.morph_components.id_φ AlgebraicTopology.DoldKan.MorphComponents.id_φ
+-/
 
 variable {X n}
 
+#print AlgebraicTopology.DoldKan.MorphComponents.postComp /-
 /-- A `morph_components` can be postcomposed with a morphism. -/
 @[simps]
 def postComp : MorphComponents X n Z' where
   a := f.a ≫ h
   b i := f.b i ≫ h
 #align algebraic_topology.dold_kan.morph_components.post_comp AlgebraicTopology.DoldKan.MorphComponents.postComp
+-/
 
 #print AlgebraicTopology.DoldKan.MorphComponents.postComp_φ /-
 @[simp]
@@ -152,6 +160,7 @@ theorem postComp_φ : (f.postComp h).φ = f.φ ≫ h :=
 #align algebraic_topology.dold_kan.morph_components.post_comp_φ AlgebraicTopology.DoldKan.MorphComponents.postComp_φ
 -/
 
+#print AlgebraicTopology.DoldKan.MorphComponents.preComp /-
 /-- A `morph_components` can be precomposed with a morphism of simplicial objects. -/
 @[simps]
 def preComp : MorphComponents X' n Z
@@ -159,6 +168,7 @@ def preComp : MorphComponents X' n Z
   a := g.app (op [n + 1]) ≫ f.a
   b i := g.app (op [n]) ≫ f.b i
 #align algebraic_topology.dold_kan.morph_components.pre_comp AlgebraicTopology.DoldKan.MorphComponents.preComp
+-/
 
 #print AlgebraicTopology.DoldKan.MorphComponents.preComp_φ /-
 @[simp]
Diff
@@ -129,7 +129,7 @@ theorem id_φ : (id X n).φ = 𝟙 _ :=
   simp only [← P_add_Q_f (n + 1) (n + 1), φ]
   congr 1
   · simp only [id, P_infty_f, P_f_idem]
-  · convert(decomposition_Q n (n + 1)).symm
+  · convert (decomposition_Q n (n + 1)).symm
     ext i
     simpa only [Finset.mem_univ, Finset.mem_filter, true_and_iff, true_iff_iff] using Fin.is_lt i
 #align algebraic_topology.dold_kan.morph_components.id_φ AlgebraicTopology.DoldKan.MorphComponents.id_φ
Diff
@@ -38,7 +38,7 @@ reflects isomorphisms.
 
 open CategoryTheory CategoryTheory.Category CategoryTheory.Preadditive Opposite
 
-open BigOperators Simplicial
+open scoped BigOperators Simplicial
 
 noncomputable section
 
Diff
@@ -48,9 +48,6 @@ namespace DoldKan
 
 variable {C : Type _} [Category C] [Preadditive C] {X X' : SimplicialObject C}
 
-/- warning: algebraic_topology.dold_kan.decomposition_Q -> AlgebraicTopology.DoldKan.decomposition_Q is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.decomposition_Q AlgebraicTopology.DoldKan.decomposition_Qₓ'. -/
 /-- In each positive degree, this lemma decomposes the idempotent endomorphism
 `Q q` as a sum of morphisms which are postcompositions with suitable degeneracies.
 As `Q q` is the complement projection to `P q`, this implies that in the case of
@@ -91,12 +88,6 @@ theorem decomposition_Q (n q : ℕ) :
 
 variable (X)
 
-/- warning: algebraic_topology.dold_kan.morph_components -> AlgebraicTopology.DoldKan.MorphComponents is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1], (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) -> Nat -> C -> Type.{u2}
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C], (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) -> Nat -> C -> Type.{u2}
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.morph_components AlgebraicTopology.DoldKan.MorphComponentsₓ'. -/
 /-- The structure `morph_components` is an ad hoc structure that is used in
 the proof that `N₁ : simplicial_object C ⥤ karoubi (chain_complex C ℕ))`
 reflects isomorphisms. The fields are the data that are needed in order to
@@ -132,12 +123,6 @@ def id : MorphComponents X n (X _[n + 1])
 #align algebraic_topology.dold_kan.morph_components.id AlgebraicTopology.DoldKan.MorphComponents.id
 -/
 
-/- warning: algebraic_topology.dold_kan.morph_components.id_φ -> AlgebraicTopology.DoldKan.MorphComponents.id_φ is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (AlgebraicTopology.DoldKan.MorphComponents.φ.{u1, u2} C _inst_1 _inst_2 X n (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (AlgebraicTopology.DoldKan.MorphComponents.id.{u1, u2} C _inst_1 _inst_2 X n)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AlgebraicTopology.DoldKan.MorphComponents.φ.{u1, u2} C _inst_1 _inst_2 X n (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (AlgebraicTopology.DoldKan.MorphComponents.id.{u1, u2} C _inst_1 _inst_2 X n)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.morph_components.id_φ AlgebraicTopology.DoldKan.MorphComponents.id_φₓ'. -/
 @[simp]
 theorem id_φ : (id X n).φ = 𝟙 _ :=
   by
@@ -151,12 +136,6 @@ theorem id_φ : (id X n).φ = 𝟙 _ :=
 
 variable {X n}
 
-/- warning: algebraic_topology.dold_kan.morph_components.post_comp -> AlgebraicTopology.DoldKan.MorphComponents.postComp is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {n : Nat} {Z : C} {Z' : C}, (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X n Z) -> (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) Z Z') -> (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X n Z')
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {_inst_2 : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {X : Nat} {n : C} {Z : C}, (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X n) -> (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) n Z) -> (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X Z)
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.morph_components.post_comp AlgebraicTopology.DoldKan.MorphComponents.postCompₓ'. -/
 /-- A `morph_components` can be postcomposed with a morphism. -/
 @[simps]
 def postComp : MorphComponents X n Z' where
@@ -173,12 +152,6 @@ theorem postComp_φ : (f.postComp h).φ = f.φ ≫ h :=
 #align algebraic_topology.dold_kan.morph_components.post_comp_φ AlgebraicTopology.DoldKan.MorphComponents.postComp_φ
 -/
 
-/- warning: algebraic_topology.dold_kan.morph_components.pre_comp -> AlgebraicTopology.DoldKan.MorphComponents.preComp is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {X' : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {n : Nat} {Z : C}, (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X n Z) -> (Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) X' X) -> (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X' n Z)
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {_inst_2 : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {X' : Nat} {n : C}, (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X' n) -> (Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X _inst_2) -> (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 X X' n)
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.morph_components.pre_comp AlgebraicTopology.DoldKan.MorphComponents.preCompₓ'. -/
 /-- A `morph_components` can be precomposed with a morphism of simplicial objects. -/
 @[simps]
 def preComp : MorphComponents X' n Z
Diff
@@ -66,8 +66,7 @@ theorem decomposition_Q (n q : ℕ) :
   ·
     simp only [Q_eq_zero, HomologicalComplex.zero_f_apply, Nat.not_lt_zero, Finset.filter_False,
       Finset.sum_empty]
-  · by_cases hqn : q + 1 ≤ n + 1
-    swap
+  · by_cases hqn : q + 1 ≤ n + 1; swap
     · rw [Q_is_eventually_constant (show n + 1 ≤ q by linarith), hq]
       congr
       ext
Diff
@@ -49,10 +49,7 @@ namespace DoldKan
 variable {C : Type _} [Category C] [Preadditive C] {X X' : SimplicialObject C}
 
 /- warning: algebraic_topology.dold_kan.decomposition_Q -> AlgebraicTopology.DoldKan.decomposition_Q is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat) (q : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Q.{u1, u2} C _inst_1 _inst_2 X q) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (Finset.filter.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => LT.lt.{0} Nat Nat.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) i) q) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Nat.decidableLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) a) q) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.P.{u1, u2} C _inst_1 _inst_2 X ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) i)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n (Fin.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (coeFn.{1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (_x : Equiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Equiv.hasCoeToFun.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) i))) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (coeFn.{1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (_x : Equiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Equiv.hasCoeToFun.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) i)))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat) (q : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Q.{u1, u2} C _inst_1 _inst_2 X q) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))) (Finset.filter.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LT.lt.{0} Nat instLTNat (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) i) q) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Nat.decLt (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a) q) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.P.{u1, u2} C _inst_1 _inst_2 X (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) i)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n (Fin.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (FunLike.coe.{1, 1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (_x : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (Equiv.instFunLikeEquiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) i))) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (FunLike.coe.{1, 1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (_x : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (Equiv.instFunLikeEquiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) i)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.decomposition_Q AlgebraicTopology.DoldKan.decomposition_Qₓ'. -/
 /-- In each positive degree, this lemma decomposes the idempotent endomorphism
 `Q q` as a sum of morphisms which are postcompositions with suitable degeneracies.
Diff
@@ -52,7 +52,7 @@ variable {C : Type _} [Category C] [Preadditive C] {X X' : SimplicialObject C}
 lean 3 declaration is
   forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat) (q : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Q.{u1, u2} C _inst_1 _inst_2 X q) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (Finset.filter.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => LT.lt.{0} Nat Nat.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) i) q) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Nat.decidableLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) a) q) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.P.{u1, u2} C _inst_1 _inst_2 X ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) i)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n (Fin.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (coeFn.{1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (_x : Equiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Equiv.hasCoeToFun.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) i))) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (coeFn.{1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (_x : Equiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Equiv.hasCoeToFun.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) i)))))
 but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat) (q : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Q.{u1, u2} C _inst_1 _inst_2 X q) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))) (Finset.filter.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LT.lt.{0} Nat instLTNat (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) i) q) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Nat.decLt (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a) q) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.P.{u1, u2} C _inst_1 _inst_2 X (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) i)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n (Fin.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (FunLike.coe.{1, 1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (_x : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (Equiv.instFunLikeEquiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) i))) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (FunLike.coe.{1, 1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (_x : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (Equiv.instFunLikeEquiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) i)))))
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat) (q : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Q.{u1, u2} C _inst_1 _inst_2 X q) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))) (Finset.filter.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LT.lt.{0} Nat instLTNat (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) i) q) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Nat.decLt (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a) q) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.P.{u1, u2} C _inst_1 _inst_2 X (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) i)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n (Fin.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (FunLike.coe.{1, 1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (_x : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (Equiv.instFunLikeEquiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) i))) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (FunLike.coe.{1, 1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (_x : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (Equiv.instFunLikeEquiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) i)))))
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.decomposition_Q AlgebraicTopology.DoldKan.decomposition_Qₓ'. -/
 /-- In each positive degree, this lemma decomposes the idempotent endomorphism
 `Q q` as a sum of morphisms which are postcompositions with suitable degeneracies.
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 
 ! This file was ported from Lean 3 source module algebraic_topology.dold_kan.decomposition
-! leanprover-community/mathlib commit 9af20344b24ef1801b599d296aaed8b9fffdc360
+! leanprover-community/mathlib commit 4f81bc21e32048db7344b7867946e992cf5f68cc
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.AlgebraicTopology.DoldKan.PInfty
 
 # Decomposition of the Q endomorphisms
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 In this file, we obtain a lemma `decomposition_Q` which expresses
 explicitly the projection `(Q q).f (n+1) : X _[n+1] ⟶ X _[n+1]`
 (`X : simplicial_object C` with `C` a preadditive category) as
Diff
@@ -45,13 +45,19 @@ namespace DoldKan
 
 variable {C : Type _} [Category C] [Preadditive C] {X X' : SimplicialObject C}
 
+/- warning: algebraic_topology.dold_kan.decomposition_Q -> AlgebraicTopology.DoldKan.decomposition_Q is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat) (q : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Q.{u1, u2} C _inst_1 _inst_2 X q) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (Finset.filter.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => LT.lt.{0} Nat Nat.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) i) q) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Nat.decidableLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) a) q) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.P.{u1, u2} C _inst_1 _inst_2 X ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (HasLiftT.mk.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (CoeTCₓ.coe.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (coeBase.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Nat (Fin.coeToNat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) i)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n (Fin.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (coeFn.{1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (_x : Equiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Equiv.hasCoeToFun.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) i))) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (coeFn.{1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (_x : Equiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Equiv.hasCoeToFun.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) i)))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat) (q : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Q.{u1, u2} C _inst_1 _inst_2 X q) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Finset.sum.{u2, 0} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (AddCommGroup.toAddCommMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))) (Finset.filter.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LT.lt.{0} Nat instLTNat (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) i) q) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Nat.decLt (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a) q) (Finset.univ.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.fintype (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.P.{u1, u2} C _inst_1 _inst_2 X (Fin.val (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) i)) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (CategoryTheory.SimplicialObject.δ.{u2, u1} C _inst_1 X n (Fin.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (FunLike.coe.{1, 1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (_x : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (Equiv.instFunLikeEquiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) i))) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (FunLike.coe.{1, 1, 1} (Equiv.Perm.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (_x : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (Equiv.instFunLikeEquiv.{1, 1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin.rev (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) i)))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.decomposition_Q AlgebraicTopology.DoldKan.decomposition_Qₓ'. -/
 /-- In each positive degree, this lemma decomposes the idempotent endomorphism
 `Q q` as a sum of morphisms which are postcompositions with suitable degeneracies.
 As `Q q` is the complement projection to `P q`, this implies that in the case of
 simplicial abelian groups, any $(n+1)$-simplex $x$ can be decomposed as
 $x = x' + \sum (i=0}^{q-1} σ_{n-i}(y_i)$ where $x'$ is in the image of `P q` and
 the $y_i$ are in degree $n$. -/
-theorem decomposition_q (n q : ℕ) :
+theorem decomposition_Q (n q : ℕ) :
     ((Q q).f (n + 1) : X _[n + 1] ⟶ X _[n + 1]) =
       ∑ i : Fin (n + 1) in Finset.filter (fun i : Fin (n + 1) => (i : ℕ) < q) Finset.univ,
         (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ X.σ i.rev :=
@@ -82,10 +88,16 @@ theorem decomposition_q (n q : ℕ) :
         simpa only [Fin.val_mk, (higher_faces_vanish.of_P q n).comp_Hσ_eq hnaq', q'.rev_eq hnaq',
           neg_neg]
       · simp only [Finset.mem_filter, Fin.val_mk, lt_self_iff_false, and_false_iff, not_false_iff]
-#align algebraic_topology.dold_kan.decomposition_Q AlgebraicTopology.DoldKan.decomposition_q
+#align algebraic_topology.dold_kan.decomposition_Q AlgebraicTopology.DoldKan.decomposition_Q
 
 variable (X)
 
+/- warning: algebraic_topology.dold_kan.morph_components -> AlgebraicTopology.DoldKan.MorphComponents is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1], (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) -> Nat -> C -> Type.{u2}
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C], (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) -> Nat -> C -> Type.{u2}
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.morph_components AlgebraicTopology.DoldKan.MorphComponentsₓ'. -/
 /-- The structure `morph_components` is an ad hoc structure that is used in
 the proof that `N₁ : simplicial_object C ⥤ karoubi (chain_complex C ℕ))`
 reflects isomorphisms. The fields are the data that are needed in order to
@@ -101,13 +113,16 @@ namespace MorphComponents
 
 variable {X} {n : ℕ} {Z Z' : C} (f : MorphComponents X n Z) (g : X' ⟶ X) (h : Z ⟶ Z')
 
+#print AlgebraicTopology.DoldKan.MorphComponents.φ /-
 /-- The morphism `X _[n+1] ⟶ Z ` associated to `f : morph_components X n Z`. -/
 def φ {Z : C} (f : MorphComponents X n Z) : X _[n + 1] ⟶ Z :=
   PInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ f.b i.rev
 #align algebraic_topology.dold_kan.morph_components.φ AlgebraicTopology.DoldKan.MorphComponents.φ
+-/
 
 variable (X n)
 
+#print AlgebraicTopology.DoldKan.MorphComponents.id /-
 /-- the canonical `morph_components` whose associated morphism is the identity
 (see `F_id`) thanks to `decomposition_Q n (n+1)` -/
 @[simps]
@@ -116,7 +131,14 @@ def id : MorphComponents X n (X _[n + 1])
   a := PInfty.f (n + 1)
   b i := X.σ i
 #align algebraic_topology.dold_kan.morph_components.id AlgebraicTopology.DoldKan.MorphComponents.id
+-/
 
+/- warning: algebraic_topology.dold_kan.morph_components.id_φ -> AlgebraicTopology.DoldKan.MorphComponents.id_φ is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (AlgebraicTopology.DoldKan.MorphComponents.φ.{u1, u2} C _inst_1 _inst_2 X n (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (AlgebraicTopology.DoldKan.MorphComponents.id.{u1, u2} C _inst_1 _inst_2 X n)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AlgebraicTopology.DoldKan.MorphComponents.φ.{u1, u2} C _inst_1 _inst_2 X n (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (AlgebraicTopology.DoldKan.MorphComponents.id.{u1, u2} C _inst_1 _inst_2 X n)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.morph_components.id_φ AlgebraicTopology.DoldKan.MorphComponents.id_φₓ'. -/
 @[simp]
 theorem id_φ : (id X n).φ = 𝟙 _ :=
   by
@@ -130,6 +152,12 @@ theorem id_φ : (id X n).φ = 𝟙 _ :=
 
 variable {X n}
 
+/- warning: algebraic_topology.dold_kan.morph_components.post_comp -> AlgebraicTopology.DoldKan.MorphComponents.postComp is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {n : Nat} {Z : C} {Z' : C}, (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X n Z) -> (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) Z Z') -> (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X n Z')
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {_inst_2 : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {X : Nat} {n : C} {Z : C}, (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X n) -> (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) n Z) -> (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X Z)
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.morph_components.post_comp AlgebraicTopology.DoldKan.MorphComponents.postCompₓ'. -/
 /-- A `morph_components` can be postcomposed with a morphism. -/
 @[simps]
 def postComp : MorphComponents X n Z' where
@@ -137,13 +165,21 @@ def postComp : MorphComponents X n Z' where
   b i := f.b i ≫ h
 #align algebraic_topology.dold_kan.morph_components.post_comp AlgebraicTopology.DoldKan.MorphComponents.postComp
 
+#print AlgebraicTopology.DoldKan.MorphComponents.postComp_φ /-
 @[simp]
 theorem postComp_φ : (f.postComp h).φ = f.φ ≫ h :=
   by
   unfold φ post_comp
   simp only [add_comp, sum_comp, assoc]
 #align algebraic_topology.dold_kan.morph_components.post_comp_φ AlgebraicTopology.DoldKan.MorphComponents.postComp_φ
+-/
 
+/- warning: algebraic_topology.dold_kan.morph_components.pre_comp -> AlgebraicTopology.DoldKan.MorphComponents.preComp is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {X' : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {n : Nat} {Z : C}, (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X n Z) -> (Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) X' X) -> (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X' n Z)
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] {_inst_2 : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {X' : Nat} {n : C}, (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 _inst_2 X' n) -> (Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X _inst_2) -> (AlgebraicTopology.DoldKan.MorphComponents.{u1, u2} C _inst_1 X X' n)
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.morph_components.pre_comp AlgebraicTopology.DoldKan.MorphComponents.preCompₓ'. -/
 /-- A `morph_components` can be precomposed with a morphism of simplicial objects. -/
 @[simps]
 def preComp : MorphComponents X' n Z
@@ -152,6 +188,7 @@ def preComp : MorphComponents X' n Z
   b i := g.app (op [n]) ≫ f.b i
 #align algebraic_topology.dold_kan.morph_components.pre_comp AlgebraicTopology.DoldKan.MorphComponents.preComp
 
+#print AlgebraicTopology.DoldKan.MorphComponents.preComp_φ /-
 @[simp]
 theorem preComp_φ : (f.preComp g).φ = g.app (op [n + 1]) ≫ f.φ :=
   by
@@ -161,6 +198,7 @@ theorem preComp_φ : (f.preComp g).φ = g.app (op [n + 1]) ≫ f.φ :=
   · simp only [P_f_naturality_assoc]
   · simp only [comp_sum, P_f_naturality_assoc, simplicial_object.δ_naturality_assoc]
 #align algebraic_topology.dold_kan.morph_components.pre_comp_φ AlgebraicTopology.DoldKan.MorphComponents.preComp_φ
+-/
 
 end MorphComponents
 
Diff
@@ -103,7 +103,7 @@ variable {X} {n : ℕ} {Z Z' : C} (f : MorphComponents X n Z) (g : X' ⟶ X) (h
 
 /-- The morphism `X _[n+1] ⟶ Z ` associated to `f : morph_components X n Z`. -/
 def φ {Z : C} (f : MorphComponents X n Z) : X _[n + 1] ⟶ Z :=
-  pInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ f.b i.rev
+  PInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ f.b i.rev
 #align algebraic_topology.dold_kan.morph_components.φ AlgebraicTopology.DoldKan.MorphComponents.φ
 
 variable (X n)
@@ -113,7 +113,7 @@ variable (X n)
 @[simps]
 def id : MorphComponents X n (X _[n + 1])
     where
-  a := pInfty.f (n + 1)
+  a := PInfty.f (n + 1)
   b i := X.σ i
 #align algebraic_topology.dold_kan.morph_components.id AlgebraicTopology.DoldKan.MorphComponents.id
 
Diff
@@ -52,9 +52,9 @@ simplicial abelian groups, any $(n+1)$-simplex $x$ can be decomposed as
 $x = x' + \sum (i=0}^{q-1} σ_{n-i}(y_i)$ where $x'$ is in the image of `P q` and
 the $y_i$ are in degree $n$. -/
 theorem decomposition_q (n q : ℕ) :
-    ((q q).f (n + 1) : X _[n + 1] ⟶ X _[n + 1]) =
+    ((Q q).f (n + 1) : X _[n + 1] ⟶ X _[n + 1]) =
       ∑ i : Fin (n + 1) in Finset.filter (fun i : Fin (n + 1) => (i : ℕ) < q) Finset.univ,
-        (p i).f (n + 1) ≫ X.δ i.rev.succ ≫ X.σ i.rev :=
+        (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ X.σ i.rev :=
   by
   induction' q with q hq
   ·
@@ -103,7 +103,7 @@ variable {X} {n : ℕ} {Z Z' : C} (f : MorphComponents X n Z) (g : X' ⟶ X) (h
 
 /-- The morphism `X _[n+1] ⟶ Z ` associated to `f : morph_components X n Z`. -/
 def φ {Z : C} (f : MorphComponents X n Z) : X _[n + 1] ⟶ Z :=
-  pInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (p i).f (n + 1) ≫ X.δ i.rev.succ ≫ f.b i.rev
+  pInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ f.b i.rev
 #align algebraic_topology.dold_kan.morph_components.φ AlgebraicTopology.DoldKan.MorphComponents.φ
 
 variable (X n)
Diff
@@ -79,7 +79,7 @@ theorem decomposition_q (n q : ℕ) :
           Nat.lt_succ_iff_lt_or_eq, Fin.ext_iff]
         tauto
       · have hnaq' : n = a + q := by linarith
-        simpa only [Fin.val_mk, (higher_faces_vanish.of_P q n).comp_hσ_eq hnaq', q'.rev_eq hnaq',
+        simpa only [Fin.val_mk, (higher_faces_vanish.of_P q n).comp_Hσ_eq hnaq', q'.rev_eq hnaq',
           neg_neg]
       · simp only [Finset.mem_filter, Fin.val_mk, lt_self_iff_false, and_false_iff, not_false_iff]
 #align algebraic_topology.dold_kan.decomposition_Q AlgebraicTopology.DoldKan.decomposition_q
Diff
@@ -123,7 +123,7 @@ theorem id_φ : (id X n).φ = 𝟙 _ :=
   simp only [← P_add_Q_f (n + 1) (n + 1), φ]
   congr 1
   · simp only [id, P_infty_f, P_f_idem]
-  · convert (decomposition_Q n (n + 1)).symm
+  · convert(decomposition_Q n (n + 1)).symm
     ext i
     simpa only [Finset.mem_univ, Finset.mem_filter, true_and_iff, true_iff_iff] using Fin.is_lt i
 #align algebraic_topology.dold_kan.morph_components.id_φ AlgebraicTopology.DoldKan.MorphComponents.id_φ

Changes in mathlib4

mathlib3
mathlib4
chore: classify porting notes referring to missing linters (#12098)

Reference the newly created issues #12094 and #12096, as well as the pre-existing #5171. Change all references to #10927 to #5171. Some of these changes were not labelled as "porting note"; change this for good measure.

Diff
@@ -84,7 +84,7 @@ set_option linter.uppercaseLean3 false in
 
 variable (X)
 
--- porting note (#10927): removed @[nolint has_nonempty_instance]
+-- porting note (#5171): removed @[nolint has_nonempty_instance]
 /-- The structure `MorphComponents` is an ad hoc structure that is used in
 the proof that `N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ))`
 reflects isomorphisms. The fields are the data that are needed in order to
refactor: optimize proofs with omega (#11093)

I ran tryAtEachStep on all files under Mathlib to find all locations where omega succeeds. For each that was a linarith without an only, I tried replacing it with omega, and I verified that elaboration time got smaller. (In almost all cases, there was a noticeable speedup.) I also replaced some slow aesops along the way.

Diff
@@ -58,11 +58,11 @@ theorem decomposition_Q (n q : ℕ) :
       Finset.filter_False, Finset.sum_empty]
   · by_cases hqn : q + 1 ≤ n + 1
     swap
-    · rw [Q_is_eventually_constant (show n + 1 ≤ q by linarith), hq]
+    · rw [Q_is_eventually_constant (show n + 1 ≤ q by omega), hq]
       congr 1
       ext ⟨x, hx⟩
       simp only [Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ, true_and]
-      constructor <;> intro <;> linarith
+      omega
     · cases' Nat.le.dest (Nat.succ_le_succ_iff.mp hqn) with a ha
       rw [Q_succ, HomologicalComplex.sub_f_apply, HomologicalComplex.comp_f, hq]
       symm
@@ -70,7 +70,7 @@ theorem decomposition_Q (n q : ℕ) :
       let q' : Fin (n + 1) := ⟨q, Nat.succ_le_iff.mp hqn⟩
       rw [← @Finset.add_sum_erase _ _ _ _ _ _ q' (by simp)]
       congr
-      · have hnaq' : n = a + q := by linarith
+      · have hnaq' : n = a + q := by omega
         simp only [Fin.val_mk, (HigherFacesVanish.of_P q n).comp_Hσ_eq hnaq',
           q'.rev_eq hnaq', neg_neg]
         rfl
chore: prepare Lean version bump with explicit simp (#10999)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -75,7 +75,7 @@ theorem decomposition_Q (n q : ℕ) :
           q'.rev_eq hnaq', neg_neg]
         rfl
       · ext ⟨i, hi⟩
-        simp only [Nat.succ_eq_add_one, Nat.lt_succ_iff_lt_or_eq, Finset.mem_univ,
+        simp only [q', Nat.succ_eq_add_one, Nat.lt_succ_iff_lt_or_eq, Finset.mem_univ,
           forall_true_left, Finset.mem_filter, lt_self_iff_false, or_true, and_self, not_true,
           Finset.mem_erase, ne_eq, Fin.mk.injEq, true_and]
         aesop
chore: classify removed @[nolint has_nonempty_instance] porting notes (#10929)

Classifies by adding issue number (#10927) to porting notes claiming removed @[nolint has_nonempty_instance].

Diff
@@ -84,7 +84,7 @@ set_option linter.uppercaseLean3 false in
 
 variable (X)
 
--- porting note: removed @[nolint has_nonempty_instance]
+-- porting note (#10927): removed @[nolint has_nonempty_instance]
 /-- The structure `MorphComponents` is an ad hoc structure that is used in
 the proof that `N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ))`
 reflects isomorphisms. The fields are the data that are needed in order to
chore: remove trailing space in backticks (#7617)

This will improve spaces in the mathlib4 docs.

Diff
@@ -100,7 +100,7 @@ namespace MorphComponents
 
 variable {X} {n : ℕ} {Z Z' : C} (f : MorphComponents X n Z) (g : X' ⟶ X) (h : Z ⟶ Z')
 
-/-- The morphism `X _[n+1] ⟶ Z ` associated to `f : MorphComponents X n Z`. -/
+/-- The morphism `X _[n+1] ⟶ Z` associated to `f : MorphComponents X n Z`. -/
 def φ {Z : C} (f : MorphComponents X n Z) : X _[n + 1] ⟶ Z :=
   PInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.rev.succ ≫
     f.b (Fin.rev i)
chore: replace Fin.castIso and Fin.revPerm with Fin.cast and Fin.rev for the bump of Std (#5847)

Some theorems in Data.Fin.Basic are copied to Std at the recent commit in Std. These are written using Fin.cast and Fin.rev, so declarations using Fin.castIso and Fin.revPerm in Mathlib should be rewritten.

Co-authored-by: Pol'tta / Miyahara Kō <52843868+Komyyy@users.noreply.github.com> Co-authored-by: Johan Commelin <johan@commelin.net>

Diff
@@ -52,7 +52,7 @@ the $y_i$ are in degree $n$. -/
 theorem decomposition_Q (n q : ℕ) :
     ((Q q).f (n + 1) : X _[n + 1] ⟶ X _[n + 1]) =
       ∑ i : Fin (n + 1) in Finset.filter (fun i : Fin (n + 1) => (i : ℕ) < q) Finset.univ,
-        (P i).f (n + 1) ≫ X.δ i.revPerm.succ ≫ X.σ (Fin.revPerm i) := by
+        (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ X.σ (Fin.rev i) := by
   induction' q with q hq
   · simp only [Nat.zero_eq, Q_zero, HomologicalComplex.zero_f_apply, Nat.not_lt_zero,
       Finset.filter_False, Finset.sum_empty]
@@ -72,7 +72,7 @@ theorem decomposition_Q (n q : ℕ) :
       congr
       · have hnaq' : n = a + q := by linarith
         simp only [Fin.val_mk, (HigherFacesVanish.of_P q n).comp_Hσ_eq hnaq',
-          q'.revPerm_eq hnaq', neg_neg]
+          q'.rev_eq hnaq', neg_neg]
         rfl
       · ext ⟨i, hi⟩
         simp only [Nat.succ_eq_add_one, Nat.lt_succ_iff_lt_or_eq, Finset.mem_univ,
@@ -102,8 +102,8 @@ variable {X} {n : ℕ} {Z Z' : C} (f : MorphComponents X n Z) (g : X' ⟶ X) (h
 
 /-- The morphism `X _[n+1] ⟶ Z ` associated to `f : MorphComponents X n Z`. -/
 def φ {Z : C} (f : MorphComponents X n Z) : X _[n + 1] ⟶ Z :=
-  PInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.revPerm.succ ≫
-    f.b (Fin.revPerm i)
+  PInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.rev.succ ≫
+    f.b (Fin.rev i)
 #align algebraic_topology.dold_kan.morph_components.φ AlgebraicTopology.DoldKan.MorphComponents.φ
 
 variable (X n)
chore: fix SHA for Dold-Kan equivalence files (#6834)
Diff
@@ -5,7 +5,7 @@ Authors: Joël Riou
 -/
 import Mathlib.AlgebraicTopology.DoldKan.PInfty
 
-#align_import algebraic_topology.dold_kan.decomposition from "leanprover-community/mathlib"@"9af20344b24ef1801b599d296aaed8b9fffdc360"
+#align_import algebraic_topology.dold_kan.decomposition from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
 /-!
 
feat: forward port of Mathlib.AlgebraicTopology.DoldKan.Equivalence (#6444)

In this PR (which is a forward port of https://github.com/leanprover-community/mathlib/pull/17926), the Dold-Kan equivalence between simplicial objects and chain complexes in abelian categories is constructed.

Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>

Diff
@@ -27,6 +27,8 @@ role in the proof that the functor
 `N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ))`
 reflects isomorphisms.
 
+(See `Equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
 -/
 
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -39,7 +39,7 @@ namespace AlgebraicTopology
 
 namespace DoldKan
 
-variable {C : Type _} [Category C] [Preadditive C] {X X' : SimplicialObject C}
+variable {C : Type*} [Category C] [Preadditive C] {X X' : SimplicialObject C}
 
 /-- In each positive degree, this lemma decomposes the idempotent endomorphism
 `Q q` as a sum of morphisms which are postcompositions with suitable degeneracies.
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.decomposition
-! leanprover-community/mathlib commit 9af20344b24ef1801b599d296aaed8b9fffdc360
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.AlgebraicTopology.DoldKan.PInfty
 
+#align_import algebraic_topology.dold_kan.decomposition from "leanprover-community/mathlib"@"9af20344b24ef1801b599d296aaed8b9fffdc360"
+
 /-!
 
 # Decomposition of the Q endomorphisms
chore: rename Fin.rev to Fin.revPerm (#5715)
Diff
@@ -53,7 +53,7 @@ the $y_i$ are in degree $n$. -/
 theorem decomposition_Q (n q : ℕ) :
     ((Q q).f (n + 1) : X _[n + 1] ⟶ X _[n + 1]) =
       ∑ i : Fin (n + 1) in Finset.filter (fun i : Fin (n + 1) => (i : ℕ) < q) Finset.univ,
-        (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ X.σ (Fin.rev i) := by
+        (P i).f (n + 1) ≫ X.δ i.revPerm.succ ≫ X.σ (Fin.revPerm i) := by
   induction' q with q hq
   · simp only [Nat.zero_eq, Q_zero, HomologicalComplex.zero_f_apply, Nat.not_lt_zero,
       Finset.filter_False, Finset.sum_empty]
@@ -73,7 +73,7 @@ theorem decomposition_Q (n q : ℕ) :
       congr
       · have hnaq' : n = a + q := by linarith
         simp only [Fin.val_mk, (HigherFacesVanish.of_P q n).comp_Hσ_eq hnaq',
-          q'.rev_eq hnaq', neg_neg]
+          q'.revPerm_eq hnaq', neg_neg]
         rfl
       · ext ⟨i, hi⟩
         simp only [Nat.succ_eq_add_one, Nat.lt_succ_iff_lt_or_eq, Finset.mem_univ,
@@ -103,7 +103,8 @@ variable {X} {n : ℕ} {Z Z' : C} (f : MorphComponents X n Z) (g : X' ⟶ X) (h
 
 /-- The morphism `X _[n+1] ⟶ Z ` associated to `f : MorphComponents X n Z`. -/
 def φ {Z : C} (f : MorphComponents X n Z) : X _[n + 1] ⟶ Z :=
-  PInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.rev.succ ≫ f.b (Fin.rev i)
+  PInfty.f (n + 1) ≫ f.a + ∑ i : Fin (n + 1), (P i).f (n + 1) ≫ X.δ i.revPerm.succ ≫
+    f.b (Fin.revPerm i)
 #align algebraic_topology.dold_kan.morph_components.φ AlgebraicTopology.DoldKan.MorphComponents.φ
 
 variable (X n)
chore: remove occurrences of semicolon after space (#5713)

This is the second half of the changes originally in #5699, removing all occurrences of ; after a space and implementing a linter rule to enforce it.

In most cases this 2-character substring has a space after it, so the following command was run first:

find . -type f -name "*.lean" -exec sed -i -E 's/ ; /; /g' {} \;

The remaining cases were few enough in number that they were done manually.

Diff
@@ -121,7 +121,7 @@ theorem id_φ : (id X n).φ = 𝟙 _ := by
   simp only [← P_add_Q_f (n + 1) (n + 1), φ]
   congr 1
   · simp only [id, PInfty_f, P_f_idem]
-  · exact Eq.trans (by congr ; simp) (decomposition_Q n (n + 1)).symm
+  · exact Eq.trans (by congr; simp) (decomposition_Q n (n + 1)).symm
 #align algebraic_topology.dold_kan.morph_components.id_φ AlgebraicTopology.DoldKan.MorphComponents.id_φ
 
 variable {X n}
chore: fix focusing dots (#5708)

This PR is the result of running

find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;

which firstly replaces . focusing dots with · and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.

Diff
@@ -75,7 +75,7 @@ theorem decomposition_Q (n q : ℕ) :
         simp only [Fin.val_mk, (HigherFacesVanish.of_P q n).comp_Hσ_eq hnaq',
           q'.rev_eq hnaq', neg_neg]
         rfl
-      . ext ⟨i, hi⟩
+      · ext ⟨i, hi⟩
         simp only [Nat.succ_eq_add_one, Nat.lt_succ_iff_lt_or_eq, Finset.mem_univ,
           forall_true_left, Finset.mem_filter, lt_self_iff_false, or_true, and_self, not_true,
           Finset.mem_erase, ne_eq, Fin.mk.injEq, true_and]
@@ -121,7 +121,7 @@ theorem id_φ : (id X n).φ = 𝟙 _ := by
   simp only [← P_add_Q_f (n + 1) (n + 1), φ]
   congr 1
   · simp only [id, PInfty_f, P_f_idem]
-  . exact Eq.trans (by congr ; simp) (decomposition_Q n (n + 1)).symm
+  · exact Eq.trans (by congr ; simp) (decomposition_Q n (n + 1)).symm
 #align algebraic_topology.dold_kan.morph_components.id_φ AlgebraicTopology.DoldKan.MorphComponents.id_φ
 
 variable {X n}
feat: port AlgebraicTopology.DoldKan.Decomposition (#3544)

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Dependencies 8 + 523

524 files ported (98.5%)
200403 lines ported (98.5%)
Show graph

The unported dependencies are