algebraic_topology.dold_kan.equivalence
⟷
Mathlib.AlgebraicTopology.DoldKan.Equivalence
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
-import Mathbin.AlgebraicTopology.DoldKan.EquivalencePseudoabelian
-import Mathbin.AlgebraicTopology.DoldKan.Normalized
+import AlgebraicTopology.DoldKan.EquivalencePseudoabelian
+import AlgebraicTopology.DoldKan.Normalized
#align_import algebraic_topology.dold_kan.equivalence from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -140,30 +140,37 @@ namespace DoldKan
open AlgebraicTopology.DoldKan
+#print CategoryTheory.Abelian.DoldKan.N /-
/-- The functor `N` for the equivalence is `normalized_Moore_complex A` -/
-def n : SimplicialObject A ⥤ ChainComplex A ℕ :=
+def N : SimplicialObject A ⥤ ChainComplex A ℕ :=
AlgebraicTopology.normalizedMooreComplex A
-#align category_theory.abelian.dold_kan.N CategoryTheory.Abelian.DoldKan.n
+#align category_theory.abelian.dold_kan.N CategoryTheory.Abelian.DoldKan.N
+-/
+#print CategoryTheory.Abelian.DoldKan.Γ /-
/-- The functor `Γ` for the equivalence is the same as in the pseudoabelian case. -/
def Γ : ChainComplex A ℕ ⥤ SimplicialObject A :=
Idempotents.DoldKan.Γ
#align category_theory.abelian.dold_kan.Γ CategoryTheory.Abelian.DoldKan.Γ
+-/
+#print CategoryTheory.Abelian.DoldKan.comparisonN /-
/-- The comparison isomorphism between `normalized_Moore_complex A` and
the functor `idempotents.dold_kan.N` from the pseudoabelian case -/
@[simps]
-def comparisonN : (n : SimplicialObject A ⥤ _) ≅ Idempotents.DoldKan.N :=
+def comparisonN : (N : SimplicialObject A ⥤ _) ≅ Idempotents.DoldKan.N :=
calc
- n ≅ n ⋙ 𝟭 _ := Functor.leftUnitor n
- _ ≅ n ⋙ (toKaroubi_equivalence _).Functor ⋙ (toKaroubi_equivalence _).inverse :=
- (isoWhiskerLeft _ (toKaroubi_equivalence _).unitIso)
- _ ≅ (n ⋙ (toKaroubi_equivalence _).Functor) ⋙ (toKaroubi_equivalence _).inverse := (Iso.refl _)
- _ ≅ N₁ ⋙ (toKaroubi_equivalence _).inverse :=
+ N ≅ N ⋙ 𝟭 _ := Functor.leftUnitor N
+ _ ≅ N ⋙ (toKaroubiEquivalence _).Functor ⋙ (toKaroubiEquivalence _).inverse :=
+ (isoWhiskerLeft _ (toKaroubiEquivalence _).unitIso)
+ _ ≅ (N ⋙ (toKaroubiEquivalence _).Functor) ⋙ (toKaroubiEquivalence _).inverse := (Iso.refl _)
+ _ ≅ N₁ ⋙ (toKaroubiEquivalence _).inverse :=
(isoWhiskerRight (N₁_iso_normalizedMooreComplex_comp_toKaroubi A).symm _)
_ ≅ Idempotents.DoldKan.N := by rfl
#align category_theory.abelian.dold_kan.comparison_N CategoryTheory.Abelian.DoldKan.comparisonN
+-/
+#print CategoryTheory.Abelian.DoldKan.equivalence /-
/-- The Dold-Kan equivalence for abelian categories -/
@[simps Functor]
def equivalence : SimplicialObject A ≌ ChainComplex A ℕ :=
@@ -173,10 +180,13 @@ def equivalence : SimplicialObject A ≌ ChainComplex A ℕ :=
letI : is_equivalence (N : simplicial_object A ⥤ _) := is_equivalence.of_iso comparison_N.symm hF
exact N.as_equivalence
#align category_theory.abelian.dold_kan.equivalence CategoryTheory.Abelian.DoldKan.equivalence
+-/
+#print CategoryTheory.Abelian.DoldKan.equivalence_inverse /-
theorem equivalence_inverse : (equivalence : SimplicialObject A ≌ _).inverse = Γ :=
rfl
#align category_theory.abelian.dold_kan.equivalence_inverse CategoryTheory.Abelian.DoldKan.equivalence_inverse
+-/
end DoldKan
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -153,7 +153,7 @@ def Γ : ChainComplex A ℕ ⥤ SimplicialObject A :=
/-- The comparison isomorphism between `normalized_Moore_complex A` and
the functor `idempotents.dold_kan.N` from the pseudoabelian case -/
@[simps]
-def comparisonN : (n : SimplicialObject A ⥤ _) ≅ Idempotents.DoldKan.n :=
+def comparisonN : (n : SimplicialObject A ⥤ _) ≅ Idempotents.DoldKan.N :=
calc
n ≅ n ⋙ 𝟭 _ := Functor.leftUnitor n
_ ≅ n ⋙ (toKaroubi_equivalence _).Functor ⋙ (toKaroubi_equivalence _).inverse :=
@@ -161,7 +161,7 @@ def comparisonN : (n : SimplicialObject A ⥤ _) ≅ Idempotents.DoldKan.n :=
_ ≅ (n ⋙ (toKaroubi_equivalence _).Functor) ⋙ (toKaroubi_equivalence _).inverse := (Iso.refl _)
_ ≅ N₁ ⋙ (toKaroubi_equivalence _).inverse :=
(isoWhiskerRight (N₁_iso_normalizedMooreComplex_comp_toKaroubi A).symm _)
- _ ≅ Idempotents.DoldKan.n := by rfl
+ _ ≅ Idempotents.DoldKan.N := by rfl
#align category_theory.abelian.dold_kan.comparison_N CategoryTheory.Abelian.DoldKan.comparisonN
/-- The Dold-Kan equivalence for abelian categories -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
These notions on functors are now Functor.Full
, Functor.Faithful
, Functor.EssSurj
, Functor.IsEquivalence
, Functor.ReflectsIsomorphisms
. Deprecated aliases are introduced for the previous names.
@@ -167,8 +167,9 @@ set_option linter.uppercaseLean3 false in
@[simps! functor]
def equivalence : SimplicialObject A ≌ ChainComplex A ℕ := by
let F : SimplicialObject A ⥤ _ := Idempotents.DoldKan.N
- let hF : IsEquivalence F := IsEquivalence.ofEquivalence Idempotents.DoldKan.equivalence
- letI : IsEquivalence (N : SimplicialObject A ⥤ _) := IsEquivalence.ofIso comparisonN.symm hF
+ let hF : F.IsEquivalence := Functor.IsEquivalence.ofEquivalence Idempotents.DoldKan.equivalence
+ letI : (N : SimplicialObject A ⥤ _).IsEquivalence :=
+ Functor.IsEquivalence.ofIso comparisonN.symm hF
exact N.asEquivalence
#align category_theory.abelian.dold_kan.equivalence CategoryTheory.Abelian.DoldKan.equivalence
In this PR (which is a forward port of https://github.com/leanprover-community/mathlib/pull/17926), the Dold-Kan equivalence between simplicial objects and chain complexes in abelian categories is constructed.
Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>
The unported dependencies are