algebraic_topology.dold_kan.equivalenceMathlib.AlgebraicTopology.DoldKan.Equivalence

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 -/
-import Mathbin.AlgebraicTopology.DoldKan.EquivalencePseudoabelian
-import Mathbin.AlgebraicTopology.DoldKan.Normalized
+import AlgebraicTopology.DoldKan.EquivalencePseudoabelian
+import AlgebraicTopology.DoldKan.Normalized
 
 #align_import algebraic_topology.dold_kan.equivalence from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
Diff
@@ -140,30 +140,37 @@ namespace DoldKan
 
 open AlgebraicTopology.DoldKan
 
+#print CategoryTheory.Abelian.DoldKan.N /-
 /-- The functor `N` for the equivalence is `normalized_Moore_complex A` -/
-def n : SimplicialObject A ⥤ ChainComplex A ℕ :=
+def N : SimplicialObject A ⥤ ChainComplex A ℕ :=
   AlgebraicTopology.normalizedMooreComplex A
-#align category_theory.abelian.dold_kan.N CategoryTheory.Abelian.DoldKan.n
+#align category_theory.abelian.dold_kan.N CategoryTheory.Abelian.DoldKan.N
+-/
 
+#print CategoryTheory.Abelian.DoldKan.Γ /-
 /-- The functor `Γ` for the equivalence is the same as in the pseudoabelian case. -/
 def Γ : ChainComplex A ℕ ⥤ SimplicialObject A :=
   Idempotents.DoldKan.Γ
 #align category_theory.abelian.dold_kan.Γ CategoryTheory.Abelian.DoldKan.Γ
+-/
 
+#print CategoryTheory.Abelian.DoldKan.comparisonN /-
 /-- The comparison isomorphism between `normalized_Moore_complex A` and
 the functor `idempotents.dold_kan.N` from the pseudoabelian case -/
 @[simps]
-def comparisonN : (n : SimplicialObject A ⥤ _) ≅ Idempotents.DoldKan.N :=
+def comparisonN : (N : SimplicialObject A ⥤ _) ≅ Idempotents.DoldKan.N :=
   calc
-    n ≅ n ⋙ 𝟭 _ := Functor.leftUnitor n
-    _ ≅ n ⋙ (toKaroubi_equivalence _).Functor ⋙ (toKaroubi_equivalence _).inverse :=
-      (isoWhiskerLeft _ (toKaroubi_equivalence _).unitIso)
-    _ ≅ (n ⋙ (toKaroubi_equivalence _).Functor) ⋙ (toKaroubi_equivalence _).inverse := (Iso.refl _)
-    _ ≅ N₁ ⋙ (toKaroubi_equivalence _).inverse :=
+    N ≅ N ⋙ 𝟭 _ := Functor.leftUnitor N
+    _ ≅ N ⋙ (toKaroubiEquivalence _).Functor ⋙ (toKaroubiEquivalence _).inverse :=
+      (isoWhiskerLeft _ (toKaroubiEquivalence _).unitIso)
+    _ ≅ (N ⋙ (toKaroubiEquivalence _).Functor) ⋙ (toKaroubiEquivalence _).inverse := (Iso.refl _)
+    _ ≅ N₁ ⋙ (toKaroubiEquivalence _).inverse :=
       (isoWhiskerRight (N₁_iso_normalizedMooreComplex_comp_toKaroubi A).symm _)
     _ ≅ Idempotents.DoldKan.N := by rfl
 #align category_theory.abelian.dold_kan.comparison_N CategoryTheory.Abelian.DoldKan.comparisonN
+-/
 
+#print CategoryTheory.Abelian.DoldKan.equivalence /-
 /-- The Dold-Kan equivalence for abelian categories -/
 @[simps Functor]
 def equivalence : SimplicialObject A ≌ ChainComplex A ℕ :=
@@ -173,10 +180,13 @@ def equivalence : SimplicialObject A ≌ ChainComplex A ℕ :=
   letI : is_equivalence (N : simplicial_object A ⥤ _) := is_equivalence.of_iso comparison_N.symm hF
   exact N.as_equivalence
 #align category_theory.abelian.dold_kan.equivalence CategoryTheory.Abelian.DoldKan.equivalence
+-/
 
+#print CategoryTheory.Abelian.DoldKan.equivalence_inverse /-
 theorem equivalence_inverse : (equivalence : SimplicialObject A ≌ _).inverse = Γ :=
   rfl
 #align category_theory.abelian.dold_kan.equivalence_inverse CategoryTheory.Abelian.DoldKan.equivalence_inverse
+-/
 
 end DoldKan
 
Diff
@@ -153,7 +153,7 @@ def Γ : ChainComplex A ℕ ⥤ SimplicialObject A :=
 /-- The comparison isomorphism between `normalized_Moore_complex A` and
 the functor `idempotents.dold_kan.N` from the pseudoabelian case -/
 @[simps]
-def comparisonN : (n : SimplicialObject A ⥤ _) ≅ Idempotents.DoldKan.n :=
+def comparisonN : (n : SimplicialObject A ⥤ _) ≅ Idempotents.DoldKan.N :=
   calc
     n ≅ n ⋙ 𝟭 _ := Functor.leftUnitor n
     _ ≅ n ⋙ (toKaroubi_equivalence _).Functor ⋙ (toKaroubi_equivalence _).inverse :=
@@ -161,7 +161,7 @@ def comparisonN : (n : SimplicialObject A ⥤ _) ≅ Idempotents.DoldKan.n :=
     _ ≅ (n ⋙ (toKaroubi_equivalence _).Functor) ⋙ (toKaroubi_equivalence _).inverse := (Iso.refl _)
     _ ≅ N₁ ⋙ (toKaroubi_equivalence _).inverse :=
       (isoWhiskerRight (N₁_iso_normalizedMooreComplex_comp_toKaroubi A).symm _)
-    _ ≅ Idempotents.DoldKan.n := by rfl
+    _ ≅ Idempotents.DoldKan.N := by rfl
 #align category_theory.abelian.dold_kan.comparison_N CategoryTheory.Abelian.DoldKan.comparisonN
 
 /-- The Dold-Kan equivalence for abelian categories -/

Changes in mathlib4

mathlib3
mathlib4
chore(CategoryTheory): move Full, Faithful, EssSurj, IsEquivalence and ReflectsIsomorphisms to the Functor namespace (#11985)

These notions on functors are now Functor.Full, Functor.Faithful, Functor.EssSurj, Functor.IsEquivalence, Functor.ReflectsIsomorphisms. Deprecated aliases are introduced for the previous names.

Diff
@@ -167,8 +167,9 @@ set_option linter.uppercaseLean3 false in
 @[simps! functor]
 def equivalence : SimplicialObject A ≌ ChainComplex A ℕ := by
   let F : SimplicialObject A ⥤ _ := Idempotents.DoldKan.N
-  let hF : IsEquivalence F := IsEquivalence.ofEquivalence Idempotents.DoldKan.equivalence
-  letI : IsEquivalence (N : SimplicialObject A ⥤ _) := IsEquivalence.ofIso comparisonN.symm hF
+  let hF : F.IsEquivalence := Functor.IsEquivalence.ofEquivalence Idempotents.DoldKan.equivalence
+  letI : (N : SimplicialObject A ⥤ _).IsEquivalence :=
+    Functor.IsEquivalence.ofIso comparisonN.symm hF
   exact N.asEquivalence
 #align category_theory.abelian.dold_kan.equivalence CategoryTheory.Abelian.DoldKan.equivalence
 
feat: forward port of Mathlib.AlgebraicTopology.DoldKan.Equivalence (#6444)

In this PR (which is a forward port of https://github.com/leanprover-community/mathlib/pull/17926), the Dold-Kan equivalence between simplicial objects and chain complexes in abelian categories is constructed.

Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>

Dependencies 8 + 539

540 files ported (98.5%)
203432 lines ported (98.5%)
Show graph

The unported dependencies are