algebraic_topology.dold_kan.functor_gammaMathlib.AlgebraicTopology.DoldKan.FunctorGamma

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(algebraic_topology/dold_kan): The Dold-Kan equivalence for abelian categories (#17926)

Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr>

Diff
@@ -27,6 +27,8 @@ By construction, `Γ₀.obj K` is a split simplicial object whose splitting is `
 We also construct `Γ₂ : karoubi (chain_complex C ℕ) ⥤ karoubi (simplicial_object C)`
 which shall be an equivalence for any additive category `C`.
 
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
 -/
 
 noncomputable theory

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -74,7 +74,7 @@ theorem iff {j : ℕ} {i : Fin (j + 2)} : Isδ₀ (SimplexCategory.δ i) ↔ i =
 theorem eq_δ₀ {n : ℕ} {i : [n] ⟶ [n + 1]} [Mono i] (hi : Isδ₀ i) : i = SimplexCategory.δ 0 :=
   by
   obtain ⟨j, rfl⟩ := SimplexCategory.eq_δ_of_mono i
-  rw [Iff] at hi 
+  rw [Iff] at hi
   rw [hi]
 #align algebraic_topology.dold_kan.is_δ₀.eq_δ₀ AlgebraicTopology.DoldKan.Isδ₀.eq_δ₀
 -/
@@ -147,7 +147,7 @@ theorem mapMono_δ₀ {n : ℕ} : mapMono K (δ (0 : Fin (n + 2))) = K.d (n + 1)
 
 #print AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero /-
 theorem mapMono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i = 0 := by unfold map_mono;
-  rw [Ne.def] at h₁ ; split_ifs; rfl
+  rw [Ne.def] at h₁; split_ifs; rfl
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero
 -/
 
@@ -188,7 +188,7 @@ theorem mapMono_comp : mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) :=
   · by_contra
     simpa only [self_eq_add_right, h] using Eq
   · by_contra
-    simp only [h.1, add_right_inj] at eq 
+    simp only [h.1, add_right_inj] at eq
     linarith
   -- in all cases, the LHS is also zero, either by definition, or because d ≫ d = 0
   by_cases h₃ : is_δ₀ i
@@ -265,7 +265,7 @@ def obj (K : ChainComplex C ℕ) : SimplicialObject C
     cases A
     have fac : θ.unop ≫ θ'.unop ≫ A.e = (θ' ≫ θ).unop ≫ A.e := by rw [unop_comp, assoc]
     rw [← image.fac (θ'.unop ≫ A.e), ← assoc, ←
-      image.fac (θ.unop ≫ factor_thru_image (θ'.unop ≫ A.e)), assoc] at fac 
+      image.fac (θ.unop ≫ factor_thru_image (θ'.unop ≫ A.e)), assoc] at fac
     simpa only [obj.map_on_summand₀'_assoc K A θ', obj.map_on_summand₀' K _ θ,
       obj.termwise.map_mono_comp_assoc, obj.map_on_summand₀ K A fac]
 #align algebraic_topology.dold_kan.Γ₀.obj AlgebraicTopology.DoldKan.Γ₀.obj
@@ -412,7 +412,7 @@ theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ)
   by
   intro j hj
   have eq := Γ₀.obj.map_mono_on_summand_id K (SimplexCategory.δ j.succ)
-  rw [Γ₀.obj.termwise.map_mono_eq_zero K, zero_comp] at eq ; rotate_left
+  rw [Γ₀.obj.termwise.map_mono_eq_zero K, zero_comp] at eq; rotate_left
   · intro h
     exact (Nat.succ_ne_self n) (congr_arg SimplexCategory.len h)
   · exact fun h => Fin.succ_ne_zero j (by simpa only [is_δ₀.iff] using h)
Diff
@@ -132,6 +132,9 @@ theorem mapMono_δ₀' (hi : Isδ₀ i) : mapMono K i = K.d Δ.len Δ'.len :=
   by
   unfold map_mono
   classical
+  rw [dif_neg, dif_pos hi]
+  rintro rfl
+  simpa only [self_eq_add_right, Nat.one_ne_zero] using hi.1
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀' AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀'
 -/
 
Diff
@@ -132,9 +132,6 @@ theorem mapMono_δ₀' (hi : Isδ₀ i) : mapMono K i = K.d Δ.len Δ'.len :=
   by
   unfold map_mono
   classical
-  rw [dif_neg, dif_pos hi]
-  rintro rfl
-  simpa only [self_eq_add_right, Nat.one_ne_zero] using hi.1
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀' AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀'
 -/
 
Diff
@@ -272,7 +272,6 @@ def obj (K : ChainComplex C ℕ) : SimplicialObject C
 -/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[] -/
-#print AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_id /-
 theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
     SimplicialObject.Splitting.map (Γ₀.obj K)
         (fun n : ℕ => Sigma.ι (Γ₀.Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) Δ =
@@ -290,7 +289,6 @@ theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
     Γ₀.obj.termwise.map_mono_id, A.ext']
   apply id_comp
 #align algebraic_topology.dold_kan.Γ₀.splitting_map_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_id
--/
 
 #print AlgebraicTopology.DoldKan.Γ₀.splitting /-
 /-- By construction, the simplicial `Γ₀.obj K` is equipped with a splitting. -/
@@ -304,12 +302,10 @@ def splitting (K : ChainComplex C ℕ) : SimplicialObject.Splitting (Γ₀.obj K
 #align algebraic_topology.dold_kan.Γ₀.splitting AlgebraicTopology.DoldKan.Γ₀.splitting
 -/
 
-#print AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_id /-
 @[simp]
 theorem splitting_iso_hom_eq_id (Δ : SimplexCategoryᵒᵖ) : ((splitting K).Iso Δ).Hom = 𝟙 _ :=
   splitting_map_eq_id K Δ
 #align algebraic_topology.dold_kan.Γ₀.splitting_iso_hom_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_id
--/
 
 #print AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand /-
 @[reassoc]
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 -/
-import Mathbin.AlgebraicTopology.DoldKan.SplitSimplicialObject
+import AlgebraicTopology.DoldKan.SplitSimplicialObject
 
 #align_import algebraic_topology.dold_kan.functor_gamma from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
Diff
@@ -5,7 +5,7 @@ Authors: Joël Riou
 -/
 import Mathbin.AlgebraicTopology.DoldKan.SplitSimplicialObject
 
-#align_import algebraic_topology.dold_kan.functor_gamma from "leanprover-community/mathlib"@"9d2f0748e6c50d7a2657c564b1ff2c695b39148d"
+#align_import algebraic_topology.dold_kan.functor_gamma from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
 /-!
 
@@ -28,6 +28,8 @@ By construction, `Γ₀.obj K` is a split simplicial object whose splitting is `
 We also construct `Γ₂ : karoubi (chain_complex C ℕ) ⥤ karoubi (simplicial_object C)`
 which shall be an equivalence for any additive category `C`.
 
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
 -/
 
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.functor_gamma
-! leanprover-community/mathlib commit 9d2f0748e6c50d7a2657c564b1ff2c695b39148d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.AlgebraicTopology.DoldKan.SplitSimplicialObject
 
+#align_import algebraic_topology.dold_kan.functor_gamma from "leanprover-community/mathlib"@"9d2f0748e6c50d7a2657c564b1ff2c695b39148d"
+
 /-!
 
 # Construction of the inverse functor of the Dold-Kan equivalence
Diff
@@ -59,6 +59,7 @@ def Isδ₀ {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] : Prop :=
 
 namespace Isδ₀
 
+#print AlgebraicTopology.DoldKan.Isδ₀.iff /-
 theorem iff {j : ℕ} {i : Fin (j + 2)} : Isδ₀ (SimplexCategory.δ i) ↔ i = 0 :=
   by
   constructor
@@ -68,13 +69,16 @@ theorem iff {j : ℕ} {i : Fin (j + 2)} : Isδ₀ (SimplexCategory.δ i) ↔ i =
   · rintro rfl
     exact ⟨rfl, Fin.succ_ne_zero _⟩
 #align algebraic_topology.dold_kan.is_δ₀.iff AlgebraicTopology.DoldKan.Isδ₀.iff
+-/
 
+#print AlgebraicTopology.DoldKan.Isδ₀.eq_δ₀ /-
 theorem eq_δ₀ {n : ℕ} {i : [n] ⟶ [n + 1]} [Mono i] (hi : Isδ₀ i) : i = SimplexCategory.δ 0 :=
   by
   obtain ⟨j, rfl⟩ := SimplexCategory.eq_δ_of_mono i
   rw [Iff] at hi 
   rw [hi]
 #align algebraic_topology.dold_kan.is_δ₀.eq_δ₀ AlgebraicTopology.DoldKan.Isδ₀.eq_δ₀
+-/
 
 end Isδ₀
 
@@ -124,6 +128,7 @@ theorem mapMono_id : mapMono K (𝟙 Δ) = 𝟙 _ := by unfold map_mono;
 
 variable {Δ}
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀' /-
 theorem mapMono_δ₀' (hi : Isδ₀ i) : mapMono K i = K.d Δ.len Δ'.len :=
   by
   unfold map_mono
@@ -132,15 +137,20 @@ theorem mapMono_δ₀' (hi : Isδ₀ i) : mapMono K i = K.d Δ.len Δ'.len :=
   rintro rfl
   simpa only [self_eq_add_right, Nat.one_ne_zero] using hi.1
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀' AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀'
+-/
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀ /-
 @[simp]
 theorem mapMono_δ₀ {n : ℕ} : mapMono K (δ (0 : Fin (n + 2))) = K.d (n + 1) n :=
   mapMono_δ₀' K _ (by rw [is_δ₀.iff])
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀ AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀
+-/
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero /-
 theorem mapMono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i = 0 := by unfold map_mono;
   rw [Ne.def] at h₁ ; split_ifs; rfl
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero
+-/
 
 variable {K K'}
 
@@ -159,6 +169,7 @@ theorem mapMono_naturality : mapMono K i ≫ f.f Δ'.len = f.f Δ.len ≫ mapMon
 
 variable (K)
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_comp /-
 @[simp, reassoc]
 theorem mapMono_comp : mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) :=
   by
@@ -187,6 +198,7 @@ theorem mapMono_comp : mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) :=
     · simp only [map_mono_eq_zero K i' h₂ h₄, comp_zero]
   · simp only [map_mono_eq_zero K i h₁ h₃, zero_comp]
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_comp AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_comp
+-/
 
 end Termwise
 
@@ -261,6 +273,7 @@ def obj (K : ChainComplex C ℕ) : SimplicialObject C
 -/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[] -/
+#print AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_id /-
 theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
     SimplicialObject.Splitting.map (Γ₀.obj K)
         (fun n : ℕ => Sigma.ι (Γ₀.Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) Δ =
@@ -278,6 +291,7 @@ theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
     Γ₀.obj.termwise.map_mono_id, A.ext']
   apply id_comp
 #align algebraic_topology.dold_kan.Γ₀.splitting_map_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_id
+-/
 
 #print AlgebraicTopology.DoldKan.Γ₀.splitting /-
 /-- By construction, the simplicial `Γ₀.obj K` is equipped with a splitting. -/
@@ -291,11 +305,14 @@ def splitting (K : ChainComplex C ℕ) : SimplicialObject.Splitting (Γ₀.obj K
 #align algebraic_topology.dold_kan.Γ₀.splitting AlgebraicTopology.DoldKan.Γ₀.splitting
 -/
 
+#print AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_id /-
 @[simp]
 theorem splitting_iso_hom_eq_id (Δ : SimplexCategoryᵒᵖ) : ((splitting K).Iso Δ).Hom = 𝟙 _ :=
   splitting_map_eq_id K Δ
 #align algebraic_topology.dold_kan.Γ₀.splitting_iso_hom_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_id
+-/
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand /-
 @[reassoc]
 theorem Obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ')
     {Δ'' : SimplexCategory} {e : Δ'.unop ⟶ Δ''} {i : Δ'' ⟶ A.1.unop} [Epi e] [Mono i]
@@ -307,21 +324,27 @@ theorem Obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.Index
   simp only [assoc, Γ₀.splitting_iso_hom_eq_id, id_comp, comp_id]
   exact Γ₀.obj.map_on_summand₀ K A fac
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand
+-/
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand' /-
 @[reassoc]
 theorem Obj.map_on_summand' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') :
     (splitting K).ιSummand A ≫ (obj K).map θ =
       Obj.Termwise.mapMono K (image.ι (θ.unop ≫ A.e)) ≫ (splitting K).ιSummand (A.pull θ) :=
   by apply obj.map_on_summand; apply image.fac
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'
+-/
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id /-
 @[reassoc]
 theorem Obj.mapMono_on_summand_id {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
     (splitting K).ιSummand (Splitting.IndexSet.id (op Δ)) ≫ (obj K).map i.op =
       Obj.Termwise.mapMono K i ≫ (splitting K).ιSummand (Splitting.IndexSet.id (op Δ')) :=
   Obj.map_on_summand K (Splitting.IndexSet.id (op Δ)) i.op (rfl : 𝟙 _ ≫ i = i ≫ 𝟙 _)
 #align algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id
+-/
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id /-
 @[reassoc]
 theorem Obj.map_epi_on_summand_id {Δ Δ' : SimplexCategory} (e : Δ' ⟶ Δ) [Epi e] :
     (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op Δ)) ≫ (Γ₀.obj K).map e.op =
@@ -331,6 +354,7 @@ theorem Obj.map_epi_on_summand_id {Δ Δ' : SimplexCategory} (e : Δ' ⟶ Δ) [E
       (rfl : e ≫ 𝟙 Δ = e ≫ 𝟙 Δ),
     Γ₀.obj.termwise.map_mono_id] using id_comp _
 #align algebraic_topology.dold_kan.Γ₀.obj.map_epi_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id
+-/
 
 #print AlgebraicTopology.DoldKan.Γ₀.map /-
 /-- The functor `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, on morphisms. -/
@@ -351,6 +375,7 @@ end Γ₀
 
 variable [HasFiniteCoproducts C]
 
+#print AlgebraicTopology.DoldKan.Γ₀' /-
 /-- The functor `Γ₀' : chain_complex C ℕ ⥤ simplicial_object.split C`
 that induces `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, which
 shall be the inverse functor of the Dold-Kan equivalence for
@@ -364,6 +389,7 @@ def Γ₀' : ChainComplex C ℕ ⥤ SimplicialObject.Split C
       f := f.f
       comm' := fun n => by dsimp; simpa only [← splitting.ι_summand_id, (Γ₀.splitting K).ι_desc] }
 #align algebraic_topology.dold_kan.Γ₀' AlgebraicTopology.DoldKan.Γ₀'
+-/
 
 #print AlgebraicTopology.DoldKan.Γ₀ /-
 /-- The functor `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, which is
@@ -375,6 +401,7 @@ def Γ₀ : ChainComplex C ℕ ⥤ SimplicialObject C :=
 #align algebraic_topology.dold_kan.Γ₀ AlgebraicTopology.DoldKan.Γ₀
 -/
 
+#print AlgebraicTopology.DoldKan.Γ₂ /-
 /-- The extension of `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`
 on the idempotent completions. It shall be an equivalence of categories
 for any additive category `C`. -/
@@ -382,6 +409,7 @@ for any additive category `C`. -/
 def Γ₂ : Karoubi (ChainComplex C ℕ) ⥤ Karoubi (SimplicialObject C) :=
   (CategoryTheory.Idempotents.functorExtension₂ _ _).obj Γ₀
 #align algebraic_topology.dold_kan.Γ₂ AlgebraicTopology.DoldKan.Γ₂
+-/
 
 #print AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id /-
 theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ) :
@@ -397,6 +425,7 @@ theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ)
 #align algebraic_topology.dold_kan.higher_faces_vanish.on_Γ₀_summand_id AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id
 -/
 
+#print AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self /-
 @[simp, reassoc]
 theorem PInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n : ℕ} :
     (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) ≫ (PInfty : K[Γ₀.obj K] ⟶ _).f n =
@@ -407,6 +436,7 @@ theorem PInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n :
   · simpa only [P_f_0_eq] using comp_id _
   · exact (higher_faces_vanish.on_Γ₀_summand_id K n).comp_P_eq_self
 #align algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self
+-/
 
 end DoldKan
 
Diff
@@ -128,9 +128,9 @@ theorem mapMono_δ₀' (hi : Isδ₀ i) : mapMono K i = K.d Δ.len Δ'.len :=
   by
   unfold map_mono
   classical
-    rw [dif_neg, dif_pos hi]
-    rintro rfl
-    simpa only [self_eq_add_right, Nat.one_ne_zero] using hi.1
+  rw [dif_neg, dif_pos hi]
+  rintro rfl
+  simpa only [self_eq_add_right, Nat.one_ne_zero] using hi.1
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀' AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀'
 
 @[simp]
Diff
@@ -36,8 +36,8 @@ which shall be an equivalence for any additive category `C`.
 
 noncomputable section
 
-open
-  CategoryTheory CategoryTheory.Category CategoryTheory.Limits SimplexCategory SimplicialObject Opposite CategoryTheory.Idempotents
+open CategoryTheory CategoryTheory.Category CategoryTheory.Limits SimplexCategory SimplicialObject
+  Opposite CategoryTheory.Idempotents
 
 open scoped Simplicial DoldKan
 
@@ -72,7 +72,7 @@ theorem iff {j : ℕ} {i : Fin (j + 2)} : Isδ₀ (SimplexCategory.δ i) ↔ i =
 theorem eq_δ₀ {n : ℕ} {i : [n] ⟶ [n + 1]} [Mono i] (hi : Isδ₀ i) : i = SimplexCategory.δ 0 :=
   by
   obtain ⟨j, rfl⟩ := SimplexCategory.eq_δ_of_mono i
-  rw [Iff] at hi
+  rw [Iff] at hi 
   rw [hi]
 #align algebraic_topology.dold_kan.is_δ₀.eq_δ₀ AlgebraicTopology.DoldKan.Isδ₀.eq_δ₀
 
@@ -107,7 +107,7 @@ zero otherwise. -/
 def mapMono (K : ChainComplex C ℕ) {Δ' Δ : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
     K.pt Δ.len ⟶ K.pt Δ'.len := by
   by_cases Δ = Δ'
-  · exact eq_to_hom (by congr )
+  · exact eq_to_hom (by congr)
   · by_cases is_δ₀ i
     · exact K.d Δ.len Δ'.len
     · exact 0
@@ -139,7 +139,7 @@ theorem mapMono_δ₀ {n : ℕ} : mapMono K (δ (0 : Fin (n + 2))) = K.d (n + 1)
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀ AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀
 
 theorem mapMono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i = 0 := by unfold map_mono;
-  rw [Ne.def] at h₁; split_ifs; rfl
+  rw [Ne.def] at h₁ ; split_ifs; rfl
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero
 
 variable {K K'}
@@ -178,7 +178,7 @@ theorem mapMono_comp : mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) :=
   · by_contra
     simpa only [self_eq_add_right, h] using Eq
   · by_contra
-    simp only [h.1, add_right_inj] at eq
+    simp only [h.1, add_right_inj] at eq 
     linarith
   -- in all cases, the LHS is also zero, either by definition, or because d ≫ d = 0
   by_cases h₃ : is_δ₀ i
@@ -254,7 +254,7 @@ def obj (K : ChainComplex C ℕ) : SimplicialObject C
     cases A
     have fac : θ.unop ≫ θ'.unop ≫ A.e = (θ' ≫ θ).unop ≫ A.e := by rw [unop_comp, assoc]
     rw [← image.fac (θ'.unop ≫ A.e), ← assoc, ←
-      image.fac (θ.unop ≫ factor_thru_image (θ'.unop ≫ A.e)), assoc] at fac
+      image.fac (θ.unop ≫ factor_thru_image (θ'.unop ≫ A.e)), assoc] at fac 
     simpa only [obj.map_on_summand₀'_assoc K A θ', obj.map_on_summand₀' K _ θ,
       obj.termwise.map_mono_comp_assoc, obj.map_on_summand₀ K A fac]
 #align algebraic_topology.dold_kan.Γ₀.obj AlgebraicTopology.DoldKan.Γ₀.obj
@@ -389,7 +389,7 @@ theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ)
   by
   intro j hj
   have eq := Γ₀.obj.map_mono_on_summand_id K (SimplexCategory.δ j.succ)
-  rw [Γ₀.obj.termwise.map_mono_eq_zero K, zero_comp] at eq; rotate_left
+  rw [Γ₀.obj.termwise.map_mono_eq_zero K, zero_comp] at eq ; rotate_left
   · intro h
     exact (Nat.succ_ne_self n) (congr_arg SimplexCategory.len h)
   · exact fun h => Fin.succ_ne_zero j (by simpa only [is_δ₀.iff] using h)
Diff
@@ -39,7 +39,7 @@ noncomputable section
 open
   CategoryTheory CategoryTheory.Category CategoryTheory.Limits SimplexCategory SimplicialObject Opposite CategoryTheory.Idempotents
 
-open Simplicial DoldKan
+open scoped Simplicial DoldKan
 
 namespace AlgebraicTopology
 
Diff
@@ -59,12 +59,6 @@ def Isδ₀ {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] : Prop :=
 
 namespace Isδ₀
 
-/- warning: algebraic_topology.dold_kan.is_δ₀.iff -> AlgebraicTopology.DoldKan.Isδ₀.iff is a dubious translation:
-lean 3 declaration is
-  forall {j : Nat} {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))}, Iff (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (SimplexCategory.mk j) (SimplexCategory.δ j i) (SimplexCategory.δ.CategoryTheory.mono j i)) (Eq.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) i (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (One.one.{0} Nat Nat.hasOne))))))))
-but is expected to have type
-  forall {j : Nat} {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))}, Iff (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (SimplexCategory.mk j) (SimplexCategory.δ j i) (SimplexCategory.instMonoSimplexCategorySmallCategoryMkHAddNatInstHAddInstAddNatOfNatInstOfNatNatδ j i)) (Eq.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) i (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 0 (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.is_δ₀.iff AlgebraicTopology.DoldKan.Isδ₀.iffₓ'. -/
 theorem iff {j : ℕ} {i : Fin (j + 2)} : Isδ₀ (SimplexCategory.δ i) ↔ i = 0 :=
   by
   constructor
@@ -75,12 +69,6 @@ theorem iff {j : ℕ} {i : Fin (j + 2)} : Isδ₀ (SimplexCategory.δ i) ↔ i =
     exact ⟨rfl, Fin.succ_ne_zero _⟩
 #align algebraic_topology.dold_kan.is_δ₀.iff AlgebraicTopology.DoldKan.Isδ₀.iff
 
-/- warning: algebraic_topology.dold_kan.is_δ₀.eq_δ₀ -> AlgebraicTopology.DoldKan.Isδ₀.eq_δ₀ is a dubious translation:
-lean 3 declaration is
-  forall {n : Nat} {i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))} [_inst_5 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) i], (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (SimplexCategory.mk n) i _inst_5) -> (Eq.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) i (SimplexCategory.δ n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)))))))))
-but is expected to have type
-  forall {n : Nat} {i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))} [_inst_5 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) i], (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (SimplexCategory.mk n) i _inst_5) -> (Eq.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) i (SimplexCategory.δ n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 0 (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.is_δ₀.eq_δ₀ AlgebraicTopology.DoldKan.Isδ₀.eq_δ₀ₓ'. -/
 theorem eq_δ₀ {n : ℕ} {i : [n] ⟶ [n + 1]} [Mono i] (hi : Isδ₀ i) : i = SimplexCategory.δ 0 :=
   by
   obtain ⟨j, rfl⟩ := SimplexCategory.eq_δ_of_mono i
@@ -136,12 +124,6 @@ theorem mapMono_id : mapMono K (𝟙 Δ) = 𝟙 _ := by unfold map_mono;
 
 variable {Δ}
 
-/- warning: algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀' -> AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀' is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) {Δ' : SimplexCategory} {Δ : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], (AlgebraicTopology.DoldKan.Isδ₀ Δ Δ' i _inst_4) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ i _inst_4) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ) (SimplexCategory.len Δ')))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {Δ' : SimplexCategory} {Δ : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i], (AlgebraicTopology.DoldKan.Isδ₀ Δ' Δ i _inst_4) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ Δ' i _inst_4) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ') (SimplexCategory.len Δ)))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀' AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀'ₓ'. -/
 theorem mapMono_δ₀' (hi : Isδ₀ i) : mapMono K i = K.d Δ.len Δ'.len :=
   by
   unfold map_mono
@@ -151,20 +133,11 @@ theorem mapMono_δ₀' (hi : Isδ₀ i) : mapMono K i = K.d Δ.len Δ'.len :=
     simpa only [self_eq_add_right, Nat.one_ne_zero] using hi.1
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀' AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀'
 
-/- warning: algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀ -> AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀ is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) {n : Nat}, Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len (SimplexCategory.mk n)))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (SimplexCategory.δ n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)))))))) (SimplexCategory.δ.CategoryTheory.mono n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))))))))) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {n : Nat}, Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (SimplexCategory.mk n)))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (SimplexCategory.δ n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 0 (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (SimplexCategory.instMonoSimplexCategorySmallCategoryMkHAddNatInstHAddInstAddNatOfNatInstOfNatNatδ n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 0 (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀ AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀ₓ'. -/
 @[simp]
 theorem mapMono_δ₀ {n : ℕ} : mapMono K (δ (0 : Fin (n + 2))) = K.d (n + 1) n :=
   mapMono_δ₀' K _ (by rw [is_δ₀.iff])
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀ AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀
 
-/- warning: algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero -> AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zeroₓ'. -/
 theorem mapMono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i = 0 := by unfold map_mono;
   rw [Ne.def] at h₁; split_ifs; rfl
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero
@@ -186,12 +159,6 @@ theorem mapMono_naturality : mapMono K i ≫ f.f Δ'.len = f.f Δ.len ≫ mapMon
 
 variable (K)
 
-/- warning: algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_comp -> AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_comp is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) {Δ'' : SimplexCategory} {Δ' : SimplexCategory} {Δ : SimplexCategory} (i' : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ'' Δ') [_inst_3 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ'' Δ' i'] (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ''))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ')) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'')) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ i _inst_4) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ'' Δ' i' _inst_3)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ'' Δ (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) Δ'' Δ' Δ i' i) (CategoryTheory.mono_comp.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ'' Δ' Δ i' _inst_3 i _inst_4))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {Δ'' : SimplexCategory} {Δ' : SimplexCategory} {Δ : SimplexCategory} (i' : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') (_inst_3 : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ'') [i : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i'] [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ'' _inst_3], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ'')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ'')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ'' _inst_3 _inst_4) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ Δ' i' i)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ Δ'' (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) Δ Δ' Δ'' i' _inst_3) (CategoryTheory.mono_comp.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' Δ'' i' i _inst_3 _inst_4))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_comp AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_compₓ'. -/
 @[simp, reassoc]
 theorem mapMono_comp : mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) :=
   by
@@ -293,12 +260,6 @@ def obj (K : ChainComplex C ℕ) : SimplicialObject C
 #align algebraic_topology.dold_kan.Γ₀.obj AlgebraicTopology.DoldKan.Γ₀.obj
 -/
 
-/- warning: algebraic_topology.dold_kan.Γ₀.splitting_map_eq_id -> AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_id is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (Δ : Opposite.{1} SimplexCategory), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) Δ _inst_5) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ)) (SimplicialObject.Splitting.map.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (fun (n : Nat) => CategoryTheory.Limits.Sigma.ι.{0, u2, u1} (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.DoldKan.Γ₀.Obj.obj₂._proof_1.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) _inst_5) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) _inst_5 Δ) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) Δ _inst_5))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (Δ : Opposite.{1} SimplexCategory), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) Δ _inst_5) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ)) (SimplicialObject.Splitting.map.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (fun (n : Nat) => CategoryTheory.Limits.Sigma.ι.{0, u2, u1} (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u2, u1} C _inst_1 (CategoryTheory.Discrete.{0} (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.discreteCategory.{0} (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.Limits.hasColimitsOfShape_discrete.{0, u2, u1} C _inst_1 _inst_5 (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Finite.of_fintype.{0} (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (SimplicialObject.Splitting.IndexSet.instFintypeIndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))) (CategoryTheory.Discrete.functor.{u2, 0, u1} C _inst_1 (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) _inst_5 Δ) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) Δ _inst_5))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.splitting_map_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_idₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[] -/
 theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
     SimplicialObject.Splitting.map (Γ₀.obj K)
@@ -330,20 +291,11 @@ def splitting (K : ChainComplex C ℕ) : SimplicialObject.Splitting (Γ₀.obj K
 #align algebraic_topology.dold_kan.Γ₀.splitting AlgebraicTopology.DoldKan.Γ₀.splitting
 -/
 
-/- warning: algebraic_topology.dold_kan.Γ₀.splitting_iso_hom_eq_id -> AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_id is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (Δ : Opposite.{1} SimplexCategory), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ)) (CategoryTheory.Iso.hom.{u2, u1} C _inst_1 (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ) (SimplicialObject.Splitting.iso.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (Δ : Opposite.{1} SimplexCategory), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ)) (CategoryTheory.Iso.hom.{u2, u1} C _inst_1 (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ) (SimplicialObject.Splitting.iso.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.splitting_iso_hom_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_idₓ'. -/
 @[simp]
 theorem splitting_iso_hom_eq_id (Δ : SimplexCategoryᵒᵖ) : ((splitting K).Iso Δ).Hom = 𝟙 _ :=
   splitting_map_eq_id K Δ
 #align algebraic_topology.dold_kan.Γ₀.splitting_iso_hom_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_id
 
-/- warning: algebraic_topology.dold_kan.Γ₀.obj.map_on_summand -> AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summandₓ'. -/
 @[reassoc]
 theorem Obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ')
     {Δ'' : SimplexCategory} {e : Δ'.unop ⟶ Δ''} {i : Δ'' ⟶ A.1.unop} [Epi e] [Mono i]
@@ -356,9 +308,6 @@ theorem Obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.Index
   exact Γ₀.obj.map_on_summand₀ K A fac
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand
 
-/- warning: algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' -> AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'ₓ'. -/
 @[reassoc]
 theorem Obj.map_on_summand' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') :
     (splitting K).ιSummand A ≫ (obj K).map θ =
@@ -366,9 +315,6 @@ theorem Obj.map_on_summand' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.Inde
   by apply obj.map_on_summand; apply image.fac
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'
 
-/- warning: algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id -> AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_idₓ'. -/
 @[reassoc]
 theorem Obj.mapMono_on_summand_id {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
     (splitting K).ιSummand (Splitting.IndexSet.id (op Δ)) ≫ (obj K).map i.op =
@@ -376,9 +322,6 @@ theorem Obj.mapMono_on_summand_id {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [M
   Obj.map_on_summand K (Splitting.IndexSet.id (op Δ)) i.op (rfl : 𝟙 _ ≫ i = i ≫ 𝟙 _)
 #align algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id
 
-/- warning: algebraic_topology.dold_kan.Γ₀.obj.map_epi_on_summand_id -> AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_epi_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_idₓ'. -/
 @[reassoc]
 theorem Obj.map_epi_on_summand_id {Δ Δ' : SimplexCategory} (e : Δ' ⟶ Δ) [Epi e] :
     (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op Δ)) ≫ (Γ₀.obj K).map e.op =
@@ -408,12 +351,6 @@ end Γ₀
 
 variable [HasFiniteCoproducts C]
 
-/- warning: algebraic_topology.dold_kan.Γ₀' -> AlgebraicTopology.DoldKan.Γ₀' is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (SimplicialObject.Split.{u1, u2} C _inst_1 _inst_5) (SimplicialObject.Split.CategoryTheory.category.{u1, u2} C _inst_1 _inst_5)
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Functor.{u2, u2, max u1 u2, max u2 u1} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (SimplicialObject.Split.{u1, u2} C _inst_1 _inst_5) (SimplicialObject.instCategorySplit.{u1, u2} C _inst_1 _inst_5)
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀' AlgebraicTopology.DoldKan.Γ₀'ₓ'. -/
 /-- The functor `Γ₀' : chain_complex C ℕ ⥤ simplicial_object.split C`
 that induces `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, which
 shall be the inverse functor of the Dold-Kan equivalence for
@@ -438,12 +375,6 @@ def Γ₀ : ChainComplex C ℕ ⥤ SimplicialObject C :=
 #align algebraic_topology.dold_kan.Γ₀ AlgebraicTopology.DoldKan.Γ₀
 -/
 
-/- warning: algebraic_topology.dold_kan.Γ₂ -> AlgebraicTopology.DoldKan.Γ₂ is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Functor.{u2, u2, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂ AlgebraicTopology.DoldKan.Γ₂ₓ'. -/
 /-- The extension of `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`
 on the idempotent completions. It shall be an equivalence of categories
 for any additive category `C`. -/
@@ -466,9 +397,6 @@ theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ)
 #align algebraic_topology.dold_kan.higher_faces_vanish.on_Γ₀_summand_id AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id
 -/
 
-/- warning: algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self -> AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_selfₓ'. -/
 @[simp, reassoc]
 theorem PInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n : ℕ} :
     (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) ≫ (PInfty : K[Γ₀.obj K] ⟶ _).f n =
Diff
@@ -129,9 +129,7 @@ def mapMono (K : ChainComplex C ℕ) {Δ' Δ : SimplexCategory} (i : Δ' ⟶ Δ)
 variable (Δ)
 
 #print AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_id /-
-theorem mapMono_id : mapMono K (𝟙 Δ) = 𝟙 _ :=
-  by
-  unfold map_mono
+theorem mapMono_id : mapMono K (𝟙 Δ) = 𝟙 _ := by unfold map_mono;
   simp only [eq_self_iff_true, eq_to_hom_refl, dite_eq_ite, if_true]
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_id AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_id
 -/
@@ -167,12 +165,8 @@ theorem mapMono_δ₀ {n : ℕ} : mapMono K (δ (0 : Fin (n + 2))) = K.d (n + 1)
 /- warning: algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero -> AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zeroₓ'. -/
-theorem mapMono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i = 0 :=
-  by
-  unfold map_mono
-  rw [Ne.def] at h₁
-  split_ifs
-  rfl
+theorem mapMono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i = 0 := by unfold map_mono;
+  rw [Ne.def] at h₁; split_ifs; rfl
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero
 
 variable {K K'}
@@ -369,9 +363,7 @@ Case conversion may be inaccurate. Consider using '#align algebraic_topology.dol
 theorem Obj.map_on_summand' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') :
     (splitting K).ιSummand A ≫ (obj K).map θ =
       Obj.Termwise.mapMono K (image.ι (θ.unop ≫ A.e)) ≫ (splitting K).ιSummand (A.pull θ) :=
-  by
-  apply obj.map_on_summand
-  apply image.fac
+  by apply obj.map_on_summand; apply image.fac
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'
 
 /- warning: algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id -> AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id is a dubious translation:
@@ -433,9 +425,7 @@ def Γ₀' : ChainComplex C ℕ ⥤ SimplicialObject.Split C
   map K K' f :=
     { f := Γ₀.map f
       f := f.f
-      comm' := fun n => by
-        dsimp
-        simpa only [← splitting.ι_summand_id, (Γ₀.splitting K).ι_desc] }
+      comm' := fun n => by dsimp; simpa only [← splitting.ι_summand_id, (Γ₀.splitting K).ι_desc] }
 #align algebraic_topology.dold_kan.Γ₀' AlgebraicTopology.DoldKan.Γ₀'
 
 #print AlgebraicTopology.DoldKan.Γ₀ /-
Diff
@@ -165,10 +165,7 @@ theorem mapMono_δ₀ {n : ℕ} : mapMono K (δ (0 : Fin (n + 2))) = K.d (n + 1)
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀ AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀
 
 /- warning: algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero -> AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) {Δ' : SimplexCategory} {Δ : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], (Ne.{1} SimplexCategory Δ Δ') -> (Not (AlgebraicTopology.DoldKan.Isδ₀ Δ Δ' i _inst_4)) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ i _inst_4) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ')))))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {Δ' : SimplexCategory} {Δ : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i], (Ne.{1} SimplexCategory Δ' Δ) -> (Not (AlgebraicTopology.DoldKan.Isδ₀ Δ' Δ i _inst_4)) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ Δ' i _inst_4) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zeroₓ'. -/
 theorem mapMono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i = 0 :=
   by
@@ -351,10 +348,7 @@ theorem splitting_iso_hom_eq_id (Δ : SimplexCategoryᵒᵖ) : ((splitting K).Is
 #align algebraic_topology.dold_kan.Γ₀.splitting_iso_hom_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_id
 
 /- warning: algebraic_topology.dold_kan.Γ₀.obj.map_on_summand -> AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : Opposite.{1} SimplexCategory} {Δ' : Opposite.{1} SimplexCategory} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Quiver.Hom.{1, 0} (Opposite.{1} SimplexCategory) (Quiver.opposite.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory))) Δ Δ') {Δ'' : SimplexCategory} {e : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ') Δ''} {i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A))} [_inst_6 : CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') Δ'' e] [_inst_7 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) i], (Eq.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A))) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) e i) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A))) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ')) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ') (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ A) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ Δ' θ)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'')) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ') (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) i _inst_7) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (Opposite.unop.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.IndexSet.mk (Opposite.unop.{1} SimplexCategory Δ') Δ'' e _inst_6))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : Opposite.{1} SimplexCategory} {Δ' : Opposite.{1} SimplexCategory} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Quiver.Hom.{1, 0} (Opposite.{1} SimplexCategory) (Quiver.opposite.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory))) Δ Δ') {Δ'' : SimplexCategory} {e : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ') Δ''} {i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A))} [_inst_6 : CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') Δ'' e] [_inst_7 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) i], (Eq.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A))) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) e i) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A))) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ')) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ') (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ A) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ Δ' θ)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ'')) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory (Opposite.unop.{1} SimplexCategory Δ'))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) i _inst_7) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (Opposite.unop.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.IndexSet.mk (Opposite.unop.{1} SimplexCategory Δ') Δ'' e _inst_6))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summandₓ'. -/
 @[reassoc]
 theorem Obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ')
@@ -369,10 +363,7 @@ theorem Obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.Index
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand
 
 /- warning: algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' -> AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand' is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : Opposite.{1} SimplexCategory} {Δ' : Opposite.{1} SimplexCategory} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Quiver.Hom.{1, 0} (Opposite.{1} SimplexCategory) (Quiver.opposite.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory))) Δ Δ'), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ')) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ') (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ A) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ Δ' θ)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len (CategoryTheory.Limits.image.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.hasImage.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.CategoryTheory.Limits.hasStrongEpiMonoFactorisations) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ') (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K (CategoryTheory.Limits.image.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.hasImage.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.CategoryTheory.Limits.hasStrongEpiMonoFactorisations) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.Limits.image.ι.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.hasImage.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.CategoryTheory.Limits.hasStrongEpiMonoFactorisations) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))) (CategoryTheory.Limits.image.ι.CategoryTheory.mono.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.hasImage.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.CategoryTheory.Limits.hasStrongEpiMonoFactorisations) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A))))) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ' (SimplicialObject.Splitting.IndexSet.pull Δ' Δ A θ)))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : Opposite.{1} SimplexCategory} {Δ' : Opposite.{1} SimplexCategory} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Quiver.Hom.{1, 0} (Opposite.{1} SimplexCategory) (Quiver.opposite.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory))) Δ Δ'), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ')) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ') (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ A) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ Δ' θ)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (CategoryTheory.Limits.image.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ') (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K (CategoryTheory.Limits.image.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.Limits.image.ι.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))) (CategoryTheory.Limits.instMonoImageι.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A))))) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ' (SimplicialObject.Splitting.IndexSet.pull Δ A Δ' θ)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'ₓ'. -/
 @[reassoc]
 theorem Obj.map_on_summand' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') :
@@ -384,10 +375,7 @@ theorem Obj.map_on_summand' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.Inde
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'
 
 /- warning: algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id -> AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : SimplexCategory} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_6 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ))) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ i))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ')) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ')) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))) i _inst_6) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ') (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ'))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : SimplexCategory} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_6 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ))) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ i))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ')) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ i _inst_6) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ') (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ'))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_idₓ'. -/
 @[reassoc]
 theorem Obj.mapMono_on_summand_id {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
@@ -397,10 +385,7 @@ theorem Obj.mapMono_on_summand_id {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [M
 #align algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id
 
 /- warning: algebraic_topology.dold_kan.Γ₀.obj.map_epi_on_summand_id -> AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : SimplexCategory} {Δ' : SimplexCategory} (e : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_6 : CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ e], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ))) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ e))) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ') (SimplicialObject.Splitting.IndexSet.mk Δ' Δ e _inst_6))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : SimplexCategory} {Δ' : SimplexCategory} (e : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_6 : CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ e], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ))) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ e))) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ') (SimplicialObject.Splitting.IndexSet.mk Δ' Δ e _inst_6))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_epi_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_idₓ'. -/
 @[reassoc]
 theorem Obj.map_epi_on_summand_id {Δ Δ' : SimplexCategory} (e : Δ' ⟶ Δ) [Epi e] :
@@ -492,10 +477,7 @@ theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ)
 -/
 
 /- warning: algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self -> AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) {n : Nat}, Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n)) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {n : Nat}, Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n)) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_selfₓ'. -/
 @[simp, reassoc]
 theorem PInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n : ℕ} :
Diff
@@ -181,7 +181,7 @@ theorem mapMono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i =
 variable {K K'}
 
 #print AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_naturality /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem mapMono_naturality : mapMono K i ≫ f.f Δ'.len = f.f Δ.len ≫ mapMono K' i :=
   by
   unfold map_mono
@@ -201,7 +201,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {Δ'' : SimplexCategory} {Δ' : SimplexCategory} {Δ : SimplexCategory} (i' : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') (_inst_3 : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ'') [i : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i'] [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ'' _inst_3], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ'')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ'')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ'' _inst_3 _inst_4) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ Δ' i' i)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ Δ'' (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) Δ Δ' Δ'' i' _inst_3) (CategoryTheory.mono_comp.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' Δ'' i' i _inst_3 _inst_4))
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_comp AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_compₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem mapMono_comp : mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) :=
   by
   -- case where i : Δ' ⟶ Δ is the identity
@@ -246,7 +246,7 @@ def map (K : ChainComplex C ℕ) {Δ' Δ : SimplexCategoryᵒᵖ} (θ : Δ ⟶ 
 -/
 
 #print AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀ /-
-@[reassoc.1]
+@[reassoc]
 theorem map_on_summand₀ {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) {θ : Δ ⟶ Δ'}
     {Δ'' : SimplexCategory} {e : Δ'.unop ⟶ Δ''} {i : Δ'' ⟶ A.1.unop} [Epi e] [Mono i]
     (fac : e ≫ i = θ.unop ≫ A.e) :
@@ -265,7 +265,7 @@ theorem map_on_summand₀ {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexS
 -/
 
 #print AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀' /-
-@[reassoc.1]
+@[reassoc]
 theorem map_on_summand₀' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') :
     Sigma.ι (summand K Δ) A ≫ map K θ =
       Termwise.mapMono K (image.ι (θ.unop ≫ A.e)) ≫ Sigma.ι (summand K _) (A.pull θ) :=
@@ -356,7 +356,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : Opposite.{1} SimplexCategory} {Δ' : Opposite.{1} SimplexCategory} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Quiver.Hom.{1, 0} (Opposite.{1} SimplexCategory) (Quiver.opposite.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory))) Δ Δ') {Δ'' : SimplexCategory} {e : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ') Δ''} {i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A))} [_inst_6 : CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') Δ'' e] [_inst_7 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) i], (Eq.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A))) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) e i) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A))) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ')) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ') (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ A) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ Δ' θ)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ'')) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory (Opposite.unop.{1} SimplexCategory Δ'))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) i _inst_7) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (Opposite.unop.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.IndexSet.mk (Opposite.unop.{1} SimplexCategory Δ') Δ'' e _inst_6))))
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summandₓ'. -/
-@[reassoc.1]
+@[reassoc]
 theorem Obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ')
     {Δ'' : SimplexCategory} {e : Δ'.unop ⟶ Δ''} {i : Δ'' ⟶ A.1.unop} [Epi e] [Mono i]
     (fac : e ≫ i = θ.unop ≫ A.e) :
@@ -374,7 +374,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : Opposite.{1} SimplexCategory} {Δ' : Opposite.{1} SimplexCategory} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Quiver.Hom.{1, 0} (Opposite.{1} SimplexCategory) (Quiver.opposite.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory))) Δ Δ'), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ')) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ') (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ A) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ Δ' θ)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (CategoryTheory.Limits.image.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ') (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K (CategoryTheory.Limits.image.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.Limits.image.ι.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))) (CategoryTheory.Limits.instMonoImageι.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A))))) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ' (SimplicialObject.Splitting.IndexSet.pull Δ A Δ' θ)))
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'ₓ'. -/
-@[reassoc.1]
+@[reassoc]
 theorem Obj.map_on_summand' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') :
     (splitting K).ιSummand A ≫ (obj K).map θ =
       Obj.Termwise.mapMono K (image.ι (θ.unop ≫ A.e)) ≫ (splitting K).ιSummand (A.pull θ) :=
@@ -389,7 +389,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : SimplexCategory} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_6 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ))) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ i))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ')) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ i _inst_6) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ') (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ'))))
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_idₓ'. -/
-@[reassoc.1]
+@[reassoc]
 theorem Obj.mapMono_on_summand_id {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
     (splitting K).ιSummand (Splitting.IndexSet.id (op Δ)) ≫ (obj K).map i.op =
       Obj.Termwise.mapMono K i ≫ (splitting K).ιSummand (Splitting.IndexSet.id (op Δ')) :=
@@ -402,7 +402,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : SimplexCategory} {Δ' : SimplexCategory} (e : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_6 : CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ e], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ))) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ e))) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ') (SimplicialObject.Splitting.IndexSet.mk Δ' Δ e _inst_6))
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_epi_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_idₓ'. -/
-@[reassoc.1]
+@[reassoc]
 theorem Obj.map_epi_on_summand_id {Δ Δ' : SimplexCategory} (e : Δ' ⟶ Δ) [Epi e] :
     (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op Δ)) ≫ (Γ₀.obj K).map e.op =
       (Γ₀.splitting K).ιSummand (Splitting.IndexSet.mk e) :=
@@ -497,7 +497,7 @@ lean 3 declaration is
 but is expected to have type
   forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {n : Nat}, Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n)) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_selfₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem PInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n : ℕ} :
     (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) ≫ (PInfty : K[Γ₀.obj K] ⟶ _).f n =
       (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 
 ! This file was ported from Lean 3 source module algebraic_topology.dold_kan.functor_gamma
-! leanprover-community/mathlib commit 5b8284148e8149728f4b90624888d98c36284454
+! leanprover-community/mathlib commit 9d2f0748e6c50d7a2657c564b1ff2c695b39148d
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.AlgebraicTopology.DoldKan.SplitSimplicialObject
 
 # Construction of the inverse functor of the Dold-Kan equivalence
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 
 In this file, we construct the functor `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`
 which shall be the inverse functor of the Dold-Kan equivalence in the case of abelian categories,
Diff
@@ -45,15 +45,23 @@ namespace DoldKan
 variable {C : Type _} [Category C] [Preadditive C] (K K' : ChainComplex C ℕ) (f : K ⟶ K')
   {Δ'' Δ' Δ : SimplexCategory} (i' : Δ'' ⟶ Δ') [Mono i'] (i : Δ' ⟶ Δ) [Mono i]
 
+#print AlgebraicTopology.DoldKan.Isδ₀ /-
 /-- `is_δ₀ i` is a simple condition used to check whether a monomorphism `i` in
 `simplex_category` identifies to the coface map `δ 0`. -/
 @[nolint unused_arguments]
 def Isδ₀ {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] : Prop :=
   Δ.len = Δ'.len + 1 ∧ i.toOrderHom 0 ≠ 0
 #align algebraic_topology.dold_kan.is_δ₀ AlgebraicTopology.DoldKan.Isδ₀
+-/
 
 namespace Isδ₀
 
+/- warning: algebraic_topology.dold_kan.is_δ₀.iff -> AlgebraicTopology.DoldKan.Isδ₀.iff is a dubious translation:
+lean 3 declaration is
+  forall {j : Nat} {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))}, Iff (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (SimplexCategory.mk j) (SimplexCategory.δ j i) (SimplexCategory.δ.CategoryTheory.mono j i)) (Eq.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) i (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) j (One.one.{0} Nat Nat.hasOne))))))))
+but is expected to have type
+  forall {j : Nat} {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))}, Iff (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (SimplexCategory.mk j) (SimplexCategory.δ j i) (SimplexCategory.instMonoSimplexCategorySmallCategoryMkHAddNatInstHAddInstAddNatOfNatInstOfNatNatδ j i)) (Eq.{1} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) i (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 0 (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) j (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.is_δ₀.iff AlgebraicTopology.DoldKan.Isδ₀.iffₓ'. -/
 theorem iff {j : ℕ} {i : Fin (j + 2)} : Isδ₀ (SimplexCategory.δ i) ↔ i = 0 :=
   by
   constructor
@@ -64,6 +72,12 @@ theorem iff {j : ℕ} {i : Fin (j + 2)} : Isδ₀ (SimplexCategory.δ i) ↔ i =
     exact ⟨rfl, Fin.succ_ne_zero _⟩
 #align algebraic_topology.dold_kan.is_δ₀.iff AlgebraicTopology.DoldKan.Isδ₀.iff
 
+/- warning: algebraic_topology.dold_kan.is_δ₀.eq_δ₀ -> AlgebraicTopology.DoldKan.Isδ₀.eq_δ₀ is a dubious translation:
+lean 3 declaration is
+  forall {n : Nat} {i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))} [_inst_5 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) i], (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (SimplexCategory.mk n) i _inst_5) -> (Eq.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) i (SimplexCategory.δ n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)))))))))
+but is expected to have type
+  forall {n : Nat} {i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))} [_inst_5 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) i], (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (SimplexCategory.mk n) i _inst_5) -> (Eq.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) i (SimplexCategory.δ n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 0 (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.is_δ₀.eq_δ₀ AlgebraicTopology.DoldKan.Isδ₀.eq_δ₀ₓ'. -/
 theorem eq_δ₀ {n : ℕ} {i : [n] ⟶ [n + 1]} [Mono i] (hi : Isδ₀ i) : i = SimplexCategory.δ 0 :=
   by
   obtain ⟨j, rfl⟩ := SimplexCategory.eq_δ_of_mono i
@@ -77,20 +91,25 @@ namespace Γ₀
 
 namespace Obj
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.summand /-
 /-- In the definition of `(Γ₀.obj K).obj Δ` as a direct sum indexed by `A : splitting.index_set Δ`,
 the summand `summand K Δ A` is `K.X A.1.len`. -/
 def summand (Δ : SimplexCategoryᵒᵖ) (A : Splitting.IndexSet Δ) : C :=
   K.pt A.1.unop.len
 #align algebraic_topology.dold_kan.Γ₀.obj.summand AlgebraicTopology.DoldKan.Γ₀.Obj.summand
+-/
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.obj₂ /-
 /-- The functor `Γ₀` sends a chain complex `K` to the simplicial object which
 sends `Δ` to the direct sum of the objects `summand K Δ A` for all `A : splitting.index_set Δ` -/
 def obj₂ (K : ChainComplex C ℕ) (Δ : SimplexCategoryᵒᵖ) [HasFiniteCoproducts C] : C :=
   ∐ fun A : Splitting.IndexSet Δ => summand K Δ A
 #align algebraic_topology.dold_kan.Γ₀.obj.obj₂ AlgebraicTopology.DoldKan.Γ₀.Obj.obj₂
+-/
 
 namespace Termwise
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono /-
 /-- A monomorphism `i : Δ' ⟶ Δ` induces a morphism `K.X Δ.len ⟶ K.X Δ'.len` which
 is the identity if `Δ = Δ'`, the differential on the complex `K` if `i = δ 0`, and
 zero otherwise. -/
@@ -102,17 +121,26 @@ def mapMono (K : ChainComplex C ℕ) {Δ' Δ : SimplexCategory} (i : Δ' ⟶ Δ)
     · exact K.d Δ.len Δ'.len
     · exact 0
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono
+-/
 
 variable (Δ)
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_id /-
 theorem mapMono_id : mapMono K (𝟙 Δ) = 𝟙 _ :=
   by
   unfold map_mono
   simp only [eq_self_iff_true, eq_to_hom_refl, dite_eq_ite, if_true]
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_id AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_id
+-/
 
 variable {Δ}
 
+/- warning: algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀' -> AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀' is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) {Δ' : SimplexCategory} {Δ : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], (AlgebraicTopology.DoldKan.Isδ₀ Δ Δ' i _inst_4) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ i _inst_4) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ) (SimplexCategory.len Δ')))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {Δ' : SimplexCategory} {Δ : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i], (AlgebraicTopology.DoldKan.Isδ₀ Δ' Δ i _inst_4) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ Δ' i _inst_4) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ') (SimplexCategory.len Δ)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀' AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀'ₓ'. -/
 theorem mapMono_δ₀' (hi : Isδ₀ i) : mapMono K i = K.d Δ.len Δ'.len :=
   by
   unfold map_mono
@@ -122,11 +150,23 @@ theorem mapMono_δ₀' (hi : Isδ₀ i) : mapMono K i = K.d Δ.len Δ'.len :=
     simpa only [self_eq_add_right, Nat.one_ne_zero] using hi.1
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀' AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀'
 
+/- warning: algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀ -> AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀ is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) {n : Nat}, Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len (SimplexCategory.mk n)))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (SimplexCategory.δ n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne)))))))) (SimplexCategory.δ.CategoryTheory.mono n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (OfNat.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 0 (Zero.zero.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Fin.hasZeroOfNeZero (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))) (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (One.one.{0} Nat Nat.hasOne))))))))) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {n : Nat}, Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (SimplexCategory.mk n)))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K (SimplexCategory.mk n) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (SimplexCategory.δ n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 0 (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (SimplexCategory.instMonoSimplexCategorySmallCategoryMkHAddNatInstHAddInstAddNatOfNatInstOfNatNatδ n (OfNat.ofNat.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) 0 (Fin.instOfNatFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) 0 (NeZero.succ (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))) (HomologicalComplex.d.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀ AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀ₓ'. -/
 @[simp]
 theorem mapMono_δ₀ {n : ℕ} : mapMono K (δ (0 : Fin (n + 2))) = K.d (n + 1) n :=
   mapMono_δ₀' K _ (by rw [is_δ₀.iff])
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_δ₀ AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀
 
+/- warning: algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero -> AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) {Δ' : SimplexCategory} {Δ : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], (Ne.{1} SimplexCategory Δ Δ') -> (Not (AlgebraicTopology.DoldKan.Isδ₀ Δ Δ' i _inst_4)) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ i _inst_4) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ')))))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {Δ' : SimplexCategory} {Δ : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i], (Ne.{1} SimplexCategory Δ' Δ) -> (Not (AlgebraicTopology.DoldKan.Isδ₀ Δ' Δ i _inst_4)) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ Δ' i _inst_4) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zeroₓ'. -/
 theorem mapMono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i = 0 :=
   by
   unfold map_mono
@@ -137,6 +177,7 @@ theorem mapMono_eq_zero (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i =
 
 variable {K K'}
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_naturality /-
 @[simp, reassoc.1]
 theorem mapMono_naturality : mapMono K i ≫ f.f Δ'.len = f.f Δ.len ≫ mapMono K' i :=
   by
@@ -147,9 +188,16 @@ theorem mapMono_naturality : mapMono K i ≫ f.f Δ'.len = f.f Δ.len ≫ mapMon
   · rw [HomologicalComplex.Hom.comm]
   · rw [zero_comp, comp_zero]
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_naturality AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_naturality
+-/
 
 variable (K)
 
+/- warning: algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_comp -> AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_comp is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) {Δ'' : SimplexCategory} {Δ' : SimplexCategory} {Δ : SimplexCategory} (i' : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ'' Δ') [_inst_3 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ'' Δ' i'] (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ''))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ')) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'')) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ i _inst_4) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ'' Δ' i' _inst_3)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ'' Δ (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) Δ'' Δ' Δ i' i) (CategoryTheory.mono_comp.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ'' Δ' Δ i' _inst_3 i _inst_4))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {Δ'' : SimplexCategory} {Δ' : SimplexCategory} {Δ : SimplexCategory} (i' : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') (_inst_3 : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ'') [i : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i'] [_inst_4 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ'' _inst_3], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ'')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ'')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ'' _inst_3 _inst_4) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ Δ' i' i)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ Δ'' (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) Δ Δ' Δ'' i' _inst_3) (CategoryTheory.mono_comp.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' Δ'' i' i _inst_3 _inst_4))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_comp AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_compₓ'. -/
 @[simp, reassoc.1]
 theorem mapMono_comp : mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) :=
   by
@@ -183,6 +231,7 @@ end Termwise
 
 variable [HasFiniteCoproducts C]
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.map /-
 /-- The simplicial morphism on the simplicial object `Γ₀.obj K` induced by
 a morphism `Δ' → Δ` in `simplex_category` is defined on each summand
 associated to an `A : Γ_index_set Δ` in terms of the epi-mono factorisation
@@ -191,7 +240,9 @@ def map (K : ChainComplex C ℕ) {Δ' Δ : SimplexCategoryᵒᵖ} (θ : Δ ⟶ 
   Sigma.desc fun A =>
     Termwise.mapMono K (image.ι (θ.unop ≫ A.e)) ≫ Sigma.ι (summand K Δ') (A.pull θ)
 #align algebraic_topology.dold_kan.Γ₀.obj.map AlgebraicTopology.DoldKan.Γ₀.Obj.map
+-/
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀ /-
 @[reassoc.1]
 theorem map_on_summand₀ {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) {θ : Δ ⟶ Δ'}
     {Δ'' : SimplexCategory} {e : Δ'.unop ⟶ Δ''} {i : Δ'' ⟶ A.1.unop} [Epi e] [Mono i]
@@ -208,18 +259,22 @@ theorem map_on_summand₀ {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexS
     congr
     exact SimplexCategory.factorThruImage_eq fac
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand₀ AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀
+-/
 
+#print AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀' /-
 @[reassoc.1]
 theorem map_on_summand₀' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') :
     Sigma.ι (summand K Δ) A ≫ map K θ =
       Termwise.mapMono K (image.ι (θ.unop ≫ A.e)) ≫ Sigma.ι (summand K _) (A.pull θ) :=
   map_on_summand₀ K A (A.fac_pull θ)
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand₀' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'
+-/
 
 end Obj
 
 variable [HasFiniteCoproducts C]
 
+#print AlgebraicTopology.DoldKan.Γ₀.obj /-
 /-- The functor `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, on objects. -/
 @[simps]
 def obj (K : ChainComplex C ℕ) : SimplicialObject C
@@ -242,7 +297,14 @@ def obj (K : ChainComplex C ℕ) : SimplicialObject C
     simpa only [obj.map_on_summand₀'_assoc K A θ', obj.map_on_summand₀' K _ θ,
       obj.termwise.map_mono_comp_assoc, obj.map_on_summand₀ K A fac]
 #align algebraic_topology.dold_kan.Γ₀.obj AlgebraicTopology.DoldKan.Γ₀.obj
+-/
 
+/- warning: algebraic_topology.dold_kan.Γ₀.splitting_map_eq_id -> AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_id is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (Δ : Opposite.{1} SimplexCategory), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) Δ _inst_5) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ)) (SimplicialObject.Splitting.map.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (fun (n : Nat) => CategoryTheory.Limits.Sigma.ι.{0, u2, u1} (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.DoldKan.Γ₀.Obj.obj₂._proof_1.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) _inst_5) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) _inst_5 Δ) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) Δ _inst_5))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (Δ : Opposite.{1} SimplexCategory), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) Δ _inst_5) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ)) (SimplicialObject.Splitting.map.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (fun (n : Nat) => CategoryTheory.Limits.Sigma.ι.{0, u2, u1} (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Limits.hasColimitOfHasColimitsOfShape.{0, 0, u2, u1} C _inst_1 (CategoryTheory.Discrete.{0} (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.discreteCategory.{0} (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (CategoryTheory.Limits.hasColimitsOfShape_discrete.{0, u2, u1} C _inst_1 _inst_5 (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Finite.of_fintype.{0} (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (SimplicialObject.Splitting.IndexSet.instFintypeIndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))) (CategoryTheory.Discrete.functor.{u2, 0, u1} C _inst_1 (SimplicialObject.Splitting.IndexSet (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) _inst_5 Δ) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (fun (n : Nat) => AlgebraicTopology.DoldKan.Γ₀.Obj.summand.{u1, u2} C _inst_1 _inst_2 K (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) Δ _inst_5))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.splitting_map_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_idₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[] -/
 theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
     SimplicialObject.Splitting.map (Γ₀.obj K)
@@ -262,6 +324,7 @@ theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
   apply id_comp
 #align algebraic_topology.dold_kan.Γ₀.splitting_map_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_id
 
+#print AlgebraicTopology.DoldKan.Γ₀.splitting /-
 /-- By construction, the simplicial `Γ₀.obj K` is equipped with a splitting. -/
 def splitting (K : ChainComplex C ℕ) : SimplicialObject.Splitting (Γ₀.obj K)
     where
@@ -271,14 +334,27 @@ def splitting (K : ChainComplex C ℕ) : SimplicialObject.Splitting (Γ₀.obj K
     rw [Γ₀.splitting_map_eq_id]
     apply is_iso.id
 #align algebraic_topology.dold_kan.Γ₀.splitting AlgebraicTopology.DoldKan.Γ₀.splitting
+-/
 
+/- warning: algebraic_topology.dold_kan.Γ₀.splitting_iso_hom_eq_id -> AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_id is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (Δ : Opposite.{1} SimplexCategory), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ)) (CategoryTheory.Iso.hom.{u2, u1} C _inst_1 (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ) (SimplicialObject.Splitting.iso.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (Δ : Opposite.{1} SimplexCategory), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ)) (CategoryTheory.Iso.hom.{u2, u1} C _inst_1 (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ) (SimplicialObject.Splitting.iso.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.coprod.{u1, u2} C _inst_1 (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ _inst_5))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.splitting_iso_hom_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_idₓ'. -/
 @[simp]
 theorem splitting_iso_hom_eq_id (Δ : SimplexCategoryᵒᵖ) : ((splitting K).Iso Δ).Hom = 𝟙 _ :=
   splitting_map_eq_id K Δ
 #align algebraic_topology.dold_kan.Γ₀.splitting_iso_hom_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_id
 
+/- warning: algebraic_topology.dold_kan.Γ₀.obj.map_on_summand -> AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : Opposite.{1} SimplexCategory} {Δ' : Opposite.{1} SimplexCategory} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Quiver.Hom.{1, 0} (Opposite.{1} SimplexCategory) (Quiver.opposite.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory))) Δ Δ') {Δ'' : SimplexCategory} {e : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ') Δ''} {i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A))} [_inst_6 : CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') Δ'' e] [_inst_7 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) i], (Eq.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A))) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) e i) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A))) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ')) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ') (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ A) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ Δ' θ)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ'')) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ') (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) i _inst_7) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (Opposite.unop.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.IndexSet.mk (Opposite.unop.{1} SimplexCategory Δ') Δ'' e _inst_6))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : Opposite.{1} SimplexCategory} {Δ' : Opposite.{1} SimplexCategory} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Quiver.Hom.{1, 0} (Opposite.{1} SimplexCategory) (Quiver.opposite.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory))) Δ Δ') {Δ'' : SimplexCategory} {e : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ') Δ''} {i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A))} [_inst_6 : CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') Δ'' e] [_inst_7 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) i], (Eq.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A))) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) e i) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A))) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ')) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ') (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ A) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ Δ' θ)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ'')) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory (Opposite.unop.{1} SimplexCategory Δ'))) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ'' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) i _inst_7) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (Opposite.unop.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.IndexSet.mk (Opposite.unop.{1} SimplexCategory Δ') Δ'' e _inst_6))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summandₓ'. -/
 @[reassoc.1]
-theorem obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ')
+theorem Obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ')
     {Δ'' : SimplexCategory} {e : Δ'.unop ⟶ Δ''} {i : Δ'' ⟶ A.1.unop} [Epi e] [Mono i]
     (fac : e ≫ i = θ.unop ≫ A.e) :
     (Γ₀.splitting K).ιSummand A ≫ (Γ₀.obj K).map θ =
@@ -287,34 +363,53 @@ theorem obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.Index
   dsimp only [SimplicialObject.Splitting.ιSummand, SimplicialObject.Splitting.ιCoprod]
   simp only [assoc, Γ₀.splitting_iso_hom_eq_id, id_comp, comp_id]
   exact Γ₀.obj.map_on_summand₀ K A fac
-#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand AlgebraicTopology.DoldKan.Γ₀.obj.map_on_summand
-
+#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand
+
+/- warning: algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' -> AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand' is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : Opposite.{1} SimplexCategory} {Δ' : Opposite.{1} SimplexCategory} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Quiver.Hom.{1, 0} (Opposite.{1} SimplexCategory) (Quiver.opposite.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory))) Δ Δ'), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ')) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ') (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ A) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ Δ' θ)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len (CategoryTheory.Limits.image.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.hasImage.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.CategoryTheory.Limits.hasStrongEpiMonoFactorisations) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ') (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K (CategoryTheory.Limits.image.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.hasImage.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.CategoryTheory.Limits.hasStrongEpiMonoFactorisations) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.Limits.image.ι.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.hasImage.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.CategoryTheory.Limits.hasStrongEpiMonoFactorisations) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))) (CategoryTheory.Limits.image.ι.CategoryTheory.mono.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.hasImage.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.CategoryTheory.Limits.hasStrongEpiMonoFactorisations) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A))))) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ' (SimplicialObject.Splitting.IndexSet.pull Δ' Δ A θ)))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : Opposite.{1} SimplexCategory} {Δ' : Opposite.{1} SimplexCategory} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Quiver.Hom.{1, 0} (Opposite.{1} SimplexCategory) (Quiver.opposite.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory))) Δ Δ'), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ')) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ') (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ A) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ Δ' θ)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len (CategoryTheory.Limits.image.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) Δ') (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K (CategoryTheory.Limits.image.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.Limits.image.ι.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)))) (CategoryTheory.Limits.instMonoImageι.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A)) (CategoryTheory.Limits.HasImages.has_image.{0, 0} SimplexCategory SimplexCategory.smallCategory (CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations.{0, 0} SimplexCategory SimplexCategory.smallCategory SimplexCategory.instHasStrongEpiMonoFactorisationsSimplexCategorySmallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (CategoryTheory.CategoryStruct.comp.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory) (Opposite.unop.{1} SimplexCategory Δ') (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory Δ) (Opposite.unop.{1} SimplexCategory Δ') α)) A)) (Quiver.Hom.unop.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' θ) (SimplicialObject.Splitting.IndexSet.e Δ A))))) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) Δ' (SimplicialObject.Splitting.IndexSet.pull Δ A Δ' θ)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'ₓ'. -/
 @[reassoc.1]
-theorem obj.map_on_summand' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') :
+theorem Obj.map_on_summand' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') :
     (splitting K).ιSummand A ≫ (obj K).map θ =
       Obj.Termwise.mapMono K (image.ι (θ.unop ≫ A.e)) ≫ (splitting K).ιSummand (A.pull θ) :=
   by
   apply obj.map_on_summand
   apply image.fac
-#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.obj.map_on_summand'
-
+#align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'
+
+/- warning: algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id -> AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : SimplexCategory} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_6 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ))) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ i))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) K (SimplexCategory.len Δ')) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ')) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))) i _inst_6) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ') (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ'))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : SimplexCategory} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_6 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ))) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ i))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) K (SimplexCategory.len Δ')) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ')) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 K Δ' Δ i _inst_6) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ') (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ'))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_idₓ'. -/
 @[reassoc.1]
-theorem obj.mapMono_on_summand_id {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
+theorem Obj.mapMono_on_summand_id {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
     (splitting K).ιSummand (Splitting.IndexSet.id (op Δ)) ≫ (obj K).map i.op =
       Obj.Termwise.mapMono K i ≫ (splitting K).ιSummand (Splitting.IndexSet.id (op Δ')) :=
-  obj.map_on_summand K (Splitting.IndexSet.id (op Δ)) i.op (rfl : 𝟙 _ ≫ i = i ≫ 𝟙 _)
-#align algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id AlgebraicTopology.DoldKan.Γ₀.obj.mapMono_on_summand_id
-
+  Obj.map_on_summand K (Splitting.IndexSet.id (op Δ)) i.op (rfl : 𝟙 _ ≫ i = i ≫ 𝟙 _)
+#align algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id
+
+/- warning: algebraic_topology.dold_kan.Γ₀.obj.map_epi_on_summand_id -> AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : SimplexCategory} {Δ' : SimplexCategory} (e : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_6 : CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ e], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ))) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ e))) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ') (SimplicialObject.Splitting.IndexSet.mk Δ' Δ e _inst_6))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] {Δ : SimplexCategory} {Δ' : SimplexCategory} (e : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ) [_inst_6 : CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' Δ e], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory Δ)) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ)))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ')) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory Δ))) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory Δ) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' Δ e))) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory Δ') (SimplicialObject.Splitting.IndexSet.mk Δ' Δ e _inst_6))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀.obj.map_epi_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_idₓ'. -/
 @[reassoc.1]
-theorem obj.map_epi_on_summand_id {Δ Δ' : SimplexCategory} (e : Δ' ⟶ Δ) [Epi e] :
+theorem Obj.map_epi_on_summand_id {Δ Δ' : SimplexCategory} (e : Δ' ⟶ Δ) [Epi e] :
     (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op Δ)) ≫ (Γ₀.obj K).map e.op =
       (Γ₀.splitting K).ιSummand (Splitting.IndexSet.mk e) :=
   by
   simpa only [Γ₀.obj.map_on_summand K (splitting.index_set.id (op Δ)) e.op
       (rfl : e ≫ 𝟙 Δ = e ≫ 𝟙 Δ),
     Γ₀.obj.termwise.map_mono_id] using id_comp _
-#align algebraic_topology.dold_kan.Γ₀.obj.map_epi_on_summand_id AlgebraicTopology.DoldKan.Γ₀.obj.map_epi_on_summand_id
+#align algebraic_topology.dold_kan.Γ₀.obj.map_epi_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id
 
+#print AlgebraicTopology.DoldKan.Γ₀.map /-
 /-- The functor `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, on morphisms. -/
 @[simps]
 def map {K K' : ChainComplex C ℕ} (f : K ⟶ K') : obj K ⟶ obj K'
@@ -327,11 +422,18 @@ def map {K K' : ChainComplex C ℕ} (f : K ⟶ K') : obj K ⟶ obj K'
       assoc, obj.map_on_summand' K' _ θ]
     apply obj.termwise.map_mono_naturality_assoc
 #align algebraic_topology.dold_kan.Γ₀.map AlgebraicTopology.DoldKan.Γ₀.map
+-/
 
 end Γ₀
 
 variable [HasFiniteCoproducts C]
 
+/- warning: algebraic_topology.dold_kan.Γ₀' -> AlgebraicTopology.DoldKan.Γ₀' is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (SimplicialObject.Split.{u1, u2} C _inst_1 _inst_5) (SimplicialObject.Split.CategoryTheory.category.{u1, u2} C _inst_1 _inst_5)
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Functor.{u2, u2, max u1 u2, max u2 u1} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (SimplicialObject.Split.{u1, u2} C _inst_1 _inst_5) (SimplicialObject.instCategorySplit.{u1, u2} C _inst_1 _inst_5)
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀' AlgebraicTopology.DoldKan.Γ₀'ₓ'. -/
 /-- The functor `Γ₀' : chain_complex C ℕ ⥤ simplicial_object.split C`
 that induces `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, which
 shall be the inverse functor of the Dold-Kan equivalence for
@@ -348,6 +450,7 @@ def Γ₀' : ChainComplex C ℕ ⥤ SimplicialObject.Split C
         simpa only [← splitting.ι_summand_id, (Γ₀.splitting K).ι_desc] }
 #align algebraic_topology.dold_kan.Γ₀' AlgebraicTopology.DoldKan.Γ₀'
 
+#print AlgebraicTopology.DoldKan.Γ₀ /-
 /-- The functor `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`, which is
 the inverse functor of the Dold-Kan equivalence when `C` is an abelian
 category, or more generally a pseudoabelian category. -/
@@ -355,7 +458,14 @@ category, or more generally a pseudoabelian category. -/
 def Γ₀ : ChainComplex C ℕ ⥤ SimplicialObject C :=
   Γ₀' ⋙ Split.forget _
 #align algebraic_topology.dold_kan.Γ₀ AlgebraicTopology.DoldKan.Γ₀
+-/
 
+/- warning: algebraic_topology.dold_kan.Γ₂ -> AlgebraicTopology.DoldKan.Γ₂ is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Functor.{u2, u2, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂ AlgebraicTopology.DoldKan.Γ₂ₓ'. -/
 /-- The extension of `Γ₀ : chain_complex C ℕ ⥤ simplicial_object C`
 on the idempotent completions. It shall be an equivalence of categories
 for any additive category `C`. -/
@@ -364,6 +474,7 @@ def Γ₂ : Karoubi (ChainComplex C ℕ) ⥤ Karoubi (SimplicialObject C) :=
   (CategoryTheory.Idempotents.functorExtension₂ _ _).obj Γ₀
 #align algebraic_topology.dold_kan.Γ₂ AlgebraicTopology.DoldKan.Γ₂
 
+#print AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id /-
 theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ) :
     HigherFacesVanish (n + 1) ((Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n + 1]))) :=
   by
@@ -375,9 +486,16 @@ theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ)
   · exact fun h => Fin.succ_ne_zero j (by simpa only [is_δ₀.iff] using h)
   exact Eq
 #align algebraic_topology.dold_kan.higher_faces_vanish.on_Γ₀_summand_id AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id
+-/
 
+/- warning: algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self -> AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) {n : Nat}, Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.n.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n)) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_5 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (K : ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) {n : Nat}, Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (SimplicialObject.Splitting.N.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (SimplexCategory.len (Opposite.unop.{1} SimplexCategory (Sigma.fst.{0, 0} (Opposite.{1} SimplexCategory) (fun (Δ' : Opposite.{1} SimplexCategory) => Subtype.{1} (Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) (fun (α : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ')) => CategoryTheory.Epi.{0, 0} SimplexCategory SimplexCategory.smallCategory (Opposite.unop.{1} SimplexCategory (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Opposite.unop.{1} SimplexCategory Δ') α)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K)) n)) (SimplicialObject.Splitting.ιSummand.{u1, u2} C _inst_1 _inst_5 (AlgebraicTopology.DoldKan.Γ₀.obj.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (AlgebraicTopology.DoldKan.Γ₀.splitting.{u1, u2} C _inst_1 _inst_2 _inst_5 K) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (SimplicialObject.Splitting.IndexSet.id (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_selfₓ'. -/
 @[simp, reassoc.1]
-theorem pInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n : ℕ} :
+theorem PInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n : ℕ} :
     (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) ≫ (PInfty : K[Γ₀.obj K] ⟶ _).f n =
       (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) :=
   by
@@ -385,7 +503,7 @@ theorem pInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n :
   cases n
   · simpa only [P_f_0_eq] using comp_id _
   · exact (higher_faces_vanish.on_Γ₀_summand_id K n).comp_P_eq_self
-#align algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self AlgebraicTopology.DoldKan.pInfty_on_Γ₀_splitting_summand_eq_self
+#align algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self
 
 end DoldKan
 
Diff
@@ -378,7 +378,7 @@ theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ)
 
 @[simp, reassoc.1]
 theorem pInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n : ℕ} :
-    (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) ≫ (pInfty : K[Γ₀.obj K] ⟶ _).f n =
+    (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) ≫ (PInfty : K[Γ₀.obj K] ⟶ _).f n =
       (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) :=
   by
   rw [P_infty_f]
Diff
@@ -384,7 +384,7 @@ theorem pInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n :
   rw [P_infty_f]
   cases n
   · simpa only [P_f_0_eq] using comp_id _
-  · exact (higher_faces_vanish.on_Γ₀_summand_id K n).comp_p_eq_self
+  · exact (higher_faces_vanish.on_Γ₀_summand_id K n).comp_P_eq_self
 #align algebraic_topology.dold_kan.P_infty_on_Γ₀_splitting_summand_eq_self AlgebraicTopology.DoldKan.pInfty_on_Γ₀_splitting_summand_eq_self
 
 end DoldKan
Diff
@@ -252,7 +252,7 @@ theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
   ext A
   trace
     "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[]"
-  induction Δ using Opposite.rec
+  induction Δ using Opposite.rec'
   induction' Δ with n
   dsimp
   simp only [colimit.ι_desc, cofan.mk_ι_app, comp_id, Γ₀.obj_map]
Diff
@@ -243,7 +243,7 @@ def obj (K : ChainComplex C ℕ) : SimplicialObject C
       obj.termwise.map_mono_comp_assoc, obj.map_on_summand₀ K A fac]
 #align algebraic_topology.dold_kan.Γ₀.obj AlgebraicTopology.DoldKan.Γ₀.obj
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `discrete_cases #[] -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[] -/
 theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
     SimplicialObject.Splitting.map (Γ₀.obj K)
         (fun n : ℕ => Sigma.ι (Γ₀.Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) Δ =
@@ -251,7 +251,7 @@ theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
   by
   ext A
   trace
-    "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:76:14: unsupported tactic `discrete_cases #[]"
+    "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `discrete_cases #[]"
   induction Δ using Opposite.rec
   induction' Δ with n
   dsimp
Diff
@@ -80,7 +80,7 @@ namespace Obj
 /-- In the definition of `(Γ₀.obj K).obj Δ` as a direct sum indexed by `A : splitting.index_set Δ`,
 the summand `summand K Δ A` is `K.X A.1.len`. -/
 def summand (Δ : SimplexCategoryᵒᵖ) (A : Splitting.IndexSet Δ) : C :=
-  K.x A.1.unop.len
+  K.pt A.1.unop.len
 #align algebraic_topology.dold_kan.Γ₀.obj.summand AlgebraicTopology.DoldKan.Γ₀.Obj.summand
 
 /-- The functor `Γ₀` sends a chain complex `K` to the simplicial object which
@@ -95,7 +95,7 @@ namespace Termwise
 is the identity if `Δ = Δ'`, the differential on the complex `K` if `i = δ 0`, and
 zero otherwise. -/
 def mapMono (K : ChainComplex C ℕ) {Δ' Δ : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
-    K.x Δ.len ⟶ K.x Δ'.len := by
+    K.pt Δ.len ⟶ K.pt Δ'.len := by
   by_cases Δ = Δ'
   · exact eq_to_hom (by congr )
   · by_cases is_δ₀ i
@@ -265,7 +265,7 @@ theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
 /-- By construction, the simplicial `Γ₀.obj K` is equipped with a splitting. -/
 def splitting (K : ChainComplex C ℕ) : SimplicialObject.Splitting (Γ₀.obj K)
     where
-  n n := K.x n
+  n n := K.pt n
   ι n := Sigma.ι (Γ₀.Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))
   map_is_iso' Δ := by
     rw [Γ₀.splitting_map_eq_id]

Changes in mathlib4

mathlib3
mathlib4
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11801)
Diff
@@ -124,7 +124,7 @@ theorem mapMono_δ₀ {n : ℕ} : mapMono K (δ (0 : Fin (n + 2))) = K.d (n + 1)
 
 theorem mapMono_eq_zero (i : Δ' ⟶ Δ) [Mono i] (h₁ : Δ ≠ Δ') (h₂ : ¬Isδ₀ i) : mapMono K i = 0 := by
   unfold mapMono
-  rw [Ne.def] at h₁
+  rw [Ne] at h₁
   split_ifs
   rfl
 #align algebraic_topology.dold_kan.Γ₀.obj.termwise.map_mono_eq_zero AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero
refactor: optimize proofs with omega (#11093)

I ran tryAtEachStep on all files under Mathlib to find all locations where omega succeeds. For each that was a linarith without an only, I tried replacing it with omega, and I verified that elaboration time got smaller. (In almost all cases, there was a noticeable speedup.) I also replaced some slow aesops along the way.

Diff
@@ -158,13 +158,13 @@ theorem mapMono_comp (i' : Δ'' ⟶ Δ') (i : Δ' ⟶ Δ) [Mono i'] [Mono i] :
   -- then the RHS is always zero
   obtain ⟨k, hk⟩ := Nat.exists_eq_add_of_lt (len_lt_of_mono i h₁)
   obtain ⟨k', hk'⟩ := Nat.exists_eq_add_of_lt (len_lt_of_mono i' h₂)
-  have eq : Δ.len = Δ''.len + (k + k' + 2) := by linarith
+  have eq : Δ.len = Δ''.len + (k + k' + 2) := by omega
   rw [mapMono_eq_zero K (i' ≫ i) _ _]; rotate_left
   · by_contra h
     simp only [self_eq_add_right, h, add_eq_zero_iff, and_false] at eq
   · by_contra h
     simp only [h.1, add_right_inj] at eq
-    linarith
+    omega
   -- in all cases, the LHS is also zero, either by definition, or because d ≫ d = 0
   by_cases h₃ : Isδ₀ i
   · by_cases h₄ : Isδ₀ i'
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -3,7 +3,8 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 -/
-import Mathlib.AlgebraicTopology.DoldKan.SplitSimplicialObject
+import Mathlib.AlgebraicTopology.SplitSimplicialObject
+import Mathlib.AlgebraicTopology.DoldKan.PInfty
 
 #align_import algebraic_topology.dold_kan.functor_gamma from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
refactor(AlgebraicTopology): using the cofan API for SplitSimplicialObject (#8531)

This PR changes the definition of a splitting of simplicial objects. The new definition makes a better use of the cofan API. As a result, it is no longer necessary to assume that the category has finite coproducts.

Diff
@@ -231,65 +231,56 @@ def obj (K : ChainComplex C ℕ) : SimplicialObject C where
     rfl)
 #align algebraic_topology.dold_kan.Γ₀.obj AlgebraicTopology.DoldKan.Γ₀.obj
 
-
-theorem splitting_map_eq_id (Δ : SimplexCategoryᵒᵖ) :
-    SimplicialObject.Splitting.map (Γ₀.obj K)
-        (fun n : ℕ => Sigma.ι (Γ₀.Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) Δ =
-      𝟙 _ := colimit.hom_ext (fun ⟨A⟩ => by
-  induction' Δ using Opposite.rec' with Δ
-  induction' Δ using SimplexCategory.rec with n
-  dsimp [Splitting.map]
-  simp only [colimit.ι_desc, Cofan.mk_ι_app, Γ₀.obj_map]
-  erw [Γ₀.Obj.map_on_summand₀ K (SimplicialObject.Splitting.IndexSet.id A.1)
-      (show A.e ≫ 𝟙 _ = A.e.op.unop ≫ 𝟙 _ by rfl),
-    Γ₀.Obj.Termwise.mapMono_id, A.ext', id_comp, comp_id]
-  rfl)
-#align algebraic_topology.dold_kan.Γ₀.splitting_map_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_map_eq_id
-
 /-- By construction, the simplicial `Γ₀.obj K` is equipped with a splitting. -/
 def splitting (K : ChainComplex C ℕ) : SimplicialObject.Splitting (Γ₀.obj K) where
   N n := K.X n
   ι n := Sigma.ι (Γ₀.Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))
-  map_isIso Δ := by
-    rw [Γ₀.splitting_map_eq_id]
-    apply IsIso.id
+  isColimit' Δ := IsColimit.ofIsoColimit (colimit.isColimit _) (Cofan.ext (Iso.refl _) (by
+      intro A
+      dsimp [Splitting.cofan']
+      rw [comp_id, Γ₀.Obj.map_on_summand₀ K (SimplicialObject.Splitting.IndexSet.id A.1)
+        (show A.e ≫ 𝟙 _ = A.e.op.unop ≫ 𝟙 _ by rfl), Γ₀.Obj.Termwise.mapMono_id]
+      dsimp
+      rw [id_comp]
+      rfl))
 #align algebraic_topology.dold_kan.Γ₀.splitting AlgebraicTopology.DoldKan.Γ₀.splitting
 
-@[simp 1100]
-theorem splitting_iso_hom_eq_id (Δ : SimplexCategoryᵒᵖ) : ((splitting K).iso Δ).hom = 𝟙 _ :=
-  splitting_map_eq_id K Δ
-#align algebraic_topology.dold_kan.Γ₀.splitting_iso_hom_eq_id AlgebraicTopology.DoldKan.Γ₀.splitting_iso_hom_eq_id
-
 @[reassoc]
 theorem Obj.map_on_summand {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ')
     {Δ'' : SimplexCategory} {e : Δ'.unop ⟶ Δ''} {i : Δ'' ⟶ A.1.unop} [Epi e] [Mono i]
     (fac : e ≫ i = θ.unop ≫ A.e) :
-    (Γ₀.splitting K).ιSummand A ≫ (Γ₀.obj K).map θ =
-      Γ₀.Obj.Termwise.mapMono K i ≫ (Γ₀.splitting K).ιSummand (Splitting.IndexSet.mk e) := by
-  dsimp only [SimplicialObject.Splitting.ιSummand, SimplicialObject.Splitting.ιCoprod]
-  simp only [assoc, Γ₀.splitting_iso_hom_eq_id, id_comp, comp_id]
-  exact Γ₀.Obj.map_on_summand₀ K A fac
+    ((Γ₀.splitting K).cofan Δ).inj A ≫ (Γ₀.obj K).map θ =
+      Γ₀.Obj.Termwise.mapMono K i ≫ ((Γ₀.splitting K).cofan Δ').inj (Splitting.IndexSet.mk e) := by
+  dsimp [Splitting.cofan]
+  change (_ ≫ (Γ₀.obj K).map A.e.op) ≫ (Γ₀.obj K).map θ = _
+  rw [assoc, ← Functor.map_comp]
+  dsimp [splitting]
+  erw [Γ₀.Obj.map_on_summand₀ K (Splitting.IndexSet.id A.1)
+    (show e ≫ i = ((Splitting.IndexSet.e A).op ≫ θ).unop ≫ 𝟙 _ by rw [comp_id, fac]; rfl),
+    Γ₀.Obj.map_on_summand₀ K (Splitting.IndexSet.id (op Δ''))
+      (show e ≫ 𝟙 Δ'' = e.op.unop ≫ 𝟙 _ by simp), Termwise.mapMono_id, id_comp]
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand
 
 @[reassoc]
 theorem Obj.map_on_summand' {Δ Δ' : SimplexCategoryᵒᵖ} (A : Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') :
-    (splitting K).ιSummand A ≫ (obj K).map θ =
-      Obj.Termwise.mapMono K (image.ι (θ.unop ≫ A.e)) ≫ (splitting K).ιSummand (A.pull θ) := by
+    ((splitting K).cofan Δ).inj A ≫ (obj K).map θ =
+      Obj.Termwise.mapMono K (image.ι (θ.unop ≫ A.e)) ≫
+        ((splitting K).cofan Δ').inj (A.pull θ) := by
   apply Obj.map_on_summand
   apply image.fac
 #align algebraic_topology.dold_kan.Γ₀.obj.map_on_summand' AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'
 
 @[reassoc]
 theorem Obj.mapMono_on_summand_id {Δ Δ' : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
-    (splitting K).ιSummand (Splitting.IndexSet.id (op Δ)) ≫ (obj K).map i.op =
-      Obj.Termwise.mapMono K i ≫ (splitting K).ιSummand (Splitting.IndexSet.id (op Δ')) :=
+    ((splitting K).cofan _).inj (Splitting.IndexSet.id (op Δ)) ≫ (obj K).map i.op =
+      Obj.Termwise.mapMono K i ≫ ((splitting K).cofan _).inj (Splitting.IndexSet.id (op Δ')) :=
   Obj.map_on_summand K (Splitting.IndexSet.id (op Δ)) i.op (rfl : 𝟙 _ ≫ i = i ≫ 𝟙 _)
 #align algebraic_topology.dold_kan.Γ₀.obj.map_mono_on_summand_id AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id
 
 @[reassoc]
 theorem Obj.map_epi_on_summand_id {Δ Δ' : SimplexCategory} (e : Δ' ⟶ Δ) [Epi e] :
-    (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op Δ)) ≫ (Γ₀.obj K).map e.op =
-      (Γ₀.splitting K).ιSummand (Splitting.IndexSet.mk e) := by
+    ((Γ₀.splitting K).cofan _).inj (Splitting.IndexSet.id (op Δ)) ≫ (Γ₀.obj K).map e.op =
+      ((Γ₀.splitting K).cofan _).inj (Splitting.IndexSet.mk e) := by
   simpa only [Γ₀.Obj.map_on_summand K (Splitting.IndexSet.id (op Δ)) e.op
       (rfl : e ≫ 𝟙 Δ = e ≫ 𝟙 Δ),
     Γ₀.Obj.Termwise.mapMono_id] using id_comp _
@@ -298,7 +289,8 @@ theorem Obj.map_epi_on_summand_id {Δ Δ' : SimplexCategory} (e : Δ' ⟶ Δ) [E
 /-- The functor `Γ₀ : ChainComplex C ℕ ⥤ SimplicialObject C`, on morphisms. -/
 @[simps]
 def map {K K' : ChainComplex C ℕ} (f : K ⟶ K') : obj K ⟶ obj K' where
-  app Δ := (Γ₀.splitting K).desc Δ fun A => f.f A.1.unop.len ≫ (Γ₀.splitting K').ιSummand A
+  app Δ := (Γ₀.splitting K).desc Δ fun A => f.f A.1.unop.len ≫
+    ((Γ₀.splitting K').cofan _).inj A
   naturality {Δ' Δ} θ := by
     apply (Γ₀.splitting K).hom_ext'
     intro A
@@ -323,7 +315,7 @@ def Γ₀' : ChainComplex C ℕ ⥤ SimplicialObject.Split C where
       f := f.f
       comm := fun n => by
         dsimp
-        simp only [← Splitting.ιSummand_id, (Γ₀.splitting K).ι_desc]
+        simp only [← Splitting.cofan_inj_id, (Γ₀.splitting K).ι_desc]
         rfl }
 #align algebraic_topology.dold_kan.Γ₀' AlgebraicTopology.DoldKan.Γ₀'
 
@@ -344,7 +336,8 @@ def Γ₂ : Karoubi (ChainComplex C ℕ) ⥤ Karoubi (SimplicialObject C) :=
 #align algebraic_topology.dold_kan.Γ₂ AlgebraicTopology.DoldKan.Γ₂
 
 theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ) :
-    HigherFacesVanish (n + 1) ((Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n + 1]))) := by
+    @HigherFacesVanish C _ _ (Γ₀.obj K) _ n (n + 1)
+      (((Γ₀.splitting K).cofan _).inj (Splitting.IndexSet.id (op [n + 1]))) := by
   intro j _
   have eq := Γ₀.Obj.mapMono_on_summand_id K (SimplexCategory.δ j.succ)
   rw [Γ₀.Obj.Termwise.mapMono_eq_zero K, zero_comp] at eq; rotate_left
@@ -356,8 +349,9 @@ theorem HigherFacesVanish.on_Γ₀_summand_id (K : ChainComplex C ℕ) (n : ℕ)
 
 @[reassoc (attr := simp)]
 theorem PInfty_on_Γ₀_splitting_summand_eq_self (K : ChainComplex C ℕ) {n : ℕ} :
-    (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) ≫ (PInfty : K[Γ₀.obj K] ⟶ _).f n =
-      (Γ₀.splitting K).ιSummand (Splitting.IndexSet.id (op [n])) := by
+    ((Γ₀.splitting K).cofan _).inj (Splitting.IndexSet.id (op [n])) ≫
+      (PInfty : K[Γ₀.obj K] ⟶ _).f n =
+      ((Γ₀.splitting K).cofan _).inj (Splitting.IndexSet.id (op [n])) := by
   rw [PInfty_f]
   rcases n with _|n
   · simpa only [P_f_0_eq] using comp_id _
chore: cleanup some spaces (#7484)

Purely cosmetic PR.

Diff
@@ -93,7 +93,7 @@ zero otherwise. -/
 def mapMono (K : ChainComplex C ℕ) {Δ' Δ : SimplexCategory} (i : Δ' ⟶ Δ) [Mono i] :
     K.X Δ.len ⟶ K.X Δ'.len := by
   by_cases Δ = Δ'
-  · exact eqToHom (by congr )
+  · exact eqToHom (by congr)
   · by_cases Isδ₀ i
     · exact K.d Δ.len Δ'.len
     · exact 0
chore: only four spaces for subsequent lines (#7286)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -132,7 +132,7 @@ variable {K K'}
 
 @[reassoc (attr := simp)]
 theorem mapMono_naturality (i : Δ ⟶ Δ') [Mono i] :
-  mapMono K i ≫ f.f Δ.len = f.f Δ'.len ≫ mapMono K' i := by
+    mapMono K i ≫ f.f Δ.len = f.f Δ'.len ≫ mapMono K' i := by
   unfold mapMono
   split_ifs with h
   · subst h
@@ -145,7 +145,7 @@ variable (K)
 
 @[reassoc (attr := simp)]
 theorem mapMono_comp (i' : Δ'' ⟶ Δ') (i : Δ' ⟶ Δ) [Mono i'] [Mono i] :
-  mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) := by
+    mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) := by
   -- case where i : Δ' ⟶ Δ is the identity
   by_cases h₁ : Δ = Δ'
   · subst h₁
chore: fix SHA for Dold-Kan equivalence files (#6834)
Diff
@@ -5,7 +5,7 @@ Authors: Joël Riou
 -/
 import Mathlib.AlgebraicTopology.DoldKan.SplitSimplicialObject
 
-#align_import algebraic_topology.dold_kan.functor_gamma from "leanprover-community/mathlib"@"5b8284148e8149728f4b90624888d98c36284454"
+#align_import algebraic_topology.dold_kan.functor_gamma from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
 /-!
 
feat: forward port of Mathlib.AlgebraicTopology.DoldKan.Equivalence (#6444)

In this PR (which is a forward port of https://github.com/leanprover-community/mathlib/pull/17926), the Dold-Kan equivalence between simplicial objects and chain complexes in abelian categories is constructed.

Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>

Diff
@@ -25,6 +25,8 @@ By construction, `Γ₀.obj K` is a split simplicial object whose splitting is `
 We also construct `Γ₂ : Karoubi (ChainComplex C ℕ) ⥤ Karoubi (SimplicialObject C)`
 which shall be an equivalence for any additive category `C`.
 
+(See `Equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
 -/
 
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -37,7 +37,7 @@ namespace AlgebraicTopology
 
 namespace DoldKan
 
-variable {C : Type _} [Category C] [Preadditive C] (K K' : ChainComplex C ℕ) (f : K ⟶ K')
+variable {C : Type*} [Category C] [Preadditive C] (K K' : ChainComplex C ℕ) (f : K ⟶ K')
   {Δ Δ' Δ'' : SimplexCategory}
 
 /-- `Isδ₀ i` is a simple condition used to check whether a monomorphism `i` in
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.functor_gamma
-! leanprover-community/mathlib commit 5b8284148e8149728f4b90624888d98c36284454
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.AlgebraicTopology.DoldKan.SplitSimplicialObject
 
+#align_import algebraic_topology.dold_kan.functor_gamma from "leanprover-community/mathlib"@"5b8284148e8149728f4b90624888d98c36284454"
+
 /-!
 
 # Construction of the inverse functor of the Dold-Kan equivalence
chore: remove occurrences of semicolon after space (#5713)

This is the second half of the changes originally in #5699, removing all occurrences of ; after a space and implementing a linter rule to enforce it.

In most cases this 2-character substring has a space after it, so the following command was run first:

find . -type f -name "*.lean" -exec sed -i -E 's/ ; /; /g' {} \;

The remaining cases were few enough in number that they were done manually.

Diff
@@ -58,7 +58,7 @@ theorem iff {j : ℕ} {i : Fin (j + 2)} : Isδ₀ (SimplexCategory.δ i) ↔ i =
     by_contra h
     exact h₂ (Fin.succAbove_ne_zero_zero h)
   · rintro rfl
-    exact ⟨rfl, by dsimp ; exact Fin.succ_ne_zero (0 : Fin (j + 1))⟩
+    exact ⟨rfl, by dsimp; exact Fin.succ_ne_zero (0 : Fin (j + 1))⟩
 #align algebraic_topology.dold_kan.is_δ₀.iff AlgebraicTopology.DoldKan.Isδ₀.iff
 
 theorem eq_δ₀ {n : ℕ} {i : ([n] : SimplexCategory) ⟶ [n + 1]} [Mono i] (hi : Isδ₀ i) :
chore: reenable eta, bump to nightly 2023-05-16 (#3414)

Now that leanprover/lean4#2210 has been merged, this PR:

  • removes all the set_option synthInstance.etaExperiment true commands (and some etaExperiment% term elaborators)
  • removes many but not quite all set_option maxHeartbeats commands
  • makes various other changes required to cope with leanprover/lean4#2210.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Matthew Ballard <matt@mrb.email>

Diff
@@ -58,7 +58,7 @@ theorem iff {j : ℕ} {i : Fin (j + 2)} : Isδ₀ (SimplexCategory.δ i) ↔ i =
     by_contra h
     exact h₂ (Fin.succAbove_ne_zero_zero h)
   · rintro rfl
-    exact ⟨rfl, by dsimp ; exact Fin.succ_ne_zero 0⟩
+    exact ⟨rfl, by dsimp ; exact Fin.succ_ne_zero (0 : Fin (j + 1))⟩
 #align algebraic_topology.dold_kan.is_δ₀.iff AlgebraicTopology.DoldKan.Isδ₀.iff
 
 theorem eq_δ₀ {n : ℕ} {i : ([n] : SimplexCategory) ⟶ [n + 1]} [Mono i] (hi : Isδ₀ i) :
feat: port AlgebraicTopology.DoldKan.FunctorGamma (#3566)

Dependencies 8 + 528

529 files ported (98.5%)
201715 lines ported (98.5%)
Show graph

The unported dependencies are