algebraic_topology.dold_kan.homotopiesMathlib.AlgebraicTopology.DoldKan.Homotopies

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -110,7 +110,7 @@ theorem c_mk (i j : ℕ) (h : j + 1 = i) : c.Rel i j :=
 theorem cs_down_0_not_rel_left (j : ℕ) : ¬c.Rel 0 j :=
   by
   intro hj
-  dsimp at hj 
+  dsimp at hj
   apply Nat.not_succ_le_zero j
   rw [Nat.succ_eq_add_one, hj]
 #align algebraic_topology.dold_kan.cs_down_0_not_rel_left AlgebraicTopology.DoldKan.cs_down_0_not_rel_left
@@ -245,7 +245,7 @@ theorem map_Hσ {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Addit
   by
   unfold Hσ
   have eq := HomologicalComplex.congr_hom (map_null_homotopic_map' G (hσ' q)) n
-  simp only [functor.map_homological_complex_map_f, ← map_hσ'] at eq 
+  simp only [functor.map_homological_complex_map_f, ← map_hσ'] at eq
   rw [Eq]
   let h := (functor.congr_obj (map_alternating_face_map_complex G) X).symm
   congr
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 -/
-import Mathbin.Algebra.Homology.Homotopy
-import Mathbin.AlgebraicTopology.DoldKan.Notations
+import Algebra.Homology.Homotopy
+import AlgebraicTopology.DoldKan.Notations
 
 #align_import algebraic_topology.dold_kan.homotopies from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.homotopies
-! leanprover-community/mathlib commit 86d1873c01a723aba6788f0b9051ae3d23b4c1c3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.Homology.Homotopy
 import Mathbin.AlgebraicTopology.DoldKan.Notations
 
+#align_import algebraic_topology.dold_kan.homotopies from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
+
 /-!
 
 # Construction of homotopies for the Dold-Kan correspondence
Diff
@@ -221,7 +221,7 @@ def natTransHσ (q : ℕ) : alternatingFaceMapComplex C ⟶ alternatingFaceMapCo
     unfold Hσ
     rw [null_homotopic_map'_comp, comp_null_homotopic_map']
     congr
-    ext (n m hnm)
+    ext n m hnm
     simp only [alternating_face_map_complex_map_f, hσ'_naturality]
 #align algebraic_topology.dold_kan.nat_trans_Hσ AlgebraicTopology.DoldKan.natTransHσ
 -/
Diff
@@ -119,11 +119,13 @@ theorem cs_down_0_not_rel_left (j : ℕ) : ¬c.Rel 0 j :=
 #align algebraic_topology.dold_kan.cs_down_0_not_rel_left AlgebraicTopology.DoldKan.cs_down_0_not_rel_left
 -/
 
+#print AlgebraicTopology.DoldKan.hσ /-
 /-- The sequence of maps which gives the null homotopic maps `Hσ` that shall be in
 the inductive construction of the projections `P q : K[X] ⟶ K[X]` -/
 def hσ (q : ℕ) (n : ℕ) : X _[n] ⟶ X _[n + 1] :=
   if n < q then 0 else (-1 : ℤ) ^ (n - q) • X.σ ⟨n - q, Nat.sub_lt_succ n q⟩
 #align algebraic_topology.dold_kan.hσ AlgebraicTopology.DoldKan.hσ
+-/
 
 #print AlgebraicTopology.DoldKan.hσ' /-
 /-- We can turn `hσ` into a datum that can be passed to `null_homotopic_map'`. -/
@@ -138,6 +140,7 @@ theorem hσ'_eq_zero {q n m : ℕ} (hnq : n < q) (hnm : c.Rel m n) :
 #align algebraic_topology.dold_kan.hσ'_eq_zero AlgebraicTopology.DoldKan.hσ'_eq_zero
 -/
 
+#print AlgebraicTopology.DoldKan.hσ'_eq /-
 theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
     (hσ' q n m hnm : X _[n] ⟶ X _[m]) =
       ((-1 : ℤ) ^ a • X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro (Eq.symm ha))⟩) ≫
@@ -149,24 +152,31 @@ theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
   · have h' := tsub_eq_of_eq_add ha
     congr
 #align algebraic_topology.dold_kan.hσ'_eq AlgebraicTopology.DoldKan.hσ'_eq
+-/
 
+#print AlgebraicTopology.DoldKan.hσ'_eq' /-
 theorem hσ'_eq' {q n a : ℕ} (ha : n = a + q) :
     (hσ' q n (n + 1) rfl : X _[n] ⟶ X _[n + 1]) =
       (-1 : ℤ) ^ a • X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro (Eq.symm ha))⟩ :=
   by rw [hσ'_eq ha rfl, eq_to_hom_refl, comp_id]
 #align algebraic_topology.dold_kan.hσ'_eq' AlgebraicTopology.DoldKan.hσ'_eq'
+-/
 
 /- warning: algebraic_topology.dold_kan.Hσ clashes with algebraic_topology.dold_kan.hσ -> AlgebraicTopology.DoldKan.hσ
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Hσ AlgebraicTopology.DoldKan.hσₓ'. -/
+#print AlgebraicTopology.DoldKan.hσ /-
 /-- The null homotopic map $(hσ q) ∘ d + d ∘ (hσ q)$ -/
 def hσ (q : ℕ) : K[X] ⟶ K[X] :=
   nullHomotopicMap' (hσ' q)
 #align algebraic_topology.dold_kan.Hσ AlgebraicTopology.DoldKan.hσ
+-/
 
+#print AlgebraicTopology.DoldKan.homotopyHσToZero /-
 /-- `Hσ` is null homotopic -/
 def homotopyHσToZero (q : ℕ) : Homotopy (hσ q : K[X] ⟶ K[X]) 0 :=
   nullHomotopy' (hσ' q)
 #align algebraic_topology.dold_kan.homotopy_Hσ_to_zero AlgebraicTopology.DoldKan.homotopyHσToZero
+-/
 
 #print AlgebraicTopology.DoldKan.Hσ_eq_zero /-
 /-- In degree `0`, the null homotopic map `Hσ` is zero. -/
@@ -185,6 +195,7 @@ theorem Hσ_eq_zero (q : ℕ) : (hσ q : K[X] ⟶ K[X]).f 0 = 0 :=
 #align algebraic_topology.dold_kan.Hσ_eq_zero AlgebraicTopology.DoldKan.Hσ_eq_zero
 -/
 
+#print AlgebraicTopology.DoldKan.hσ'_naturality /-
 /-- The maps `hσ' q n m hnm` are natural on the simplicial object -/
 theorem hσ'_naturality (q : ℕ) (n m : ℕ) (hnm : c.Rel m n) {X Y : SimplicialObject C} (f : X ⟶ Y) :
     f.app (op [n]) ≫ hσ' q n m hnm = hσ' q n m hnm ≫ f.app (op [m]) :=
@@ -199,6 +210,7 @@ theorem hσ'_naturality (q : ℕ) (n m : ℕ) (hnm : c.Rel m n) {X Y : Simplicia
     erw [f.naturality]
     rfl
 #align algebraic_topology.dold_kan.hσ'_naturality AlgebraicTopology.DoldKan.hσ'_naturality
+-/
 
 #print AlgebraicTopology.DoldKan.natTransHσ /-
 /-- For each q, `Hσ q` is a natural transformation. -/
@@ -214,6 +226,7 @@ def natTransHσ (q : ℕ) : alternatingFaceMapComplex C ⟶ alternatingFaceMapCo
 #align algebraic_topology.dold_kan.nat_trans_Hσ AlgebraicTopology.DoldKan.natTransHσ
 -/
 
+#print AlgebraicTopology.DoldKan.map_hσ' /-
 /-- The maps `hσ' q n m hnm` are compatible with the application of additive functors. -/
 theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
     (X : SimplicialObject C) (q n m : ℕ) (hnm : c.Rel m n) :
@@ -225,7 +238,9 @@ theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Addi
   · simp only [functor.map_zero, zero_comp]
   · simpa only [eq_to_hom_map, functor.map_comp, functor.map_zsmul]
 #align algebraic_topology.dold_kan.map_hσ' AlgebraicTopology.DoldKan.map_hσ'
+-/
 
+#print AlgebraicTopology.DoldKan.map_Hσ /-
 /-- The null homotopic maps `Hσ` are compatible with the application of additive functors. -/
 theorem map_Hσ {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
     (X : SimplicialObject C) (q n : ℕ) :
@@ -238,6 +253,7 @@ theorem map_Hσ {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Addit
   let h := (functor.congr_obj (map_alternating_face_map_complex G) X).symm
   congr
 #align algebraic_topology.dold_kan.map_Hσ AlgebraicTopology.DoldKan.map_Hσ
+-/
 
 end DoldKan
 
Diff
@@ -113,7 +113,7 @@ theorem c_mk (i j : ℕ) (h : j + 1 = i) : c.Rel i j :=
 theorem cs_down_0_not_rel_left (j : ℕ) : ¬c.Rel 0 j :=
   by
   intro hj
-  dsimp at hj
+  dsimp at hj 
   apply Nat.not_succ_le_zero j
   rw [Nat.succ_eq_add_one, hj]
 #align algebraic_topology.dold_kan.cs_down_0_not_rel_left AlgebraicTopology.DoldKan.cs_down_0_not_rel_left
@@ -128,7 +128,7 @@ def hσ (q : ℕ) (n : ℕ) : X _[n] ⟶ X _[n + 1] :=
 #print AlgebraicTopology.DoldKan.hσ' /-
 /-- We can turn `hσ` into a datum that can be passed to `null_homotopic_map'`. -/
 def hσ' (q : ℕ) : ∀ n m, c.Rel m n → (K[X].pt n ⟶ K[X].pt m) := fun n m hnm =>
-  hσ q n ≫ eqToHom (by congr )
+  hσ q n ≫ eqToHom (by congr)
 #align algebraic_topology.dold_kan.hσ' AlgebraicTopology.DoldKan.hσ'
 -/
 
@@ -141,7 +141,7 @@ theorem hσ'_eq_zero {q n m : ℕ} (hnq : n < q) (hnm : c.Rel m n) :
 theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
     (hσ' q n m hnm : X _[n] ⟶ X _[m]) =
       ((-1 : ℤ) ^ a • X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro (Eq.symm ha))⟩) ≫
-        eqToHom (by congr ) :=
+        eqToHom (by congr) :=
   by
   simp only [hσ', hσ]
   split_ifs
@@ -233,7 +233,7 @@ theorem map_Hσ {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Addit
   by
   unfold Hσ
   have eq := HomologicalComplex.congr_hom (map_null_homotopic_map' G (hσ' q)) n
-  simp only [functor.map_homological_complex_map_f, ← map_hσ'] at eq
+  simp only [functor.map_homological_complex_map_f, ← map_hσ'] at eq 
   rw [Eq]
   let h := (functor.congr_obj (map_alternating_face_map_complex G) X).symm
   congr
Diff
@@ -80,7 +80,7 @@ open Homotopy
 
 open Opposite
 
-open Simplicial DoldKan
+open scoped Simplicial DoldKan
 
 noncomputable section
 
Diff
@@ -119,12 +119,6 @@ theorem cs_down_0_not_rel_left (j : ℕ) : ¬c.Rel 0 j :=
 #align algebraic_topology.dold_kan.cs_down_0_not_rel_left AlgebraicTopology.DoldKan.cs_down_0_not_rel_left
 -/
 
-/- warning: algebraic_topology.dold_kan.hσ -> AlgebraicTopology.DoldKan.hσ is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Nat -> (forall (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Nat -> (forall (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ AlgebraicTopology.DoldKan.hσₓ'. -/
 /-- The sequence of maps which gives the null homotopic maps `Hσ` that shall be in
 the inductive construction of the projections `P q : K[X] ⟶ K[X]` -/
 def hσ (q : ℕ) (n : ℕ) : X _[n] ⟶ X _[n + 1] :=
@@ -144,9 +138,6 @@ theorem hσ'_eq_zero {q n m : ℕ} (hnq : n < q) (hnm : c.Rel m n) :
 #align algebraic_topology.dold_kan.hσ'_eq_zero AlgebraicTopology.DoldKan.hσ'_eq_zero
 -/
 
-/- warning: algebraic_topology.dold_kan.hσ'_eq -> AlgebraicTopology.DoldKan.hσ'_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ'_eq AlgebraicTopology.DoldKan.hσ'_eqₓ'. -/
 theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
     (hσ' q n m hnm : X _[n] ⟶ X _[m]) =
       ((-1 : ℤ) ^ a • X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro (Eq.symm ha))⟩) ≫
@@ -159,9 +150,6 @@ theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
     congr
 #align algebraic_topology.dold_kan.hσ'_eq AlgebraicTopology.DoldKan.hσ'_eq
 
-/- warning: algebraic_topology.dold_kan.hσ'_eq' -> AlgebraicTopology.DoldKan.hσ'_eq' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ'_eq' AlgebraicTopology.DoldKan.hσ'_eq'ₓ'. -/
 theorem hσ'_eq' {q n a : ℕ} (ha : n = a + q) :
     (hσ' q n (n + 1) rfl : X _[n] ⟶ X _[n + 1]) =
       (-1 : ℤ) ^ a • X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro (Eq.symm ha))⟩ :=
@@ -169,20 +157,12 @@ theorem hσ'_eq' {q n a : ℕ} (ha : n = a + q) :
 #align algebraic_topology.dold_kan.hσ'_eq' AlgebraicTopology.DoldKan.hσ'_eq'
 
 /- warning: algebraic_topology.dold_kan.Hσ clashes with algebraic_topology.dold_kan.hσ -> AlgebraicTopology.DoldKan.hσ
-warning: algebraic_topology.dold_kan.Hσ -> AlgebraicTopology.DoldKan.hσ is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Nat -> (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Nat -> (forall (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Hσ AlgebraicTopology.DoldKan.hσₓ'. -/
 /-- The null homotopic map $(hσ q) ∘ d + d ∘ (hσ q)$ -/
 def hσ (q : ℕ) : K[X] ⟶ K[X] :=
   nullHomotopicMap' (hσ' q)
 #align algebraic_topology.dold_kan.Hσ AlgebraicTopology.DoldKan.hσ
 
-/- warning: algebraic_topology.dold_kan.homotopy_Hσ_to_zero -> AlgebraicTopology.DoldKan.homotopyHσToZero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.homotopy_Hσ_to_zero AlgebraicTopology.DoldKan.homotopyHσToZeroₓ'. -/
 /-- `Hσ` is null homotopic -/
 def homotopyHσToZero (q : ℕ) : Homotopy (hσ q : K[X] ⟶ K[X]) 0 :=
   nullHomotopy' (hσ' q)
@@ -205,9 +185,6 @@ theorem Hσ_eq_zero (q : ℕ) : (hσ q : K[X] ⟶ K[X]).f 0 = 0 :=
 #align algebraic_topology.dold_kan.Hσ_eq_zero AlgebraicTopology.DoldKan.Hσ_eq_zero
 -/
 
-/- warning: algebraic_topology.dold_kan.hσ'_naturality -> AlgebraicTopology.DoldKan.hσ'_naturality is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ'_naturality AlgebraicTopology.DoldKan.hσ'_naturalityₓ'. -/
 /-- The maps `hσ' q n m hnm` are natural on the simplicial object -/
 theorem hσ'_naturality (q : ℕ) (n m : ℕ) (hnm : c.Rel m n) {X Y : SimplicialObject C} (f : X ⟶ Y) :
     f.app (op [n]) ≫ hσ' q n m hnm = hσ' q n m hnm ≫ f.app (op [m]) :=
@@ -237,9 +214,6 @@ def natTransHσ (q : ℕ) : alternatingFaceMapComplex C ⟶ alternatingFaceMapCo
 #align algebraic_topology.dold_kan.nat_trans_Hσ AlgebraicTopology.DoldKan.natTransHσ
 -/
 
-/- warning: algebraic_topology.dold_kan.map_hσ' -> AlgebraicTopology.DoldKan.map_hσ' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.map_hσ' AlgebraicTopology.DoldKan.map_hσ'ₓ'. -/
 /-- The maps `hσ' q n m hnm` are compatible with the application of additive functors. -/
 theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
     (X : SimplicialObject C) (q n m : ℕ) (hnm : c.Rel m n) :
@@ -252,9 +226,6 @@ theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Addi
   · simpa only [eq_to_hom_map, functor.map_comp, functor.map_zsmul]
 #align algebraic_topology.dold_kan.map_hσ' AlgebraicTopology.DoldKan.map_hσ'
 
-/- warning: algebraic_topology.dold_kan.map_Hσ -> AlgebraicTopology.DoldKan.map_Hσ is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.map_Hσ AlgebraicTopology.DoldKan.map_Hσₓ'. -/
 /-- The null homotopic maps `Hσ` are compatible with the application of additive functors. -/
 theorem map_Hσ {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
     (X : SimplicialObject C) (q n : ℕ) :
Diff
@@ -140,11 +140,7 @@ def hσ' (q : ℕ) : ∀ n m, c.Rel m n → (K[X].pt n ⟶ K[X].pt m) := fun n m
 
 #print AlgebraicTopology.DoldKan.hσ'_eq_zero /-
 theorem hσ'_eq_zero {q n m : ℕ} (hnq : n < q) (hnm : c.Rel m n) :
-    (hσ' q n m hnm : X _[n] ⟶ X _[m]) = 0 :=
-  by
-  simp only [hσ', hσ]
-  split_ifs
-  exact zero_comp
+    (hσ' q n m hnm : X _[n] ⟶ X _[m]) = 0 := by simp only [hσ', hσ]; split_ifs; exact zero_comp
 #align algebraic_topology.dold_kan.hσ'_eq_zero AlgebraicTopology.DoldKan.hσ'_eq_zero
 -/
 
@@ -158,8 +154,7 @@ theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
   by
   simp only [hσ', hσ]
   split_ifs
-  · exfalso
-    linarith
+  · exfalso; linarith
   · have h' := tsub_eq_of_eq_add ha
     congr
 #align algebraic_topology.dold_kan.hσ'_eq AlgebraicTopology.DoldKan.hσ'_eq
Diff
@@ -149,10 +149,7 @@ theorem hσ'_eq_zero {q n m : ℕ} (hnq : n < q) (hnm : c.Rel m n) :
 -/
 
 /- warning: algebraic_topology.dold_kan.hσ'_eq -> AlgebraicTopology.DoldKan.hσ'_eq is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} {m : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a q)) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m)) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (SMul.smul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a (Iff.mpr (LT.lt.{0} Nat Nat.hasLt a (Nat.succ n)) (LE.le.{0} Nat Nat.hasLe a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a q) ha)))))) (CategoryTheory.eqToHom.{u2, u1} C _inst_1 (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) ((fun (self : CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (self_1 : CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (e_1 : Eq.{succ (max u2 u1)} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) self self_1) (ᾰ : Opposite.{1} SimplexCategory) (ᾰ_1 : Opposite.{1} SimplexCategory) (e_2 : Eq.{1} (Opposite.{1} SimplexCategory) ᾰ ᾰ_1) => congr.{1, succ u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 self) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 self_1) ᾰ ᾰ_1 (congr_arg.{succ (max u2 u1), succ u1} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) ((Opposite.{1} SimplexCategory) -> C) self self_1 (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) e_1) e_2) X X (rfl.{succ (max u2 u1)} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m)) ((fun (ᾰ : SimplexCategory) (ᾰ_1 : SimplexCategory) (e_1 : Eq.{1} SimplexCategory ᾰ ᾰ_1) => congr_arg.{1, 1} SimplexCategory (Opposite.{1} SimplexCategory) ᾰ ᾰ_1 (Opposite.op.{1} SimplexCategory) e_1) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (SimplexCategory.mk m) ((fun (n : Nat) (n_1 : Nat) (e_1 : Eq.{1} Nat n n_1) => congr_arg.{1, 1} Nat SimplexCategory n n_1 SimplexCategory.mk e_1) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) m hnm)))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} {m : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q)) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m)) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (HSMul.hSMul.{0, u2, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (instHSMul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int Int.instHPowIntNat (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a (Iff.mpr (LT.lt.{0} Nat instLTNat a (Nat.succ n)) (LE.le.{0} Nat instLENat a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q) ha)))))) (CategoryTheory.eqToHom.{u2, u1} C _inst_1 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) ((fun {V : Type} [inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 : Quiver.{1, 0} V] {W : Type.{u1}} [inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 : Quiver.{succ u2, u1} W] (self : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) (self_1 : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) (e_self : Eq.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) self self_1) => Eq.rec.{0, max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) self (fun (self_1 : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) (e_self : Eq.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) self self_1) => forall (a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : V) (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : V), (Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) -> (Eq.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 self_1 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596))) (fun (a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : V) (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : V) (e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) => Eq.rec.{0, 1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 (fun (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : V) (e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) => Eq.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 self a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596)) (Eq.refl.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596)) a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) self_1 e_self) (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Eq.refl.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m)) ((fun {α : Type} (x : α) (x_1 : α) (e_x : Eq.{1} α x x_1) => Eq.rec.{0, 1} α x (fun (x_1 : α) (e_x : Eq.{1} α x x_1) => Eq.{1} (Opposite.{1} α) (Opposite.op.{1} α x) (Opposite.op.{1} α x_1)) (Eq.refl.{1} (Opposite.{1} α) (Opposite.op.{1} α x)) x_1 e_x) SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (SimplexCategory.mk m) ((fun (n : Nat) (n_1 : Nat) (e_1 : Eq.{1} Nat n n_1) => Eq.rec.{0, 1} Nat n (fun (n_1 : Nat) (e_n : Eq.{1} Nat n n_1) => Eq.{1} SimplexCategory (SimplexCategory.mk n) (SimplexCategory.mk n_1)) (Eq.refl.{1} SimplexCategory (SimplexCategory.mk n)) n_1 e_1) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) m hnm)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ'_eq AlgebraicTopology.DoldKan.hσ'_eqₓ'. -/
 theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
     (hσ' q n m hnm : X _[n] ⟶ X _[m]) =
@@ -168,10 +165,7 @@ theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
 #align algebraic_topology.dold_kan.hσ'_eq AlgebraicTopology.DoldKan.hσ'_eq
 
 /- warning: algebraic_topology.dold_kan.hσ'_eq' -> AlgebraicTopology.DoldKan.hσ'_eq' is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a q)), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (rfl.{1} Nat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat (AddSemigroup.toHasAdd.{0} Nat (AddRightCancelSemigroup.toAddSemigroup.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))))) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (SMul.smul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a (Iff.mpr (LT.lt.{0} Nat Nat.hasLt a (Nat.succ n)) (LE.le.{0} Nat Nat.hasLe a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a q) ha))))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q)), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (rfl.{1} Nat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat (AddSemigroup.toAdd.{0} Nat (AddRightCancelSemigroup.toAddSemigroup.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))))) n (OfNat.ofNat.{0} Nat 1 (One.toOfNat1.{0} Nat (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (HSMul.hSMul.{0, u2, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (instHSMul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int Int.instHPowIntNat (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a (Iff.mpr (LT.lt.{0} Nat instLTNat a (Nat.succ n)) (LE.le.{0} Nat instLENat a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q) ha))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ'_eq' AlgebraicTopology.DoldKan.hσ'_eq'ₓ'. -/
 theorem hσ'_eq' {q n a : ℕ} (ha : n = a + q) :
     (hσ' q n (n + 1) rfl : X _[n] ⟶ X _[n + 1]) =
@@ -192,10 +186,7 @@ def hσ (q : ℕ) : K[X] ⟶ K[X] :=
 #align algebraic_topology.dold_kan.Hσ AlgebraicTopology.DoldKan.hσ
 
 /- warning: algebraic_topology.dold_kan.homotopy_Hσ_to_zero -> AlgebraicTopology.DoldKan.homotopyHσToZero is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (q : Nat), Homotopy.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.hσ.{u1, u2} C _inst_1 _inst_2 X q) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HomologicalComplex.Quiver.Hom.hasZero.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (q : Nat), Homotopy.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Hσ.{u1, u2} C _inst_1 _inst_2 X q) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HomologicalComplex.instZeroHomHomologicalComplexPreadditiveHasZeroMorphismsToQuiverToCategoryStructInstCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.homotopy_Hσ_to_zero AlgebraicTopology.DoldKan.homotopyHσToZeroₓ'. -/
 /-- `Hσ` is null homotopic -/
 def homotopyHσToZero (q : ℕ) : Homotopy (hσ q : K[X] ⟶ K[X]) 0 :=
@@ -220,10 +211,7 @@ theorem Hσ_eq_zero (q : ℕ) : (hσ q : K[X] ⟶ K[X]).f 0 = 0 :=
 -/
 
 /- warning: algebraic_topology.dold_kan.hσ'_naturality -> AlgebraicTopology.DoldKan.hσ'_naturality is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (q : Nat) (n : Nat) (m : Nat) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) m)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) m) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 Y q n m hnm)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) m) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m))))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (q : Nat) (n : Nat) (m : Nat) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) m)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) m) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 Y q n m hnm)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ'_naturality AlgebraicTopology.DoldKan.hσ'_naturalityₓ'. -/
 /-- The maps `hσ' q n m hnm` are natural on the simplicial object -/
 theorem hσ'_naturality (q : ℕ) (n m : ℕ) (hnm : c.Rel m n) {X Y : SimplicialObject C} (f : X ⟶ Y) :
@@ -255,10 +243,7 @@ def natTransHσ (q : ℕ) : alternatingFaceMapComplex C ⟶ alternatingFaceMapCo
 -/
 
 /- warning: algebraic_topology.dold_kan.map_hσ' -> AlgebraicTopology.DoldKan.map_hσ' is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u3}} [_inst_3 : CategoryTheory.Category.{u4, u3} D] [_inst_4 : CategoryTheory.Preadditive.{u4, u3} D _inst_3] (G : CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u3, u2, u4} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (q : Nat) (n : Nat) (m : Nat) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u4} (Quiver.Hom.{succ u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u4, u3} D (CategoryTheory.Category.toCategoryStruct.{u4, u3} D _inst_3)) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) m)) (AlgebraicTopology.DoldKan.hσ'.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X) q n m hnm) (CategoryTheory.Functor.map.{u2, u4, u1, u3} C _inst_1 D _inst_3 G (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u4}} [_inst_3 : CategoryTheory.Category.{u3, u4} D] [_inst_4 : CategoryTheory.Preadditive.{u3, u4} D _inst_3] (G : CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u4, u2, u3} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (q : Nat) (n : Nat) (m : Nat) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u3} (Quiver.Hom.{succ u3, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u3) (succ u1), max (max (succ u3) (succ u1)) (succ u2), max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u3 u1, max (max u3 u1) u2, max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u3) (succ u1), max (max (succ u3) (succ u1)) (succ u2), max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u3 u1, max (max u3 u1) u2, max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) m)) (AlgebraicTopology.DoldKan.hσ'.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u3) (succ u1), max (max (succ u3) (succ u1)) (succ u2), max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u3 u1, max (max u3 u1) u2, max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X) q n m hnm) (Prefunctor.map.{succ u2, succ u3, u1, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u1, u4} C _inst_1 D _inst_3 G) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.map_hσ' AlgebraicTopology.DoldKan.map_hσ'ₓ'. -/
 /-- The maps `hσ' q n m hnm` are compatible with the application of additive functors. -/
 theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
@@ -273,10 +258,7 @@ theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Addi
 #align algebraic_topology.dold_kan.map_hσ' AlgebraicTopology.DoldKan.map_hσ'
 
 /- warning: algebraic_topology.dold_kan.map_Hσ -> AlgebraicTopology.DoldKan.map_Hσ is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u3}} [_inst_3 : CategoryTheory.Category.{u4, u3} D] [_inst_4 : CategoryTheory.Preadditive.{u4, u3} D _inst_3] (G : CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u3, u2, u4} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (q : Nat) (n : Nat), Eq.{succ u4} (Quiver.Hom.{succ u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u4, u3} D (CategoryTheory.Category.toCategoryStruct.{u4, u3} D _inst_3)) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n)) (HomologicalComplex.Hom.f.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) (AlgebraicTopology.DoldKan.hσ.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X) q) n) (CategoryTheory.Functor.map.{u2, u4, u1, u3} C _inst_1 D _inst_3 G (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.hσ.{u1, u2} C _inst_1 _inst_2 X q) n))
-but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u4}} [_inst_3 : CategoryTheory.Category.{u3, u4} D] [_inst_4 : CategoryTheory.Preadditive.{u3, u4} D _inst_3] (G : CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u4, u2, u3} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (q : Nat) (n : Nat), Eq.{succ u3} (Quiver.Hom.{succ u3, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n)) (HomologicalComplex.Hom.f.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) (AlgebraicTopology.DoldKan.Hσ.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X) q) n) (Prefunctor.map.{succ u2, succ u3, u1, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u1, u4} C _inst_1 D _inst_3 G) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Hσ.{u1, u2} C _inst_1 _inst_2 X q) n))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.map_Hσ AlgebraicTopology.DoldKan.map_Hσₓ'. -/
 /-- The null homotopic maps `Hσ` are compatible with the application of additive functors. -/
 theorem map_Hσ {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
Diff
@@ -152,7 +152,7 @@ theorem hσ'_eq_zero {q n m : ℕ} (hnq : n < q) (hnm : c.Rel m n) :
 lean 3 declaration is
   forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} {m : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a q)) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m)) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (SMul.smul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a (Iff.mpr (LT.lt.{0} Nat Nat.hasLt a (Nat.succ n)) (LE.le.{0} Nat Nat.hasLe a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a q) ha)))))) (CategoryTheory.eqToHom.{u2, u1} C _inst_1 (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) ((fun (self : CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (self_1 : CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (e_1 : Eq.{succ (max u2 u1)} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) self self_1) (ᾰ : Opposite.{1} SimplexCategory) (ᾰ_1 : Opposite.{1} SimplexCategory) (e_2 : Eq.{1} (Opposite.{1} SimplexCategory) ᾰ ᾰ_1) => congr.{1, succ u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 self) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 self_1) ᾰ ᾰ_1 (congr_arg.{succ (max u2 u1), succ u1} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) ((Opposite.{1} SimplexCategory) -> C) self self_1 (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) e_1) e_2) X X (rfl.{succ (max u2 u1)} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m)) ((fun (ᾰ : SimplexCategory) (ᾰ_1 : SimplexCategory) (e_1 : Eq.{1} SimplexCategory ᾰ ᾰ_1) => congr_arg.{1, 1} SimplexCategory (Opposite.{1} SimplexCategory) ᾰ ᾰ_1 (Opposite.op.{1} SimplexCategory) e_1) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (SimplexCategory.mk m) ((fun (n : Nat) (n_1 : Nat) (e_1 : Eq.{1} Nat n n_1) => congr_arg.{1, 1} Nat SimplexCategory n n_1 SimplexCategory.mk e_1) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) m hnm)))))
 but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} {m : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q)) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m)) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (HSMul.hSMul.{0, u2, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (instHSMul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int Int.instHPowIntNat (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a (Iff.mpr (LT.lt.{0} Nat instLTNat a (Nat.succ n)) (LE.le.{0} Nat instLENat a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q) ha)))))) (CategoryTheory.eqToHom.{u2, u1} C _inst_1 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) ((fun {V : Type} [inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 : Quiver.{1, 0} V] {W : Type.{u1}} [inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 : Quiver.{succ u2, u1} W] (self : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) (self_1 : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) (e_self : Eq.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) self self_1) => Eq.rec.{0, max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) self (fun (self_1 : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) (e_self : Eq.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) self self_1) => forall (a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : V) (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : V), (Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) -> (Eq.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 self_1 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594))) (fun (a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : V) (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : V) (e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) => Eq.rec.{0, 1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 (fun (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : V) (e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) => Eq.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 self a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594)) (Eq.refl.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594)) a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) self_1 e_self) (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Eq.refl.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m)) ((fun {α : Type} (x : α) (x_1 : α) (e_x : Eq.{1} α x x_1) => Eq.rec.{0, 1} α x (fun (x_1 : α) (e_x : Eq.{1} α x x_1) => Eq.{1} (Opposite.{1} α) (Opposite.op.{1} α x) (Opposite.op.{1} α x_1)) (Eq.refl.{1} (Opposite.{1} α) (Opposite.op.{1} α x)) x_1 e_x) SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (SimplexCategory.mk m) ((fun (n : Nat) (n_1 : Nat) (e_1 : Eq.{1} Nat n n_1) => Eq.rec.{0, 1} Nat n (fun (n_1 : Nat) (e_n : Eq.{1} Nat n n_1) => Eq.{1} SimplexCategory (SimplexCategory.mk n) (SimplexCategory.mk n_1)) (Eq.refl.{1} SimplexCategory (SimplexCategory.mk n)) n_1 e_1) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) m hnm)))))
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} {m : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q)) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m)) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (HSMul.hSMul.{0, u2, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (instHSMul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int Int.instHPowIntNat (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a (Iff.mpr (LT.lt.{0} Nat instLTNat a (Nat.succ n)) (LE.le.{0} Nat instLENat a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q) ha)))))) (CategoryTheory.eqToHom.{u2, u1} C _inst_1 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) ((fun {V : Type} [inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 : Quiver.{1, 0} V] {W : Type.{u1}} [inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 : Quiver.{succ u2, u1} W] (self : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) (self_1 : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) (e_self : Eq.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) self self_1) => Eq.rec.{0, max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) self (fun (self_1 : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) (e_self : Eq.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592) self self_1) => forall (a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : V) (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : V), (Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) -> (Eq.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 self_1 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596))) (fun (a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : V) (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : V) (e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) => Eq.rec.{0, 1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 (fun (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : V) (e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 : Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) => Eq.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 self a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596)) (Eq.refl.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.588 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.592 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596)) a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596 e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.596) self_1 e_self) (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Eq.refl.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m)) ((fun {α : Type} (x : α) (x_1 : α) (e_x : Eq.{1} α x x_1) => Eq.rec.{0, 1} α x (fun (x_1 : α) (e_x : Eq.{1} α x x_1) => Eq.{1} (Opposite.{1} α) (Opposite.op.{1} α x) (Opposite.op.{1} α x_1)) (Eq.refl.{1} (Opposite.{1} α) (Opposite.op.{1} α x)) x_1 e_x) SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (SimplexCategory.mk m) ((fun (n : Nat) (n_1 : Nat) (e_1 : Eq.{1} Nat n n_1) => Eq.rec.{0, 1} Nat n (fun (n_1 : Nat) (e_n : Eq.{1} Nat n n_1) => Eq.{1} SimplexCategory (SimplexCategory.mk n) (SimplexCategory.mk n_1)) (Eq.refl.{1} SimplexCategory (SimplexCategory.mk n)) n_1 e_1) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) m hnm)))))
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ'_eq AlgebraicTopology.DoldKan.hσ'_eqₓ'. -/
 theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
     (hσ' q n m hnm : X _[n] ⟶ X _[m]) =
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 
 ! This file was ported from Lean 3 source module algebraic_topology.dold_kan.homotopies
-! leanprover-community/mathlib commit b12099d3b7febf4209824444dd836ef5ad96db55
+! leanprover-community/mathlib commit 86d1873c01a723aba6788f0b9051ae3d23b4c1c3
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.AlgebraicTopology.DoldKan.Notations
 
 # Construction of homotopies for the Dold-Kan correspondence
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 TODO (@joelriou) continue adding the various files referenced below
 
 (The general strategy of proof of the Dold-Kan correspondence is explained
Diff
@@ -89,18 +89,23 @@ variable {C : Type _} [Category C] [Preadditive C]
 
 variable {X : SimplicialObject C}
 
+#print AlgebraicTopology.DoldKan.c /-
 /-- As we are using chain complexes indexed by `ℕ`, we shall need the relation
 `c` such `c m n` if and only if `n+1=m`. -/
 abbrev c :=
   ComplexShape.down ℕ
 #align algebraic_topology.dold_kan.c AlgebraicTopology.DoldKan.c
+-/
 
+#print AlgebraicTopology.DoldKan.c_mk /-
 /-- Helper when we need some `c.rel i j` (i.e. `complex_shape.down ℕ`),
 e.g. `c_mk n (n+1) rfl` -/
 theorem c_mk (i j : ℕ) (h : j + 1 = i) : c.Rel i j :=
   ComplexShape.down_mk i j h
 #align algebraic_topology.dold_kan.c_mk AlgebraicTopology.DoldKan.c_mk
+-/
 
+#print AlgebraicTopology.DoldKan.cs_down_0_not_rel_left /-
 /-- This lemma is meant to be used with `null_homotopic_map'_f_of_not_rel_left` -/
 theorem cs_down_0_not_rel_left (j : ℕ) : ¬c.Rel 0 j :=
   by
@@ -109,18 +114,28 @@ theorem cs_down_0_not_rel_left (j : ℕ) : ¬c.Rel 0 j :=
   apply Nat.not_succ_le_zero j
   rw [Nat.succ_eq_add_one, hj]
 #align algebraic_topology.dold_kan.cs_down_0_not_rel_left AlgebraicTopology.DoldKan.cs_down_0_not_rel_left
+-/
 
+/- warning: algebraic_topology.dold_kan.hσ -> AlgebraicTopology.DoldKan.hσ is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Nat -> (forall (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Nat -> (forall (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ AlgebraicTopology.DoldKan.hσₓ'. -/
 /-- The sequence of maps which gives the null homotopic maps `Hσ` that shall be in
 the inductive construction of the projections `P q : K[X] ⟶ K[X]` -/
 def hσ (q : ℕ) (n : ℕ) : X _[n] ⟶ X _[n + 1] :=
   if n < q then 0 else (-1 : ℤ) ^ (n - q) • X.σ ⟨n - q, Nat.sub_lt_succ n q⟩
 #align algebraic_topology.dold_kan.hσ AlgebraicTopology.DoldKan.hσ
 
+#print AlgebraicTopology.DoldKan.hσ' /-
 /-- We can turn `hσ` into a datum that can be passed to `null_homotopic_map'`. -/
 def hσ' (q : ℕ) : ∀ n m, c.Rel m n → (K[X].pt n ⟶ K[X].pt m) := fun n m hnm =>
   hσ q n ≫ eqToHom (by congr )
 #align algebraic_topology.dold_kan.hσ' AlgebraicTopology.DoldKan.hσ'
+-/
 
+#print AlgebraicTopology.DoldKan.hσ'_eq_zero /-
 theorem hσ'_eq_zero {q n m : ℕ} (hnq : n < q) (hnm : c.Rel m n) :
     (hσ' q n m hnm : X _[n] ⟶ X _[m]) = 0 :=
   by
@@ -128,7 +143,14 @@ theorem hσ'_eq_zero {q n m : ℕ} (hnq : n < q) (hnm : c.Rel m n) :
   split_ifs
   exact zero_comp
 #align algebraic_topology.dold_kan.hσ'_eq_zero AlgebraicTopology.DoldKan.hσ'_eq_zero
+-/
 
+/- warning: algebraic_topology.dold_kan.hσ'_eq -> AlgebraicTopology.DoldKan.hσ'_eq is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} {m : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a q)) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m)) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (SMul.smul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a (Iff.mpr (LT.lt.{0} Nat Nat.hasLt a (Nat.succ n)) (LE.le.{0} Nat Nat.hasLe a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a q) ha)))))) (CategoryTheory.eqToHom.{u2, u1} C _inst_1 (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) ((fun (self : CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (self_1 : CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (e_1 : Eq.{succ (max u2 u1)} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) self self_1) (ᾰ : Opposite.{1} SimplexCategory) (ᾰ_1 : Opposite.{1} SimplexCategory) (e_2 : Eq.{1} (Opposite.{1} SimplexCategory) ᾰ ᾰ_1) => congr.{1, succ u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 self) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 self_1) ᾰ ᾰ_1 (congr_arg.{succ (max u2 u1), succ u1} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) ((Opposite.{1} SimplexCategory) -> C) self self_1 (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) e_1) e_2) X X (rfl.{succ (max u2 u1)} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m)) ((fun (ᾰ : SimplexCategory) (ᾰ_1 : SimplexCategory) (e_1 : Eq.{1} SimplexCategory ᾰ ᾰ_1) => congr_arg.{1, 1} SimplexCategory (Opposite.{1} SimplexCategory) ᾰ ᾰ_1 (Opposite.op.{1} SimplexCategory) e_1) (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (SimplexCategory.mk m) ((fun (n : Nat) (n_1 : Nat) (e_1 : Eq.{1} Nat n n_1) => congr_arg.{1, 1} Nat SimplexCategory n n_1 SimplexCategory.mk e_1) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) m hnm)))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} {m : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q)) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m)) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (HSMul.hSMul.{0, u2, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (instHSMul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int Int.instHPowIntNat (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a (Iff.mpr (LT.lt.{0} Nat instLTNat a (Nat.succ n)) (LE.le.{0} Nat instLENat a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q) ha)))))) (CategoryTheory.eqToHom.{u2, u1} C _inst_1 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) ((fun {V : Type} [inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 : Quiver.{1, 0} V] {W : Type.{u1}} [inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 : Quiver.{succ u2, u1} W] (self : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) (self_1 : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) (e_self : Eq.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) self self_1) => Eq.rec.{0, max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) self (fun (self_1 : Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) (e_self : Eq.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590) self self_1) => forall (a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : V) (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : V), (Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) -> (Eq.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 self_1 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594))) (fun (a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : V) (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : V) (e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) => Eq.rec.{0, 1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 (fun (a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : V) (e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 : Eq.{1} V a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) => Eq.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 self a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594)) (Eq.refl.{succ u1} W (Prefunctor.obj.{1, succ u2, 0, u1} V inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.586 W inst._@.Mathlib.Combinatorics.Quiver.Basic._hyg.590 self a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594)) a_1._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594 e_a._@.Mathlib.Combinatorics.Quiver.Basic._hyg.594) self_1 e_self) (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Eq.refl.{max (succ u1) (succ u2)} (Prefunctor.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1))) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m)) ((fun {α : Type} (x : α) (x_1 : α) (e_x : Eq.{1} α x x_1) => Eq.rec.{0, 1} α x (fun (x_1 : α) (e_x : Eq.{1} α x x_1) => Eq.{1} (Opposite.{1} α) (Opposite.op.{1} α x) (Opposite.op.{1} α x_1)) (Eq.refl.{1} (Opposite.{1} α) (Opposite.op.{1} α x)) x_1 e_x) SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (SimplexCategory.mk m) ((fun (n : Nat) (n_1 : Nat) (e_1 : Eq.{1} Nat n n_1) => Eq.rec.{0, 1} Nat n (fun (n_1 : Nat) (e_n : Eq.{1} Nat n n_1) => Eq.{1} SimplexCategory (SimplexCategory.mk n) (SimplexCategory.mk n_1)) (Eq.refl.{1} SimplexCategory (SimplexCategory.mk n)) n_1 e_1) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) m hnm)))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ'_eq AlgebraicTopology.DoldKan.hσ'_eqₓ'. -/
 theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
     (hσ' q n m hnm : X _[n] ⟶ X _[m]) =
       ((-1 : ℤ) ^ a • X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro (Eq.symm ha))⟩) ≫
@@ -142,6 +164,12 @@ theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
     congr
 #align algebraic_topology.dold_kan.hσ'_eq AlgebraicTopology.DoldKan.hσ'_eq
 
+/- warning: algebraic_topology.dold_kan.hσ'_eq' -> AlgebraicTopology.DoldKan.hσ'_eq' is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a q)), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (rfl.{1} Nat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat (AddSemigroup.toHasAdd.{0} Nat (AddRightCancelSemigroup.toAddSemigroup.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))))) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (SMul.smul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) (Neg.neg.{0} Int Int.hasNeg (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) a (Iff.mpr (LT.lt.{0} Nat Nat.hasLt a (Nat.succ n)) (LE.le.{0} Nat Nat.hasLe a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) a q) ha))))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {q : Nat} {n : Nat} {a : Nat} (ha : Eq.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q)), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (rfl.{1} Nat (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat (AddSemigroup.toAdd.{0} Nat (AddRightCancelSemigroup.toAddSemigroup.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))))) n (OfNat.ofNat.{0} Nat 1 (One.toOfNat1.{0} Nat (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (HSMul.hSMul.{0, u2, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (instHSMul.{0, u2} Int (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (SubNegMonoid.SMulInt.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))))) (HPow.hPow.{0, 0, 0} Int Nat Int Int.instHPowIntNat (Neg.neg.{0} Int Int.instNegInt (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) a) (CategoryTheory.SimplicialObject.σ.{u2, u1} C _inst_1 X n (Fin.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) a (Iff.mpr (LT.lt.{0} Nat instLTNat a (Nat.succ n)) (LE.le.{0} Nat instLENat a n) (Nat.lt_succ_iff a n) (Nat.le.intro a n q (Eq.symm.{1} Nat n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) a q) ha))))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ'_eq' AlgebraicTopology.DoldKan.hσ'_eq'ₓ'. -/
 theorem hσ'_eq' {q n a : ℕ} (ha : n = a + q) :
     (hσ' q n (n + 1) rfl : X _[n] ⟶ X _[n + 1]) =
       (-1 : ℤ) ^ a • X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro (Eq.symm ha))⟩ :=
@@ -153,20 +181,27 @@ warning: algebraic_topology.dold_kan.Hσ -> AlgebraicTopology.DoldKan.hσ is a d
 lean 3 declaration is
   forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Nat -> (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))
 but is expected to have type
-  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Nat -> (forall (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Nat -> (forall (n : Nat), Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Hσ AlgebraicTopology.DoldKan.hσₓ'. -/
 /-- The null homotopic map $(hσ q) ∘ d + d ∘ (hσ q)$ -/
 def hσ (q : ℕ) : K[X] ⟶ K[X] :=
   nullHomotopicMap' (hσ' q)
 #align algebraic_topology.dold_kan.Hσ AlgebraicTopology.DoldKan.hσ
 
+/- warning: algebraic_topology.dold_kan.homotopy_Hσ_to_zero -> AlgebraicTopology.DoldKan.homotopyHσToZero is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (q : Nat), Homotopy.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.hσ.{u1, u2} C _inst_1 _inst_2 X q) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HomologicalComplex.Quiver.Hom.hasZero.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (q : Nat), Homotopy.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Hσ.{u1, u2} C _inst_1 _inst_2 X q) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (HomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HomologicalComplex.instZeroHomHomologicalComplexPreadditiveHasZeroMorphismsToQuiverToCategoryStructInstCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.homotopy_Hσ_to_zero AlgebraicTopology.DoldKan.homotopyHσToZeroₓ'. -/
 /-- `Hσ` is null homotopic -/
 def homotopyHσToZero (q : ℕ) : Homotopy (hσ q : K[X] ⟶ K[X]) 0 :=
   nullHomotopy' (hσ' q)
 #align algebraic_topology.dold_kan.homotopy_Hσ_to_zero AlgebraicTopology.DoldKan.homotopyHσToZero
 
+#print AlgebraicTopology.DoldKan.Hσ_eq_zero /-
 /-- In degree `0`, the null homotopic map `Hσ` is zero. -/
-theorem hσ_eq_zero (q : ℕ) : (hσ q : K[X] ⟶ K[X]).f 0 = 0 :=
+theorem Hσ_eq_zero (q : ℕ) : (hσ q : K[X] ⟶ K[X]).f 0 = 0 :=
   by
   unfold Hσ
   rw [null_homotopic_map'_f_of_not_rel_left (c_mk 1 0 rfl) cs_down_0_not_rel_left]
@@ -178,8 +213,15 @@ theorem hσ_eq_zero (q : ℕ) : (hσ q : K[X] ⟶ K[X]).f 0 = 0 :=
       one_zsmul, Fin.val_one, pow_one, comp_add, neg_smul, one_zsmul, comp_neg, add_neg_eq_zero]
     erw [δ_comp_σ_self, δ_comp_σ_succ]
   · rw [hσ'_eq_zero (Nat.succ_pos q) (c_mk 1 0 rfl), zero_comp]
-#align algebraic_topology.dold_kan.Hσ_eq_zero AlgebraicTopology.DoldKan.hσ_eq_zero
+#align algebraic_topology.dold_kan.Hσ_eq_zero AlgebraicTopology.DoldKan.Hσ_eq_zero
+-/
 
+/- warning: algebraic_topology.dold_kan.hσ'_naturality -> AlgebraicTopology.DoldKan.hσ'_naturality is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (q : Nat) (n : Nat) (m : Nat) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) m)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) m) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 Y q n m hnm)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) m) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m))))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (q : Nat) (n : Nat) (m : Nat) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) m)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) m) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 Y q n m hnm)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.hσ'_naturality AlgebraicTopology.DoldKan.hσ'_naturalityₓ'. -/
 /-- The maps `hσ' q n m hnm` are natural on the simplicial object -/
 theorem hσ'_naturality (q : ℕ) (n m : ℕ) (hnm : c.Rel m n) {X Y : SimplicialObject C} (f : X ⟶ Y) :
     f.app (op [n]) ≫ hσ' q n m hnm = hσ' q n m hnm ≫ f.app (op [m]) :=
@@ -195,6 +237,7 @@ theorem hσ'_naturality (q : ℕ) (n m : ℕ) (hnm : c.Rel m n) {X Y : Simplicia
     rfl
 #align algebraic_topology.dold_kan.hσ'_naturality AlgebraicTopology.DoldKan.hσ'_naturality
 
+#print AlgebraicTopology.DoldKan.natTransHσ /-
 /-- For each q, `Hσ q` is a natural transformation. -/
 def natTransHσ (q : ℕ) : alternatingFaceMapComplex C ⟶ alternatingFaceMapComplex C
     where
@@ -206,7 +249,14 @@ def natTransHσ (q : ℕ) : alternatingFaceMapComplex C ⟶ alternatingFaceMapCo
     ext (n m hnm)
     simp only [alternating_face_map_complex_map_f, hσ'_naturality]
 #align algebraic_topology.dold_kan.nat_trans_Hσ AlgebraicTopology.DoldKan.natTransHσ
+-/
 
+/- warning: algebraic_topology.dold_kan.map_hσ' -> AlgebraicTopology.DoldKan.map_hσ' is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u3}} [_inst_3 : CategoryTheory.Category.{u4, u3} D] [_inst_4 : CategoryTheory.Preadditive.{u4, u3} D _inst_3] (G : CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u3, u2, u4} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (q : Nat) (n : Nat) (m : Nat) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u4} (Quiver.Hom.{succ u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u4, u3} D (CategoryTheory.Category.toCategoryStruct.{u4, u3} D _inst_3)) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) m)) (AlgebraicTopology.DoldKan.hσ'.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X) q n m hnm) (CategoryTheory.Functor.map.{u2, u4, u1, u3} C _inst_1 D _inst_3 G (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk m))) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u4}} [_inst_3 : CategoryTheory.Category.{u3, u4} D] [_inst_4 : CategoryTheory.Preadditive.{u3, u4} D _inst_3] (G : CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u4, u2, u3} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (q : Nat) (n : Nat) (m : Nat) (hnm : ComplexShape.Rel.{0} Nat AlgebraicTopology.DoldKan.c m n), Eq.{succ u3} (Quiver.Hom.{succ u3, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u3) (succ u1), max (max (succ u3) (succ u1)) (succ u2), max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u3 u1, max (max u3 u1) u2, max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u3) (succ u1), max (max (succ u3) (succ u1)) (succ u2), max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u3 u1, max (max u3 u1) u2, max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) m)) (AlgebraicTopology.DoldKan.hσ'.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u3) (succ u1), max (max (succ u3) (succ u1)) (succ u2), max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u3 u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u3 u1, max (max u3 u1) u2, max (max (max u3 u4) u1) u2, max (max (max u3 u4) u1) u2} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X) q n m hnm) (Prefunctor.map.{succ u2, succ u3, u1, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u1, u4} C _inst_1 D _inst_3 G) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) m) (AlgebraicTopology.DoldKan.hσ'.{u1, u2} C _inst_1 _inst_2 X q n m hnm))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.map_hσ' AlgebraicTopology.DoldKan.map_hσ'ₓ'. -/
 /-- The maps `hσ' q n m hnm` are compatible with the application of additive functors. -/
 theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
     (X : SimplicialObject C) (q n m : ℕ) (hnm : c.Rel m n) :
@@ -219,8 +269,14 @@ theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Addi
   · simpa only [eq_to_hom_map, functor.map_comp, functor.map_zsmul]
 #align algebraic_topology.dold_kan.map_hσ' AlgebraicTopology.DoldKan.map_hσ'
 
+/- warning: algebraic_topology.dold_kan.map_Hσ -> AlgebraicTopology.DoldKan.map_Hσ is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u3}} [_inst_3 : CategoryTheory.Category.{u4, u3} D] [_inst_4 : CategoryTheory.Preadditive.{u4, u3} D _inst_3] (G : CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u3, u2, u4} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (q : Nat) (n : Nat), Eq.{succ u4} (Quiver.Hom.{succ u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u4, u3} D (CategoryTheory.Category.toCategoryStruct.{u4, u3} D _inst_3)) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n)) (HomologicalComplex.Hom.f.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) (AlgebraicTopology.DoldKan.hσ.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X) q) n) (CategoryTheory.Functor.map.{u2, u4, u1, u3} C _inst_1 D _inst_3 G (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.hσ.{u1, u2} C _inst_1 _inst_2 X q) n))
+but is expected to have type
+  forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u4}} [_inst_3 : CategoryTheory.Category.{u3, u4} D] [_inst_4 : CategoryTheory.Preadditive.{u3, u4} D _inst_3] (G : CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u4, u2, u3} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (q : Nat) (n : Nat), Eq.{succ u3} (Quiver.Hom.{succ u3, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n)) (HomologicalComplex.Hom.f.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) (AlgebraicTopology.DoldKan.Hσ.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X) q) n) (Prefunctor.map.{succ u2, succ u3, u1, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u1, u4} C _inst_1 D _inst_3 G) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.Hσ.{u1, u2} C _inst_1 _inst_2 X q) n))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.map_Hσ AlgebraicTopology.DoldKan.map_Hσₓ'. -/
 /-- The null homotopic maps `Hσ` are compatible with the application of additive functors. -/
-theorem map_hσ {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
+theorem map_Hσ {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
     (X : SimplicialObject C) (q n : ℕ) :
     (hσ q : K[((whiskering C D).obj G).obj X] ⟶ _).f n = G.map ((hσ q : K[X] ⟶ _).f n) :=
   by
@@ -230,7 +286,7 @@ theorem map_hσ {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Addit
   rw [Eq]
   let h := (functor.congr_obj (map_alternating_face_map_complex G) X).symm
   congr
-#align algebraic_topology.dold_kan.map_Hσ AlgebraicTopology.DoldKan.map_hσ
+#align algebraic_topology.dold_kan.map_Hσ AlgebraicTopology.DoldKan.map_Hσ
 
 end DoldKan
 
Diff
@@ -117,7 +117,7 @@ def hσ (q : ℕ) (n : ℕ) : X _[n] ⟶ X _[n + 1] :=
 #align algebraic_topology.dold_kan.hσ AlgebraicTopology.DoldKan.hσ
 
 /-- We can turn `hσ` into a datum that can be passed to `null_homotopic_map'`. -/
-def hσ' (q : ℕ) : ∀ n m, c.Rel m n → (K[X].x n ⟶ K[X].x m) := fun n m hnm =>
+def hσ' (q : ℕ) : ∀ n m, c.Rel m n → (K[X].pt n ⟶ K[X].pt m) := fun n m hnm =>
   hσ q n ≫ eqToHom (by congr )
 #align algebraic_topology.dold_kan.hσ' AlgebraicTopology.DoldKan.hσ'
 
@@ -210,8 +210,8 @@ def natTransHσ (q : ℕ) : alternatingFaceMapComplex C ⟶ alternatingFaceMapCo
 /-- The maps `hσ' q n m hnm` are compatible with the application of additive functors. -/
 theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
     (X : SimplicialObject C) (q n m : ℕ) (hnm : c.Rel m n) :
-    (hσ' q n m hnm : K[((whiskering _ _).obj G).obj X].x n ⟶ _) =
-      G.map (hσ' q n m hnm : K[X].x n ⟶ _) :=
+    (hσ' q n m hnm : K[((whiskering _ _).obj G).obj X].pt n ⟶ _) =
+      G.map (hσ' q n m hnm : K[X].pt n ⟶ _) :=
   by
   unfold hσ' hσ
   split_ifs

Changes in mathlib4

mathlib3
mathlib4
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -68,7 +68,6 @@ namespace AlgebraicTopology
 namespace DoldKan
 
 variable {C : Type*} [Category C] [Preadditive C]
-
 variable {X : SimplicialObject C}
 
 /-- As we are using chain complexes indexed by `ℕ`, we shall need the relation
refactor: optimize proofs with omega (#11093)

I ran tryAtEachStep on all files under Mathlib to find all locations where omega succeeds. For each that was a linarith without an only, I tried replacing it with omega, and I verified that elaboration time got smaller. (In almost all cases, there was a noticeable speedup.) I also replaced some slow aesops along the way.

Diff
@@ -115,8 +115,7 @@ theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
         eqToHom (by congr) := by
   simp only [hσ', hσ]
   split_ifs
-  · exfalso
-    linarith
+  · omega
   · have h' := tsub_eq_of_eq_add ha
     congr
 #align algebraic_topology.dold_kan.hσ'_eq AlgebraicTopology.DoldKan.hσ'_eq
doc: fix typos (#10100)

Fix minor typos in the following files:

  • Mathlib/GroupTheory/GroupAction/Opposite.lean
  • Mathlib/Init/Control/Lawful.lean
  • Mathlib/ModelTheory/ElementarySubstructures.lean
  • Mathlib/Algebra/Group/Defs.lean
  • Mathlib/Algebra/Group/WithOne/Basic.lean
  • Mathlib/Data/Int/Cast/Defs.lean
  • Mathlib/LinearAlgebra/Dimension/Basic.lean
  • Mathlib/NumberTheory/NumberField/CanonicalEmbedding.lean
  • Mathlib/Algebra/Star/StarAlgHom.lean
  • Mathlib/AlgebraicTopology/SimplexCategory.lean
  • Mathlib/CategoryTheory/Abelian/Homology.lean
  • Mathlib/CategoryTheory/Sites/Grothendieck.lean
  • Mathlib/RingTheory/IsTensorProduct.lean
  • Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean
  • Mathlib/AlgebraicTopology/ExtraDegeneracy.lean
  • Mathlib/AlgebraicTopology/Nerve.lean
  • Mathlib/AlgebraicTopology/SplitSimplicialObject.lean
  • Mathlib/Analysis/ConstantSpeed.lean
  • Mathlib/Analysis/Convolution.lean
Diff
@@ -53,7 +53,7 @@ compatible the application of additive functors (see `map_Hσ`).
 
 ## References
 * [Albrecht Dold, *Homology of Symmetric Products and Other Functors of Complexes*][dold1958]
-* [Paul G. Goerss, John F. Jardine, *Simplical Homotopy Theory*][goerss-jardine-2009]
+* [Paul G. Goerss, John F. Jardine, *Simplicial Homotopy Theory*][goerss-jardine-2009]
 
 -/
 
fix: patch for std4#203 (more sub lemmas for Nat) (#6216)
Diff
@@ -94,7 +94,7 @@ theorem cs_down_0_not_rel_left (j : ℕ) : ¬c.Rel 0 j := by
 /-- The sequence of maps which gives the null homotopic maps `Hσ` that shall be in
 the inductive construction of the projections `P q : K[X] ⟶ K[X]` -/
 def hσ (q : ℕ) (n : ℕ) : X _[n] ⟶ X _[n + 1] :=
-  if n < q then 0 else (-1 : ℤ) ^ (n - q) • X.σ ⟨n - q, Nat.sub_lt_succ n q⟩
+  if n < q then 0 else (-1 : ℤ) ^ (n - q) • X.σ ⟨n - q, Nat.lt_succ_of_le (Nat.sub_le _ _)⟩
 #align algebraic_topology.dold_kan.hσ AlgebraicTopology.DoldKan.hσ
 
 /-- We can turn `hσ` into a datum that can be passed to `nullHomotopicMap'`. -/
chore: cleanup some spaces (#7484)

Purely cosmetic PR.

Diff
@@ -112,7 +112,7 @@ theorem hσ'_eq_zero {q n m : ℕ} (hnq : n < q) (hnm : c.Rel m n) :
 theorem hσ'_eq {q n a m : ℕ} (ha : n = a + q) (hnm : c.Rel m n) :
     (hσ' q n m hnm : X _[n] ⟶ X _[m]) =
       ((-1 : ℤ) ^ a • X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro (Eq.symm ha))⟩) ≫
-        eqToHom (by congr ) := by
+        eqToHom (by congr) := by
   simp only [hσ', hσ]
   split_ifs
   · exfalso
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -67,7 +67,7 @@ namespace AlgebraicTopology
 
 namespace DoldKan
 
-variable {C : Type _} [Category C] [Preadditive C]
+variable {C : Type*} [Category C] [Preadditive C]
 
 variable {X : SimplicialObject C}
 
@@ -181,7 +181,7 @@ set_option linter.uppercaseLean3 false in
 #align algebraic_topology.dold_kan.nat_trans_Hσ AlgebraicTopology.DoldKan.natTransHσ
 
 /-- The maps `hσ' q n m hnm` are compatible with the application of additive functors. -/
-theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
+theorem map_hσ' {D : Type*} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
     (X : SimplicialObject C) (q n m : ℕ) (hnm : c.Rel m n) :
     (hσ' q n m hnm : K[((whiskering _ _).obj G).obj X].X n ⟶ _) =
       G.map (hσ' q n m hnm : K[X].X n ⟶ _) := by
@@ -193,7 +193,7 @@ theorem map_hσ' {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Addi
 #align algebraic_topology.dold_kan.map_hσ' AlgebraicTopology.DoldKan.map_hσ'
 
 /-- The null homotopic maps `Hσ` are compatible with the application of additive functors. -/
-theorem map_Hσ {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
+theorem map_Hσ {D : Type*} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
     (X : SimplicialObject C) (q n : ℕ) :
     (Hσ q : K[((whiskering C D).obj G).obj X] ⟶ _).f n = G.map ((Hσ q : K[X] ⟶ _).f n) := by
   unfold Hσ
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.homotopies
-! leanprover-community/mathlib commit b12099d3b7febf4209824444dd836ef5ad96db55
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Homology.Homotopy
 import Mathlib.AlgebraicTopology.DoldKan.Notations
 
+#align_import algebraic_topology.dold_kan.homotopies from "leanprover-community/mathlib"@"b12099d3b7febf4209824444dd836ef5ad96db55"
+
 /-!
 
 # Construction of homotopies for the Dold-Kan correspondence
chore: remove superfluous parentheses in calls to ext (#5258)

Co-authored-by: Xavier Roblot <46200072+xroblot@users.noreply.github.com> Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr> Co-authored-by: Riccardo Brasca <riccardo.brasca@gmail.com> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Pol'tta / Miyahara Kō <pol_tta@outlook.jp> Co-authored-by: Jason Yuen <jason_yuen2007@hotmail.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com> Co-authored-by: Jireh Loreaux <loreaujy@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com> Co-authored-by: Jujian Zhang <jujian.zhang1998@outlook.com> Co-authored-by: Yaël Dillies <yael.dillies@gmail.com>

Diff
@@ -178,7 +178,7 @@ def natTransHσ (q : ℕ) : alternatingFaceMapComplex C ⟶ alternatingFaceMapCo
     unfold Hσ
     rw [nullHomotopicMap'_comp, comp_nullHomotopicMap']
     congr
-    ext (n m hnm)
+    ext n m hnm
     simp only [alternatingFaceMapComplex_map_f, hσ'_naturality]
 set_option linter.uppercaseLean3 false in
 #align algebraic_topology.dold_kan.nat_trans_Hσ AlgebraicTopology.DoldKan.natTransHσ
feat: port AlgebraicTopology.DoldKan.Homotopies (#3523)

Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Dependencies 8 + 518

519 files ported (98.5%)
199314 lines ported (98.5%)
Show graph

The unported dependencies are